1
|
Tidoni E, Tieri G, Aglioti SM. Re-establishing the disrupted sensorimotor loop in deafferented and deefferented people: The case of spinal cord injuries. Neuropsychologia 2015; 79:301-9. [PMID: 26115603 DOI: 10.1016/j.neuropsychologia.2015.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/15/2015] [Accepted: 06/21/2015] [Indexed: 11/26/2022]
Abstract
Acting efficiently in the world depends on the activity of motor and somatosensory systems, the integration of which is necessary for the proper functioning of the sensorimotor loop (SL). Profound alterations of SL functioning follow spinal cord injury (SCI), a condition that brings about a disconnection of the body from the brain. Such disconnection creates a substantial deprivation of somatosensorial inputs and motor outputs. Consequent somatic deficits and motor paralysis affect the body below the lesion level. A complete restoration of normal functions of the SL cannot be expected until basic neuroscience has found a way to re-establish the interrupted neural connectivity. Meanwhile, studies should focus on the development of technical solutions for dealing with the disruption of the sensorimotor loop. This review discusses the structural and functional adaptive reorganization of the brain after SCI, and the maladaptive mechanisms that impact on the processing of body related information, which alter motor imagery strategies and EEG signals. Studies that show how residual functions (e.g. face tactile sensitivity) may help people to restore a normal body image are also reviewed. Finally, data on how brain and residual body signals may be used to improve brain computer interface systems is discussed in relation to the issue of how such systems may help SCI people to re-enter the world and interact with objects and other individuals.
Collapse
Affiliation(s)
- E Tidoni
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy.
| | - G Tieri
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Braintrends Ltd, Applied Neuroscience, Rome, Italy
| | - S M Aglioti
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Bazley FA, All AH, Thakor NV, Maybhate A. Plasticity associated changes in cortical somatosensory evoked potentials following spinal cord injury in rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:2005-8. [PMID: 22254728 DOI: 10.1109/iembs.2011.6090564] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spinal cord injury (SCI) causes a number of physiological and neurological changes resulting in loss of sensorimotor function. Recent work has shown that the central nervous system is capable of plastic behaviors post-injury, including axonal regrowth and cortical remapping. Functional integrity of afferent sensory pathways can be quantified using cortical somatosensory evoked potentials (SSEPs) recorded upon peripheral limb stimulation. We implanted 15 rats with transcranial screw electrodes and recorded SSEPs from cortical regions corresponding to each limb before and after a mild or moderate contusion injury. We report a post-injury increase in the mean amplitude of cortical SSEPs upon forelimb stimulation. SSEP amplitudes for mild and moderate SCI groups increased by 183% ± 95% and 107% ± 38% over baseline, respectively, while hindlimb SSEPs decreased by 58% ± 14% and 79% ± 4%. In addition, we report increased SSEP amplitude measured from the anatomically adjacent hindlimb region upon forelimb stimulation (increase of 90% ± 19%). Our results show that previously allocated hindlimb cortical regions are now activated by forelimb stimulation, suggesting an expansion in the area of cortical forelimb representation into hindlimb regions after an injury. This result is indicative of adaptive plasticity in undamaged areas of the CNS following SCI.
Collapse
Affiliation(s)
- Faith A Bazley
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
3
|
Houzé B, Perchet C, Magnin M, Garcia-Larrea L. Cortical representation of the human hand assessed by two levels of high-resolution EEG recordings. Hum Brain Mapp 2011; 32:1894-904. [PMID: 21246666 DOI: 10.1002/hbm.21155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 08/05/2010] [Accepted: 08/05/2010] [Indexed: 11/09/2022] Open
Abstract
Increasing interest in cortical plasticity has prompted the growing use of somatosensory evoked potentials (SEPs) to estimate changes in the cortical representation of body regions. Here, we tested the effect of different sites of hand stimulation and of the density of spatial sampling in the quality of estimation of somatosensory sources. Sources of two SEP components from the primary somatosensory cortex (N20/P20 and P45) were estimated using two levels of spatial sampling (64- vs. 128-channel) and stimulation of four distal sites in the upper limbs, including single digits (first vs. fifth) and distal nerves with comparable cortical projection (superficial branch of the radial nerve and distal ulnar nerve). The most robust separation of somatosensory sources was achieved by comparing the cortical representations of the first digit and the distal ulnar nerve territories on the N20/P20 component of SEPs. Although both the 64- and the 128-electrode montages correctly discriminated these two areas, only the 128-electrode montage was able to significantly separate sources in the other cases, notably when using first versus fifth digit stimulation. Trustworthy distinction of cortical representations was not obtainable when using the P45 component, probably because of greater activation volume, radial orientation of sources in areas 1-2 and increased variability with attention and vigilance. Assessment of tangential SEP components to stimulation of first digit versus ulnar nerve appears the best option to assess plastic somatosensory changes, especially when using relatively low-electrode sampling.
Collapse
Affiliation(s)
- Bérengère Houzé
- Central Integration of Pain, INSERM U879/University Claude Bernard Lyon 1, France.
| | | | | | | |
Collapse
|
4
|
Whitsel BL, Favorov OV, Li Y, Lee J, Quibrera PM, Tommerdahl M. Nociceptive afferent activity alters the SI RA neuron response to mechanical skin stimulation. Cereb Cortex 2010; 20:2900-15. [PMID: 20308203 PMCID: PMC2978241 DOI: 10.1093/cercor/bhq039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Procedures that reliably evoke cutaneous pain in humans (i.e., 5-7 s skin contact with a 47-51 °C probe, intradermal algogen injection) are shown to decrease the mean spike firing rate (MFR) and degree to which the rapidly adapting (RA) neurons in areas 3b/1 of squirrel monkey primary somatosensory cortex (SI) entrain to a 25-Hz stimulus to the receptive field center (RF(center)) when stimulus amplitude is "near-threshold" (i.e., 10-50 μm). In contrast, RA neuron MFR and entrainment are either unaffected or enhanced by 47-51 °C contact or intradermal algogen injection when the amplitude of 25-Hz stimulation is 100-200 μm (suprathreshold). The results are attributed to an "activity dependence" of γ-aminobutyric acid (GABA) action on the GABA(A) receptors of RA neurons. The nociceptive afferent drive triggered by skin contact with a 47-51 °C probe or intradermal algogen is proposed to activate nociresponsive neurons in area 3a which, via corticocortical connections, leads to the release of GABA in areas 3b/1. It is hypothesized that GABA is hyperpolarizing/inhibitory and suppresses stimulus-evoked RA neuron MFR and entrainment whenever RA neuron activity is low (as when the RF(center) stimulus is weak/near-threshold) but is depolarizing/excitatory and augments MFR and entrainment when RA neuron activity is high (when the stimulus is strong/suprathreshold).
Collapse
Affiliation(s)
- B L Whitsel
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Hoschouer EL, Finseth T, Flinn S, Basso DM, Jakeman LB. Sensory stimulation prior to spinal cord injury induces post-injury dysesthesia in mice. J Neurotrauma 2010; 27:777-87. [PMID: 20121420 PMCID: PMC2943942 DOI: 10.1089/neu.2009.1182] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic pain and dysesthesias are debilitating conditions that can arise following spinal cord injury (SCI). Research studies frequently employ rodent models of SCI to better understand the underlying mechanisms and develop better treatments for these phenomena. While evoked withdrawal tests can assess hypersensitivity in these SCI models, there is little consensus over how to evaluate spontaneous sensory abnormalities that are seen in clinical SCI subjects. Overgrooming (OG) and biting after peripheral nerve injury or spinal cord excitotoxic lesions are thought to be one behavioral demonstration of spontaneous neuropathic pain or dysesthesia. However, reports of OG after contusion SCI are largely anecdotal and conditions causing this response are poorly understood. The present study investigated whether repeated application of sensory stimuli to the trunk prior to mid-thoracic contusion SCI would induce OG after SCI in mice. One week prior to SCI or laminectomy, mice were subjected either to nociceptive and mechanical stimulation, mechanical stimulation only, the testing situation without stimulation, or no treatment. They were then examined for 14 days after surgery and the sizes and locations of OG sites were recorded on anatomical maps. Mice subjected to either stimulus paradigm showed increased OG compared with unstimulated or uninjured mice. Histological analysis showed no difference in spinal cord lesion size due to sensory stimulation, or between mice that overgroomed or did not overgroom. The relationship between prior stimulation and contusion injury in mice that display OG indicates a critical interaction that may underlie one facet of spontaneous neuropathic symptoms after SCI.
Collapse
Affiliation(s)
- Emily L. Hoschouer
- Department of Physiology and Cell Biology, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Neuroscience Graduate Studies Program, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Center for Brain and Spinal Cord Repair, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Taylor Finseth
- College of Medicine, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Sharon Flinn
- Division of Occupational Therapy, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - D. Michele Basso
- Department of Neuroscience, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Neuroscience Graduate Studies Program, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Center for Brain and Spinal Cord Repair, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Division of Physical Therapy, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Lyn B. Jakeman
- Department of Physiology and Cell Biology, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Department of Neuroscience, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Neuroscience Graduate Studies Program, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
- Center for Brain and Spinal Cord Repair, School of Allied Medicine, The Ohio State University Medical Center, Columbus, Ohio
| |
Collapse
|
6
|
Intra- and inter-subject variability of high field fMRI digit maps in somatosensory area 3b of new world monkeys. Neuroscience 2009; 165:252-64. [PMID: 19799969 DOI: 10.1016/j.neuroscience.2009.09.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 11/23/2022]
Abstract
This study evaluates the intra- and inter-subject variability of digit maps in area 3b of anesthetized squirrel monkeys. Maps were collected using high field blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). BOLD responses to individual digit stimulations were mapped and their response properties (location, area of activation, % signal change, time to peak response) were compared within and across imaging sessions separated by up to 20 months. During single digit stimulation using a block design, the spatiotemporal response of the BOLD signal for individual runs within and across sessions and animals was well conserved, with a time to peak BOLD response of 20+/-4 s. The variability in the center of BOLD activation in area 3b was 0.41+/-0.24 mm (mean+/-SD) across individual 5-7 min runs within a scanning session and 0.55+/-0.15 mm across sessions. The average signal change across all animals, runs and sessions was 0.62+/-0.38%, and varied 32% within and 40% across sessions. In a comparison of the stability and reproducibility of the area of single digit activation obtained using three approaches, use of a fixed statistical threshold (P<10(-5)) yielded an average area of 4.8+/-3.5 mm(2) (mean+/-SD), adaptive statistical thresholding 1.32+/-1.259 mm(2) (mean+/-SD), and combined fixed statistical and adaptive BOLD signal amplitude 4.4+/-2.5 mm(2) (mean+/-SD) across image runs and sessions. The somatotopic organization was stable within animals across sessions, while across animals, there was some variation in overall activation pattern and inter-digit distances. These results confirm that BOLD activation maps of single digits in area 3b as characterized by activation center, signal amplitudes, and temporal profile are very stable. The activation sizes determined by various criteria are the most variable measure in this preparation, but adaptive statistical thresholding appears to yield the most stable and reproducible maps. This study serves as a baseline assessment of the limits imposed on the detection of plastic changes by experimental variations of the digit BOLD fMRI activation maps in normal animals, and as an indicator of the likely performance limits in human studies.
Collapse
|
7
|
Abstract
STUDY DESIGN Clinical, neuroradiologic, and neurophysiologic description of 21 patients with compressive cervical spondylotic myelopathy (CCSM). OBJECTIVE To describe the utility of cutaneous silent periods (CSPs) for functional evaluation of mild CCSM. SUMMARY OF BACKGROUND DATA Electroneurography, electromyography, and somatosensory and motor evoked potentials (SEPs, MEPs) are routinely used for comprehensive functional neurophysiological evaluation of CCSM. CSPs have been reported in various intramedullary spinal cord lesions, however, they have not been systematically studied in mild CCSM. METHODS We investigated 21 patients with multilevel CCSM as documented by magnetic resonance imaging. We recorded CSPs in thenar muscles after noxious digit II stimulation and compared them with median and tibial nerve SEPs and MEPs obtained from abductor digiti minimi and tibialis anterior muscles. Electroneurography and electromyography were obtained in affected myotomes. RESULTS CSP onset and end latencies were delayed, and CSP duration was shortened, in CCSM patients. CSP abnormalities were present in 17 patients of whom all, but 1 presented with intramedullary magnetic resonance imaging hyperintensity. All 11 limbs affected by hypalgesia and thermhypesthesia had abnormal CSPs, whereas no spinothalamic deficit was noted in any limb with normal CSPs. CSP onset latency was inversely correlated with JOA score and N13 amplitude, and was positively correlated with central motor conduction time to abductor digiti minimi. CSP duration was inversely correlated with central motor conduction time to tibialis anterior. Electromyographic abnormalities were found in 7 patients. CONCLUSION We confirm the value of neurophysiological evaluation of CCSM. MEPs were more frequently abnormal than SEPs. CSP abnormalities were almost equally sensitive as upper limb MEPs, and were highly associated with spinothalamic dysfunction. The high correlation of CSP abnormalities with corticospinal tract dysfunction suggests supraspinal influence on CSPs. Our findings corroborate the utility of CSP testing in the comprehensive assessment of intramedullary spinal cord dysfunction in CCSM.
Collapse
|
8
|
Garcia-Larrea L, Magnin M. Physiopathologie de la douleur neuropathique : revue des modèles expérimentaux et des mécanismes proposés. Presse Med 2008; 37:315-40. [DOI: 10.1016/j.lpm.2007.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/02/2007] [Indexed: 01/22/2023] Open
|
9
|
Cross DJ, Flexman JA, Anzai Y, Morrow TJ, Maravilla KR, Minoshima S. In vivo imaging of functional disruption, recovery and alteration in rat olfactory circuitry after lesion. Neuroimage 2006; 32:1265-72. [PMID: 16859928 DOI: 10.1016/j.neuroimage.2006.04.229] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 04/21/2006] [Accepted: 04/27/2006] [Indexed: 11/26/2022] Open
Abstract
Compensatory changes following disruption of neuronal circuitry have been indicated by previous imaging studies of stroke and other brain injury, but evidence of the pathways involved in such dynamic changes has not been shown in vivo. We imaged rats before and after lesion-induced disruption of the lateral olfactory tract to investigate the subsequent recovery and/or reorganization of functional neuronal circuitry. Serial magnetic resonance imaging was performed following intranasal administration of a paramagnetic track tracer Mn(2+). Images were analyzed using statistical mapping techniques in the stereotactic coordinate system. At 1 week post-lesion, Mn(2+) transport caudal to lesion was reduced as expected, and more importantly, increased transport through the anterior commissure was seen. At 4 weeks post-lesion, there was recovery of transport caudal to lesion, and increased transport through the anterior commissure extended to the contralateral olfactory cortex. Correlation analysis of regional Mn(2+) transport indicated that contralateral enhancement was not simply due to septal window spillover. This study demonstrates for the first time in vivo evidence of compensatory changes in functional neuronal activity to a contralateral pathway through the commissure following brain injury.
Collapse
Affiliation(s)
- Donna J Cross
- Washington National Regional Primate Center, University of Washington, 1959 N.E. Pacific Street, BB201c, Box 357115, Seattle, WA 98195-7115, USA
| | | | | | | | | | | |
Collapse
|
10
|
Stetkárová I, Stejskal L, Kofler M. Tumors localized near the central sulcus may cause increased somatosensory evoked potentials. Clin Neurophysiol 2006; 117:1359-66. [PMID: 16677857 DOI: 10.1016/j.clinph.2006.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 02/21/2006] [Accepted: 03/08/2006] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Median nerve somatosensory evoked potentials (SEPs) may be altered in patients with cerebral tumors. In rare cases cortical responses may be increased, but the significance of this finding remains unclear. METHODS We investigated 3 patients in whom an epileptic seizure was the only neurological symptom of a cerebral tumor located near the central sulcus. We studied median nerve SEPs, motor evoked potentials in abductor digiti minimi muscle, and long-loop reflexes in abductor pollicis brevis muscle bilaterally. Two patients also underwent intraoperative neurophysiological monitoring. RESULTS All 3 patients presented with enlarged cortical SEPs on the side of the brain tumor. The responses increased further post-operatively, and the enhancement persisted in follow-up examinations up to 6 months after surgical tumor extirpation. Intraoperative monitoring documented a substantial increase of the enlarged potential N20-P22 during tumor removal in one patient, who also presented with an exaggerated long-loop reflex on the tumor side. Transcranial magnetic stimulation revealed unremarkable motor evoked potentials in all 3 patients. CONCLUSIONS Distinct mechanisms must be considered in order to explain both immediate and long-term changes of neuronal excitability leading to increased cortical SEPs. SIGNIFICANCE Hyperexcitability of cortical neurons or insufficient cortical inhibitory mechanisms may be responsible for increased SEPs, which may serve as an epileptic marker in patients suffering from a tumor near the central sulcus.
Collapse
Affiliation(s)
- Ivana Stetkárová
- Department of Neurology, Na Homolce Hospital, Prague, Czech Republic
| | | | | |
Collapse
|
11
|
Ortega-Alvaro A, Acebes I, Saracíbar G, Echevarría E, Casis L, Micó JA. Effect of the antidepressant nefazodone on the density of cells expressing mu-opioid receptors in discrete brain areas processing sensory and affective dimensions of pain. Psychopharmacology (Berl) 2004; 176:305-11. [PMID: 15138764 DOI: 10.1007/s00213-004-1894-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 03/23/2004] [Indexed: 12/20/2022]
Abstract
RATIONALE The principal use of antidepressants is in the treatment of depression and affective disorders. Antidepressants have also been used as an adjuvant to analgesics in pain treatment. However, in chronic treatment, their antinociceptive and antidepressive effects coexist simultaneously. Antidepressants can interact with the opioid system, which is also involved in regulating nociceptive processing and affective state. Chronic antidepressants could act by increasing mu-opioid receptor expression in many brain areas involved in the regulation of nociception and affective state. OBJECTIVES The aim of this study was to evaluate the antinociceptive and antidepressant-like effects and the possible variations in mu-opioid receptor expression induced by a chronic nefazodone treatment in brain areas related to pain and affective state. METHODS Wistar rats were chronically treated with nefazodone (10 and 25 mg/kg IP, twice a day, for 14 days). Twelve hours after the last day 14 dose of nefazodone, a tail-flick test was performed. After the administration of a daily dose of nefazodone, Porsolt's test was carried out 12 h after last dose. Two hours after completion of 14 days treatment, other animals were processed for mu-opioid receptor immunocytochemistry using polyclonal antisera raised in rabbits. Several brain regions were analyzed: the frontal and cingulate cortex, the dorsal raphe nucleus and the periaqueductal gray. RESULTS Chronic nefazodone treatment induced a significant increase in tail-flick latency and a significant decrease in immobility time at total doses of 20 and 50 mg/kg per day ( P<0.05). In treated animals, the density of neural cells immunostained for mu-opioid receptor in the frontal and cingulate cortices, dorsal raphe nucleus and periaqueductal gray had increased after chronic nefazodone compared to controls. CONCLUSION Therefore, chronic nefazodone induces antinociceptive and antidepressant-like effects in rats and increases mu-opioid receptor expression in brain areas related to pain and affective state. These results suggest that antidepressants could be effective on somatic and affective dimensions of pain and this action could be related to its influence on the opioid system.
Collapse
Affiliation(s)
- Antonio Ortega-Alvaro
- Pharmacology and Neuroscience Research Group (CTS-510), Department of Neuroscience (Pharmacology and Psychiatry), Faculty of Medicine, University of Cadiz, Plaza Fragela 9, 11003 Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Tinazzi M, Valeriani M, Moretto G, Rosso T, Nicolato A, Fiaschi A, Aglioti SM. Plastic interactions between hand and face cortical representations in patients with trigeminal neuralgia: a somatosensory-evoked potentials study. Neuroscience 2004; 127:769-76. [PMID: 15283973 DOI: 10.1016/j.neuroscience.2004.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Neurophysiological and neuroimaging studies suggest that pain may play a major role in determining cortical somatosensory rearrangements even in the adult brain. The re-organizational power of pain, however, has been tested in models in which massive deafferentation co-existed with pain (e.g. in phantom pain). Moreover, information on whether spinal and brainstem changes contribute to pain-related plasticity in humans is meagre. We used the non-invasive somatosensory evoked potentials technique in patients with right primary trigeminal neuralgia and no clinical signs of large-diameter fibers of trigeminal deafferentation to assess whether pain may induce plastic changes at multiple levels in the somatosensory system. Subcortical and cortical potentials evoked by stimulation of the right median and posterior tibial nerves ipsilateral to the facial pain were compared with those obtained following stimulation of the left median and tibial nerves and with those obtained in a control group tested in comparable conditions. Amplitudes of parietal N20 and P27 and frontal N30 potentials observed following stimulation of the right median nerve ipsilateral to the facial pain were greater than those of the left median nerve and showed a positive correlation with magnitude of pain. This right-left asymmetry was absent following stimulation of the patients' tibial nerves and in control subjects. No changes were found in spinal N13 and brainstem P14. That facial pain is associated with neuroplastic changes within the somatic cortical representation of the hand suggests a pain-related topographic cortical reorganisation.
Collapse
Affiliation(s)
- M Tinazzi
- Unità Operativa Neurologia Ospedale Civile Borgo Trento, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|