1
|
Yumura S, Nakano M, Honda A, Hashimoto Y, Kondo T. Dynamics of intracellular cGMP during chemotaxis in Dictyostelium cells. J Cell Sci 2023; 136:286882. [PMID: 36601895 DOI: 10.1242/jcs.260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Cyclic guanosine 3',5'-monophosphate (cGMP) is a ubiquitous important second messenger involved in various physiological functions. Here, intracellular cGMP (cGMPi) was visualized in chemotactic Dictyostelium cells using the fluorescent probe, D-Green cGull. When wild-type cells were stimulated with a chemoattractant, fluorescence transiently increased, but guanylate cyclase-null cells did not show a change in fluorescence, suggesting that D-Green cGull is a reliable indicator of cGMPi. In the aggregation stage, the responses of cGMPi propagated in a wave-like fashion from the aggregation center. The oscillation of the cGMPi wave was synchronized almost in phase with those of other second messengers, such as the intracellular cAMP and Ca2+. The phases of these waves preceded those of the oscillations of actomyosin and cell velocity, suggesting that these second messengers are upstream of the actomyosin and chemotactic migration. An acute increase in cGMPi concentration released from membrane-permeable caged cGMP induced a transient shuttle of myosin II between the cytosol and cell cortex, suggesting a direct link between cGMP signaling and myosin II dynamics.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Masaki Nakano
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Aika Honda
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Yuuki Hashimoto
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Tomo Kondo
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Umarao P, Rath PP, Gourinath S. Cdc42/Rac Interactive Binding Containing Effector Proteins in Unicellular Protozoans With Reference to Human Host: Locks of the Rho Signaling. Front Genet 2022; 13:781885. [PMID: 35186026 PMCID: PMC8847673 DOI: 10.3389/fgene.2022.781885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022] Open
Abstract
Small GTPases are the key to actin cytoskeleton signaling, which opens the lock of effector proteins to forward the signal downstream in several cellular pathways. Actin cytoskeleton assembly is associated with cell polarity, adhesion, movement and other functions in eukaryotic cells. Rho proteins, specifically Cdc42 and Rac, are the primary regulators of actin cytoskeleton dynamics in higher and lower eukaryotes. Effector proteins, present in an inactive state gets activated after binding to the GTP bound Cdc42/Rac to relay a signal downstream. Cdc42/Rac interactive binding (CRIB) motif is an essential conserved sequence found in effector proteins to interact with Cdc42 or Rac. A diverse range of Cdc42/Rac and their effector proteins have evolved from lower to higher eukaryotes. The present study has identified and further classified CRIB containing effector proteins in lower eukaryotes, focusing on parasitic protozoans causing neglected tropical diseases and taking human proteins as a reference point to the highest evolved organism in the evolutionary trait. Lower eukaryotes’ CRIB containing proteins fall into conventional effector molecules, PAKs (p21 activated kinase), Wiskoit-Aldrich Syndrome proteins family, and some have unique domain combinations unlike any known proteins. We also highlight the correlation between the effector protein isoforms and their selective specificity for Cdc42 or Rac proteins during evolution. Here, we report CRIB containing effector proteins; ten in Dictyostelium and Entamoeba, fourteen in Acanthamoeba, one in Trypanosoma and Giardia. CRIB containing effector proteins that have been studied so far in humans are potential candidates for drug targets in cancer, neurological disorders, and others. Conventional CRIB containing proteins from protozoan parasites remain largely elusive and our data provides their identification and classification for further in-depth functional validations. The tropical diseases caused by protozoan parasites lack combinatorial drug targets as effective paradigms. Targeting signaling mechanisms operative in these pathogens can provide greater molecules in combatting their infections.
Collapse
Affiliation(s)
- Preeti Umarao
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pragyan Parimita Rath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Samudrala Gourinath
- Structural Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Filić V, Mijanović L, Putar D, Talajić A, Ćetković H, Weber I. Regulation of the Actin Cytoskeleton via Rho GTPase Signalling in Dictyostelium and Mammalian Cells: A Parallel Slalom. Cells 2021; 10:1592. [PMID: 34202767 PMCID: PMC8305917 DOI: 10.3390/cells10071592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Both Dictyostelium amoebae and mammalian cells are endowed with an elaborate actin cytoskeleton that enables them to perform a multitude of tasks essential for survival. Although these organisms diverged more than a billion years ago, their cells share the capability of chemotactic migration, large-scale endocytosis, binary division effected by actomyosin contraction, and various types of adhesions to other cells and to the extracellular environment. The composition and dynamics of the transient actin-based structures that are engaged in these processes are also astonishingly similar in these evolutionary distant organisms. The question arises whether this remarkable resemblance in the cellular motility hardware is accompanied by a similar correspondence in matching software, the signalling networks that govern the assembly of the actin cytoskeleton. Small GTPases from the Rho family play pivotal roles in the control of the actin cytoskeleton dynamics. Indicatively, Dictyostelium matches mammals in the number of these proteins. We give an overview of the Rho signalling pathways that regulate the actin dynamics in Dictyostelium and compare them with similar signalling networks in mammals. We also provide a phylogeny of Rho GTPases in Amoebozoa, which shows a variability of the Rho inventories across different clades found also in Metazoa.
Collapse
Affiliation(s)
- Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| | | | | | | | | | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia; (L.M.); (D.P.); (A.T.); (H.Ć.)
| |
Collapse
|
4
|
Baumgardner K, Lin C, Firtel RA, Lacal J. Phosphodiesterase PdeD, dynacortin, and a Kelch repeat-containing protein are direct GSK3 substrates in Dictyostelium that contribute to chemotaxis towards cAMP. Environ Microbiol 2019; 20:1888-1903. [PMID: 29626371 DOI: 10.1111/1462-2920.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 01/25/2023]
Abstract
The migration of cells according to a diffusible chemical signal in their environment is called chemotaxis, and the slime mold Dictyostelium discoideum is widely used for the study of eukaryotic chemotaxis. Dictyostelium must sense chemicals, such as cAMP, secreted during starvation to move towards the sources of the signal. Previous work demonstrated that the gskA gene encodes the Dictyostelium homologue of glycogen synthase kinase 3 (GSK3), a highly conserved serine/threonine kinase, which plays a major role in the regulation of Dictyostelium chemotaxis. Cells lacking the GskA substrates Daydreamer and GflB exhibited chemotaxis defects less severe than those exhibited by gskA- (GskA null) cells, suggesting that additional GskA substrates might be involved in chemotaxis. Using phosphoproteomics we identify the GskA substrates PdeD, dynacortin and SogA and characterize the phenotypes of their respective null cells in response to the chemoattractant cAMP. All three chemotaxis phenotypes are defective, and in addition, we determine that carboxylesterase D2 is a common downstream effector of GskA, its direct substrates PdeD, GflB and the kinases GlkA and YakA, and that it also contributes to cell migration. Our findings identify new GskA substrates in cAMP signalling and break down the essential role of GskA in myosin II regulation.
Collapse
Affiliation(s)
- Kimberly Baumgardner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Connie Lin
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Jesus Lacal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.,Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| |
Collapse
|
5
|
Sugden C, Urbaniak MD, Araki T, Williams JG. The Dictyostelium prestalk inducer differentiation-inducing factor-1 (DIF-1) triggers unexpectedly complex global phosphorylation changes. Mol Biol Cell 2014; 26:805-20. [PMID: 25518940 PMCID: PMC4325849 DOI: 10.1091/mbc.e14-08-1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Differentiation-inducing factor-1 (DIF-1) is a polyketide that induces Dictyostelium amoebae to differentiate as prestalk cells. We performed a global quantitative screen for phosphorylation changes that occur within the first minutes after addition of DIF-1, using a triple-label SILAC approach. This revealed a new world of DIF-1-controlled signaling, with changes in components of the MAPK and protein kinase B signaling pathways, components of the actinomyosin cytoskeletal signaling networks, and a broad range of small GTPases and their regulators. The results also provide evidence that the Ca(2+)/calmodulin-dependent phosphatase calcineurin plays a role in DIF-1 signaling to the DimB prestalk transcription factor. At the global level, DIF-1 causes a major shift in the phosphorylation/dephosphorylation equilibrium toward net dephosphorylation. Of interest, many of the sites that are dephosphorylated in response to DIF-1 are phosphorylated in response to extracellular cAMP signaling. This accords with studies that suggest an antagonism between the two inducers and also with the rapid dephosphorylation of the cAMP receptor that we observe in response to DIF-1 and with the known inhibitory effect of DIF-1 on chemotaxis to cAMP. All MS data are available via ProteomeXchange with identifier PXD001555.
Collapse
Affiliation(s)
- Chris Sugden
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Michael D Urbaniak
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, United Kingdom
| | - Tsuyoshi Araki
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Jeffrey G Williams
- College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
6
|
Liburd J, Chitayat S, Crawley SW, Munro K, Miller E, Denis CM, Spencer HL, Côté GP, Smith SP. Structure of the small Dictyostelium discoideum myosin light chain MlcB provides insights into MyoB IQ motif recognition. J Biol Chem 2014; 289:17030-42. [PMID: 24790102 DOI: 10.1074/jbc.m113.536532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dictyostelium discoideum MyoB is a class I myosin involved in the formation and retraction of membrane projections, cortical tension generation, membrane recycling, and phagosome maturation. The MyoB-specific, single-lobe EF-hand light chain MlcB binds the sole IQ motif of MyoB with submicromolar affinity in the absence and presence of Ca(2+). However, the structural features of this novel myosin light chain and its interaction with its cognate IQ motif remain uncharacterized. Here, we describe the NMR-derived solution structure of apoMlcB, which displays a globular four-helix bundle. Helix 1 adopts a unique orientation when compared with the apo states of the EF-hand calcium-binding proteins calmodulin, S100B, and calbindin D9k. NMR-based chemical shift perturbation mapping identified a hydrophobic MyoB IQ binding surface that involves amino acid residues in helices I and IV and the functional N-terminal Ca(2+) binding loop, a site that appears to be maintained when MlcB adopts the holo state. Complementary mutagenesis and binding studies indicated that residues Ile-701, Phe-705, and Trp-708 of the MyoB IQ motif are critical for recognition of MlcB, which together allowed the generation of a structural model of the apoMlcB-MyoB IQ complex. We conclude that the mode of IQ motif recognition by the novel single-lobe MlcB differs considerably from that of stereotypical bilobal light chains such as calmodulin.
Collapse
Affiliation(s)
- Janine Liburd
- From the Department of Biomedical and Molecular Sciences and
| | - Seth Chitayat
- From the Department of Biomedical and Molecular Sciences and
| | - Scott W Crawley
- From the Department of Biomedical and Molecular Sciences and
| | - Kim Munro
- the Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Emily Miller
- From the Department of Biomedical and Molecular Sciences and
| | - Chris M Denis
- From the Department of Biomedical and Molecular Sciences and
| | - Holly L Spencer
- From the Department of Biomedical and Molecular Sciences and
| | - Graham P Côté
- From the Department of Biomedical and Molecular Sciences and the Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Steven P Smith
- From the Department of Biomedical and Molecular Sciences and the Protein Function Discovery Group, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
7
|
Brzeska H, Pridham K, Chery G, Titus MA, Korn ED. The association of myosin IB with actin waves in dictyostelium requires both the plasma membrane-binding site and actin-binding region in the myosin tail. PLoS One 2014; 9:e94306. [PMID: 24747353 PMCID: PMC3991602 DOI: 10.1371/journal.pone.0094306] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/15/2014] [Indexed: 01/15/2023] Open
Abstract
F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Kevin Pridham
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Godefroy Chery
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Margaret A. Titus
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Edward D. Korn
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
8
|
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) is a key signaling molecule in chemotaxis, a directed cell migration toward chemoattractants. PtdIns(3,4,5)P(3) is transiently generated by chemotactic stimulation and activates reorganization of the actin cytoskeleton at the leading edge of migrating cells. In a recent study, we demonstrated that PtdIns(3,4,5)P(3) directly binds to three members of the actin-based motor protein myosin I (myosin ID, IE and IF) in Dictyostelium discoideum and recruits these proteins to the plasma membrane of the leading edge. The PtdIns(3,4,5)P(3)-regulated membrane recruitment of myosin I induced chemoattractant-stimulated actin polymerization and was therefore required for chemotaxis. Similarly, human myosin IF was translocated to the plasma membrane through interactions with PtdIns(3,4,5)P(3) upon chemotactic stimulation in a neutrophil cell line. Interestingly, we also found that the three PtdIns(3,4,5)P(3)-binding myosin I proteins function in phagocytosis, which involves both PtdIns(3,4,5)P(3) signaling and actin cytoskeleton remodeling. Our findings provide an evolutionarily conserved mechanism by which class I myosin transmits PtdIns(3,4,5)P(3) signals to the actin cytoskeleton.
Collapse
|
9
|
Abstract
This review focuses on basic principles of motility in different cell types, formation of the specific cell structures that enable directed migration, and how external signals are transduced into cells and coupled to the motile machinery. Feedback mechanisms and their potential role in maintenance of internal chemotactic gradients and persistence of directed migration are highlighted.
Collapse
Affiliation(s)
- A V Vorotnikov
- Department of Biochemistry and Molecular Medicine, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
10
|
Brzeska H, Guag J, Preston GM, Titus MA, Korn ED. Molecular basis of dynamic relocalization of Dictyostelium myosin IB. J Biol Chem 2012; 287:14923-36. [PMID: 22367211 DOI: 10.1074/jbc.m111.318667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Class I myosins have a single heavy chain comprising an N-terminal motor domain with actin-activated ATPase activity and a C-terminal globular tail with a basic region that binds to acidic phospholipids. These myosins contribute to the formation of actin-rich protrusions such as pseudopodia, but regulation of the dynamic localization to these structures is not understood. Previously, we found that Acanthamoeba myosin IC binds to acidic phospholipids in vitro through a short sequence of basic and hydrophobic amino acids, BH site, based on the charge density of the phospholipids. The tail of Dictyostelium myosin IB (DMIB) also contains a BH site. We now report that the BH site is essential for DMIB binding to the plasma membrane and describe the molecular basis of the dynamic relocalization of DMIB in live cells. Endogenous DMIB is localized uniformly on the plasma membrane of resting cells, at active protrusions and cell-cell contacts of randomly moving cells, and at the front of motile polarized cells. The BH site is required for association of DMIB with the plasma membrane at all stages where it colocalizes with phosphoinositide bisphosphate/phosphoinositide trisphosphate (PIP(2)/PIP(3)). The charge-based specificity of the BH site allows for in vivo specificity of DMIB for PIP(2)/PIP(3) similar to the PH domain-based specificity of other class I myosins. However, DMIB-head is required for relocalization of DMIB to the front of migrating cells. Motor activity is not essential, but the actin binding site in the head is important. Thus, dynamic relocalization of DMIB is determined principally by the local PIP(2)/PIP(3) concentration in the plasma membrane and cytoplasmic F-actin.
Collapse
Affiliation(s)
- Hanna Brzeska
- Laboratory of Cell Biology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
11
|
Chen CL, Wang Y, Sesaki H, Iijima M. Myosin I links PIP3 signaling to remodeling of the actin cytoskeleton in chemotaxis. Sci Signal 2012; 5:ra10. [PMID: 22296834 DOI: 10.1126/scisignal.2002446] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Class I myosins participate in various interactions between the cell membrane and the cytoskeleton. Several class I myosins preferentially bind to acidic phospholipids, such as phosphatidylserine and phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], through a tail homology 1 (TH1) domain. Here, we show that the second messenger lipid phosphatidylinositol 3,4,5-trisphosphate (PIP3) binds to the TH1 domain of a subset of Dictyostelium class I myosins (ID, IE, and IF) and recruits them to the plasma membrane. The PIP3-regulated membrane recruitment of myosin I promoted chemotaxis and induced chemoattractant-stimulated actin polymerization. Similarly, PIP3 recruited human myosin IF to the plasma membrane upon chemotactic stimulation in a neutrophil cell line. These data suggest a mechanism through which the PIP3 signal is transmitted through myosin I to the actin cytoskeleton.
Collapse
Affiliation(s)
- Chun-Lin Chen
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
12
|
Crawley SW, Liburd J, Shaw K, Jung Y, Smith SP, Côté GP. Identification of calmodulin and MlcC as light chains for Dictyostelium myosin-I isozymes. Biochemistry 2011; 50:6579-88. [PMID: 21671662 DOI: 10.1021/bi2007178] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dictyostelium discoideum express seven single-headed myosin-I isozymes (MyoA-MyoE and MyoK) that drive motile processes at the cell membrane. The light chains for MyoA and MyoE were identified by expressing Flag-tagged constructs consisting of the motor domain and the two IQ motifs in the neck region in Dictyostelium. The MyoA and MyoE constructs both copurified with calmodulin. Isothermal titration calorimetry (ITC) showed that apo-calmodulin bound to peptides corresponding to the MyoA and MyoE IQ motifs with micromolar affinity. In the presence of calcium, calmodulin cross-linked two IQ motif peptides, with one domain binding with nanomolar affinity and the other with micromolar affinity. The IQ motifs were required for the actin-activated MgATPase activity of MyoA but not MyoE; however, neither myosin exhibited calcium-dependent activity. A Flag-tagged construct consisting of the MyoC motor domain and the three IQ motifs in the adjacent neck region bound a novel 8.6 kDa two EF-hand protein named MlcC, for myosin light chain for MyoC. MlcC is most similar to the C-terminal domain of calmodulin but does not bind calcium. ITC studies showed that MlcC binds IQ1 and IQ2 but not IQ3 of MyoC. IQ3 contains a proline residue that may render it nonfunctional. Each long-tailed Dictyostelium myosin-I has now been shown to have a unique light chain (MyoB-MlcB, MyoC-MlcC, and MyoD-MlcD), whereas the short-tailed myosins-I, MyoA and MyoE, have the multifunctional calmodulin as a light chain. The diversity in light chain composition is likely to contribute to the distinct cellular functions of each myosin-I isozyme.
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | | | |
Collapse
|
13
|
Lee S, Shen Z, Robinson DN, Briggs S, Firtel RA. Involvement of the cytoskeleton in controlling leading-edge function during chemotaxis. Mol Biol Cell 2010; 21:1810-24. [PMID: 20375144 PMCID: PMC2877640 DOI: 10.1091/mbc.e10-01-0009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells activate signaling pathways at the site closest to the chemoattractant source that lead to pseudopod formation and directional movement up the gradient. We demonstrate that cytoskeletal components required for cortical tension, including MyoII and IQGAP/cortexillins help regulate the level and timing of leading-edge pathways. In response to directional stimulation by a chemoattractant, cells rapidly activate a series of signaling pathways at the site closest to the chemoattractant source that leads to F-actin polymerization, pseudopod formation, and directional movement up the gradient. Ras proteins are major regulators of chemotaxis in Dictyostelium; they are activated at the leading edge, are required for chemoattractant-mediated activation of PI3K and TORC2, and are one of the most rapid responders, with activity peaking at ∼3 s after stimulation. We demonstrate that in myosin II (MyoII) null cells, Ras activation is highly extended and is not restricted to the site closest to the chemoattractant source. This causes elevated, extended, and spatially misregulated activation of PI3K and TORC2 and their effectors Akt/PKB and PKBR1, as well as elevated F-actin polymerization. We further demonstrate that disruption of specific IQGAP/cortexillin complexes, which also regulate cortical mechanics, causes extended activation of PI3K and Akt/PKB but not Ras activation. Our findings suggest that MyoII and IQGAP/cortexillin play key roles in spatially and temporally regulating leading-edge activity and, through this, the ability of cells to restrict the site of pseudopod formation.
Collapse
Affiliation(s)
- Susan Lee
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | |
Collapse
|
14
|
Meili R, Alonso-Latorre B, del Alamo JC, Firtel RA, Lasheras JC. Myosin II is essential for the spatiotemporal organization of traction forces during cell motility. Mol Biol Cell 2009; 21:405-17. [PMID: 19955212 PMCID: PMC2814786 DOI: 10.1091/mbc.e09-08-0703] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amoeboid motility results from pseudopod protrusions and retractions driven by traction forces of cells. We propose that the motor and actin-crosslinking functions of MyoII differentially control the temporal and spatial distribution of the traction forces, and establish mechanistic relationships between these distributions, enabling cells to move. Amoeboid motility requires spatiotemporal coordination of biochemical pathways regulating force generation and consists of the quasi-periodic repetition of a motility cycle driven by actin polymerization and actomyosin contraction. Using new analytical tools and statistical methods, we provide, for the first time, a statistically significant quantification of the spatial distribution of the traction forces generated at each phase of the cycle (protrusion, contraction, retraction, and relaxation). We show that cells are constantly under tensional stress and that wild-type cells develop two opposing “pole” forces pulling the front and back toward the center whose strength is modulated up and down periodically in each cycle. We demonstrate that nonmuscular myosin II complex (MyoII) cross-linking and motor functions have different roles in controlling the spatiotemporal distribution of traction forces, the changes in cell shape, and the duration of all the phases. We show that the time required to complete each phase is dramatically increased in cells with altered MyoII motor function, demonstrating that it is required not only for contraction but also for protrusion. Concomitant loss of MyoII actin cross-linking leads to a force redistribution throughout the cell perimeter pulling inward toward the center. However, it does not reduce significantly the magnitude of the traction forces, uncovering a non–MyoII-mediated mechanism for the contractility of the cell.
Collapse
Affiliation(s)
- Ruedi Meili
- Section of Cell and Developmental Biology, Division of Biological Sciences, Department of Mechanical and Aerospace Engineering, and Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
15
|
Friedberg F, Rivero F. Single and multiple CH (calponin homology) domain containing multidomain proteins in Dictyostelium discoideum: an inventory. Mol Biol Rep 2009; 37:2853-62. [PMID: 19779846 DOI: 10.1007/s11033-009-9839-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/15/2009] [Indexed: 01/14/2023]
Abstract
We present an inventory of single or multiple calponin homology (CH) domain containing proteins of Dictyostelium discoideum. A multiple alignment and a phylogenetic tree of all 60 CH domains found in 36 proteins showed that most CH domains can be assigned to one of 6 types. We have then distributed the proteins into several classes according to the type and arrangement of the CH domains. Most proteins belong to the class of ABD (actin-binding domain)-forming CH tandems (CH1-CH2) of the alpha-actinin and fimbrin families or to the class of CH3 domain-bearing proteins. There are a few examples of proteins with a single CH1 or CH2 domain, one with a CH1-CH1 doublet and a single representative of the CHe class of microtubule-binding proteins. A comparison with CH domain proteins in Homo sapiens suggests that while the individual domains are available in both species, the existence of identical multidomain proteins in toto is rare. Fimbrin 1, alpha-actinin and EB1 appear as perfect orthologs in both species, whereas filamin and interaptin may represent ancestral forms of human filamin and nesprins. In four more cases (NAV/Unc-53-, smoothelin-, transgelin- and Gas2-related proteins) functional data are needed in order to establish a potential relationship with a human counterpart. Although extensive data exist for a few of the D. discoideum CH proteins, most remain to be characterized and our analysis may help predicting some of their properties.
Collapse
|
16
|
Abstract
The review considers the up to date achievements in the role of membrane phosphoinositides and keys enzymes of the lipid branch of the phosphoinositide signal pathway (PI-pathway) in unicellular eukaryotes. Particular attention is paid to mechanisms of phospholipase C (PLC) activation and the PLC interaction both with cell surface receptors and with the effector cytoplasm targets. The role of protein kinase C (PKC) in intracellular signaling and the relationship of the PI-pathway key enzymes with protein tyrosine kinases (PTK)-signaling and cAMP-protein kinase A (PKA) pathway are discussed.
Collapse
Affiliation(s)
- Irina V Shemarova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
17
|
Jang W, Gomer RH. Combining experiments and modelling to understand size regulation in Dictyostelium discoideum. J R Soc Interface 2008; 5 Suppl 1:S49-58. [PMID: 18426773 DOI: 10.1098/rsif.2008.0067.focus] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Little is known about how the sizes of specific organs and tissues are regulated. To try to understand these mechanisms, we have been using a combination of modelling and experiments to study the simple system Dictyostelium discoideum, which forms approximately 20000 cell groups. We found that cells secrete a factor, and as the number of cells increases, the concentration of the factor increases. Diffusion calculations indicated that this lets cells sense the local cell density. Computer simulations predicted, and experiments then showed, that this factor decreases cell-cell adhesion and increases random cell motility. In a group, adhesion forces keep cells together, while random motility forces cause cells to pull apart and separate from each other. As the group size increases above a threshold, the factor concentration goes above a threshold and the cells switch from an adhered state to a separated state. This causes excessively large groups to break apart and/or dissipate, creating an upper limit to group size. In this review, we focus on how computer simulations made testable predictions that led the way to understanding the size regulation mechanism mediated by this factor.
Collapse
Affiliation(s)
- Wonhee Jang
- Department of Life Science, Dongguk University, Chung-Gu, Seoul, Korea.
| | | |
Collapse
|
18
|
Dual role for myosin II in GLUT4-mediated glucose uptake in 3T3-L1 adipocytes. Exp Cell Res 2008; 314:3264-74. [PMID: 18773891 DOI: 10.1016/j.yexcr.2008.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 08/07/2008] [Accepted: 08/10/2008] [Indexed: 01/15/2023]
Abstract
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.
Collapse
|
19
|
Endocytosis and the Actin Cytoskeleton in Dictyostelium discoideum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:343-97. [DOI: 10.1016/s1937-6448(08)00633-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Dalous J, Burghardt E, Müller-Taubenberger A, Bruckert F, Gerisch G, Bretschneider T. Reversal of cell polarity and actin-myosin cytoskeleton reorganization under mechanical and chemical stimulation. Biophys J 2007; 94:1063-74. [PMID: 17905847 PMCID: PMC2186262 DOI: 10.1529/biophysj.107.114702] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
To study reorganization of the actin system in cells that invert their polarity, we stimulated Dictyostelium cells by mechanical forces from alternating directions. The cells oriented in a fluid flow by establishing a protruding front directed against the flow and a retracting tail. Labels for polymerized actin and filamentous myosin-II marked front and tail. At 2.1 Pa, actin first disassembled at the previous front before it began to polymerize at the newly induced front. In contrast, myosin-II slowly disappeared from the previous tail and continuously redistributed to the new tail. Front specification was myosin-II independent and accumulation of polymerized actin was even more focused in mutants lacking myosin-II heavy chains. We conclude that under mechanical stimulation, the inversion of cell polarity is initiated by a global internal signal that turns down actin polymerization in the entire cell. It is thought to be elicited at the most strongly stimulated site of the cell, the incipient front region, and to be counterbalanced by a slowly generated, short-range signal that locally activates actin polymerization at the front. Similar pattern of front and tail interconversion were observed in cells reorienting in strong gradients of the chemoattractant cyclic AMP.
Collapse
Affiliation(s)
- Jérémie Dalous
- CEA-Grenoble, Département Réponse et Dynamique Cellulaires, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, Grenoble, France
| | | | | | - Franz Bruckert
- CEA-Grenoble, Département Réponse et Dynamique Cellulaires, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, Grenoble, France
- Institut National Polytechnique de Grenoble, Laboratoire des Matériaux et du Génie Physique, Grenoble, France
| | | | - Till Bretschneider
- Max-Planck-Institut für Biochemie, Martinsried, Germany
- Address reprint requests to Till Bretschneider.
| |
Collapse
|
21
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
22
|
Willard SS, Devreotes PN. Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum. Eur J Cell Biol 2007; 85:897-904. [PMID: 16962888 DOI: 10.1016/j.ejcb.2006.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils. In this review, we will discuss recent data on genes and pathways governing directional sensing and actin polymerization, with a particular emphasis on contributions from our laboratory.
Collapse
Affiliation(s)
- Stacey S Willard
- Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
23
|
Clarke M, Müller-Taubenberger A, Anderson KI, Engel U, Gerisch G. Mechanically induced actin-mediated rocketing of phagosomes. Mol Biol Cell 2006; 17:4866-75. [PMID: 16971511 PMCID: PMC1635377 DOI: 10.1091/mbc.e06-04-0365] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Actin polymerization can be induced in Dictyostelium by compressing the cells to bring phagosomes filled with large particles into contact with the plasma membrane. Asymmetric actin assembly results in rocketing movement of the phagosomes. We show that the compression-induced assembly of actin at the cytoplasmic face of the plasma membrane involves the Arp2/3 complex. We also identify two other proteins associated with the mechanically induced actin assembly. The class I myosin MyoB accumulates at the plasma membrane-phagosome interface early during the initiation of the response, and coronin is recruited as the actin filaments are disassembling. The forces generated by rocketing phagosomes are sufficient to push the entire microtubule apparatus forward and to dislocate the nucleus.
Collapse
Affiliation(s)
- Margaret Clarke
- Program in Molecular, Cell, and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73121, USA.
| | | | | | | | | |
Collapse
|
24
|
Kollmar M. Thirteen is enough: the myosins of Dictyostelium discoideum and their light chains. BMC Genomics 2006; 7:183. [PMID: 16857047 PMCID: PMC1634994 DOI: 10.1186/1471-2164-7-183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 07/20/2006] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Dictyostelium discoideum is one of the most famous model organisms for studying motile processes like cell movement, organelle transport, cytokinesis, and endocytosis. Members of the myosin superfamily, that move on actin filaments and power many of these tasks, are tripartite proteins consisting of a conserved catalytic domain followed by the neck region consisting of a different number of so-called IQ motifs for binding of light chains. The tails contain functional motifs that are responsible for the accomplishment of the different tasks in the cell. Unicellular organisms like yeasts contain three to five myosins while vertebrates express over 40 different myosin genes. Recently, the question has been raised how many myosins a simple multicellular organism like Dictyostelium would need to accomplish all the different motility-related tasks. RESULTS The analysis of the Dictyostelium genome revealed thirteen myosins of which three have not been described before. The phylogenetic analysis of the motor domains of the new myosins placed Myo1F to the class-I myosins and Myo5A to the class-V myosins. The third new myosin, an orphan myosin, has been named MyoG. It contains an N-terminal extension of over 400 residues, and a tail consisting of four IQ motifs and two MyTH4/FERM (myosin tail homology 4/band 4.1, ezrin, radixin, and moesin) tandem domains that are separated by a long region containing an SH3 (src homology 3) domain. In contrast to previous analyses, an extensive comparison with 126 class-VII, class-X, class-XV, and class-XXII myosins now showed that MyoI does not group into any of these classes and should not be used as a model for class-VII myosins.The search for calmodulin related proteins revealed two further potential myosin light chains. One is a close homolog of the two EF-hand motifs containing MlcB, and the other, CBP14, phylogenetically groups to the ELC/RLC/calmodulin (essential light chain/regulatory light chain) branch of the tree. CONCLUSION Dictyostelium contains thirteen myosins together with 6-8 MLCs (myosin light chain) to assist in a variety of actin-based processes in the cell. Although they are homologous to myosins of higher eukaryotes, the myosins of Dictyostelium should be considered with care as models for specific functions of vertebrate myosins.
Collapse
Affiliation(s)
- Martin Kollmar
- Abteilung NMR basierte Strukturbiologie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Goettingen, Germany.
| |
Collapse
|
25
|
Abstract
Dictyostelium conventional myosin (myosin II) is an abundant protein that plays a role in various cellular processes such as cytokinesis, cell protrusion and development. This review will focus on the signal transduction pathways that regulate myosin II during cell movement. Myosin II appears to have two modes of action in Dictyostelium: local stabilization of the cytoskeleton by myosin filament association to the actin meshwork (structural mode) and force generation by contraction of actin filaments (motor mode). Some processes, such as cell movement under restrictive environment, require only the structural mode of myosin. However, cytokinesis in suspension and uropod retraction depend on motor activity as well. Myosin II can self-assemble into bipolar filaments. The formation of these filaments is negatively regulated by heavy chain phosphorylation through the action of a set of novel alpha kinases and is relatively well understood. However, only recently it has become clear that the formation of bipolar filaments and their translocation to the cortex are separate events. Translocation depends on filamentous actin, and is regulated by a cGMP pathway and possibly also by the cAMP phosphodiesterase RegA and the p21-activated kinase PAKa. Myosin motor activity is regulated by phosphorylation of the regulatory light chain through myosin light chain kinase A. Unlike conventional light chain kinases, this enzyme is not regulated by calcium but is activated by cGMP-induced phosphorylation via an upstream kinase and subsequent autophosphorylation.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Biology, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
26
|
Misty R, Martinez R, Ali H, Steimle PA. Naringenin is a novel inhibitor of Dictyostelium cell proliferation and cell migration. Biochem Biophys Res Commun 2006; 345:516-22. [PMID: 16682000 DOI: 10.1016/j.bbrc.2006.04.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 04/15/2006] [Indexed: 11/17/2022]
Abstract
Naringenin is a flavanone compound that alters critical cellular processes such as cell multiplication, glucose uptake, and mitochondrial activity. In this study, we used the social amoeba, Dictyostelium discoideum, as a model system for examining the cellular processes and signaling pathways affected by naringenin. We found that naringenin inhibited Dictyostelium cell division in a dose-dependent manner (IC(50) approximately 20 microM). Assays of Dictyostelium chemotaxis and multicellular development revealed that naringenin possesses a previously unrecognized ability to suppress amoeboid cell motility. We also found that naringenin, which is known to inhibit phosphatidylinositol 3-kinase activity, had no apparent effect on phosphatidylinositol 3,4,5-trisphosphate synthesis in live Dictyostelium cells; suggesting that this compound suppresses cell growth and migration via alternative signaling pathways. In another context, the discoveries described here highlight the value of using the Dictyostelium model system for identifying and characterizing the mechanisms by which naringenin, and related compounds, exert their effects on eukaryotic cells.
Collapse
Affiliation(s)
- Russ Misty
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | | | | | | |
Collapse
|
27
|
Russ M, Croft D, Ali O, Martinez R, Steimle P. Myosin heavy-chain kinase A from Dictyostelium possesses a novel actin-binding domain that cross-links actin filaments. Biochem J 2006; 395:373-83. [PMID: 16372899 PMCID: PMC1422765 DOI: 10.1042/bj20051376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Myosin heavy-chain kinase A (MHCK A) catalyses the disassembly of myosin II filaments in Dictyostelium cells via myosin II heavy-chain phosphorylation. MHCK A possesses a 'coiled-coil'-enriched domain that mediates the oligomerization, cellular localization and actin-binding activities of the kinase. F-actin (filamentous actin) binding by the coiled-coil domain leads to a 40-fold increase in MHCK A activity. In the present study we examined the actin-binding characteristics of the coiled-coil domain as a means of identifying mechanisms by which MHCK A-mediated disassembly of myosin II filaments can be regulated in the cell. Co-sedimentation assays revealed that the coiled-coil domain of MHCK A binds co-operatively to F-actin with an apparent K(D) of approx. 0.5 muM and a stoichiometry of approx. 5:1 [actin/C(1-498)]. Further analyses indicate that the coiled-coil domain binds along the length of the actin filament and possesses at least two actin-binding regions. Quite surprisingly, we found that the coiled-coil domain cross-links actin filaments into bundles, indicating that MHCK A can affect the cytoskeleton in two important ways: (1) by driving myosin II-filament disassembly via myosin II heavy-chain phosphorylation, and (2) by cross-linking/bundling actin filaments. This discovery, along with other supporting data, suggests a model in which MHCK A-mediated bundling of actin filaments plays a central role in the recruitment and activation of the kinase at specific sites in the cell. Ultimately this provides a means for achieving the robust and highly localized disruption of myosin II filaments that facilitates polarized changes in cell shape during processes such as chemotaxis, cytokinesis and multicellular development.
Collapse
Affiliation(s)
- Misty Russ
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Daniel Croft
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Omar Ali
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Raquel Martinez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
| | - Paul A. Steimle
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
28
|
Crawley SW, de la Roche MA, Lee SF, Li Z, Chitayat S, Smith SP, Côté GP. Identification and characterization of an 8-kDa light chain associated with Dictyostelium discoideum MyoB, a class I myosin. J Biol Chem 2006; 281:6307-15. [PMID: 16415352 DOI: 10.1074/jbc.m508670200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dictyostelium discoideum MyoB is a single-headed class I myosin. Analysis of purified MyoB by SDS-PAGE indicated the presence of an approximately 9-kDa light chain. A tryptic digest of MyoB yielded a partial sequence for the light chain that exactly matched a sequence in a 73-amino acid, 8,296-Da protein (dictyBase number DDB0188713). This protein, termed MlcB, contains two EF-hand motifs and shares approximately 30% sequence identity with the N- and C-terminal lobes of calmodulin. FLAG-MlcB expressed in Dictyostelium co-immunoprecipitated with MyoB but not with the related class myosins and MyoD. Recombinant MlcB bound Ca2+ with a Kd value of 0.2 microm and underwent a Ca2+-induced change in conformation that increased alpha-helical content and surface hydrophobicity. Mutational analysis showed that the first EF-hand was responsible for Ca2+ binding. In the presence and absence of Ca2+ MlcB was a monomer in solution and bound to a MyoB IQ motif peptide with a Kd value of approximately 0.5 microm. A MyoB head-neck construct with a Ser to Glu mutation at the TEDS site bound MlcB and displayed an actin-activated Mg2+ ATPase activity that was insensitive to Ca2+. We conclude that MlcB represents a novel type of small myosin light chain that binds to IQ motifs in a manner comparable with a single lobe of a typical four-EF-hand protein.
Collapse
Affiliation(s)
- Scott W Crawley
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Rosenberg M, Ravid S. Protein kinase Cgamma regulates myosin IIB phosphorylation, cellular localization, and filament assembly. Mol Biol Cell 2006; 17:1364-74. [PMID: 16394101 PMCID: PMC1382324 DOI: 10.1091/mbc.e05-07-0597] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nonmuscle myosin II is an important component of the cytoskeleton, playing a major role in cell motility and chemotaxis. We have previously demonstrated that, on stimulation with epidermal growth factor (EGF), nonmuscle myosin heavy chain II-B (NMHC-IIB) undergoes a transient phosphorylation correlating with its cellular localization. We also showed that members of the PKC family are involved in this phosphorylation. Here we demonstrate that of the two conventional PKC isoforms expressed by prostate cancer cells, PKCbetaII and PKCgamma, PKCgamma directly phosphorylates NMHC-IIB. Overexpression of wild-type and kinase dead dominant negative PKCgamma result in both altered NMHC-IIB phosphorylation and subcellular localization. We have also mapped the phosphorylation sites of PKCgamma on NMHC-IIB. Conversion of the PKCgamma phosphorylation sites to alanine residues, reduces the EGF-dependent NMHC-IIB phosphorylation. Aspartate substitution of these sites reduces NMHC-IIB localization into cytoskeleton. These results indicate that PKCgamma regulates NMHC-IIB phosphorylation and cellular localization in response to EGF stimulation.
Collapse
Affiliation(s)
- Michael Rosenberg
- Department of Biochemistry, Institute of Medical Sciences, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | | |
Collapse
|
30
|
Frigeri LG, Radabaugh TR, Haynes PA, Hildebrand M. Identification of Proteins from a Cell Wall Fraction of the Diatom Thalassiosira pseudonana. Mol Cell Proteomics 2006; 5:182-93. [PMID: 16207702 DOI: 10.1074/mcp.m500174-mcp200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diatoms are unicellular eucaryotic algae with cell walls containing silica, intricately and ornately structured on the nanometer scale. Overall silica structure is formed by expansion and molding of the membrane-bound silica deposition vesicle. Although molecular details of silica polymerization are being clarified, we have limited insight into molecular components of the silica deposition vesicle, particularly of membrane-associated proteins that may be involved in structure formation. To identify such proteins, we refined existing procedures to isolate an enriched cell wall fraction from the diatom Thalassiosira pseudonana, the first diatom with a sequenced genome. We applied tandem mass spectrometric analysis to this fraction, identifying 31 proteins for further evaluation. mRNA levels for genes encoding these proteins were monitored during synchronized progression through the cell cycle and compared with two previously identified silaffin genes (involved in silica polymerization) having distinct mRNA patterns that served as markers for cell wall formation. Of the 31 proteins identified, 10 had mRNA patterns that correlated with the silaffins, 13 had patterns that did not, and seven had patterns that correlated but also showed additional features. The possible involvements of these proteins in cell wall synthesis are discussed. In particular, glutamate acetyltransferase was identified, prompting an analysis of mRNA patterns for other genes in the polyamine biosynthesis pathway and identification of those induced during cell wall synthesis. Application of a specific enzymatic inhibitor for ornithine decarboxylase resulted in dramatic alteration of silica structure, confirming the involvement of polyamines and demonstrating that manipulation of proteins involved in cell wall synthesis can alter structure. To our knowledge, this is the first proteomic analysis of a diatom, and furthermore we identified new candidate genes involved in structure formation and directly demonstrated the involvement of one enzyme (and its gene) in the structure formation process.
Collapse
Affiliation(s)
- Luciano G Frigeri
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, 92093-0202, USA
| | | | | | | |
Collapse
|
31
|
Mendoza MC, Du F, Iranfar N, Tang N, Ma H, Loomis WF, Firtel RA. Loss of SMEK, a novel, conserved protein, suppresses MEK1 null cell polarity, chemotaxis, and gene expression defects. Mol Cell Biol 2005; 25:7839-53. [PMID: 16107728 PMCID: PMC1190274 DOI: 10.1128/mcb.25.17.7839-7853.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
MEK/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase signaling is imperative for proper chemotaxis. Dictyostelium mek1(-) (MEK1 null) and erk1(-) cells exhibit severe defects in cell polarization and directional movement, but the molecules responsible for the mek1(-) and erk1(-) chemotaxis defects are unknown. Here, we describe a novel, evolutionarily conserved gene and protein (smkA and SMEK, respectively), whose loss partially suppresses the mek1(-) chemotaxis phenotypes. SMEK also has MEK1-independent functions: SMEK, but not MEK1, is required for proper cytokinesis during vegetative growth, timely exit from the mound stage during development, and myosin II assembly. SMEK localizes to the cell cortex through an EVH1 domain at its N terminus during vegetative growth. At the onset of development, SMEK translocates to the nucleus via a nuclear localization signal (NLS) at its C terminus. The importance of SMEK's nuclear localization is demonstrated by our findings that a mutant lacking the EVH1 domain complements SMEK deficiency, whereas a mutant lacking the NLS does not. Microarray analysis reveals that some genes are precociously expressed in mek1(-) and erk1(-) cells. The misexpression of some of these genes is suppressed in the smkA deletion. These data suggest that loss of MEK1/ERK1 signaling compromises gene expression and chemotaxis in a SMEK-dependent manner.
Collapse
Affiliation(s)
- Michelle C Mendoza
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, 92093-0380, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
We review insights in signaling pathways controlling cell polarization and cytoskeletal organization during chemotactic movement in Dictyostelium amoebae and neutrophils. We compare and contrast these insights with our current understanding of pathways controlling chemotactic movements in more-complex multicellular developmental contexts.
Collapse
Affiliation(s)
- Markus Affolter
- Department of Cell Biology, Biozentrum University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | | |
Collapse
|
33
|
Ladam G, Vonna L, Sackmann E. Protrusion force transmission of amoeboid cells crawling on soft biological tissue. Acta Biomater 2005; 1:485-97. [PMID: 16701829 DOI: 10.1016/j.actbio.2005.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 05/19/2005] [Accepted: 06/07/2005] [Indexed: 01/15/2023]
Abstract
We applied a colloidal force microscopy technique to measure the spreading and retraction forces generated by protrusions (pseudopodia) of vegetative amoeboid cells (Dictyostelium discoideum) adhering on soft tissue analogues composed of 2-mm thick hydrogels of hyaluronic acid exhibiting Young's moduli between 10 and 200 Pa. Local shear deformations of the polymer films evoked by magnetic tweezers and by cellular protrusions were determined by analyzing the deflections of colloidal beads randomly deposited on the surface of the polymer cushions, which enabled us to measure forces generated by advancing ("pushing" forces) and retracting ("pulling" forces) protrusions in a direct way. We found that the maximum amplitudes generated by the advancing protrusions (pushes) decrease with increasing stiffness of the HA substrate while the amplitudes of the retractions do not show such a dependence. The maximum forces transmitted by the advancing and retracting protrusions increase with increasing stiffness of the HA films (from 0.02 to 1 nN for the case of pushing). The protrusions spread or retract with constant velocities which are higher for retractions (100 nm s(-1)) than for spreadings (50 nm s(-1)) and are not significantly influenced by the substrate rigidity. We provide evidence that elastic equilibrium during protrusion formation and retraction is maintained by local elastic dipole fields generated at the rim of the protrusions. A model of protrusion force transmission by coupling of growing actin gel in the cytoplasm of the protrusions to cell surface receptors through talin clutches is proposed.
Collapse
Affiliation(s)
- Guy Ladam
- Laboratoire de Biophysique et Biomatériaux, Université de Rouen, Centre Universitaire d'Evreux, 1 rue du 7ème Chasseurs, BP 281, 27002 Evreux Cedex, France.
| | | | | |
Collapse
|
34
|
Steimle PA, Fulcher FK, Patel YM. A novel role for myosin II in insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2005; 331:1560-5. [PMID: 15883051 DOI: 10.1016/j.bbrc.2005.04.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Indexed: 11/25/2022]
Abstract
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles from an intracellular pool to the plasma membrane. The studies presented here show that inhibition of myosin II activity impairs GLUT4-mediated glucose uptake but not GLUT4 translocation to the plasma membrane. We also show that adipocytes express both myosin IIA and IIB isoforms, and that myosin IIA is recruited to the plasma membrane upon insulin stimulation. Taken together, the data presented here represent the first demonstration that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. Based on our findings, we hypothesize that myosin II is activated upon insulin stimulation and recruited to the cell cortex to facilitate GLUT4 fusion with the plasma membrane. The identification of myosin II as a key component of GLUT4-mediated glucose uptake represents an important advance in our understanding of the mechanisms regulating glucose homeostasis.
Collapse
Affiliation(s)
- Paul A Steimle
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | | | | |
Collapse
|
35
|
Gao T, Knecht D, Tang L, Hatton RD, Gomer RH. A cell number counting factor regulates Akt/protein kinase B to regulate Dictyostelium discoideum group size. EUKARYOTIC CELL 2005; 3:1176-84. [PMID: 15470246 PMCID: PMC522607 DOI: 10.1128/ec.3.5.1176-1184.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Little is known about how individual cells can organize themselves to form structures of a given size. During development, Dictyostelium discoideum aggregates in dendritic streams and forms groups of approximately 20,000 cells. D. discoideum regulates group size by secreting and simultaneously sensing a multiprotein complex called counting factor (CF). If there are too many cells in a stream, the associated high concentration of CF will decrease cell-cell adhesion and increase cell motility, causing aggregation streams to break up. The pulses of cyclic AMP (cAMP) that mediate aggregation cause a transient translocation of Akt/protein kinase B (Akt/PKB) to the leading edge of the plasma membrane and a concomitant activation of the kinase activity, which in turn stimulates motility. We found that countin- cells (which lack bioactive CF) and wild-type cells starved in the presence of anticountin antibodies (which block CF activity) showed a decreased level of cAMP-stimulated Akt/PKB membrane translocation and kinase activity compared to parental wild-type cells. Recombinant countin has the bioactivity of CF, and a 1-min treatment of cells with recombinant countin potentiated Akt/PKB translocation to membranes and Akt/PKB activity. Western blotting of total cell lysates indicated that countin does not affect the total level of Akt/PKB. Fluorescence microscopy of cells expressing an Akt/PKB pleckstrin homology domain-green fluorescent protein (PH-GFP) fusion protein indicated that recombinant countin and anti-countin antibodies do not obviously alter the distribution of Akt/PKB PH-GFP when it translocates to the membrane. Our data indicate that CF increases motility by potentiating the cAMP-stimulated activation and translocation of Akt/PKB.
Collapse
Affiliation(s)
- Tong Gao
- Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 S. Main St., Houston, TX 77005-1892, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Dictyostelium is an accessible organism for studies of signaling via chemoattractant receptors. Chemoattractant-mediated signaling events and components are reviewed and presented as a series of connected modules, including excitation, inhibition, G protein-independent responses, early gene expression, inositol lipids, PH domain-containing proteins, cyclic AMP signaling, polarization acquisition, actin polymerization, and cortical myosin. The network incorporates information from biochemical, genetic, and cell biological experiments carried out on living cells. The modules and connections represent current understanding, and future information is expected to modify and build upon this structure.
Collapse
Affiliation(s)
- Carol L Manahan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
37
|
Myre MA, O'Day DH. Dictyostelium nucleomorphin is a member of the BRCT-domain family of cell cycle checkpoint proteins. Biochim Biophys Acta Gen Subj 2005; 1675:192-7. [PMID: 15535983 DOI: 10.1016/j.bbagen.2004.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2004] [Revised: 08/07/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
A search of the Dictyostelium genome project database (http://dictybase.org/db/cgi-bin/blast.pl) with nucleomorphin, a protein that regulates the nuclear number, predicted it to be encoded by a larger gene containing a putative breast cancer carboxy-terminus domain (BRCT). Using RT-PCR, Northern and Western blotting we have identified a differentially expressed, 2318 bp cDNA encoding a protein isoform of Dictyostelium NumA with an apparent molecular weight of 70 kDa that we have called NumB. It contains a single amino-terminal BRCT-domain spanning residues 125-201. Starvation of shaking cultures reduces NumA expression by approximately 88+/-5.6%, whereas NumB expression increases approximately 35+/-3.5% from vegetative levels. NumC, a third isoform that is also expressed during development but not growth, remains to be characterized. These findings suggest NumB may be a member of the BRCT-domain containing cell cycle checkpoint proteins.
Collapse
Affiliation(s)
- Michael A Myre
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Rm. 3030, Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|
38
|
Egelhoff TT, Croft D, Steimle PA. Actin Activation of Myosin Heavy Chain Kinase A in Dictyostelium. J Biol Chem 2005; 280:2879-87. [PMID: 15545285 DOI: 10.1074/jbc.m410803200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies in Dictyostelium discoideum have established that the cycle of myosin II bipolar filament assembly and disassembly controls the temporal and spatial localization of myosin II during critical cellular processes, such as cytokinesis and cell locomotion. Myosin heavy chain kinase A (MHCK A) is a key enzyme regulating myosin II filament disassembly through myosin heavy chain phosphorylation in Dictyostelium. Under various cellular conditions, MHCK A is recruited to actin-rich cortical sites and is preferentially enriched at sites of pseudopod formation, and thus MHCK A is proposed to play a role in regulating localized disassembly of myosin II filaments in the cell. MHCK A possesses an aminoterminal coiled-coil domain that participates in the oligomerization, cellular localization, and actin binding activities of the kinase. In the current study, we show that the interaction between the coiled-coil domain of MHCK A and filamentous actin leads to an approximately 40-fold increase in the initial rate of kinase catalytic activity. Actin-mediated activation of MHCK A involves increased rates of kinase autophosphorylation and requires the presence of the coiled-coil domain. Structure-function analyses revealed that the coiled-coil domain alone binds to actin filaments (apparent K(D) = 0.9 microm) and thus mediates the direct interaction with F-actin required for MHCK A activation. Collectively, these results indicate that MHCK A recruitment to actin-rich sites could lead to localized activation of the kinase via direct interaction with actin filaments, and thus this mode of kinase regulation may represent an important mechanism by which the cell achieves localized disassembly of myosin II filaments required for specific changes in cell shape.
Collapse
Affiliation(s)
- Thomas T Egelhoff
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | |
Collapse
|
39
|
Postma M, Bosgraaf L, Loovers HM, Van Haastert PJ. Chemotaxis: signalling modules join hands at front and tail. EMBO Rep 2004; 5:35-40. [PMID: 14710184 PMCID: PMC1298962 DOI: 10.1038/sj.embor.7400051] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Accepted: 11/07/2003] [Indexed: 01/15/2023] Open
Abstract
Chemotaxis is the result of a refined interplay among various intracellular molecules that process spatial and temporal information. Here we present a modular scheme of the complex interactions between the front and the back of cells that allows them to navigate. First, at the front of the cell, activated Rho-type GTPases induce actin polymerization and pseudopod formation. Second, phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) is produced in a patch at the leading edge, where it binds pleckstrin-homology-domain-containing proteins, which enhance actin polymerization and translocation of the pseudopod. Third, in Dictyostelium amoebae, a cyclic-GMP-signalling cascade has been identified that regulates myosin filament formation in the posterior of the cell, thereby inhibiting the formation of lateral pseudopodia that could misdirect the cell.
Collapse
Affiliation(s)
- Marten Postma
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Leonard Bosgraaf
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Harriët M. Loovers
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Peter J.M. Van Haastert
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
- Tel: +31 50 363 4172; Fax: +31 50 363 4165;
| |
Collapse
|
40
|
de la Roche M, Mahasneh A, Lee SF, Rivero F, Côté GP. Cellular distribution and functions of wild-type and constitutively activated Dictyostelium PakB. Mol Biol Cell 2004; 16:238-47. [PMID: 15509655 PMCID: PMC539168 DOI: 10.1091/mbc.e04-06-0534] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dictyostelium PakB, previously termed myosin I heavy chain kinase, is a member of the p21-activated kinase (PAK) family. Two-hybrid assays showed that PakB interacts with Dictyostelium Rac1a/b/c, RacA (a RhoBTB protein), RacB, RacC, and RacF1. Wild-type PakB displayed a cytosolic distribution with a modest enrichment at the leading edge of migrating cells and at macropinocytic and phagocytic cups, sites consistent with a role in activating myosin I. PakB fused at the N terminus to green fluorescent protein was proteolyzed in cells, resulting in removal of the catalytic domain. C-terminal truncated PakB and activated PakB lacking the p21-binding domain strongly localized to the cell cortex, to macropinocytic cups, to the posterior of migrating cells, and to the cleavage furrow of dividing cells. These data indicate that in its open, active state, the N terminus of PakB forms a tight association with cortical actin filaments. PakB-null cells displayed no significant behavioral defects, but cells expressing activated PakB were unable to complete cytokinesis when grown in suspension and exhibited increased rates of phagocytosis and pinocytosis.
Collapse
Affiliation(s)
- Marc de la Roche
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
41
|
Lee S, Rivero F, Park KC, Huang E, Funamoto S, Firtel RA. Dictyostelium PAKc is required for proper chemotaxis. Mol Biol Cell 2004; 15:5456-69. [PMID: 15483055 PMCID: PMC532025 DOI: 10.1091/mbc.e04-04-0323] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have identified a new Dictyostelium p21-activated protein kinase, PAKc, that we demonstrate to be required for proper chemotaxis. PAKc contains a Rac-GTPase binding (CRIB) and autoinhibitory domain, a PAK-related kinase domain, an N-terminal phosphatidylinositol binding domain, and a C-terminal extension related to the Gbetagamma binding domain of Saccharomyces cerevisiae Ste20, the latter two domains being required for PAKc transient localization to the plasma membrane. In response to chemoattractant stimulation, PAKc kinase activity is rapidly and transiently activated, with activity levels peaking at approximately 10 s. pakc null cells exhibit a loss of polarity and produce multiple lateral pseudopodia when placed in a chemoattractant gradient. PAKc preferentially binds the Dictyostelium Rac protein RacB, and point mutations in the conserved CRIB that abrogate this binding result in misregulated kinase activation and chemotaxis defects. We also demonstrate that a null mutation lacking the PAK family member myosin I heavy chain kinase (MIHCK) shows mild chemotaxis defects, including the formation of lateral pseudopodia. A null strain lacking both PAKc and the PAK family member MIHCK exhibits severe loss of cell movement, suggesting that PAKc and MIHCK may cooperate to regulate a common chemotaxis pathway.
Collapse
Affiliation(s)
- Susan Lee
- Section of Cell and Developmental Biology, Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | |
Collapse
|
42
|
Yamada Y, Sameshima M. Cell shape regulation and co-translocation of actin and adenosyl homocysteinase in response to intermediate hypertonicity. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09784.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Zhou GL, Zhuo Y, King CC, Fryer BH, Bokoch GM, Field J. Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol Cell Biol 2003; 23:8058-69. [PMID: 14585966 PMCID: PMC262366 DOI: 10.1128/mcb.23.22.8058-8069.2003] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/06/2003] [Accepted: 08/13/2003] [Indexed: 12/30/2022] Open
Abstract
The p21-activated protein kinases (Paks) regulate cellular proliferation, differentiation, transformation, and survival through multiple downstream signals. Paks are activated directly by the small GTPases Rac and Cdc42 and several protein kinases including Akt and PDK-1. We found that Akt phosphorylated and modestly activated Pak1 in vitro. The major site phosphorylated by Akt on Pak1 mapped to serine 21, a site originally shown to be weakly autophosphorylated on Pak1 when Cdc42 or Rac activates it. A peptide derived from the region surrounding serine 21 was a substrate for Akt but not Pak1 in vitro, and Akt stimulated serine 21 phosphorylation on the full-length Pak1 much better than Rac did. The adaptor protein Nck binds Pak near serine 21, and its association is regulated by phosphorylation of this site. We found that either treatment of Pak1 in vitro with Akt or coexpression of constitutively active Akt with Pak1 reduced Nck binding to Pak1. In HeLa cells, green fluorescent protein-tagged Pak1 was concentrated at focal adhesions and was released when Akt was cotransfected. A peptide containing the Nck binding site of Pak1 fused to a portion of human immunodeficiency virus Tat to allow it to enter cells was used to test the functional importance of Nck/Pak binding in Akt-stimulated cell migration. This Tat-Nck peptide reduced Akt-stimulated cell migration. Together, these data suggest that Akt modulates the association of Pak with Nck to regulate cell migration.
Collapse
Affiliation(s)
- Guo-Lei Zhou
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
44
|
Müller-Taubenberger A, Bretschneider T, Faix J, Konzok A, Simmeth E, Weber I. Differential localization of the Dictyostelium kinase DPAKa during cytokinesis and cell migration. J Muscle Res Cell Motil 2003; 23:751-63. [PMID: 12952073 DOI: 10.1023/a:1024475628061] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The Dictyostelium kinase DPAKa is a member of the p21-activated kinase (PAK) family, consisting of an N-terminal domain characterized by a coiled-coil region and proline-rich motifs, a Rac-binding CRIB-domain, and a highly conserved C-terminal kinase domain. In this study we show that cells overexpressing a C-terminal DPAKa fragment comprising the kinase domain are significantly impaired in motility and phagocytosis, whereas DPAKa-null cells display no obvious phenotypic change. We analyzed the in vivo localization of full-length and truncated DPAKa tagged with green fluorescent protein (GFP). The N-terminal fragments show a highly dynamic cortical localization without a permanent polarized enrichment, whereas the C-terminal fragment is homogenously distributed throughout the cell. The localization of full-length DPAKa is similar to that of myosin II at the rear end of locomoting cells and at the base of phagocytic cups. During mitosis DPAKa is gradually recruited to the cell cortex starting at metaphase, which also parallels the dynamics of myosin II cortical recruitment. However, in contrast to myosin II, DPAKa does not accumulate in the cleavage furrow but stays uniformly distributed throughout the cell cortex. This finding contrasts with previous work claiming accumulation of DPAKa in the cleavage furrow of dividing cells. Our results suggest that the N-terminus directs DPAKa to the cortex, and the C-terminus is necessary for restricting its localization to the rear of moving cells during chemotaxis. Therefore, DPAKa may play distinct roles in myosin II regulation during cell movement and cell division.
Collapse
|
45
|
De la Roche MA, Smith JL, Betapudi V, Egelhoff TT, Côté GP. Signaling pathways regulating Dictyostelium myosin II. J Muscle Res Cell Motil 2003; 23:703-18. [PMID: 12952069 DOI: 10.1023/a:1024467426244] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dictyostelium myosin II is a conventional, two-headed myosin that consists of two copies each of a myosin heavy chain (MHC), an essential light chain (ELC) and a regulatory light chain (RLC). The MHC is comprised of an amino-terminal motor domain, a neck region that binds the RLC and ELC and a carboxyl-terminal alpha-helical coiled-coil tail. Electrostatic interactions between the tail domains mediate the self-assembly of myosin II into bipolar filaments that are capable of interacting with actin filaments to generate a contractile force. In this review we discuss the regulation of Dictyostelium myosin II by a myosin light chain kinase (MLCK-A) that phosphorylates the RLC and increases motor activity and by MHC kinases (MHCKs) that phosphorylate the tail and prevent filament assembly. Dictyostelium may express as many as four MHCKs (MHCK A-D) consisting of an atypical alpha-kinase catalytic domain and a carboxyl-terminal WD repeat domain that targets myosin II filaments. A previously reported MHCK, termed MHC-PKC, now seems more likely to be a diacylglycerol kinase (DgkA). The relationship of the MHCKs to the larger family of alpha-kinases is discussed and key features of the structure of the alpha-kinase catalytic domain are reviewed. Potential upstream regulators of myosin II are described, including DgkA, cGMP, cAMP and PAKa, a target for Rac GTPases. Recent results point to a complex network of signaling pathways responsible for controling the activity and localization of myosin II in the cell.
Collapse
Affiliation(s)
- Marc A De la Roche
- Department of Biochemistry, Botterell Hall, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
46
|
Bosgraaf L, Van Haastert PJM. A model for cGMP signal transduction in Dictyostelium in perspective of 25 years of cGMP research. J Muscle Res Cell Motil 2003; 23:781-91. [PMID: 12952076 DOI: 10.1023/a:1024431813040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The chemoattactant mediated cGMP response of Dictyostelium cells was discovered about twenty-five years ago. Shortly thereafter, guanylyl cyclases, cGMP-phosphodiesterases and cGMP-binding proteins were detected already in lysates, but the encoding genes were discovered only very recently. The deduced proteins appear to be very different from proteins with the same function in metazoa. In this review we discuss these new findings in perspective of the previously obtained biochemical and functional data on cGMP in Dictyostelium.
Collapse
Affiliation(s)
- Leonard Bosgraaf
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | |
Collapse
|
47
|
Rivero F, Somesh BP. Signal transduction pathways regulated by Rho GTPases in Dictyostelium. J Muscle Res Cell Motil 2003; 23:737-49. [PMID: 12952072 DOI: 10.1023/a:1024423611223] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rho GTPases are ubiquitously expressed across the eukaryotes where they act as molecular switches, cycling between an active GTP-bound state and an inactive GDP-bound state. Activation enables Rho GTPases to interact with a multitude of effectors that relay upstream signals to cytoskeletal and other components, eliciting rearrangements of the actin cytoskeleton and diverse other cellular responses. In Dictyostelium the Rho family comprises 15 members. Some of them (Rac1a/b/c, RacF1/F2, RacB) are members of the Rac subfamily, and one, RacA, belongs to the RhoBTB subfamily, however the Rho and Cdc42 subfamilies are not represented. Dictyostelium Rho GTPases regulate actin polymerization, cell morphology, endocytosis, cytokinesis, cell polarity and chemotaxis. Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) modulate the activation/inactivation cycle of the GTPases. In addition, guanine nucleotide-dissociation inhibitors (GDIs) regulate cycling of the GTPases between membranes and cytosol. Members of these three classes of regulatory molecules along with some effectors have been identified in Dictyostelium during the last years and their role in Rho signaling pathways has been investigated.
Collapse
Affiliation(s)
- Francisco Rivero
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany.
| | | |
Collapse
|
48
|
Yumura S, Uyeda TQP. Myosins and cell dynamics in cellular slime molds. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:173-225. [PMID: 12722951 DOI: 10.1016/s0074-7696(05)24005-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myosin is a mechanochemical transducer and serves as a motor for various motile activities such as cell migration, cytokinesis, maintenance of cell shape, phagocytosis, and morphogenesis. Nonmuscle myosin in vivo does not either stay static at specific subcellular regions or construct highly organized structures, such as sarcomere in skeletal muscle cells. The cellular slime mold Dictyostelium discoideum is an ideal "model organism" for the investigation of cell movement and cytokinesis. The advantages of this organism prompted researchers to carry out pioneering cell biological, biochemical, and molecular genetic studies on myosin II, which resulted in elucidation of many fundamental features of function and regulation of this most abundant molecular motor. Furthermore, recent molecular biological research has revealed that many unconventional myosins play various functions in vivo. In this article, how myosins are organized and regulated in a dynamic manner in Dictyostelium cells is reviewed and discussed.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | |
Collapse
|
49
|
De La Roche MA, Lee SF, Côté GP. The Dictyostelium class I myosin, MyoD, contains a novel light chain that lacks high-affinity calcium-binding sites. Biochem J 2003; 374:697-705. [PMID: 12826013 PMCID: PMC1223647 DOI: 10.1042/bj20030656] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Revised: 06/19/2003] [Accepted: 06/24/2003] [Indexed: 01/15/2023]
Abstract
Dictyostelium discoideum MyoD, a long-tailed class I myosin, co-purified with two copies of a 16 kDa light chain. Sequence analysis of the MyoD light chain showed it to be a unique protein, termed MlcD, that shares 44% sequence identity with Dictyostelium calmodulin and 43% sequence identity with Acanthamoeba castellanii myosin IC light chain. MlcD comprises four EF-hands; however, EF-hands 2-4 contain mutations in key Ca2+-co-ordinating residues that would be predicted to impair Ca2+ binding. Electrospray ionization MS of MlcD in the presence of Ca2+ and La3+ showed the presence of one major and one minor metal-binding site. MlcD contains a single tryptophan residue (Trp39), the fluorescence intensity of which was quenched upon addition of Ca2+ or Mg2+, yielding apparent dissociation constants ( K'(d)) of 52 microM for Ca2+ and 450 microM for Mg2+. The low affinity of MlcD for Ca2+ indicates that it cannot function as a sensor of physiological Ca2+. Ca2+ did not affect the binding of MlcD to MyoD or to either of the two MyoD IQ (Ile-Gln) motifs. FLAG-MlcD expressed in Dictyostelium formed a complex with MyoD, but not with the two other long-tailed Dictyostelium myosin I isoenzymes, MyoB and MyoC. Through its specific association with the Ca2+-insensitive MlcD, MyoD may exhibit distinct regulatory properties that distinguish it from myosin I isoenzymes with calmodulin light chains.
Collapse
Affiliation(s)
- Marc A De La Roche
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
50
|
Abstract
Ever since the discovery of class I myosins, the first nonmuscle myosins, about 30 years ago, the history of unconventional myosins has been linked to the organization and working of actin filaments. It slowly emerged from studies of class I myosins in lower eukaryotes that they are involved in mechanisms of endocytosis. Most interestingly, a flurry of recent findings assign a more active role to class I myosins in regulating the spatial and temporal organization of actin filament nucleation and elongation. The results highlight the multiple links between class I myosins and the major actin nucleator, the Arp2/3 complex, and its newly described activators. Two additional types of unconventional myosins, myosinIX, and Dictyostelium discoideum MyoM, have recently been tied to the signaling pathways controlling actin cytoskeleton remodeling. The present review surveys the links between these three classes of molecular motors and the complex cellular processes of endocytosis and actin dynamics, and concentrates on a working model accounting for the function of class I myosins via recruitment of the machinery responsible for actin nucleation and elongation.
Collapse
Affiliation(s)
- Thierry Soldati
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|