1
|
Chen ZZ, Johnson L, Trahtemberg U, Baker A, Huq S, Dufresne J, Bowden P, Miao M, Ho JA, Hsu CC, Dos Santos CC, Marshall JG. Mitochondria and cytochrome components released into the plasma of severe COVID-19 and ICU acute respiratory distress syndrome patients. Clin Proteomics 2023; 20:17. [PMID: 37031181 PMCID: PMC10082440 DOI: 10.1186/s12014-023-09394-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/20/2023] [Indexed: 04/10/2023] Open
Abstract
INTRODUCTION Proteomic analysis of human plasma by LC-ESI-MS/MS has discovered a limited number of new cellular protein biomarkers that may be confirmed by independent biochemical methods. Analysis of COVID-19 plasma has indicated the re-purposing of known biomarkers that might be used as prognostic markers of COVID-19 infection. However, multiple molecular approaches have previously indicated that the SARS-COV2 infection cycle is linked to the biology of mitochondria and that the response to infections may involve the action of heme containing oxidative enzymes. METHODS Human plasma from COVID-19 and ICU-ARDS was analyzed by classical analytical biochemistry techniques and classical frequency-based statistical approaches to look for prognostic markers of severe COVID-19 lung damage. Plasma proteins from COVID-19 and ICU-ARDS were identified and enumerated versus the controls of normal human plasma (NHP) by LC-ESI-MS/MS. The observation frequency of proteins detected in COVID-19 and ICU-ARDS patients were compared to normal human plasma, alongside random and noise MS/MS spectra controls, using the Chi Square (χ2) distribution. RESULTS PCR showed the presence of MT-ND1 DNA in the plasma of COVID-19, ICU-ARDS, as well as normal human plasma. Mitochondrial proteins such as MRPL, L2HGDH, ATP, CYB, CYTB, CYP, NDUF and others, were increased in COVID-19 and ICU-ARDS plasma. The apparent activity of the cytochrome components were tested alongside NHP by dot blotting on PVDF against a purified cytochrome c standard preparation for H2O2 dependent reaction with luminol as measured by enhanced chemiluminescence (ECL) that showed increased activity in COVID-19 and ICU-ARDS patients. DISCUSSION The results from PCR, LC-ESI-MS/MS of tryptic peptides, and cytochrome ECL assays confirmed that mitochondrial components were present in the plasma, in agreement with the established central role of the mitochondria in SARS-COV-2 biology. The cytochrome activity assay showed that there was the equivalent of at least nanogram amounts of cytochrome(s) in the plasma sample that should be clearly detectable by LC-ESI-MS/MS. The release of the luminol oxidase activity from cells into plasma forms the basis of a simple and rapid test for the severity of cell damage and lung injury in COVID-19 infection and ICU-ARDS.
Collapse
Affiliation(s)
- Zhuo Zhen Chen
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | - Lloyd Johnson
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | - Uriel Trahtemberg
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Andrew Baker
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada
| | - Saaimatul Huq
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada
| | | | | | | | - Ja-An Ho
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Claudia C Dos Santos
- St. Michael's Hospital, Keenan Research Centre for Biomedical Science, Toronto, Canada.
| | - John G Marshall
- Department of Chemistry and Biology, Faculty of Science, Toronto Metropolitan, University, 350 Victoria Street, Toronto, ON, Canada.
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, 6 R. Nicolas-Ernest Barblé, Luxembourg, Luxembourg.
| |
Collapse
|
2
|
Mitochondrial ROS production by neutrophils is required for host antimicrobial function against Streptococcus pneumoniae and is controlled by A2B adenosine receptor signaling. PLoS Pathog 2022; 18:e1010700. [DOI: 10.1371/journal.ppat.1010700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/28/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Polymorphonuclear cells (PMNs) control Streptococcus pneumoniae (pneumococcus) infection through various antimicrobial activities. We previously found that reactive oxygen species (ROS) were required for optimal antibacterial function, however, the NADPH oxidase is known to be dispensable for the ability of PMNs to kill pneumococci. In this study, we explored the role of ROS produced by the mitochondria in PMN antimicrobial defense against pneumococci. We found that the mitochondria are an important source of overall intracellular ROS produced by murine PMNs in response to infection. We investigated the host and bacterial factors involved and found that mitochondrial ROS (MitROS) are produced independent of bacterial capsule or pneumolysin but presence of live bacteria that are in direct contact with PMNs enhanced the response. We further found that MyD88-/- PMNs produced less MitROS in response to pneumococcal infection suggesting that released bacterial products acting as TLR ligands are sufficient for inducing MitROS production in PMNs. To test the role of MitROS in PMN function, we used an opsonophagocytic killing assay and found that MitROS were required for the ability of PMNs to kill pneumococci. We then investigated the role of MitROS in host resistance and found that MitROS are produced by PMNs in response to pneumococcal infection. Importantly, treatment of mice with a MitROS scavenger prior to systemic challenge resulted in reduced survival of infected hosts. In exploring host pathways that control MitROS, we focused on extracellular adenosine, which is known to control PMN anti-pneumococcal activity, and found that signaling through the A2B adenosine receptor inhibits MitROS production by PMNs. A2BR-/- mice produced more MitROS and were significantly more resistant to infection. Finally, we verified the clinical relevance of our findings using human PMNs. In summary, we identified a novel pathway that controls MitROS production by PMNs, shaping host resistance against S. pneumoniae.
Collapse
|
3
|
Chmielecki A, Bortnik K, Galczynski S, Padula G, Jerczynska H, Stawski R, Nowak D. Exhaustive Exercise Increases Spontaneous but Not fMLP-Induced Production of Reactive Oxygen Species by Circulating Phagocytes in Amateur Sportsmen. BIOLOGY 2022; 11:103. [PMID: 35053101 PMCID: PMC8773189 DOI: 10.3390/biology11010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Strenuous exercise alters the oxidative response of blood phagocytes to various agonists. However, little is known about spontaneous post exercise oxidant production by these cells. In this cross-over trial, we tested whether an exhaustive treadmill run at a speed corresponding to 70% of VO2max affects spontaneous and fMLP-provoked oxidant production by phagocytes in 18 amateur sportsmen. Blood was collected before, just after, and 1, 3, 5 and 24 h post exercise for determination of absolute and normalized per phagocyte count spontaneous (a-rLBCL, rLBCL) and fMLP-induced luminol-enhanced whole blood chemiluminescence (a-fMLP-LBCL, fMLP-LBCL). a-rLBCL and rLBCL increased by 2.5- and 1.5-times just after exercise (p < 0.05) and then returned to baseline or decreased by about 2-times at the remaining time-points, respectively. a-fMLP-LBCL increased 1.7- and 1.6-times just after and at 3 h post-exercise (p < 0.05), respectively, while fMLP-LBCL was suppressed by 1.5- to 2.3-times at 1, 3, 5 and 24 h post-exercise. No correlations were found between elevated post-exercise a-rLBCL, a-fMLP-LBCL and run distance to exhaustion. No changes of oxidants production were observed in the control arm (1 h resting instead of exercise). Exhaustive exercise decreased the blood phagocyte-specific oxidative response to fMLP while increasing transiently spontaneous oxidant generation, which could be a factor inducing secondary rise in antioxidant enzymes activity.
Collapse
Affiliation(s)
- Adam Chmielecki
- Sports Centre, Medical University of Lodz, 6-go Sierpnia 69, 90-645 Lodz, Poland; (A.C.); (K.B.)
| | - Krzysztof Bortnik
- Sports Centre, Medical University of Lodz, 6-go Sierpnia 69, 90-645 Lodz, Poland; (A.C.); (K.B.)
| | - Szymon Galczynski
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (S.G.); (G.P.)
| | - Gianluca Padula
- Academic Laboratory of Movement and Human Physical Performance “DynamoLab”, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland; (S.G.); (G.P.)
| | - Hanna Jerczynska
- Central Scientific Laboratory, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Dariusz Nowak
- Department of Clinical Physiology, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
4
|
Li YR, Zhu H. Nanoceria potently reduce superoxide fluxes from mitochondrial electron transport chain and plasma membrane NADPH oxidase in human macrophages. Mol Cell Biochem 2021; 476:4461-4470. [PMID: 34478033 PMCID: PMC9333338 DOI: 10.1007/s11010-021-04246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Cerium oxide nanoparticles, also known as nanoceria, possess antioxidative and anti-inflammatory activities in animal models of inflammatory disorders, such as sepsis. However, it remains unclear how nanoceria affect cellular superoxide fluxes in macrophages, a critical type of cells involved in inflammatory disorders. Using human ML-1 cell-derived macrophages, we showed that nanoceria at 1-100 μg/ml potently reduced superoxide flux from the mitochondrial electron transport chain (METC) in a concentration-dependent manner. The inhibitory effects of nanoceria were also shown in succinate-driven mitochondria isolated from the macrophages. Furthermore, nanoceria markedly mitigated the total intracellular superoxide flux in the macrophages. These data suggest that nanoceria could readily cross the plasma membrane and enter the mitochondrial compartment, reducing intracellular superoxide fluxes in unstimulated macrophages. In macrophages undergoing respiratory burst, nanoceria also strongly reduced superoxide flux from the activated macrophage plasma membrane NADPH oxidase (NOX) in a concentration-dependent manner. Token together, the results of the present study demonstrate that nanoceria can effectively diminish superoxide fluxes from both METC and NOX in human macrophages, which may have important implications for nanoceria-mediated protection against inflammatory disease processes.
Collapse
Affiliation(s)
- Y Robert Li
- Department of Pharmacology, Jerry Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA.
| | - Hong Zhu
- Department of Physiology and Pathophysiology, Jerry Wallace School of Osteopathic Medicine, Campbell University, Buies Creek, NC, 27506, USA
| |
Collapse
|
5
|
Ré A, Rocha AT, Campos I, Keizer JJ, Gonçalves FJM, Oliveira H, Pereira JL, Abrantes N. Cytotoxic effects of wildfire ashes: In-vitro responses of skin cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117279. [PMID: 33971424 DOI: 10.1016/j.envpol.2021.117279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Wildfires are a complex environmental problem worldwide. The ashes produced during the fire bear metals and PAHs with high toxicity and environmental persistence. These are mobilized into downhill waterbodies, where they can impair water quality and human health. In this context, the present study aimed at assessing the toxicity of mimicked wildfire runoff to human skin cells, providing a first view on the human health hazardous potential of such matrices. Human keratinocytes (HaCaT) were exposed to aqueous extracts of ashes (AEA) prepared from ash deposited in the soil after wildfires burned a pine or a eucalypt forest stand. Cytotoxicity (MTT assay) and changes in cell cycle dynamics (flow cytometry) were assessed. Cell viability decreased with increasing concentrations of AEA, regardless of the ash source, the extracts preparation method (filtered or unfiltered to address the dissolved or the total fractions of contaminants, respectively) or the exposure period (24 and 48 h). The cells growth was also negatively affected by the tested AEA matrices, as evidenced by a deceleration of the progress through the cell cycle, namely from phase G0/G1 to G2. The cytotoxicity of AEA could be related to particulate and dissolved metal content, but the particles themselves may directly affect the cell membrane. Eucalypt ash was apparently more cytotoxic than pine ash due to differential ash metal burden and mobility to the water phase. The deceleration of the cell cycle can be explained by the attempt of cells to repair metal-induced DNA damage, while if this checkpoint and repair pathways are not well coordinated by metal interference, genomic instability may occur. Globally, our results trigger public health concerns since the burnt areas frequently stand in slopes of watershed that serve as recreation sites and sources of drinking water, thus promoting human exposure to wildfire-driven contamination.
Collapse
Affiliation(s)
- Ana Ré
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | | | - Isabel Campos
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Jan Jacob Keizer
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Helena Oliveira
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Joana Luísa Pereira
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Biology, University of Aveiro, Aveiro, Portugal.
| | - Nelson Abrantes
- CESAM (Centre for Environmental and Marine Studies), University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
6
|
Hsu WT, Tseng YH, Jui HY, Kuo CC, Wu KK, Lee CM. 5-Methoxytryptophan attenuates postinfarct cardiac injury by controlling oxidative stress and immune activation. J Mol Cell Cardiol 2021; 158:101-114. [PMID: 34087195 DOI: 10.1016/j.yjmcc.2021.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023]
Abstract
AIMS Myocardial infarction (MI) remains a major cause of heart failure. 5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of L-tryptophan, exerts anti-inflammatory and antifibrotic effects, but MI impairs the biosynthesis of cardiac 5-MTP. Therefore, we evaluated the effect of exogenous 5-MTP administration on rescuing post-MI cardiac injury. METHODS AND RESULTS After a detailed pharmacokinetic analysis of 5-MTP, Sprague Dawley rats that had undergone left anterior descending coronary artery ligation received intraperitoneal administration of either 17 mg/kg 5-MTP or saline at 0.5 and 24 h after MI. Cardiac systolic function, infarction size, and fibrosis were evaluated using echocardiography, triphenyltetrazolium chloride staining, and Masson trichrome staining, respectively. Myocardial apoptosis was analyzed by staining for caspase-3 and cardiac troponin I. 5-MTP treatment decreased the infarct area and myocardial apoptosis; attenuated systolic dysfunction and left ventricular dilatation; and reduced cardiomyocyte hypertrophy, myocardial fibrosis, and infarct expansion. Crucially, 5-MTP alleviated oxidative stress by preserving mitochondrial antioxidant enzymes and downregulating reactive oxygen species-generating NADPH oxidase isoforms and endothelin-1. Consequently, 5-MTP-treated MI rat hearts exhibited lower levels of chemokines and cytokines, namely interleukin (IL)-1β, IL-18, IL-6, C-C motif chemokine ligand (CCL)-2, and CCL5, accompanied by reduced infiltration of CD11b+ cells and CD4+ T cells. Notably, 5-MTP protected against H2O2-induced damage in HL-1 cardiomyocytes and human umbilical vein endothelial cells in vitro. CONCLUSION 5-MTP prevented post-MI cardiac injury by promoting mitochondrial stabilization and controlling redox imbalance. This cytoprotective effect ameliorated macrophage and T-cell infiltration, thus reducing the infarct size, attenuating fibrosis, and restoring myocardial function.
Collapse
Affiliation(s)
- Wan-Tseng Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsuan Tseng
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-Yiang Jui
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; College of Life Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Chii-Ming Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
7
|
Marshall SR, Singh A, Wagner JN, Busschaert N. Enhancing the selectivity of optical sensors using synthetic transmembrane ion transporters. Chem Commun (Camb) 2020; 56:14455-14458. [PMID: 33146644 DOI: 10.1039/d0cc06437h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein, we introduce a new method to optimize the properties of optical sensors, coined the transporter-liposome-fluorophore (TLF) approach. It is shown that this approach can greatly improve the selectivity of the sensor, increase the dynamic range and maintain the sensitivity of the original fluorophore.
Collapse
Affiliation(s)
- Sarah R Marshall
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
| | | | | | | |
Collapse
|
8
|
Nunn AVW, Guy GW, Brysch W, Botchway SW, Frasch W, Calabrese EJ, Bell JD. SARS-CoV-2 and mitochondrial health: implications of lifestyle and ageing. Immun Ageing 2020; 17:33. [PMID: 33292333 PMCID: PMC7649575 DOI: 10.1186/s12979-020-00204-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Infection with SARs-COV-2 displays increasing fatality with age and underlying co-morbidity, in particular, with markers of the metabolic syndrome and diabetes, which seems to be associated with a "cytokine storm" and an altered immune response. This suggests that a key contributory factor could be immunosenescence that is both age-related and lifestyle-induced. As the immune system itself is heavily reliant on mitochondrial function, then maintaining a healthy mitochondrial system may play a key role in resisting the virus, both directly, and indirectly by ensuring a good vaccine response. Furthermore, as viruses in general, and quite possibly this new virus, have also evolved to modulate immunometabolism and thus mitochondrial function to ensure their replication, this could further stress cellular bioenergetics. Unlike most sedentary modern humans, one of the natural hosts for the virus, the bat, has to "exercise" regularly to find food, which continually provides a powerful adaptive stimulus to maintain functional muscle and mitochondria. In effect the bat is exposed to regular hormetic stimuli, which could provide clues on how to resist this virus. In this paper we review the data that might support the idea that mitochondrial health, induced by a healthy lifestyle, could be a key factor in resisting the virus, and for those people who are perhaps not in optimal health, treatments that could support mitochondrial function might be pivotal to their long-term recovery.
Collapse
Affiliation(s)
- Alistair V W Nunn
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK.
| | | | | | - Stanley W Botchway
- UKRI, STFC, Central Laser Facility, & Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX110QX, UK
| | - Wayne Frasch
- School of Life Sciences, Arizona State University, Tempe, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jimmy D Bell
- Department of Life Sciences, Research Centre for Optimal Health, University of Westminster, London, W1W 6UW, UK
| |
Collapse
|
9
|
Shukla H, Gaje G, Koucheki A, Lee HY, Sun X, Trush MA, Zhu H, Li YR, Jia Z. NADPH-quinone oxidoreductase-1 mediates Benzo-[a]-pyrene-1,6-quinone-induced cytotoxicity and reactive oxygen species production in human EA.hy926 endothelial cells. Toxicol Appl Pharmacol 2020; 404:115180. [PMID: 32739527 DOI: 10.1016/j.taap.2020.115180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/11/2020] [Accepted: 07/28/2020] [Indexed: 11/17/2022]
Abstract
Numerous studies conducted in the past have reported deaths in the human population due to cardiovascular diseases (CVD) on exposure to air particulate matter (APM). BP-1,6-quinone (BP-1,6-Q) is one of the significant components of APM. However, the mechanism(s) by which it can exert its toxicity in endothelial cells is not yet completely understood. NAD(P)H: quinone oxidoreductase-1 (NQO1) is expressed highly in myocardium and vasculature tissues of the heart and plays a vital role in maintaining vascular homeostasis. This study, demonstrated that BP-1,6-Q diminishes NQO1 enzyme activity in a dose-dependent manner in human EA.hy926 endothelial cells. The decrease in the NQO1 enzyme causes potentiation in BP-1,6-Q-mediated toxicity in EA.hy926 endothelial cells. The enhancement of NQO1 in endothelial cells showed cytoprotection against BP-1,6-Q-induced cellular toxicity, lipid, and protein damage suggesting an essential role of NQO1 in cytoprotection against BP-1,6-Q toxicity. Using various biochemical assays and genetic approaches, results from this study further demonstrated that NQO1 also plays a crucial role in BP-1,6-Q-induced production of reactive oxygen species (ROS). These findings will contribute to elucidating BP-1,6-Q mediated toxicity and its role in the development of atherosclerosis.
Collapse
Affiliation(s)
- Halley Shukla
- Department of Biology, University of North Carolina at Greensboro, NC, USA
| | - Gabriella Gaje
- Department of Biology, University of North Carolina at Greensboro, NC, USA
| | - Ashkon Koucheki
- Department of Biology, University of North Carolina at Greensboro, NC, USA
| | - Ho Young Lee
- Department of Biology, University of North Carolina at Greensboro, NC, USA
| | - Xiaolun Sun
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - Michael A Trush
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Y Robert Li
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, NC, USA.
| |
Collapse
|
10
|
Selective Synthesis and Photoluminescence Study of Pyrazolopyridopyridazine Diones and N-Aminopyrazolopyrrolopyridine Diones. Molecules 2020; 25:molecules25102409. [PMID: 32455824 PMCID: PMC7288053 DOI: 10.3390/molecules25102409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
The newly designed luminol structures of pyrazolopyridopyridazine diones and N-aminopyrazolopyrrolopyridine diones were synthesized from versatile 1,3-diaryfuropyrazolopyridine-6,8-diones, 1,3-diarylpyrazolopyrrolopyridine-6,8-diones, or 1,3-diaryl-7-methylpyrazolopyrrolopyridine-6,8-diones with hydrazine monohydrate. Photoluminescent and solvatofluorism properties containing UV–Vis absorption, emission spectra, and quantum yield (Φf) study of pyrazolopyridopyridazine diones and N-aminopyrazolopyrrolopyridine diones were also studied. Generally, most of pyrazolopyrrolopyridine-6,8-diones 6 exhibited the significant fluorescence intensity and the substituent effect when compared with N-aminopyrazolopyrrolopyridine diones, particularly for 6c and 6j with a m-chloro group. Additionally, the fluorescence intensity of 6j was significantly promoted due to the suitable conjugation conformation. Based on the quantum yield (Φf) study, the value of compound 6j (0.140) with planar structural skeletal was similar to that of standard luminol (1, 0.175).
Collapse
|
11
|
Sha Z, Fishovitz J, Wang S, Chilakala S, Xu Y, Lee I. A Selective Fluorogenic Peptide Substrate for the Human Mitochondrial ATP-Dependent Protease Complex ClpXP. Chembiochem 2020; 21:2037-2048. [PMID: 32180333 DOI: 10.1002/cbic.202000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Indexed: 11/07/2022]
Abstract
The goal of this work is to identify differences in the substrate determinants of two human mitochondrial matrix ATP-dependent proteases, human ClpXP (hClpXP) and human Lon (hLon). This information allows the generation of protease-specific peptide substrates that can be used as chemical biology tools to investigate the physiological functions of hClpXP. These enzymes play a role in protein quality control, but currently the physiological functions of human ClpXP are not well defined. In this study, the degradation profile of casein, an alanine positional scanning decapeptide library, and a specific peptide sequence found in an endogenous substrate of bacterial ClpXP by hClpXP as well as hLon were examined. Based on our findings, we generated a specific fluorogenic peptide substrate, FR-Cleptide, for hClpXP with a kcat of 2.44±0.15 s-1 and Km =262±43 μM, respectively. The FR-Cleptide substrate was successfully used to identify a leucine methyl ketone as a potent lead inhibitor, and to detect endogenous hClpXP activity in HeLa cell lysate. We propose that the fluorogenic peptide substrate is a valuable tool for quantitatively monitoring the activity of hClpXP in cell lysate, as well as mechanistic characterization of hClpXP. The peptide-based chemical tools developed in this study will complement the substrates developed for human Lon in aiding the investigation of the physiological functions of the respective protease.
Collapse
Affiliation(s)
- Zhou Sha
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Jennifer Fishovitz
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana, 46556, USA
| | - Susan Wang
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Sujatha Chilakala
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, 44115, USA.,Lawrence J. Ellison Institute for Transformative Medicine of USC, University of Southern California, Beverly Hills, CA, 90211, USA
| | - Yan Xu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, 44115, USA
| | - Irene Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| |
Collapse
|
12
|
Shukla H, Chitrakar R, Bibi HA, Gaje G, Koucheki A, Trush MA, Zhu H, Li YR, Jia Z. Reactive oxygen species production by BP-1,6-quinone and its effects on the endothelial dysfunction: Involvement of the mitochondria. Toxicol Lett 2020; 322:120-130. [PMID: 31953210 DOI: 10.1016/j.toxlet.2020.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023]
Abstract
Strong epidemiological evidence supports the association between increased air pollution and the risk of developing atherosclerotic cardiovascular diseases (CVDs). However, the mechanism remains unclear. As an environmental air pollutant and benzo-a-pyrene (BP) metabolite, BP-1,6-quinone (BP-1,6-Q) is present in the particulate phase of air pollution. This study was undertaken to examine the redox activity of BP-1,6-Q and mechanisms associated with it using EA.hy926 endothelial cells. BP-1,6-Q at 0.01-1 μM significantly stimulated the production of reactive oxygen species (ROS)·in intact cells and isolated mitochondria. Furthermore, BP-1,6-Q-induced ROS was altered by mitochondrial electron transport chain (METC) inhibitors of complex I (rotenone) and complex III (antimycin A), denoting the involvement of mitochondrial electron transport chain (METC) in BP-1,6-Q mediated ROS production. In METC deficient cells, interestingly, BP-1,6-Q-mediated ROS production was enhanced, suggesting that overproduction of ROS by BP-1,6-Q is not only produced from mitochondria but can also be from the cell outside of mitochondria (extramitochondrial). BP-1,6-Q also triggered endothelial-monocyte interaction and stimulated expression of vascular adhesion molecule-1 (VCAM-1). In conclusion, these results demonstrate that BP-1,6-Q can generate ROS within both mitochondria and outside of mitochondria, resulting in stimulation of adhesion of monocytes to endothelial cells, a key event in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Halley Shukla
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| | - Rojin Chitrakar
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| | - Humaira A Bibi
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| | - Gabriella Gaje
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| | - Ashkon Koucheki
- Department of Biology, University of North Carolina at Greensboro, NC, United States
| | - Michael A Trush
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, United States
| | - Y Robert Li
- Department of Biology, University of North Carolina at Greensboro, NC, United States; Campbell University School of Osteopathic Medicine, Buies Creek, NC, United States.
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, NC, United States.
| |
Collapse
|
13
|
Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019; 8:cells8080795. [PMID: 31366145 PMCID: PMC6721602 DOI: 10.3390/cells8080795] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial uncoupling can be defined as a dissociation between mitochondrial membrane potential generation and its use for mitochondria-dependent ATP synthesis. Although this process was originally considered a mitochondrial dysfunction, the identification of UCP-1 as an endogenous physiological uncoupling protein suggests that the process could be involved in many other biological processes. In this review, we first compare the mitochondrial uncoupling agents available in term of mechanistic and non-specific effects. Proteins regulating mitochondrial uncoupling, as well as chemical compounds with uncoupling properties are discussed. Second, we summarize the most recent findings linking mitochondrial uncoupling and other cellular or biological processes, such as bulk and specific autophagy, reactive oxygen species production, protein secretion, cell death, physical exercise, metabolic adaptations in adipose tissue, and cell signaling. Finally, we show how mitochondrial uncoupling could be used to treat several human diseases, such as obesity, cardiovascular diseases, or neurological disorders.
Collapse
|
14
|
Zhang W, Chavez J, Zeng Z, Bloom B, Sheardy A, Ji Z, Yin Z, Waldeck DH, Jia Z, Wei J. Antioxidant Capacity of Nitrogen and Sulfur Codoped Carbon Nanodots. ACS APPLIED NANO MATERIALS 2018; 1:2699-2708. [PMID: 36938561 PMCID: PMC10022828 DOI: 10.1021/acsanm.8b00404] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Carbon nanodots (CNDs) have shown potential for antioxidative activity at the cellular level. Here we applied a facile hydrothermal method to prepare fluorescent nitrogen and sulfur (N,S-)codoped CNDs using α-lipoic acid, citric acid, and urea as precursor molecules. This work describes a comprehensive study for exploring their antioxidation activity using UV-vis absorption and electrochemistry measurements of 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), as well as a lucigenin chemiluminescence (lucigenin-CL) assay. The lucigenin-CL assay detects superoxide anion radicals, i.e., reactive oxygen species (ROS) produced through the xanthine/xanthine oxidase (XO) reaction. The electrochemically derived relationship between the unreacted nitrogen-centered DPPH• and CND concentrations agrees with that obtained from UV-vis measurements. A reaction pathway for the ROS antioxidative reaction of N,S-codoped CNDs is proposed. These findings should aid in the development of N,S-codoped CNDs for practical use in biomedical applications.
Collapse
Affiliation(s)
- Wendi Zhang
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Jessica Chavez
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Zheng Zeng
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Brian Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alex Sheardy
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Zuowei Ji
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Ziyu Yin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - David H. Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27412, United States
| | - Jianjun Wei
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
15
|
Tseng CC, Yen WP, Tsai SE, Hu YT, Takayama H, Kuo YH, Fuh Wong F. ZnCl2
-Catalyzed Aza-Diels-Alder Reaction for the Synthesis of 1H
-Pyrazolo[3,4-b
]pyridine-4,5-dicarboxylate Derivatives. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ching-Chun Tseng
- School of Pharmacy; China Medical University; 40402 Taichung Taiwan
- The PhD Program for Biotech Pharmaceutical Industry; China Medical University; No. 91, Hsueh-Shih Rd. 40402 Taichung Taiwan
| | - Wan-Ping Yen
- School of Pharmacy; China Medical University; 40402 Taichung Taiwan
- The PhD Program for Biotech Pharmaceutical Industry; China Medical University; No. 91, Hsueh-Shih Rd. 40402 Taichung Taiwan
| | - Shuo-En Tsai
- School of Pharmacy; China Medical University; 40402 Taichung Taiwan
- The PhD Program for Biotech Pharmaceutical Industry; China Medical University; No. 91, Hsueh-Shih Rd. 40402 Taichung Taiwan
| | - Yu-Tzu Hu
- Master Program for Pharmaceutical Manufacture; China Medical University; No. 91, Hsueh-Shih Rd. 40402 Taichung Taiwan
| | - Hiroyuki Takayama
- Department of Medico Pharmaceutical Science; Nihon Pharmaceutical University; 10281, Komuro Inamachi, Kita-Adachi-gun Saitama Japan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources; College of Chinese Medicine; China Medical University; 40402 Taichung Taiwan
- Department of Biotechnology; Asia University; 41354 Taichung Taiwan
| | - Fung Fuh Wong
- School of Pharmacy; China Medical University; 40402 Taichung Taiwan
- The PhD Program for Biotech Pharmaceutical Industry; China Medical University; No. 91, Hsueh-Shih Rd. 40402 Taichung Taiwan
- Master Program for Pharmaceutical Manufacture; China Medical University; No. 91, Hsueh-Shih Rd. 40402 Taichung Taiwan
| |
Collapse
|
16
|
Massima Mouele ES, Fatoba OO, Babajide O, Badmus KO, Petrik LF. Review of the methods for determination of reactive oxygen species and suggestion for their application in advanced oxidation induced by dielectric barrier discharges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9265-9282. [PMID: 29446027 DOI: 10.1007/s11356-018-1392-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Advanced oxidation processes (AOPs) particularly non-thermal plasmas based on electrical discharges have been widely investigated for water and wastewater treatment. Dielectric barrier discharges (DBDs) generate large amounts of selective and non-selective reactive oxygen species (ROS) such as ozone, hydrogen peroxide, atomic oxygen, superoxide molecular anions and hydroxyl radicals, having been proved to be efficient for water decontamination among various forms of electrical discharge systems. The detection and quantification methods of these oxygen species in non-thermal plasmas have been reviewed. However, their application in dielectric barrier discharge has not been well studied. It is therefore imperative to summarise the various detection and quantification methods for oxygen-based species determination in AOPs, aqueous systems and non-thermal plasma processes. Thereafter, reviewed methods are suggested for the determination of ROS in DBD configurations to understand the consumption trend of these oxidants during treatment of water effluents and to evaluate the performance of the treatment reactor configuration towards the degradation of targeted pollutants.
Collapse
Affiliation(s)
- Emile S Massima Mouele
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa.
| | - Olanrewaju Ojo Fatoba
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| | - Omotola Babajide
- Mechanical Engineering Department, Cape Peninsula University of Technology, Bellville, South Africa
| | - Kassim O Badmus
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| | - Leslie F Petrik
- Environmental and Nano Sciences (ENS) Research Group, Department of Chemistry, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
17
|
Chen N, Wu M, Tang GP, Wang HJ, Huang CX, Wu XJ, He Y, Zhang B, Huang CH, Liu H, Wang WM, Wang HL. Effects of Acute Hypoxia and Reoxygenation on Physiological and Immune Responses and Redox Balance of Wuchang Bream ( Megalobrama amblycephala Yih, 1955). Front Physiol 2017. [PMID: 28642716 PMCID: PMC5462904 DOI: 10.3389/fphys.2017.00375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To study Megalobrama amblycephala adaption to water hypoxia, the changes in physiological levels, innate immune responses, redox balance of M.amblycephala during hypoxia were investigated in the present study. When M. amblycephala were exposed to different dissolved oxygen (DO) including control (DO: 5.5 mg/L) and acute hypoxia (DO: 3.5 and 1.0 mg/L, respectively), hemoglobin (Hb), methemoglobin (MetHb), glucose, Na+, succinatedehydrogenase (SDH), lactate, interferon alpha (IFNα), and lysozyme (LYZ), except hepatic glycogen and albumin gradually increased with the decrease of DO level. When M. amblycephala were exposed to different hypoxia time including 0.5 and 6 h (DO: 3.5 mg/L), and then reoxygenation for 24 h after 6 h hypoxia, Hb, MetHb, glucose, lactate, and IFNα, except Na+, SDH, hepatic glycogen, albumin, and LYZ increased with the extension of hypoxia time, while the above investigated indexes (except albumin, IFNα, and LYZ) decreased after reoxygenation. On the other hand, the liver SOD, CAT, hydrogen peroxide (H2O2), and total ROS were all remained at lower levels under hypoxia stress. Finally, Hif-1α protein in the liver, spleen, and gill were increased with the decrease of oxygen concentration and prolongation of hypoxia time. Interestingly, one Hsp70 isoforms mediated by internal ribozyme entry site (IRES) named junior Hsp70 was only detected in liver, spleen and gill. Taken together, these results suggest that hypoxia affects M. amblycephala physiology and reduces liver oxidative stress. Hypoxia-reoxygenation stimulates M. amblycephala immune parameter expressions, while Hsp70 response to hypoxia is tissue-specific.
Collapse
Affiliation(s)
- Nan Chen
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Meng Wu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Guo-Pan Tang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China.,Laboratory of Freshwater Animal Breeding, College of Animal Science and Technology, Henan University of Animal Husbandry and EconomyZhengzhou, China
| | - Hui-Juan Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Chun-Xiao Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Xin-Jie Wu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Yan He
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Bao Zhang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Cui-Hong Huang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Hong Liu
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| | - Wei-Min Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China
| | - Huan-Ling Wang
- Key Lab of Freshwater Animal Breeding, Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Fishery, Huazhong Agricultural UniversityWuhan, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei ProvinceWuhan, China
| |
Collapse
|
18
|
Alijanpour SO, Akhoondi R, Chaichi MJ. 1-Ethyl-3-methylimidazolium ethylsulfate/copper(II) as catalyst for lucigenin chemiluminescence and its application to glucose detection. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817010026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Ribou AC. Synthetic Sensors for Reactive Oxygen Species Detection and Quantification: A Critical Review of Current Methods. Antioxid Redox Signal 2016; 25:520-33. [PMID: 27225539 DOI: 10.1089/ars.2016.6741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE Redox reactions play important roles in both physiological and pathological processes, highlighting the importance of quantifying and localizing intracellular redox-active components. Most research has focused on direct investigation of reactive oxygen species (ROS). Intensity-based fluorescent methods are very sensitive and easy to use, but they lack specificity and can produce artifacts. In this article, we focus on synthetic sensors, describing experimental pitfalls associated with their use. We also present alternative methods for the detection of free radicals. RECENT ADVANCES New approaches have been developed to overcome the main artifact of intensity-based methods: spurious changes in fluorescence intensity caused by oxidation. These new approaches are based on analytical measurements of the oxidized sensors or techniques that are not susceptible to oxidation, such as electron spin resonance and fluorescence lifetime-based methods. Regardless of the approach, the need for detection of ROS on the subcellular level, especially in the mitochondria, has motivated the development of new probes. CRITICAL ISSUES Flow cytometry systems and confocal microscopes are now available to the majority of biologists, and commercially available probes are, therefore, more widely used. The fact that these new applications are cited in thousands of publications makes these sensors even more attractive. FUTURE DIRECTIONS The field of ROS detection by synthetic sensors continues to expand, bringing needed additional research to the development of robust techniques that are applicable both in vitro and in vivo. Antioxid. Redox Signal. 25, 520-533.
Collapse
Affiliation(s)
- Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia , Perpignan, France
| |
Collapse
|
20
|
Costa RM, Filgueira FP, Tostes RC, Carvalho MHC, Akamine EH, Lobato NS. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction. Vascul Pharmacol 2016; 84:28-37. [DOI: 10.1016/j.vph.2016.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 01/29/2023]
|
21
|
Berczyński P, Kładna A, Kruk I, Aboul-Enein HY. Radical-scavenging activity of penicillin G, ampicillin, oxacillin, and dicloxacillin. LUMINESCENCE 2016; 32:434-442. [DOI: 10.1002/bio.3199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/18/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Paweł Berczyński
- Institute of Physics, Faculty of Mechanical Engineering and Mechatronics; West Pomeranian University of Technology in Szczecin; Al. Piastów 48/49 70-311 Szczecin Poland
| | - Aleksandra Kładna
- Department of History of Medicine and Medical Ethics; Pomeranian Medical University; Rybacka 1 70-204 Szczecin Poland
| | - Irena Kruk
- Institute of Physics, Faculty of Mechanical Engineering and Mechatronics; West Pomeranian University of Technology in Szczecin; Al. Piastów 48/49 70-311 Szczecin Poland
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division; National Research Centre; Dokki Giza 12622 Egypt
| |
Collapse
|
22
|
González Arbeláez LF, Ciocci Pardo A, Fantinelli JC, Caldiz C, Ríos JL, Schinella GR, Mosca SM. Ex Vivo Treatment with a Polyphenol-Enriched Cocoa Extract Ameliorates Myocardial Infarct and Postischemic Mitochondrial Injury in Normotensive and Hypertensive Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5180-5187. [PMID: 27281548 DOI: 10.1021/acs.jafc.6b01669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Our objective was to determine the effects of a polyphenol-enriched cocoa extract (PCE) on myocardial postischemic alterations in normotensive (Wistar rats, W) and spontaneously hypertensive rats (SHR). Isolated hearts were submitted to 110 min of perfusion or 20 min stabilization, 30 min global ischemia, and 60 min reperfusion (R). Other hearts were treated with PCE at the onset of R. Infarct size, the reduced glutathione (GSH), and the expression of phospho-Akt, P-GSK-3β, and P-eNOS were assessed. In isolated mitochondria, the Ca(2+)-mediated response of mitochondrial permeability transition pore (mPTP), membrane potential (Δψm), and superoxide production were determined. PCE decreased infarct size, partly preserved GSH, increased the P-Akt, P-GSK-3β, and P-eNOS contents, improved mPTP response to Ca(2+), decreased the superoxide production, and restored Δψm. These data show that PCE decreases the cardiac postischemic damage in W rats and SHR and suggest that Akt/GSK-3β/eNOS dependent pathways are involved.
Collapse
Affiliation(s)
- Luisa F González Arbeláez
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| | - Juliana C Fantinelli
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| | - Claudia Caldiz
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| | - José Luis Ríos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València , 46010 València, Spain
| | - Guillermo R Schinella
- Facultad de Ciencias Médicas, Universidad Nacional de La Plata, CIC , 1900 La Plata, Provincia de Buenos Aires, Argentina
| | - Susana M Mosca
- Centro de Investigaciones Cardiovasculares CCT-CONICET, Universidad Nacional de La Plata , 60 y 120, 1900 La Plata, Argentina
| |
Collapse
|
23
|
Kładna A, Berczyński P, Kruk I, Piechowska T, Aboul-Enein HY. Studies on the antioxidant properties of some phytoestrogens. LUMINESCENCE 2016; 31:1201-6. [DOI: 10.1002/bio.3091] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/20/2015] [Accepted: 12/20/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Aleksandra Kładna
- Department of History of Medicine and Medical Ethics; Pomeranian Medical University; Rybacka 1 70-204 Szczecin Poland
| | - Paweł Berczyński
- Institute of Physics; Faculty of Mechanical Engineering and Mechatronics; West Pomeranian University of Technology in Szczecin; Al. Piastów 48/49 70-311 Szczecin Poland
| | - Irena Kruk
- Institute of Physics; Faculty of Mechanical Engineering and Mechatronics; West Pomeranian University of Technology in Szczecin; Al. Piastów 48/49 70-311 Szczecin Poland
| | - Teresa Piechowska
- Institute of Physics; Faculty of Mechanical Engineering and Mechatronics; West Pomeranian University of Technology in Szczecin; Al. Piastów 48/49 70-311 Szczecin Poland
| | - Hassan Y. Aboul-Enein
- Pharmaceutical and Medicinal Chemistry Department; Pharmaceutical and Drug Industries Research Division, National Research Centre; Dokki Giza 12622 Egypt
| |
Collapse
|
24
|
Li Y, Zhu H, Kuppusamy P, Zweier JL, Trush MA. Mitochondrial Electron Transport Chain-Derived Superoxide Exits Macrophages: Implications for Mononuclear Cell-Mediated Pathophysiological Processes. REACTIVE OXYGEN SPECIES (APEX, N.C.) 2016; 1:81-98. [PMID: 28133629 PMCID: PMC5268359 DOI: 10.20455/ros.2016.815] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The involvement of mitochondrial electron transport chain (METC)-derived superoxide anion radical in cell protooncogene activation, mitogenic responses, and cancerous growth has recently received much attention. In order for METC-derived superoxide to participate in any of the above processes, its exit from mitochondria would be a critical step. Detection of intracellular superoxide showed that mitochondrial respiration is the major source of cellular superoxide in unstimulated or resting monocytes/macrophages. However, direct evidence for the exit of superoxide from mitochondria is presently lacking. Here we show that METC-derived superoxide does exit from mitochondria in unstimulated monocytes/macrophages. Release of superoxide was first found to occur with substrate-supported mitochondria isolated from these cells. We also observed the presence of extracellular superoxide with the intact unstimulated/resting cells. Extracellular superoxide was markedly diminished (>90%) by the mitochondrial inhibitor, rotenone, or the uncoupler, carbonylcyanide p-(trifluromethy) phenylhydrazone. Furthermore, cells with a deficient METC exhibited significant reduction (>90%) in extracellular superoxide, demonstrating that with intact cells METC-derived superoxide not only exits from mitochondria, but can be released extracellularly. Superoxide anion radical released from mitochondria could react with exogenous nitric oxide, forming peroxynitrite. Mitochondria-derived extracellular superoxide could also oxidize low-density lipoprotein (LDL). These results thus resolve any uncertainty on the ability of superoxide to exit from mitochondria. This study for the first time also identifies mitochondria as the major source of extracellular superoxide in unstimulated resting monocytes/macrophages, which has implications for the involvement of these mononuclear cells in various pathophysiological situations.
Collapse
Affiliation(s)
- Yunbo Li
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Hong Zhu
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Periannan Kuppusamy
- Molecular and Cellular Biophysics Laboratories, Department of Medicine, Division of Cardiology and the Electron Paramagnetic Resonance Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Jay L Zweier
- Molecular and Cellular Biophysics Laboratories, Department of Medicine, Division of Cardiology and the Electron Paramagnetic Resonance Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Michael A Trush
- Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Bilan DS, Lukyanov SA, Belousov VV. [Genetically Encoded Fluorescent Redox Sensors]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:259-74. [PMID: 26502603 DOI: 10.1134/s106816201502003x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Redox processes play a key role in cells of all.organisms. These processes imply directed flows of electrons via so-called redox pairs: substances that exist in both reduced and oxidized states simultaneously within the cell. Examples of redox pairs are NAD+/NADH, NADP+/NADPH, GSSG/2GSH. Until recently, studies of redox processes in the living cells were challenged by the lack of suitable methods. Genetically encoded fluorescent biosensors provide a new way to study biological processes including redox ones. Biosensors allow real-time detection of messengers, metabolites and enzymatic activities in living systems of different complexity from cultured cells to transgenic animals. In this review, we describe the main types of known redox biosensors with examples of their use.
Collapse
|
26
|
Imidazolium-based ionic liquid derivative/CuII complexes as efficient catalysts of the lucigenin chemiluminescence system and its application to H2O2 and glucose detection. Anal Bioanal Chem 2015; 407:6127-36. [DOI: 10.1007/s00216-015-8795-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 01/19/2023]
|
27
|
Bitu Pinto N, da Silva Alexandre B, Neves KRT, Silva AH, Leal LKAM, Viana GSB. Neuroprotective Properties of the Standardized Extract from Camellia sinensis (Green Tea) and Its Main Bioactive Components, Epicatechin and Epigallocatechin Gallate, in the 6-OHDA Model of Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:161092. [PMID: 26167188 PMCID: PMC4488543 DOI: 10.1155/2015/161092] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/25/2015] [Accepted: 05/25/2015] [Indexed: 11/17/2022]
Abstract
Camellia sinensis (green tea) is largely consumed, mainly in Asia. It possesses several biological effects such as antioxidant and anti-inflammatory properties. The objectives were to investigate the neuroprotective actions of the standardized extract (CS), epicatechin (EC) and epigallocatechin gallate (EGCG), on a model of Parkinson's disease. Male Wistar rats were divided into SO (sham-operated controls), untreated 6-OHDA-lesioned and 6-OHDA-lesioned treated for 2 weeks with CS (25, 50, or 100 mg/kg), EC (10 mg/kg), or EGCG (10 mg/kg) groups. One hour after the last administration, animals were submitted to behavioral tests and euthanized and their striata and hippocampi were dissected for neurochemical (DA, DOPAC, and HVA) and antioxidant activity determinations, as well as immunohistochemistry evaluations (TH, COX-2, and iNOS). The results showed that CS and catechins reverted behavioral changes, indicating neuroprotection manifested as decreased rotational behavior, increased locomotor activity, antidepressive effects, and improvement of cognitive dysfunction, as compared to the untreated 6-OHDA-lesioned group. Besides, CS, EP, and EGCG reversed the striatal oxidative stress and immunohistochemistry alterations. These results show that the neuroprotective effects of CS and its catechins are probably and in great part due to its powerful antioxidant and anti-inflammatory properties, pointing out their potential for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Natália Bitu Pinto
- Faculty of Medicine of the Federal University of Ceará, Rua Nunes de Melo 1127 (Rodolfo Teófilo), 60430-270 Fortaleza, CE, Brazil
- Faculty of Medicine Estácio of Juazeiro do Norte, Avenida Tenente Raimundo Rocha 515 (Cidade Universitária), 63048-080 Juazeiro do Norte, CE, Brazil
| | - Bruno da Silva Alexandre
- Faculty of Medicine Estácio of Juazeiro do Norte, Avenida Tenente Raimundo Rocha 515 (Cidade Universitária), 63048-080 Juazeiro do Norte, CE, Brazil
| | - Kelly Rose Tavares Neves
- Faculty of Medicine of the Federal University of Ceará, Rua Nunes de Melo 1127 (Rodolfo Teófilo), 60430-270 Fortaleza, CE, Brazil
| | - Aline Holanda Silva
- Faculty of Medicine of the Federal University of Ceará, Rua Nunes de Melo 1127 (Rodolfo Teófilo), 60430-270 Fortaleza, CE, Brazil
| | - Luzia Kalyne A. M. Leal
- Faculty of Medicine of the Federal University of Ceará, Rua Nunes de Melo 1127 (Rodolfo Teófilo), 60430-270 Fortaleza, CE, Brazil
| | - Glauce S. B. Viana
- Faculty of Medicine of the Federal University of Ceará, Rua Nunes de Melo 1127 (Rodolfo Teófilo), 60430-270 Fortaleza, CE, Brazil
- Faculty of Medicine Estácio of Juazeiro do Norte, Avenida Tenente Raimundo Rocha 515 (Cidade Universitária), 63048-080 Juazeiro do Norte, CE, Brazil
| |
Collapse
|
28
|
Li JZ, Ke Y, Misra HP, Trush MA, Li YR, Zhu H, Jia Z. Mechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent. Toxicol Appl Pharmacol 2014; 281:285-93. [PMID: 25448047 DOI: 10.1016/j.taap.2014.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/12/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022]
Abstract
UNLABELLED Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by NAD(P)H quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16-F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16-F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ~80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16-F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells.
Collapse
Affiliation(s)
| | - Yuebin Ke
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | | | - Michael A Trush
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Y Robert Li
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA; Virginia Tech-Wake Forest University SBES, Blacksburg, VA, USA; Department of Biology, University of North Carolina at Greensboro, NC, USA
| | - Hong Zhu
- Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA.
| | - Zhenquan Jia
- Department of Biology, University of North Carolina at Greensboro, NC, USA.
| |
Collapse
|
29
|
Periyasami G, Martelo L, Baleizão C, Berberan-Santos MN. Strong green chemiluminescence from naphthalene analogues of luminol. NEW J CHEM 2014. [DOI: 10.1039/c4nj00364k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
McGuire PJ, Tarasenko TN, Wang T, Levy E, Zerfas PM, Moran T, Lee HS, Bequette BJ, Diaz GA. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency. Dis Model Mech 2013; 7:205-13. [PMID: 24271778 PMCID: PMC3917241 DOI: 10.1242/dmm.013003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs) are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA). A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC) deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza) using spf-ash mice, a model of OTC deficiency. Both wild-type (WT) and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other types of inborn errors of metabolism.
Collapse
Affiliation(s)
- Peter J McGuire
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Traore K, Zirkin B, Thimmulappa RK, Biswal S, Trush MA. Upregulation of TLR1, TLR2, TLR4, and IRAK-2 Expression During ML-1 Cell Differentiation to Macrophages: Role in the Potentiation of Cellular Responses to LPS and LTA. ISRN ONCOLOGY 2012; 2012:641246. [PMID: 22685674 PMCID: PMC3364600 DOI: 10.5402/2012/641246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 03/06/2012] [Indexed: 12/27/2022]
Abstract
12-O-tetradecanoylphorbol 13-acetate (TPA) induces the differentiation of human myeloid ML-1 cells to macrophages. In the current study, the expression, responsiveness, and regulation of toll-like receptors (TLRs) in TPA-induced ML-1-derived macrophages were investigated. We have found that TPA-induced differentiation of ML-1 cells was accompanied by the upregulation of TLR1, TLR2, TLR4, and CD14 expression at both the mRNA and protein levels. Interestingly, TLR1 and TLR4 protein expression on ML-1 cells could be blocked by pretreatment with U0126, suggesting the role of an Erk1/2-induced differentiation signal in this process. In addition, the expression of IRAK-2, a key member of the TLR/IRAK-2/NF-κB-dependent signaling cascade was also induced in response to TPA. Accordingly, we demonstrated an increased cellular release of inflammatory cytokines (TNF-α and various interleukins) upon stimulation with LPS and LTA ligands for TLR4 and TLR2, respectively. Furthermore, using luminol-dependent chemiluminescence, addition of LPS and LTA induces a sustained DPI-inhibitable generation of reactive oxygen species (ROS) by the differentiated ML-1 cells. Together, these data suggest that the increase in the responsiveness of TPA-treated ML-1 cells to LPS and LTA occurs in response to the upregulation of their respective receptors as well as an induction of the IRAK-2 gene expression.
Collapse
Affiliation(s)
- Kassim Traore
- Department of Chemistry Geology & Physics, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | | | | | | | | |
Collapse
|
32
|
Inactivating alternative NADH dehydrogenases: enhancing fungal bioprocesses by improving growth and biomass yield? Sci Rep 2012; 2:322. [PMID: 22435085 PMCID: PMC3308132 DOI: 10.1038/srep00322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/06/2012] [Indexed: 12/28/2022] Open
Abstract
Debate still surrounds the physiological roles of the alternative respiratory enzymes found in many fungi and plants. It has been proposed that alternative NADH:ubiquinone oxidoreductases (NADH dehydrogenases) may protect against oxidative stress, conversely, elevated activity of these enzymes has been linked to senescence. Here we show that inhibition of these enzymes in a fungal protein expression system (Aspergillus niger) leads to significantly enhanced specific growth rate, substrate uptake, carbon dioxide evolution, higher protein content, and more efficient use of substrates. These findings are consistent with a protective role of the NADH dehydrogenases against oxidative stress, thus, when electron flow via these enzymes is blocked, flux through the main respiratory pathway rises, leading to enhanced ATP generation. We anticipate that our findings will stimulate further studies in fungal and plant cultures leading to significant improvements in these expression systems, and to deeper insights into the cellular roles of alternative respiration.
Collapse
|
33
|
Back P, Matthijssens F, Vanfleteren JR, Braeckman BP. A simplified hydroethidine method for fast and accurate detection of superoxide production in isolated mitochondria. Anal Biochem 2012; 423:147-51. [PMID: 22310498 DOI: 10.1016/j.ab.2012.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/10/2023]
Abstract
Because superoxide is involved in various physiological processes, many efforts have been made to improve its accurate quantification. We optimized and validated a superoxide-specific and -sensitive detection method. The protocol is based on fluorescence detection of the superoxide-specific hydroethidine (HE) oxidation product, 2-hydroxyethidium. We established a method for the quantification of superoxide production in isolated mitochondria without the need for acetone extraction and purification chromatography as described in previous studies.
Collapse
Affiliation(s)
- Patricia Back
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | | | | | | |
Collapse
|
34
|
Tang X, Wu Q, Le G, Wang J, Yin K, Shi Y. Structural and Antioxidant Modification of Wheat Peptides Modified by the Heat and Lipid Peroxidation Product Malondialdehyde. J Food Sci 2011; 77:H16-22. [DOI: 10.1111/j.1750-3841.2011.02500.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Buko VU, Kuzmitskaya-Nikolaeva IA, Naruta EE, Lukivskaya OY, Kirko SN, Tauschel HD. Ursodeoxycholic acid dose-dependently improves liver injury in rats fed a methionine- and choline-deficient diet. Hepatol Res 2011; 41:647-59. [PMID: 21711424 DOI: 10.1111/j.1872-034x.2011.00820.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AIM The data on the beneficial effect of ursodeoxycholic acid (UDCA) in non-alcoholic steatohepatitis (NASH) are controversial. The difference of opinion is connected with UDCA dosage to be used. Therefore, we evaluated the dose-dependent efficacy of UDCA in experimental NASH. METHODS Male Wistar rats were fed the methionine- and choline-deficient (MCD) diet for 10 weeks. Rats were administrated UDCA (10, 20, 40 and 80 mg/kg bodyweight intragastrically) after 6 weeks of the MCD diet. RESULTS Animals fed the MCD diet developed severe steatohepatitis. Treatment with UDCA dose-dependently decreased liver damage, but only high-dose UDCA (80 mg/kg) significantly diminished ultrastructural changes in addition to preventing steatosis, ballooning and inflammatory changes in the liver. The activities of serum marker enzymes and the content of liver triglyceride and blood glucose were increased in MCD diet-fed rats, but decreased in all the UDCA-treated groups. Serum insulin concentration was decreased whereas the quantitative insulin sensitivity check index did not changed in MCD diet-fed groups. Serum tumor necrosis factor-α content was strongly increased after MCD diet and normalized in the UDCA-treated rats, with the most pronounced effect in the highest dose groups, 40 and 80 mg/kg. The contents of endogenous ethanol in blood and intestinal mucus were increased in MCD diet-fed rats which were significantly lowered by UDCA (40 and 80 mg/kg per day). CONCLUSION The present data demonstrate a beneficial effect of UDCA that manifested by the decrease of liver steatosis, inflammatory signs and serum tumor necrosis factor-α content especially of the highest 40 and 80 mg/kg day doses.
Collapse
Affiliation(s)
- Vyacheslav U Buko
- Division of Biochemical Pharmacology, Institute of Pharmacology and Biochemistry, National Academy of Sciences, Grodno, Belarus Dr Falk Pharma, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Zhang A, Jia Z, Wang N, Tidwell TJ, Yang T. Relative contributions of mitochondria and NADPH oxidase to deoxycorticosterone acetate-salt hypertension in mice. Kidney Int 2011; 80:51-60. [PMID: 21368743 PMCID: PMC11164293 DOI: 10.1038/ki.2011.29] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We assessed the relative contribution of the mitochondrial respiratory chain and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase to deoxycorticosterone acetate (DOCA)-salt hypertension in mice. The daily mean arterial pressure was monitored by radiotelemetry in DOCA-salt-treated mice given vehicle or the mitochondrial respiratory chain complex I inhibitor rotenone. This treatment produced remarkable attenuation of DOCA-salt hypertension. Similar results were obtained with other inhibitors of mitochondrial function, including 5-hydroxydecanoate (specific for mitochondrial potassium-ATP channels), benzylguanidine (complexes I and III), and the cell-permeable manganese tetrakis (4-benzoic acid) porphyrin (a mimic of mitochondrial superoxide dismutase). In parallel with the blood pressure-lowering effect of rotenone, the DOCA-salt-induced increases in urinary 8-isoprostane excretion and in reactive oxygen species production of isolated kidney mitochondria were both significantly attenuated. Conversely, the DOCA-salt-induced reduction of urinary nitrate/nitrite excretion was significantly elevated. Following DOCA-salt treatment, mice deficient in NADPH oxidase subunits gp91(phox) or p47(phox) exhibited a partial attenuation of the hypertensive response at early but not later time points. Thus, the mitochondrial respiratory chain is a major source of oxidative stress in DOCA-salt hypertension, whereas NADPH oxidase may have a relatively minor role during the early stage of hypertension.
Collapse
Affiliation(s)
- Aihua Zhang
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
- Department of Nephrology, Nanjing Children’s Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Ningning Wang
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tyson J. Tidwell
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tianxin Yang
- Division of Nephrology, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
37
|
Valdecantos MP, Pérez-Matute P, Quintero P, Martínez JA. Vitamin C, resveratrol and lipoic acid actions on isolated rat liver mitochondria: all antioxidants but different. Redox Rep 2011; 15:207-16. [PMID: 21062536 DOI: 10.1179/135100010x12826446921464] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Modulating mitochondrial antioxidant status is a nutritional issue of great interest in the treatment or prevention of several oxidative stress related diseases such as obesity. Thus, the aim of the present study was to analyze the effects of three antioxidants on hepatic mitochondrial function and antioxidant status. Isolated rat liver mitochondria were incubated with vitamin C, resveratrol and lipoic acid. The activity of antioxidant enzymes (manganese superoxide dismutase and glutathione peroxidase), ROS generation and respiratory parameters (RCR, P/O ratio and respiratory states) were measured. Vitamin C influenced mitochondrial function by decreasing of ROS generation (P < 0.0001), by stimulating the activity of manganese superoxide dismutase (197.60 ± 35.99%; P < 0.001) as well as glutathione peroxidase (15.70 ± 5.76%; P < 0.05) and by altering the activity of the electron transport chain, mainly by decreasing the P/O ratio (P < 0.05). Resveratrol induced a significant increase in manganese superoxide dismutase activity (160 ± 11.78%; P < 0.0001) and a decrease in ROS generation (P < 0.05 to P < 0.0001). By contrast, lipoic acid inhibited glutathione peroxidase activity (16.48 ± 3.27%; P < 0.05) and induced the uncoupling of the electron transport chain (P < 0.01). Moreover, this antioxidant induced a strong decrease in the P/O ratio (P < 0.05 to P < 0.0001). In conclusion, our results suggest that the three tested antioxidants produced direct effects on mitochondrial function, although the magnitude and intensity of these actions were significantly different, which may have implications when administrated as antioxidants.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Department of Nutrition, Food Sciences, Physiology and Toxicology, University of Navarra, Pamplona, Navarra, Spain
| | | | | | | |
Collapse
|
38
|
El-Orabi NF, Rogers CB, Gray Edwards H, Schwartz DD. Heat-induced inhibition of superoxide dismutase and accumulation of reactive oxygen species leads to HT-22 neuronal cell death. J Therm Biol 2011. [DOI: 10.1016/j.jtherbio.2010.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Boess F, Boelsterli UA. Luminol as a Probe to Assess Reactive Oxygen Species Production from Redox-Cycling Drugs in Cultured Hepatocytes. Toxicol Mech Methods 2010; 12:79-94. [DOI: 10.1080/15376510209167938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Inoue KY, Ino K, Shiku H, Kasai S, Yasukawa T, Mizutani F, Matsue T. Electrochemical monitoring of hydrogen peroxide released from leucocytes on horseradish peroxidase redox polymer coated electrode chip. Biosens Bioelectron 2009; 25:1723-8. [PMID: 20060284 DOI: 10.1016/j.bios.2009.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 11/27/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
We developed an electrochemical-sensing device for continuous monitoring extracellular hydrogen peroxide (H(2)O(2)). The device consists of an indium-tin-oxide electrode coated with osmium-polyvinylpyridine gel polymer containing horseradish peroxidase (Os-HRP) and a poly-dimethyl siloxane well to house the cells on the chip. Granulocyte-like differentiated HL-60 cells were accommodated in the well and stimulated with phorbol 12-myristate 13-acetate (PMA), which triggered the generation of H(2)O(2). The extracellular H(2)O(2) released from the cells was enzymatically reduced at the Os-HRP-modified electrode chip using Os(II) as an electron donor, resulting in reduction current responses by the device. The reduction current increased immediately upon PMA stimulation and this current transient was similar to that obtained by conventional chemiluminescence assays using sodium luminol. Apocynin, an inhibitor of NADPH oxidase activation, eliminated both the electrochemical and chemiluminescence signals. On the other hand, superoxide dismutase (SOD) increased the amperometric signals and catalase (CAT) decreased, whereas SOD decreased luminescence emission and CAT did not. These results were in accordance with the expected reaction mechanism, and strongly indicate that this new electrochemical-sensing device successfully detects extracellular H(2)O(2) production.
Collapse
Affiliation(s)
- Kumi Y Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba, Sendai 980-8579, Japan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Cholestane-3β,5α,6β-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria. Chem Biol Interact 2009; 179:81-7. [DOI: 10.1016/j.cbi.2008.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 12/02/2008] [Accepted: 12/04/2008] [Indexed: 01/05/2023]
|
42
|
In situ real-time chemiluminescence imaging of reactive oxygen species formation from cardiomyocytes. Int J Biomed Imaging 2009; 2008:941729. [PMID: 19266051 PMCID: PMC2650262 DOI: 10.1155/2008/941729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/19/2008] [Indexed: 01/24/2023] Open
Abstract
We have applied the highly sensitive chemiluminescence (CL) imaging
technique to investigate the in situ ROS formation in cultured monolayers of rat H9c2 cardiomyocytes. Photon emission was detected via an innovative imaging system after incubation of H9c2 cells in culture with luminol and horseradish peroxidase (HRP), suggesting constitutive formation of ROS by the cardiomyocytes. Addition of benzo(a)pyrene-1,6-quinone
(BPQ) to cultured H9c2 cells resulted in a 4-5-fold increase in the formation of ROS, as detected by the CL imaging. Both constitutive and BPQ-stimulated CL responses in cultured H9c2 cells were sustained for up to 1 hour. The CL responses were completely abolished in the presence of superoxide dismutase and catalase, suggesting the primary involvement of superoxide and hydrogen peroxide (H2O2). In contrast to BPQ-mediated redox cycling, blockage of mitochondrial electron transport chain by either antimycin A or rotenone exerted marginal effects on the ROS formation by cultured H9c2 cells. Upregulation of cellular antioxidants for
detoxifying both superoxide and H2O2 by 3H-1,2-dithiole-3-thione resulted in marked inhibition of both constitutive and BPQ-augmented ROS formation in cultured H9c2 cells. Taken together, we demonstrate the sensitive detection of ROS by CL imaging in cultured cardiomyocytes.
Collapse
|
43
|
Oter O, Ribou AC. Quenching of Long Lifetime Emitting Fluorophores with Paramagnetic Molecules. J Fluoresc 2008; 19:389-97. [DOI: 10.1007/s10895-008-0425-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 10/07/2008] [Indexed: 11/29/2022]
|
44
|
Abstract
It has been known for many years that oxygen (O2) may have toxic effects on aerobically growing microorganisms, mainly due to the threat arising from reactive oxygen species (ROS). In submerged culture industrial fermentation processes, maintenance of adequate levels of O2 (usually measured as dissolved oxygen tension (DOT)) can often be critical to the success of the manufacturing process. In viscous cultures of filamentous cultures, actively respiring, supplying adequate levels of O2 to the cultures by conventional air sparging is difficult and various strategies have been adopted to improve or enhance O2 transfer. However, adoption of those strategies to maintain adequate levels of DOT, that is, to avoid O2 limitation, may expose the fungi to potential oxidative damage caused by enhanced flux through the respiratory system. In the past, there have been numerous studies investigating the effects of DOT on fungal bioprocesses. Generally, in these studies moderately enhanced levels of O2 supply resulted in improvement in growth, product formation and acceptable morphological changes, while the negative impact of higher levels of DOT on morphology and product synthesis were generally assumed to be a consequence of "oxidative stress." However, very little research has actually been focused on investigation of this implicit link, and the mechanisms by which such effects might be mediated within industrial fungal processes. To elucidate this neglected topic, this review first surveys the basic knowledge of the chemistry of ROS, defensive systems in fungi and the effects of DOT on fungal growth, metabolism and morphology. The physiological responses of fungal cells to oxidative stress imposed by artificial and endogenous stressors are then critically reviewed. It is clear that fungi have a range of methods available to minimize the negative impacts of elevated ROS, but also that development of the various defensive systems or responses, can itself have profound consequences upon many process-related parameters. It is also clear that many of the practically convenient and widely used experimental methods of simulating oxidative stress, for example, addition of exogenous menadione or hydrogen peroxide, have effects on fungal cultures quite distinct from the effects of elevated levels of O2, and care must thus be exercised in the interpretation of results from such studies. The review critically evaluates our current understanding of the responses of fungal cultures to elevated O2 levels, and highlights key areas requiring further research to remedy gaps in knowledge.
Collapse
Affiliation(s)
- Zhonghu Bai
- Strathclyde Fermentation Center, Department of Bioscience, Strathclyde University, Glasgow, UK
| | | | | |
Collapse
|
45
|
Puddu P, Puddu GM, Cravero E, Rosati M, Muscari A. The molecular sources of reactive oxygen species in hypertension. Blood Press 2008; 17:70-7. [PMID: 18568695 DOI: 10.1080/08037050802029954] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In both animal models and humans, increased blood pressure has been associated with oxidative stress in the vasculature, i.e. an excessive endothelial production of reactive oxygen species (ROS), which may be both a cause and an effect of hypertension. In addition to NADPH oxidase, the best characterized source of ROS, several other enzymes may contribute to ROS generation, including nitric oxide synthase, lipoxygenases, cyclo-oxygenases, xanthine oxidase and cytochrome P450 enzymes. It has been suggested that also mitochondria could be considered a major source of ROS: in situations of metabolic perturbation, increased mitochondrial ROS generation might trigger endothelial dysfunction, possibly contributing to the development of hypertension. However, the use of antioxidants in the clinical setting induced only limited effects on human hypertension or cardiovascular endpoints. More clinical studies are needed to fully elucidate this so called "oxidative paradox" of hypertension.
Collapse
Affiliation(s)
- Paolo Puddu
- Department of Internal Medicine, Aging and Nephrological Diseases, University of Bologna and S Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | | | | |
Collapse
|
46
|
Traore K, Sharma R, Thimmulappa RK, Watson WH, Biswal S, Trush MA. Redox-regulation of Erk1/2-directed phosphatase by reactive oxygen species: role in signaling TPA-induced growth arrest in ML-1 cells. J Cell Physiol 2008; 216:276-85. [PMID: 18270969 DOI: 10.1002/jcp.21403] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Extracellular signal-regulated kinase (Erk)1/2 activity signals myeloid cell differentiation induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Previously, we reported that Erk1/2 activation (phosphorylation) induced by TPA required reactive oxygen species (ROS) as a second messenger. Here, we hypothesized that ROS generated in response to TPA inhibit Erk1/2-directed phosphatase activity, which leads to an increase phosphorylation of Erk1/2 to signal p21(WAF1/Cip1)-mediated growth arrest in ML-1 cells. Incubation of ML-1 cells with TPA resulted in a marked accumulation of phosphorylated Erk1/2, and is subsequent to H2O2 generation. Interestingly, post-TPA-treatment with N-acetylcysteine (NAC) stimulated a marked and a rapid dephosphorylation of Erk1/2, suggesting a regeneration of Erk1/2-directed phospahatase activity by NAC. ROS generation in ML-1 cells induced by TPA was suggested to occur in the mitochondrial electron transport chain (METC) based on the following observations: (i) undifferentiated ML-1 cells not only lack p67-phox and but also express a low level of p47-phox key components required for NADPH oxidase enzymatic activity, (ii) pretreatment with DPI, an inhibitor of NADH- and NADPH-dependent enzymes, or rhein, an inhibitor of complex I, blocked the ROS generation, and (iii) examination of the microarray analysis data and Western blot analysis data revealed an induction of MnSOD expression at both mRNA and protein levels in response to TPA. MnSOD is a key member of the mitochondrial defense system against mitochondrial-derived superoxide. Together, this study suggested that TPA stimulated ROS generation as a second messenger to activate Erk1/2 via a redox-mediated inhibition of Erk1/2-directed phosphatase in ML-1 cells.
Collapse
Affiliation(s)
- Kassim Traore
- Department of Environmental Health Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Matveeva NS, Lyubitsky OB, Osipov AN, Vladimirov YA. Lucigenin-enhanced chemiluminescence of animal tissues. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350907060164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Tardy AL, Giraudet C, Rousset P, Rigaudière JP, Laillet B, Chalancon S, Salles J, Loreau O, Chardigny JM, Morio B. Effects of trans MUFA from dairy and industrial sources on muscle mitochondrial function and insulin sensitivity. J Lipid Res 2008; 49:1445-55. [PMID: 18375997 DOI: 10.1194/jlr.m700561-jlr200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies suggest that chronic consumption of trans MUFA may alter muscle insulin sensitivity. The major sources of dietary trans MUFA (dairy fat vs. industrially hydrogenated oils) have different isomeric profiles and thus probably different metabolic consequences. These effects may involve alterations in muscle mitochondrial oxidative capacity, which may in turn promote insulin resistance if fatty acid oxidation is reduced. We report that in Wistar rats, an 8 week diet enriched (4% of energy intake) in either dairy, industrial, or control MUFA did not alter insulin and glucose responses to an intraperitoneal glucose tolerance test (1g/kg). In C2C12 myotubes, vaccenic and elaidic acids did not modify insulin sensitivity compared with oleic acid. Furthermore, the ex vivo total, mitochondrial and peroxisomal oxidation rates of [1-(14)C]oleic, vaccenic, and elaidic acids were similar in soleus and tibialis anterior rat muscle. Finally, an 8 week diet enriched in either dairy or industrial trans MUFA did not alter mitochondrial oxidative capacity in these two muscles compared with control MUFA but did induce a specific reduction in soleus mitochondrial ATP and superoxide anion production (P<0.01 vs. control). In conclusion, dietary trans MUFA of dairy or industrial origin have similar effects and do not impair muscle mitochondrial capacity and insulin sensitivity.
Collapse
Affiliation(s)
- Anne-Laure Tardy
- INRA, UMR 1019 Nutrition Humaine, F-63122 Saint Genès Champanelle, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jia Z, Zhu H, Misra BR, Li Y, Misra HP. Dopamine as a potent inducer of cellular glutathione and NAD(P)H:quinone oxidoreductase 1 in PC12 neuronal cells: a potential adaptive mechanism for dopaminergic neuroprotection. Neurochem Res 2008; 33:2197-205. [PMID: 18368484 DOI: 10.1007/s11064-008-9670-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 03/13/2008] [Indexed: 12/31/2022]
Abstract
Dopamine auto-oxidation and the consequent formation of reactive oxygen species and electrophilic quinone molecules have been implicated in dopaminergic neuronal cell death in Parkinson's disease. We reported here that in PC12 dopaminergic neuronal cells dopamine at noncytotoxic concentrations (50-150 muM) potently induced cellular glutathione (GSH) and the phase 2 enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), two critical cellular defenses in detoxification of ROS and electrophilic quinone molecules. Incubation of PC12 cells with dopamine also led to a marked increase in the mRNA levels for gamma-glutamylcysteine ligase catalytic subunit (GCLC) and NQO1. In addition, treatment of PC12 cells with dopamine resulted in a significant elevation of GSH content in the mitochondrial compartment. To determine whether treatment with dopamine at noncytotoxic concentrations, which upregulated the cellular defenses could protect the neuronal cells against subsequent lethal oxidative and electrophilic injury, PC12 cells were pretreated with dopamine (150 muM) for 24 h and then exposed to various cytotoxic concentrations of dopamine or 6-hydroxydopamine (6-OHDA). We found that pretreatment of PC12 cells with dopamine at a noncytotoxic concentration led to a remarkable protection against cytotoxicity caused by dopamine or 6-OHDA at lethal concentrations, as detected by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium reduction assay. In view of the critical roles of GSH and NQO1 in protecting against dopaminergic neuron degeneration, the above findings implicate that upregulation of both GSH and NQO1 by dopamine at noncytotoxic concentrations may serve as an important adaptive mechanism for dopaminergic neuroprotection.
Collapse
Affiliation(s)
- Zhenquan Jia
- Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, 2265 Kraft Drive, Blacksburg, VA, 24060, USA
| | | | | | | | | |
Collapse
|
50
|
Jia Z, Zhu H, Misra HP, Li Y. Potent induction of total cellular GSH and NQO1 as well as mitochondrial GSH by 3H-1,2-dithiole-3-thione in SH-SY5Y neuroblastoma cells and primary human neurons: protection against neurocytotoxicity elicited by dopamine, 6-hydroxydopamine, 4-hydroxy-2-nonenal, or hydrogen peroxide. Brain Res 2008; 1197:159-69. [PMID: 18234165 DOI: 10.1016/j.brainres.2007.12.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 12/31/2022]
Abstract
Evidence suggests oxidative and electrophilic stress as a major factor contributing to the neuronal cell death in neurodegenerative disorders, especially Parkinson's disease. Consistent with this concept, administration of exogenous antioxidants has been shown to be protective against oxidative/electrophilic neurodegeneration. However, whether induction of endogenous antioxidants and phase 2 enzymes by the unique chemoprotectant, 3H-1,2-dithiole-3-thione (D3T) in neuronal cells also affords protection against oxidative and electrophilic neurocytotoxicity has not been carefully investigated. In this study, we showed that incubation of SH-SY5Y neuroblastoma cells or primary human neurons with micromolar concentrations (10-100 microM) of D3T for 24 h resulted in significant increases in the levels of reduced glutathione (GSH) and NAD(P)H:quinone oxidoreductase 1 (NQO1), two crucial cellular defenses against oxidative and electrophilic stress. D3T treatment also caused increases in mRNA expression of gamma-glutamylcysteine ligase catalytic subunit and NQO1 in SH-SY5Y cells. In addition, D3T treatment of the neuronal cells also resulted in a marked elevation of GSH content in the mitochondrial compartment. To determine the protective effects of the D3T-induced cellular defenses on neurotoxicant-elicited cell injury, SH-SY5Y cells were pretreated with D3T for 24 h and then exposed to dopamine, 6-hydroxydopamine (6-OHDA), 4-hydroxy-2-nonenal (HNE), or H2O2, agents that are known to be involved in neuron degeneration. We observed that D3T-pretreatment of SH-SY5Y cells led to significant protection against the cytotoxicity elicited by the above neurotoxicants. Similar neurocytoprotective effects of D3T-pretreatment were also observed in primary human neurons exposed to 6-OHDA or HNE. Taken together, this study demonstrates that D3T potently induces neuronal cellular GSH and NQO1 as well as mitochondrial GSH, and that such upregulated endogenous defenses are accompanied by increased resistance to oxidative and electrophilic neurocytotoxicity.
Collapse
Affiliation(s)
- Zhenquan Jia
- Division of Biomedical Sciences, Edward Via Virginia College of Osteopathic Medicine, Virginia Tech Corporate Research Center, 2265 Kraft Drive, Blacksburg, VA 24060, USA
| | | | | | | |
Collapse
|