1
|
Koyama Y, Ogawa C, Kurihara C, Hashimoto N, Shinagawa S, Okazaki H, Koyama T, Sugahara K, Katakura A. Pathological examination of factors involved in PD-L1 expression in patients with oral tongue squamous cell carcinoma. Maxillofac Plast Reconstr Surg 2024; 46:31. [PMID: 39115623 PMCID: PMC11310371 DOI: 10.1186/s40902-024-00441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Tumor tissues comprise cancer cells and stromal cells, and their interactions form the cancer microenvironment. Therefore, treatments targeting cells other than cancer cells are also actively being developed, and among them, treatment targeting PD-1, an immune checkpoint molecule that is important in tumor immune evasion, has also been indicated for head and neck cancer. PD-L1, a ligand of PD-1, is expressed in both tumor cells and stromal cells, and the scoring system based on the combined positivity rates of both types of cells, the combined positive score (CPS), is used for predicting treatment effect. However, much is unknown regarding the expression of PD-L1. In this study, we histopathologically examined factors controlling the expression of PD-1/PD-L1. This study included 37 patients who underwent resection surgery for tongue squamous cell carcinoma in the Department of Oral and Maxillofacial Surgery at Tokyo Dental College Suidobashi Hospital. The expression levels of PD-L1, α-SMA, and p53 were assessed by immunohistochemical staining. RESULTS Seven participants had CPS ≥ 20, twenty-four participants had 1 ≤ CPS < 20, and six participants had CPS < 1. The overall positivity rate of α-SMA, a marker for cancer-associated fibroblasts (CAFs), was 27% (10/37 participants), and the positivity rates of α-SMA for the three CPS groups were 85.7% (6/7 participants), 16.7% (4/24 participants), and 0% (0/6 participants), respectively. In addition, the overall positivity rate of p53 was 37.8% (14/37 participants), and the positivity rates of p53 for the three CPS groups were 71.4% (5/7 participants), 37.5% (9/24 participants), and 0% (0/6 participants), respectively. CONCLUSIONS The expression of PD-L1 demonstrated an association with α-SMA and p53 positivity. In addition, compared with the expression of p53, the expression of α-SMA demonstrated a higher association with PD-L1 expression in patients with a high CPS. The abovementioned findings suggest that the interactions between CAFs, cancer cells, and immunocompetent cells may regulate the expression of PD-L1.
Collapse
Affiliation(s)
- Yu Koyama
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
| | - Chiharu Ogawa
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Okinawa Prefectural Chubu Hospital, Okinawa, Japan, 281 Miyazato, Uruma-Shi, Okinawa, Japan
| | - Chihiro Kurihara
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
| | - Nao Hashimoto
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
| | - Shota Shinagawa
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
| | - Hiroya Okazaki
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
| | - Takumi Koyama
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
| | - Keisuke Sugahara
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan.
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, Japan, 2-9-18 Kanda Misaki-Cho, Chiyoda-Ku, Tokyo, Japan
| |
Collapse
|
6
|
Cortez MA, Ivan C, Valdecanas D, Wang X, Peltier HJ, Ye Y, Araujo L, Carbone DP, Shilo K, Giri DK, Kelnar K, Martin D, Komaki R, Gomez DR, Krishnan S, Calin GA, Bader AG, Welsh JW. PDL1 Regulation by p53 via miR-34. J Natl Cancer Inst 2015; 108:djv303. [PMID: 26577528 PMCID: PMC4862407 DOI: 10.1093/jnci/djv303] [Citation(s) in RCA: 491] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 09/25/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although clinical studies have shown promise for targeting PD1/PDL1 signaling in non-small cell lung cancer (NSCLC), the regulation of PDL1 expression is poorly understood. Here, we show that PDL1 is regulated by p53 via miR-34. METHODS p53 wild-type and p53-deficient cell lines (p53(-/-) and p53(+/+) HCT116, p53-inducible H1299, and p53-knockdown H460) were used to determine if p53 regulates PDL1 via miR-34. PDL1 and miR-34a expression were analyzed in samples from patients with NSCLC and mutated p53 vs wild-type p53 tumors from The Cancer Genome Atlas for Lung Adenocarcinoma (TCGA LUAD). We confirmed that PDL1 is a direct target of miR-34 with western blotting and luciferase assays and used a p53(R172HΔ)g/+K-ras(LA1/+) syngeneic mouse model (n = 12) to deliver miR-34a-loaded liposomes (MRX34) plus radiotherapy (XRT) and assessed PDL1 expression and tumor-infiltrating lymphocytes (TILs). A two-sided t test was applied to compare the mean between different treatments. RESULTS We found that p53 regulates PDL1 via miR-34, which directly binds to the PDL1 3' untranslated region in models of NSCLC (fold-change luciferase activity to control group, mean for miR-34a = 0.50, SD = 0.2, P < .001; mean for miR-34b = 0.52, SD = 0.2, P = .006; and mean for miR-34c = 0.59, SD = 0.14, and P = .006). Therapeutic delivery of MRX34, currently the subject of a phase I clinical trial, promoted TILs (mean of CD8 expression percentage of control group = 22.5%, SD = 1.9%; mean of CD8 expression percentage of MRX34 = 30.1%, SD = 3.7%, P = .016, n = 4) and reduced CD8(+)PD1(+) cells in vivo (mean of CD8/PD1 expression percentage of control group = 40.2%, SD = 6.2%; mean of CD8/PD1 expression percentage of MRX34 = 20.3%, SD = 5.1%, P = .001, n = 4). Further, MRX34 plus XRT increased CD8(+) cell numbers more than either therapy alone (mean of CD8 expression percentage of MRX34 plus XRT to control group = 44.2%, SD = 8.7%, P = .004, n = 4). Finally, miR-34a delivery reduced the numbers of radiation-induced macrophages (mean of F4-80 expression percentage of control group = 52.4%, SD = 1.7%; mean of F4-80 expression percentage of MRX34 = 40.1%, SD = 3.5%, P = .008, n = 4) and T-regulatory cells. CONCLUSIONS We identified a novel mechanism by which tumor immune evasion is regulated by p53/miR-34/PDL1 axis. Our results suggest that delivery of miRNAs with standard therapies, such as XRT, may represent a novel therapeutic approach for lung cancer.
Collapse
Affiliation(s)
- Maria Angelica Cortez
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Cristina Ivan
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - David Valdecanas
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Xiaohong Wang
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Heidi J Peltier
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Yuping Ye
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Luiz Araujo
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - David P Carbone
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Konstantin Shilo
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Dipak K Giri
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Kevin Kelnar
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Desiree Martin
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Ritsuko Komaki
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Daniel R Gomez
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Sunil Krishnan
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - George A Calin
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - Andreas G Bader
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG)
| | - James W Welsh
- Departments of Experimental Radiation Oncology (MAC, DV, XW, YY), Experimental Therapeutics (CI, GAC), and Radiation Oncology (RK, DRG, SK, JWW), The University of Texas MD Anderson Cancer Center, Houston, TX; Mirna Therapeutics, Inc., Austin, TX (HJP, KK, DM, AGB); Ohio State University, Columbus, OH (LA, DPC, KS); Texas Veterinary Pathology Associates (Houston), Houston, TX (DKG).
| |
Collapse
|