1
|
Kingren MS, Hall JS, Ross TJ, Barre MC, Barlow A, Morales M, Treas LD, Maxson RT, Teo E, Porter C. HOUSING TEMPERATURE ALTERS BURN-INDUCED HYPERMETABOLISM IN MICE. Shock 2025; 63:118-131. [PMID: 39450911 DOI: 10.1097/shk.0000000000002476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
ABSTRACT Mice used in biomedical research are typically housed at ambient temperatures (22°C-24°C) below thermoneutrality (26°C-31°C). This chronic cold stress triggers a hypermetabolic response that may limit the utility of mice in modeling hypermetabolism in response to burns. To evaluate the effect of housing temperature on burn-induced hypermetabolism, mice were randomly assigned to receive sham, small, or large scald burns. Mice recovered for 21 days in metabolic phenotyping cages at 24°C or 30°C. Regardless of sex or sham/burn treatment, mice housed at 24°C had greater total energy expenditure ( P < 0.001), which was largely attributable to greater basal energy expenditure when compared to mice housed at 30°C ( P < 0.001). Thermoneutral housing (30°C) altered adipose tissue mass in a sex-dependent manner. Compared to sham and small burn groups, large burns resulted in greater water vapor loss, regardless of housing temperature ( P < 0.01). Compared to sham, large burns resulted in greater basal energy expenditure and total energy expenditure in mice housed at 24°C; however, this hypermetabolic response to large burns was blunted in female mice housed at 30°C, and absent in male mice housed at 30°C. Locomotion was significantly reduced in mice with large burns compared to sham and small burn groups, irrespective of sex or housing temperature ( P < 0.05). Housing at 30°C revealed sexual dimorphism in terms of the impact of burns on body mass and composition, where males with large burns displayed marked cachexia, whereas females did not. Collectively, this study demonstrates a sex-dependent role for housing temperature in influencing energetics and body composition in a rodent model of burn trauma.
Collapse
Affiliation(s)
| | | | | | | | - Abigail Barlow
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Martin Morales
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | | | | | | | | |
Collapse
|
2
|
Abstract
Burns are a severe form of trauma that account for 1.1 million cases necessitating medical attention and 4500 mortalities annually in the United States alone. Importantly, the initial trauma is succeeded by extensive, prolonged physiological alterations that detrimentally impact multiple organ systems. Given the complexity of post-burn pathophysiology, in vitro experiments are insufficient to model thermal injuries. Therefore, compatible animal burn models are essential for studying burn-related phenomena. In this chapter, we discuss commonly employed small animal burn models and their comparability and applicability to human studies. In particular, we compare post-burn wound healing between the species as well as relevant hypermetabolic and inflammatory characteristics, providing a better understanding of the pros and cons of utilizing a small animal surrogate for human burns. We further provide an overview of the rodent scald burn model methodology as well as a comparison between elderly, aged and young animals, providing a guide for tailoring animal model choice based on the relevant research question.
Collapse
|
3
|
Immunotherapy with IgY Antibodies toward Outer Membrane Protein F Protects Burned Mice against Pseudomonas aeruginosa Infection. J Immunol Res 2020; 2020:7840631. [PMID: 32566689 PMCID: PMC7275967 DOI: 10.1155/2020/7840631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/09/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022] Open
Abstract
Burn patients with multidrug-resistant Pseudomonas aeruginosa infections commonly suffer from high morbidity and mortality, which present a major challenge to healthcare systems throughout the world. Outer membrane protein F (OprF), as a main outer membrane porin, is required for full virulence expression of P. aeruginosa. The aim of this study was to evaluate the protective efficacy of egg yolk-specific antibody (IgY) raised against recombinant OprF (r-OprF) protein in a murine burn model of infection. The hens were immunized with r-OprF, and anti-r-OprF IgY was purified using salt precipitation. Groups of mice were injected with different regimens of anti-OprF IgY or control IgY (C-IgY). Infections were caused by subcutaneous injection of P. aeruginosa strain PAO1 at the burn site. Mice were monitored for mortality for 5 days. The functional activity of anti-OprF IgY was determined by in vitro invasion assays. Immunotherapy with anti-OprF IgY resulted in a significant improvement in the survival of mice infected by P. aeruginosa from 25% to 87.5% compared with the C-IgY and PBS. The anti-OprF IgY decreased the invasion of P. aeruginosa PAO1 into the A549. Passive immunization with anti-OprF IgY led to an efficacious protection against P. aeruginosa burn infection in the burn model.
Collapse
|
4
|
Mouse models in burns research: Characterisation of the hypermetabolic response to burn injury. Burns 2020; 46:663-674. [DOI: 10.1016/j.burns.2019.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 01/09/2023]
|
5
|
Ranjbar M, Behrouz B, Norouzi F, Mousavi Gargari SL. Anti-PcrV IgY antibodies protect against Pseudomonas aeruginosa infection in both acute pneumonia and burn wound models. Mol Immunol 2019; 116:98-105. [PMID: 31634816 DOI: 10.1016/j.molimm.2019.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly acquires antibiotic resistance; thus, developing an effective therapeutic approach is the most promising strategy for combating infection. Type III secretion system (T3SS) translocates bacterial toxins into the cytosol of the targeted eukaryotic cells, which plays important roles in the virulence of P. aeruginosa infections in both acute pneumonia and burn wound models. The PcrV protein, a T3SS translocating protein, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa. In the present study, we evaluated the protective efficacy of chicken egg yolk antibodies (IgY) raised against recombinant PcrV (r-PcrV) in both acute pneumonia and burn wound models. R-PcrV protein was generated by expressing the pcrV gene (cloned in pET-28a vector) in E. coli BL-21. Anti-PcrV IgY was obtained by immunization of hen. Anti-PcrV IgY induced greater protection in P. aeruginosamurine acute pneumonia and burn wound models than control IgY (C-IgY) and PBS groups. Anti-PcrV IgY improved opsonophagocytic killing and inhibition of bacterial invasion of host cells. Taken together, our data provide evidence that anti-PcrV IgY can be a promising therapeutic candidate for combating P. aeruginosa infections.
Collapse
Affiliation(s)
- Mahya Ranjbar
- Department of Microbiology, Shahed University, Faculty of Medical Sciences, Tehran, Iran; Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Bahador Behrouz
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | - Fatemeh Norouzi
- Department of Biology, Faculty of Basic Science, Shahed University, Tehran, Iran
| | | |
Collapse
|
6
|
Hashemi FB, Behrouz B, Irajian G, Laghaei P, Korpi F, Fatemi MJ. A trivalent vaccine consisting of "flagellin A+B and pilin" protects against Pseudomonas aeruginosa infection in a murine burn model. Microb Pathog 2019; 138:103697. [PMID: 31465785 DOI: 10.1016/j.micpath.2019.103697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/22/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
Abstract
Pseudomonas aeruginosa is a common nosocomial pathogen in burn patients, and rapidly achieves antibiotic resistance, and thus, developing an effective vaccine is critically important for combating P. aeruginosa infection. Flagella and pili play important roles in colonization of P. aeruginosa at the burn wound site and its subsequent dissemination to deeper tissue and organs. In the present study, we evaluated protective efficacy of a trivalent vaccine containing flagellins A and B (FlaA + FlaB) + pilin (PilA) in a murine burn model of infection. "FlaA + FlaB + PilA" induced greater protection in P. aeruginosa murine burn model than the single components alone, and it showed broad immune protection against P. aeruginosa strains. Immunization with "FlaA + FlaB + PilA" induced strong opsonophagocytic antibodies and resulted in reduced bacterial loads, systemic IL-12/IL-10 cytokine expression, and increased survival after challenge with three times lethal dose fifty (LD50) of P. eruginosa strains. Moreover, the protective efficacy of "FlaA + FlaB + PilA" vaccination was largely attributed to specific antibodies. Taken together, these data further confirm that the protective effects of "FlaA + FlaB + PilA" vaccine significantly enhance efficacy compared with antibodies against either mono or divalent antigen, and that the former broadens the coverage against P. eruginosa strains that express two of the three antigens.
Collapse
Affiliation(s)
- Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahador Behrouz
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Burn Research Center, Hazrat Fatima Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Laghaei
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Korpi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Fatemi
- Burn Research Center, Hazrat Fatima Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Ahmadi H, Behrouz B, Irajian G, Amirmozafari N, Naghavi S. Bivalent flagellin immunotherapy protects mice against Pseudomonas aeruginosa infections in both acute pneumonia and burn wound models. Biologicals 2017; 46:29-37. [DOI: 10.1016/j.biologicals.2016.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/08/2016] [Accepted: 12/14/2016] [Indexed: 10/20/2022] Open
|
8
|
Saffari M, Behbood S, Irajian G, Khorshidi A, Moniri R, Behrouz B. Antibodies raised against divalent type b flagellin and pilin provide effective immunotherapy against Pseudomonas aeruginosa infection of mice with burn wounds. Biologicals 2017; 45:20-26. [DOI: 10.1016/j.biologicals.2016.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/11/2022] Open
|
9
|
Passive immunization against Pseudomonas aeruginosa recombinant PilA in a murine burn wound model. Microb Pathog 2016; 101:83-88. [PMID: 27836762 DOI: 10.1016/j.micpath.2016.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa type IV pili have an essential role in twitching motility, colonization and biofilm formation. In this study, we investigated the efficacy of intraperitoneal administration of rabbit anti-recombinant PilA (anti-r-PilA) immunoglobulin G (IgG) against P. aeruginosa infection in a mouse burn-wound model. After burn and infection, mortality rate was assessed in all mice, and that of mice passively immunized with rabbit anti-r-PilA IgG was compared to non-immunized mice. Bacterial quantities in the skin and internal organs were measured to determine the level of systemic infection. Results showed that passive immunotherapy with anti-r-PilA IgG protected the burned mice infected with P. aeruginosa strains, PAO1 and the clinical isolate (CI). Anti-r-PilA antibodies enhanced the opsonophagocytosis of these strains. Moreover, the administration of anti-r-PilA IgG was also successful in reducing the bacterial burden in infected mice. The reduction of systemic bacterial spread increased the survival rate of passively immunized mice. Findings of this study revealed an improved survival rate of 62.5%, thus confirming the protective effect of anti-r-PilA IgG.
Collapse
|
10
|
Korpi F, Hashemi FB, Irajian G, Fatemi MJ, Laghaei P, Behrouz B. Flagellin and pilin immunization against multi-drug resistant Pseudomonas aeruginosa protects mice in the burn wound sepsis model. Immunol Lett 2016; 176:8-17. [PMID: 27210422 DOI: 10.1016/j.imlet.2016.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/26/2016] [Accepted: 04/02/2016] [Indexed: 01/15/2023]
Abstract
Pseudomonas aeruginosa is a formidable pathogen and a major threat to burn patients. Antimicrobial therapy is often unsuccessful because P. aeruginosa can develop multi-drug resistance; thus, immunotherapy and vaccine can be a rational alternative. Flagella and type IV pili have been identified as important virulence factors in the colonization and pathogenesis of P. aeruginosa in burn wound infections. Immunogenicity and efficacy of mixed recombinant full-length type b flagellin (r-b-flagellin) and recombinant PilA (r-PilA) as candidate vaccines were assessed by measuring humoral and cellular responses, using an experimental burned mouse model. Primary immunization with "r-b-flagellin+r-PilA" followed by two booster shots was sufficient to generate a robust humoral response, which was predominantly a Th2 response consisting mainly of subtype IgG1 and low levels of IgG2a. Analysis of the cytokine response among immunized mice showed an increased production of IL-4, INF-γ and IL-17 by splenocytes upon stimulation by "r-b-flagellin+r-PilA". Opsonophagocytosis assays confirmed the enhanced killing of bacteria by anti "r-b-flagellin+r-PilA" immune sera. These antibodies were also able to reduce bacterial load in the site of original infection into the liver and spleen of challenged mice. The reduction of systemic bacterial spread resulted in an increased survival rate of challenged immunized mice. In conclusion, immunization with "r-b-flagellin+r-PilA" proteins provides a better protective response against P. aeruginosa infection in the burn mouse model.
Collapse
Affiliation(s)
- Fatemeh Korpi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javad Fatemi
- Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Laghaei
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahador Behrouz
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Behrouz B, Mahdavi M, Amirmozafari N, Fatemi MJ, Irajian G, Bahroudi M, Hashemi FB. Immunogenicity of Pseudomonas aeruginosa recombinant b-type fagellin as a vaccine candidate: Protective efficacy in a murine burn wound sepsis model. Burns 2016:S0305-4179(16)30028-6. [PMID: 27156804 DOI: 10.1016/j.burns.2016.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosa (PA) is a formidable opportunistic pathogen among patients with burn wound infections. Antimicrobial therapy is often unsuccessful because PA can develop multi-drug resistance; thus, immunotherapy can be a rational alternative. The goal of this study was to evaluate the immunogenicity recombinant type b flagellin (r-b-flagellin) as a potential vaccine against P. aeruginosa in a mouse model for burn wound sepsis. Primary immunization with r-b-flagellin (10μg) followed by two booster shots was sufficient to generate a robust humoral response, which was predominantly a T helper 2 (Th2) type response consisting mainly of subtype IgG1 and low levels of IgG2a. Analysis of the Th1-Th2 response among immunized mice showed an increased production of IL-4, INF-γ and IL-17 by splenocytes upon stimulation by r-b-flagellin. Opsono-phagocytosis assays confirmed the enhanced killing of bacteria by anti r-b-flagellin immune sera. These antibodies were also able to inhibit motility of P. aeruginosa and afforded protection to immunized mice by reducing bacterial load in the site of original infection into the liver of challenged mice. The reduction of systemic bacterial spread resulted in an increase in the survival rate of challenged immunized mice. In conclusion, immunization of mice with r-b-flagellin protein increased the level of humoral and cellular immune response and led to an efficacious protection against P. aeruginosa infection in the burn mouse model.
Collapse
Affiliation(s)
- Bahador Behrouz
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Fatemi
- Department of Plastic and Reconstructive Surgery, Burn Research Center, Hazrat Fatima Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Irajian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahbubeh Bahroudi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Farsani HH, Rasooli I, Gargari SLM, Nazarian S, Astaneh SDA. Recombinant outer membrane protein F-B subunit of LT protein as a prophylactic measure against Pseudomonas aeruginosa burn infection in mice. World J Methodol 2015; 5:230-237. [PMID: 26713284 PMCID: PMC4686421 DOI: 10.5662/wjm.v5.i4.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/05/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To study immunogenicity of outer membrane protein F (OprF) fused with B subunit of LT (LTB), against Pseudomonas aeruginosa (P. aeruginosa).
METHODS: The OprF, a major surface exposed outer membrane protein that is antigenically conserved in various strains of P. aeruginosa, is a promising immunogen against P. aeruginosa. In the present study recombinant OprF and OprF-LTB fusion gene was cloned, expressed and purified. BALB/c mice and rabbits were immunized using recombinant OprF and OprF-LTB and challenged at the burn site with P. aeruginosa lethal dose of 104 CFU. The protective efficacy of rabbit anti OprF IgG against P. aeruginosa burn infection was investigated by passive immunization.
RESULTS: It has been well established that the LTB is a powerful immunomodulator with strong adjuvant activity. LTB as a bacterial adjuvant enhanced immunogenicity of OprF and anti OprF IgG titer in serum was increased. Experimental findings showed significantly higher average survival rate in burned mice immunized with OprF-LTB than immunized with OprF or the control group. Rabbits anti OprF IgG brought about 75% survival of mice following challenge with P. aeruginosa. Post challenge hepatic and splenic tissues of mice group immunized with OprF-LTB had significantly lower bacterial load than those immunized with OprF or the control groups.
CONCLUSION: These results demonstrate that LTB-fused OprF might be a potential candidate protein for a prophylactic measure against P. aeruginosa in burn infection.
Collapse
|
13
|
Immune responses in relation to the type and time of thermal injury: an experimental study. Injury 2015; 46:227-32. [PMID: 25467712 DOI: 10.1016/j.injury.2014.10.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/11/2014] [Accepted: 10/19/2014] [Indexed: 02/02/2023]
Abstract
BACKGROUND Thermal injuries are followed by a complex immune response, but the relationship between the severity of burn injury and the time exposure to the thermal injury on the extent of the immune response is still not known. OBJECTIVE This study focuses on characterising the effect of temperature and time exposure on the post-burn immune response. METHODS We used 120 C57BL/6 male mice divided equally in 5 burn groups and one sham operated group (groups A-E and sham). Ten mice per group were sacrificed at 24 and 48 h after burn injury and whole blood was collected; specimens of liver, lung, spleen, kidney and bowel were excised. Apoptosis and TREM-1 expression on circulating blood cells were measured. Splenocytes were isolated and stimulated for cytokine production; the rate of apoptosis of splenocytes was also measured. RESULTS Production of IL-17 from splenocytes of mice group D was enhanced. Considerable effects were shown on the apoptosis of circulating lymphocytes and of spleen cells. The apoptotic rates varied between groups and also evolved after 24 and 48 h. To examine the origin of this differential response, quantitative bacterial cultures of liver, lung and kidney were made but no differences were observed compared with sham-operated animals. LIMITATIONS This study was based on an experimental murine model. CONCLUSION There is a unique response for each type of injury depending on the temperature of the thermal source and the exposure time.
Collapse
|
14
|
Faezi S, Safarloo M, Amirmozafari N, Nikokar I, Siadat SD, Holder IA, Mahdavi M. Protective efficacy ofPseudomonas aeruginosatype-A flagellin in the murine burn wound model of infection. APMIS 2013; 122:115-27. [DOI: 10.1111/apm.12101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Sobhan Faezi
- Departments of Bacteriology; Pasteur Institute of Iran; Tehran Iran
- Departments of Bacteriology; Faculty of Medical sciences; Tarbiat Modares University; Tehran Iran
| | - Maryam Safarloo
- Departments of Biology; Faculty of Basic Science; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology; School of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Iraj Nikokar
- Laboratory of Microbiology and Immunology of Infectious Diseases; Paramedicine Faculty; Guilan University of Medical Sciences; Guilan Iran
| | | | - Ian Alan Holder
- Departments of Microbiology and Surgery; College of Medicine; University of Cincinnati and Shriners Burns Institute; Cincinnati OH USA
| | - Mehdi Mahdavi
- Departments of Virology; Pasteur Institute of Iran; Tehran Iran
| |
Collapse
|
15
|
Passive immunisation against Pseudomonas aeruginosa recombinant flagellin in an experimental model of burn wound sepsis. Burns 2011; 37:865-72. [DOI: 10.1016/j.burns.2010.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 11/13/2010] [Accepted: 12/05/2010] [Indexed: 11/24/2022]
|
16
|
Dai T, Kharkwal GB, Tanaka M, Huang YY, Bil de Arce VJ, Hamblin MR. Animal models of external traumatic wound infections. Virulence 2011; 2:296-315. [PMID: 21701256 DOI: 10.4161/viru.2.4.16840] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Despite advances in traumatic wound care and management, infections remain a leading cause of mortality,morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. RESULTS Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. METHODS This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations,excisional wounds and open fractures. CONCLUSIONS As antibiotic resistance continues to increase,more new antimicrobial approaches are urgently needed.These should be tested using standard protocols for infections in external traumatic wounds in animal models.
Collapse
Affiliation(s)
- Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, USA
| | | | | | | | | | | |
Collapse
|
17
|
Higashimori H, Whetzel TP, Carlsen RC. Inhibition of inducible nitric oxide synthase reduces an acute peripheral motor neuropathy produced by dermal burn injury in mice. J Peripher Nerv Syst 2009; 13:289-98. [PMID: 19192069 DOI: 10.1111/j.1529-8027.2008.00195.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The systemic inflammatory response produced by a full-thickness dermal burn injury is associated with a peripheral motor neuropathy. We previously reported that a 20% body surface area (BSA) full-thickness dermal burn in C57BL6 mice produced structural and functional deficits in motor axons at a distance from the burn site. The etiology of the neuropathy, however, is not well characterized. Burn injury leads to an increase in production of a number of proinflammatory mediators, including nitric oxide (NO). We tested the hypothesis that dermal burn-induced motor neuropathy is mediated by increased production of NO. NO synthase (NOS) activity was inhibited following a 20% BSA full-thickness burn by injection of non-specific NOS inhibitor, nitro-L-arginine methyl ester or inducible NOS (iNOS) inhibitors, L-N6-(1-iminoethyl) lysine, and aminoguanidine. NOS inhibitors also prevented the reduction in ventral roots mean axon caliber and the decrease in a motor nerve conduction velocity (MCV) following burn. iNOS knockout mice prevented MCV decrease in the first 3 days post-burn, but iNOS knockout MCV was significantly reduced at 7-14 days post-burn. These results suggest that an increase in NO production generated by systemic inflammatory response pathways after burn injury contributes to the development of structural and functional deficits in peripheral motor axons.
Collapse
Affiliation(s)
- Haruki Higashimori
- Department of Neurobiology and Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|
18
|
Chitosan acetate bandage as a topical antimicrobial dressing for infected burns. Antimicrob Agents Chemother 2008; 53:393-400. [PMID: 19015341 DOI: 10.1128/aac.00760-08] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An engineered chitosan acetate bandage preparation (HemCon) is used as a hemostatic dressing, and its chemical structure suggests that it should also be antimicrobial. We previously showed that when a chitosan acetate bandage was applied to full-thickness excisional wounds in mice that had been infected with pathogenic bioluminescent bacteria (Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus), it was able to rapidly kill the bacteria and save the mice from developing fatal infections. Wound healing was also stimulated. In the present study, we asked whether a chitosan acetate bandage could act as a topical antimicrobial dressing when it was applied to third-degree burns in mice contaminated with two of these bacterial species (P. aeruginosa and P. mirabilis). Preliminary experiments established the length of burn time and the number of bacteria needed to produce fatal infections in untreated mice and established that the chitosan acetate bandage could adhere to the infected burn for up to 21 days. In the case of P. aeruginosa infections, the survival rate of mice treated with the chitosan acetate bandage was 73.3% (whereas the survival rate of mice treated with a nanocrystalline silver dressing was 27.3% [P = 0.0055] and that of untreated mice was 13.3% [P < 0.0002]). For P. mirabilis infections, the comparable survival rates were 66.7%, 62.5%, and 23.1% respectively. Quantitative bioluminescent signals showed that the chitosan acetate bandage effectively controlled the growth of bacteria in the burn and prevented the development of systemic sepsis, as shown by blood culture. These data suggest that chitosan acetate bandage is efficacious in preventing fatal burn infections.
Collapse
|
19
|
Immunization with a Pseudomonas aeruginosa 1244 pilin provides O-antigen-specific protection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:590-7. [PMID: 18272666 DOI: 10.1128/cvi.00476-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The O antigen is both a major structural outer membrane component and the dominant epitope of most gram-negative bacteria. Pseudomonas aeruginosa 1244 produces a type IV pilus and covalently links an O-antigen repeating unit to each pilin monomer. Here we show that immunization of mice with pure pilin from strain 1244 by use of either the mouse respiratory model or the thermal injury model resulted in protection from challenge with a pilus-null O-antigen-producing 1244 mutant. These results provide evidence that the pilin glycan stimulates a protective response that targets the O antigen, suggesting that this system could be used as the basis for the development of a variety of bioconjugate vaccines protective against gram-negative bacteria.
Collapse
|
20
|
Higashimori H, Carlsen RC, Whetzel TP. Early Excision of a Full-Thickness Burn Prevents Peripheral Nerve Conduction Deficits in Mice. Plast Reconstr Surg 2006; 117:152-64. [PMID: 16404262 DOI: 10.1097/01.prs.0000186537.62939.07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND A full-thickness 20 percent body surface area burn in mice produces a significant decrease in tibial motor nerve conduction velocity within 6 hours of the burn and in sensory conduction velocity within 7 days. This suggests that cutaneous burn injury produces a systemic response that affects peripheral motor and sensory nerve function at a distance from the burn site. The authors tested the hypothesis that burn wound excision either 30 minutes or 3 hours after burn would prevent neuropathy. METHODS A 20 percent body surface area third-degree burn was applied to the backs of anesthetized mice using procedures that followed National Institutes of Health guidelines. Motor nerve conduction velocity and sensory conduction velocity were determined in intact, anesthetized mice by percutaneous nerve stimulation. Burn wounds were excised and closed at 30 minutes or 3 hours after burn. Motor nerve conduction velocity and sensory conduction velocity were measured before burn and 1, 3, 7, 14, and 21 days after a burn or sham procedure. The number of circulating neutrophils and serum concentrations of tumor necrosis factor-alpha, nitrite, and electrolytes were also determined in each group. RESULTS Motor nerve conduction velocity and sensory conduction velocity in the 30-minute excision (n = 10) and sham group (n = 5) were not significantly different. Motor nerve conduction velocity and sensory conduction velocity in the nonexcised group (n = 10) and 3-hour excision group (n = 10) were significantly decreased. Serum tumor necrosis factor-alpha concentration was elevated 6 hours after burn in nonexcised animals (n = 9) and in 3-hour excision mice (n = 8) but was not significantly different in the sham (n = 8) and the 30-minute excision group (n = 7). CONCLUSION The authors conclude that burn wound excision at 30 minutes but not at 3 hours prevents the nerve conduction deficits measured in mice with 20 percent body surface area burns. The cellular basis of burn-induced neuropathy is unknown, but nitric oxide and tumor necrosis factor alpha-alpha appear to play a role.
Collapse
Affiliation(s)
- Haruki Higashimori
- Division of Plastic and Reconstructive Surgery, Department of Physiology & Membrane Biology, School of Medicine, University of California at Davis, Sacramento, California 95817, USA
| | | | | |
Collapse
|
21
|
Arora SK, Neely AN, Blair B, Lory S, Ramphal R. Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun 2005; 73:4395-8. [PMID: 15972536 PMCID: PMC1168557 DOI: 10.1128/iai.73.7.4395-4398.2005] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 03/06/2005] [Accepted: 03/06/2005] [Indexed: 12/26/2022] Open
Abstract
In this study, we tested the contribution of flagellar motility, flagellin structure, and its glycosylation in Pseudomonas aeruginosa using genetically defined flagellar mutants. All mutants and their parent strains were tested in a burned-mouse model of infection. Motility and glycosylation of the flagellum appear to be important determinants of flagellar-mediated virulence in this model. This is the first report where genetically defined flagellar variants of P. aeruginosa were tested in the burned-mouse model of infection.
Collapse
Affiliation(s)
- Shiwani K Arora
- Department of Medicine/Infectious Diseases, P.O. Box 100277, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
22
|
Neely AN, Holder IA, Wiener-Kronish JP, Sawa T. Passive anti-PcrV treatment protects burned mice against Pseudomonas aeruginosa challenge. Burns 2005; 31:153-8. [PMID: 15683685 DOI: 10.1016/j.burns.2004.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2004] [Indexed: 10/25/2022]
Abstract
The type III secretion system consists of secreted exoproducts and structural components, such as PcrV, and this system plays an important role in the virulence of Pseudomonas aeruginosa in burned hosts. The purpose of this study was to determine if passive anti-PcrV treatment would protect burned mice from fatal P. aeruginosa challenge, and to determine the type III exoproduct phenotype of the P. aeruginosa used as challenge strains. Antiserum was raised in rabbits. Mice were given a third degree burn, challenged with a lethal dose of P. aeruginosa, and treated with either anti-PcrV or control immunoglobulin intraperitoneally. Protection against three different pseudomonads was tested. Genotyping by PCR and phenotyping by immunoblots showed the P. aeruginosa strains to all be of the invasive type III phenotype: ExoS+ and/or ExoT+, ExoU-, ExoY+. Against all strains, the anti-PcrV treatment yielded significantly better survival (p<0.05) than the control immunoglobulin treatment. Duration of significant protection was improved by giving a second injection of PcrV antisera at 24h postburn. Hence, passive anti-PcrV immunization could protect burned mice against fatal challenge with P. aeruginosa of an invasive type III phenotype. This immunotherapy might be explored further as possible treatment for highly antibiotic resistant P. aeruginosa infections in burned hosts.
Collapse
Affiliation(s)
- Alice N Neely
- Shriners Hospitals for Children, Cincinnati, OH, USA; University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
23
|
Higashimori H, Whetzel TP, Mahmood T, Carlsen RC. Peripheral axon caliber and conduction velocity are decreased after burn injury in mice. Muscle Nerve 2005; 31:610-20. [PMID: 15779020 DOI: 10.1002/mus.20306] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peripheral neuropathies are reported to arise as a result of the systemic inflammatory response produced by a full-thickness cutaneous burn injury. This study was designed to characterize the magnitude and time course of functional and morphological changes in peripheral axons that arise after a full-thickness dermal burn injury in an animal model. A 20% body surface area (20% BSA) full-thickness dermal burn was applied to the back of C57BL6 female mice. Longitudinal H- and M-wave recordings were used to determine the conduction velocities (CV) of large myelinated motor and sensory axons in the tibial nerve of sham control and burn-injured mice. Motor CVs were significantly reduced from 6 h to 28 days after the burn, and sensory CVs were significantly reduced from 7 to 14 days after the burn. Morphological evaluation also showed that the mean caliber of large axons in tibial nerves and L5 ventral and dorsal roots in burned mice was significantly decreased. The results demonstrate that both functional and morphological deficits may be produced in peripheral nerve axons at sites well removed from a full-thickness dermal burn injury. The neural deficits may contribute to changes in neuromuscular transmission and the development of limb and respiratory muscle weakness that also accompany burn injury.
Collapse
Affiliation(s)
- Haruki Higashimori
- Department of Physiology and Membrane Biology, School of Medicine, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
24
|
Alexander M, Chaudry IH, Schwacha MG. Relationships between burn size, immunosuppression, and macrophage hyperactivity in a murine model of thermal injury. Cell Immunol 2003; 220:63-9. [PMID: 12718940 DOI: 10.1016/s0008-8749(03)00024-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Burn injury induces immune dysfunction and alters numerous physiological parameters. While clinical studies indicate that burn injury size profoundly impacts patient immune status, only limited experimental studies have systematically addressed its impact on immune functional parameters. In the present study, mice were subjected to burn injuries of varying sizes and splenic immune cells (splenocytes and macrophages) were isolated 7 days thereafter. Burn injury suppressed splenic T-cell proliferation in an injury size-dependent manner that correlated with the release of the immunosuppressive mediators PGE(2) and nitric oxide. In addition, a shift towards an immunosuppressive Th-2 cytokine profile and a hyperactive macrophage phenotype (increased release of inflammatory mediators) was observed post-injury, however, this effect was in part independent of burn size. Thus, unlike patient survival data, burn injury-induced changes in immune function do not necessarily correlate with the size of the injury.
Collapse
Affiliation(s)
- Michelle Alexander
- Department of Surgery, University of Alabama at Birmingham, G094 Volker Hall, 1670 University Blvd., Birmingham, AL 35294-0019, USA
| | | | | |
Collapse
|
25
|
Fogle MR, Griswold JA, Oliver JW, Hamood AN. Anti-ETA IgG neutralizes the effects of Pseudomonas aeruginosa exotoxin A. J Surg Res 2002; 106:86-98. [PMID: 12127813 DOI: 10.1006/jsre.2002.6433] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The opportunistic pathogen Pseudomonas aeruginosa causes severe infections in immunocompromised hosts. Among P. aeruginosa-infected burn patients, mortality may reach as high as 50%. Due to their immunocompromised status, burn patients may benefit from passive immunotherapy against infection. As a potential multivalent immunoglobulin therapy, specific polyclonal antibodies against four P. aeruginosa virulence factors, including exotoxin A (ETA), were prepared. MATERIALS AND METHODS AND RESULTS In this study, we analyzed the ability of ETA antibody (ETA-Ab) to neutralize the in vivo effects of ETA. Adult mice injected with purified ETA suffered 100% mortality. The cytosolic DNA of their hepatocytes was fragmented, indicating ETA induction of apoptosis. In addition, multiprobe RNase protection assays showed that ETA upregulates the expression of the genes for proinflammatory cytokines as well as apoptosis genes in the livers of ETA-injected mice. Treatment with ETA-Ab prior to ETA injection prevented mortality, ETA-induced hepatocyte DNA fragmentation, and upregulation of the cytokine and apoptosis-related genes. The role of ETA during P. aeruginosa infection of the burn wound was examined by determining the in vivo virulence of P. aeruginosa PA103 and its isogenic, ETA-deficient mutant PA103Omega::toxA using the thermally injured mouse model. The lethality, local spread, and systemic spread of PA103Omega::toxA were significantly reduced compared to PA103. CONCLUSION These results suggest that (1) ETA induces apoptosis in hepatocytes, (2) specific cytokines are produced in response to ETA, (3) ETA-Ab neutralizes these effects, and (4) ETA contributes to the spread of P. aeruginosa during burn wound infection.
Collapse
Affiliation(s)
- Matthew R Fogle
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | | | | |
Collapse
|