1
|
Ahuja S, Zaheer S. The evolution of cancer immunotherapy: a comprehensive review of its history and current perspectives. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2024; 20:51-73. [PMID: 39778508 PMCID: PMC11717579 DOI: 10.14216/kjco.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy uses the body's immune system to combat cancer, marking a significant advancement in treatment. This review traces its evolution from the late 19th century to its current status. It began with William Coley's pioneering work using bacterial toxins to stimulate the immune system against cancer cells, establishing the foundational concept of immunotherapy. In the mid-20th century, cytokine therapies like interferons and interleukins emerged, demonstrating that altering the immune response could reduce tumors and highlighting the complex interplay between cancer and the immune system. The discovery of immune checkpoints, regulatory pathways that prevent autoimmunity but are exploited by cancer cells to evade detection, was a pivotal development. Another major breakthrough is CAR-T cell therapy, which involves modifying a patient's T cells to target cancer-specific antigens. This personalized treatment has shown remarkable success in certain blood cancers. Additionally, cancer vaccines aim to trigger immune responses against tumor-specific or associated antigens, and while challenging, ongoing research is improving their efficacy. The historical progression of cancer immunotherapy, from Coley's toxins to modern innovations like checkpoint inhibitors and CAR-T cell therapy, underscores its transformative impact on cancer treatment. As research delves deeper into the immune system's complexities, immunotherapy is poised to become even more crucial in oncology, offering renewed hope to patients globally.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| |
Collapse
|
2
|
Owen KL, Parker BS. Beyond the vicious cycle: The role of innate osteoimmunity, automimicry and tumor-inherent changes in dictating bone metastasis. Mol Immunol 2017; 110:57-68. [PMID: 29191489 DOI: 10.1016/j.molimm.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/24/2017] [Indexed: 12/12/2022]
Abstract
Bone metastasis is a fatal consequence of a subset of solid malignancies that fail to respond to conventional therapies. While a myriad of factors contribute to osteotropism and disseminated cell survival and outgrowth in bone, efforts to inhibit tumor cell growth in the bone-metastatic niche have largely relied on measures that disrupt the bi-directional interactions between bone resident and tumor cells. However, the targeting of isolated stromal interactions has proven ineffective to date in inhibiting bone-metastatic progression and patient mortality. Osteoimmune regulation is now emerging as a critical determinant of metastatic growth in the bone microenvironment. While this has highlighted the importance of innate immune populations in dictating the temporal development of overt bone metastases, the osteoimmunological processes that underpin tumor cell progression in bone remain severely underexplored. Along with tumor-intrinsic alterations that occur specifically within the bone microenvironment, innate osteoimmunological crosstalk poses an exciting area of future discovery and therapeutic development. Here we review current knowledge of the unique exchange that occurs between bone resident cells, innate immune populations and tumor cells that leads to the establishment of a tumor-permissive milieu.
Collapse
Affiliation(s)
- Katie L Owen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Multifaceted Kinetics of Immuno-Evasion from Tumor Dormancy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:111-43. [DOI: 10.1007/978-1-4614-1445-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Hannan R, Zhang H, Wallecha A, Singh R, Liu L, Cohen P, Alfieri A, Rothman J, Guha C. Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol Immunother 2012; 61:2227-38. [PMID: 22644735 PMCID: PMC11028516 DOI: 10.1007/s00262-012-1257-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Radiation therapy (RT) is an integral part of prostate cancer treatment across all stages and risk groups. Immunotherapy using a live, attenuated, Listeria monocytogenes-based vaccines have been shown previously to be highly efficient in stimulating anti-tumor responses to impact on the growth of established tumors in different tumor models. Here, we evaluated the combination of RT and immunotherapy using Listeria monocytogenes-based vaccine (ADXS31-142) in a mouse model of prostate cancer. Mice bearing PSA-expressing TPSA23 tumor were divided to 5 groups receiving no treatment, ADXS31-142, RT (10 Gy), control Listeria vector and combination of ADXS31-142 and RT. Tumor growth curve was generated by measuring the tumor volume biweekly. Tumor tissue, spleen, and sera were harvested from each group for IFN-γ ELISpot, intracellular cytokine assay, tetramer analysis, and immunofluorescence staining. There was a significant tumor growth delay in mice that received combined ADXS31-142 and RT treatment as compared with mice of other cohorts and this combined treatment causes complete regression of their established tumors in 60 % of the mice. ELISpot and immunohistochemistry of CD8+ cytotoxic T Lymphocytes (CTL) showed a significant increase in IFN-γ production in mice with combined treatment. Tetramer analysis showed a fourfold and a greater than 16-fold increase in PSA-specific CTLs in animals receiving ADXS31-142 alone and combination treatment, respectively. A similar increase in infiltration of CTLs was observed in the tumor tissues. Combination therapy with RT and Listeria PSA vaccine causes significant tumor regression by augmenting PSA-specific immune response and it could serve as a potential treatment regimen for prostate cancer.
Collapse
Affiliation(s)
- Raquibul Hannan
- Department of Radiation Oncology, UT Southwestern Medical Center, 5801 Forest Park Rd., Dallas, TX, 75390-9183, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Caravagna G, Barbuti R, d'Onofrio A. Fine-tuning anti-tumor immunotherapies via stochastic simulations. BMC Bioinformatics 2012; 13 Suppl 4:S8. [PMID: 22536975 PMCID: PMC3303725 DOI: 10.1186/1471-2105-13-s4-s8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anti-tumor therapies aim at reducing to zero the number of tumor cells in a host within their end or, at least, aim at leaving the patient with a sufficiently small number of tumor cells so that the residual tumor can be eradicated by the immune system. Besides severe side-effects, a key problem of such therapies is finding a suitable scheduling of their administration to the patients. In this paper we study the effect of varying therapy-related parameters on the final outcome of the interplay between a tumor and the immune system. RESULTS This work generalizes our previous study on hybrid models of such an interplay where interleukins are modeled as a continuous variable, and the tumor and the immune system as a discrete-state continuous-time stochastic process. The hybrid model we use is obtained by modifying the corresponding deterministic model, originally proposed by Kirschner and Panetta. We consider Adoptive Cellular Immunotherapies and Interleukin-based therapies, as well as their combination. By asymptotic and transitory analyses of the corresponding deterministic model we find conditions guaranteeing tumor eradication, and we tune the parameters of the hybrid model accordingly. We then perform stochastic simulations of the hybrid model under various therapeutic settings: constant, piece-wise constant or impulsive infusion and daily or weekly delivery schedules. CONCLUSIONS Results suggest that, in some cases, the delivery schedule may deeply impact on the therapy-induced tumor eradication time. Indeed, our model suggests that Interleukin-based therapies may not be effective for every patient, and that the piece-wise constant is the most effective delivery to stimulate the immune-response. For Adoptive Cellular Immunotherapies a metronomic delivery seems more effective, as it happens for other anti-angiogenesis therapies and chemotherapies, and the impulsive delivery seems more effective than the piece-wise constant. The expected synergistic effects have been observed when the therapies are combined.
Collapse
Affiliation(s)
- Giulio Caravagna
- Institute for Informatics and Telematics, National Research Council, Pisa, Italy
| | | | | |
Collapse
|
6
|
On the Dynamics of Tumor-Immune System Interactions and Combined Chemo- and Immunotherapy. NEW CHALLENGES FOR CANCER SYSTEMS BIOMEDICINE 2012. [DOI: 10.1007/978-88-470-2571-4_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Caravagna G, d’Onofrio A, Milazzo P, Barbuti R. Tumour suppression by immune system through stochastic oscillations. J Theor Biol 2010; 265:336-45. [DOI: 10.1016/j.jtbi.2010.05.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 05/05/2010] [Accepted: 05/08/2010] [Indexed: 10/19/2022]
|
8
|
|
9
|
d’Onofrio A. Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.mcm.2007.02.032] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Karan D, Thrasher JB, Lubaroff D. Prostate cancer: genes, environment, immunity and the use of immunotherapy. Prostate Cancer Prostatic Dis 2008; 11:230-6. [PMID: 18283297 DOI: 10.1038/pcan.2008.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostate cancer remains the most prevalent noncutaneous cancer, leading to almost 30,000 deaths every year in men in the United States. A large body of knowledge emphasizes a strong influence of epidemiological factors such as lifestyle, environment and diet, on the development of prostate cancer. Although risk reduction of prostate cancer has been somewhat successful, effective prevention is still lacking. Immunotherapeutic approaches, although moderately complicated, remain promising in an effort to control the progression and development of the disease. Taken together, the parameters of epidemiological studies and immunotherapeutic regimens might eventually be the most effective and preventive approach for prostate cancer. This review highlights some of the events associated with the development and prevention of prostate cancer.
Collapse
Affiliation(s)
- D Karan
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | |
Collapse
|
11
|
Hildenbrand B, Sauer B, Kalis O, Stoll C, Freudenberg MA, Niedermann G, Giesler JM, Jüttner E, Peters JH, Häring B, Leo R, Unger C, Azemar M. Immunotherapy of patients with hormone-refractory prostate carcinoma pre-treated with interferon-gamma and vaccinated with autologous PSA-peptide loaded dendritic cells--a pilot study. Prostate 2007; 67:500-8. [PMID: 17262804 DOI: 10.1002/pros.20539] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE We conducted a pilot trial to assess the feasibility and tolerability of a prime/boost vaccine strategy using interferon-gamma (IFN-gamma) and autologous dendritic cells (DCs) pulsed with HLA-A2-specific prostate-specific antigen (PSA) peptides (PSA-1 [141-150]; PSA-2 [146-156]; PSA-3 [154-163]) for the treatment of 12 patients with hormone refractory prostate carcinoma. PATIENTS AND METHODS All patients were vaccinated four times with intracutaneously injected PSA-peptide loaded DCs after subcutaneous administration of IFN-gamma 2 hr before DC administration (50 microg/m(2) body surface). Objectives were safety, clinical benefit, clinical and biochemical response, quality of life, and immunological parameters. RESULTS The vaccination was well tolerated without any vaccination-associated adverse events. One partial and one mixed responder were identified, four patients showed stable diseases. Two patients had a decrease and four a slow-down velocity slope in the PSA serum level. All responders showed a positive DTH-response, but only two a slight increase in PSA-peptide specific T-lymphocytes. CONCLUSION The immunotherapy with IFN-gamma and PSA-peptide loaded DCs was feasible and well tolerated. The observed responses imply a potential antitumor activity.
Collapse
|
12
|
Machlenkin A, Azriel-Rosenfeld R, Volovitz I, Vadai E, Lev A, Paz A, Goldberger O, Reiter Y, Tzehoval E, Benhar I, Eisenbach L. Preventive and therapeutic vaccination with PAP-3, a novel human prostate cancer peptide, inhibits carcinoma development in HLA transgenic mice. Cancer Immunol Immunother 2007; 56:217-26. [PMID: 16738849 PMCID: PMC11030074 DOI: 10.1007/s00262-006-0184-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Accepted: 04/12/2006] [Indexed: 12/11/2022]
Abstract
Conventional treatment of recurrent and metastasized prostate cancer (CaP) remains inadequate; this fact mandates development of alternative therapeutic modalities, such as specific active or passive immunotherapy. Previously, we reported the identification of a novel highly immunogenic HLA-A*0201-restricted Prostatic Acid Phosphatase-derived peptide (PAP-3) by a two-step in vivo screening in an HLA-transgenic (HHD) mouse system. In the present study we aimed at elucidating the efficiency of PAP-3-based vaccine upon active antitumor immunization. To this end we established preventive and therapeutic carcinoma models in HHD mice. The 3LL murine Lewis lung carcinoma clone D122 transduced to express HLA-A*0201 and PAP served as a platform for these models. The HLA-A*0201-PAP-3 complex specific recombinant single chain scFV-PAP-3 antibodies were generated and used to confirm an endogenous PAP processing resulting in PAP-3 presentation by HLA-A*0201. PAP-3 based vaccines significantly decreased tumor incidence in a preventive immunization setting. Therapeutic vaccination of HHD mice with PAP-3 led to rejection of early established tumors and to increase of mouse survival. These results strongly support a therapeutic relevance of the identified CTL epitope upon active antitumor immunization. The newly established carcinoma model presented herein might be a useful tool for cancer vaccine design and optimization.
Collapse
Affiliation(s)
- Arthur Machlenkin
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Ronit Azriel-Rosenfeld
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Ilan Volovitz
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Ezra Vadai
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Avital Lev
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adrian Paz
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Ofir Goldberger
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Yoram Reiter
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Esther Tzehoval
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | - Itai Benhar
- Department of Molecular Microbiology and Biotechnology, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | - Lea Eisenbach
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| |
Collapse
|
13
|
Brill TH, Kübler HR, von Randenborgh H, Fend F, Pohla H, Breul J, Hartung R, Paul R, Schendel DJ, Gansbacher B. Allogeneic retrovirally transduced, IL-2- and IFN-γ-secreting cancer cell vaccine in patients with hormone refractory prostate cancer—a phase I clinical trial. J Gene Med 2007; 9:547-60. [PMID: 17514769 DOI: 10.1002/jgm.1051] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The purpose of this vaccine study was to determine the safety and feasibility of vaccination with an allogeneic prostate carcinoma cell line, LNCaP, expressing recombinant interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) and to evaluate the efficacy of inducing tumor-specific immune responses in HLA-A2-matched patients with hormone refractory prostate cancer (HRPC). METHODS In a dose-escalating phase I study, HLA-A2-matched HRPC patients received four vaccinations of irradiated allogeneic LNCaP cells retrovirally transduced to secrete IL-2 and IFN-gamma at study day 1, 15, 29 and 92 and subsequently every 91 days unless tumor progression was evident. RESULTS Three patients receiving the first dose level (7.5 million cells) showed no evidence of dose-limiting toxicity or vaccine-related adverse events including autoimmunity. One of three patients receiving the second dose level (15 million cells) developed a transient self-limiting grade 3 local injection site reaction (ulceration) after the eighth vaccination. Vaccine-induced immune responses against a broad array of prostate tumor associated antigens were detected in all six patients. Two of the three patients receiving the higher dose showed a decline in serum prostate-specific antigen (PSA) values of more than 50%, with one patient remaining on protocol for 3 years. CONCLUSIONS Immunisation with the allogeneic LNCaP/IL-2/IFN-gamma vaccine is safe and feasible without any dose-limiting toxicity or autoimmunity. A 50% PSA decline was achieved in two of the six patients. This encouraging data provides the scientific rationale for further investigation of the vaccine in a phase II trial.
Collapse
Affiliation(s)
- T H Brill
- Institute for Experimental Oncology, Technical University, Klinikum rechts der Isar, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Machlenkin A, Paz A, Bar Haim E, Goldberger O, Finkel E, Tirosh B, Volovitz I, Vadai E, Lugassy G, Cytron S, Lemonnier F, Tzehoval E, Eisenbach L. Human CTL Epitopes Prostatic Acid Phosphatase-3 and Six-Transmembrane Epithelial Antigen of Prostate-3 as Candidates for Prostate Cancer Immunotherapy. Cancer Res 2005; 65:6435-42. [PMID: 16024648 DOI: 10.1158/0008-5472.can-05-0133] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Specific immunotherapy of prostate cancer may be an alternative or be complementary to other approaches for treatment of recurrent or metastasized disease. This study aims at identifying and characterizing prostate cancer-associated peptides capable of eliciting specific CTL responses in vivo. Evaluation of peptide-induced CTL activity in vitro was done following immunization of HLA-A2 transgenic (HHD) mice. An in vivo tumor rejection was tested by adoptive transfer of HHD immune lymphocytes to nude mice bearing human tumors. To confirm the existence of peptide-specific CTL precursors in human, lymphocytes from healthy and prostate cancer individuals were stimulated in vitro in the presence of these peptides and CTL activities were assayed. Two novel immunogenic peptides derived from overexpressed prostate antigens, prostatic acid phosphatase (PAP) and six-transmembrane epithelial antigen of prostate (STEAP), were identified; these peptides were designated PAP-3 and STEAP-3. Peptide-specific CTLs lysed HLA-A2.1+ LNCaP cells and inhibited tumor growth on adoptive immunotherapy. Furthermore, peptide-primed human lymphocytes derived from healthy and prostate cancer individuals lysed peptide-pulsed T2 cells and HLA-A2.1+ LNCaP cells. Based on the results presented herein, PAP-3 and STEAP-3 are naturally processed CTL epitopes possessing anti-prostate cancer reactivity in vivo and therefore may constitute vaccine candidates to be investigated in clinical trials.
Collapse
Affiliation(s)
- Arthur Machlenkin
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pavlenko M, Leder C, Roos AK, Levitsky V, Pisa P. Identification of an immunodominant H-2D(b)-restricted CTL epitope of human PSA. Prostate 2005; 64:50-9. [PMID: 15651071 DOI: 10.1002/pros.20221] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Human prostate specific antigen (PSA) is expressed selectively in prostate epithelium and is a potential target for the immunotherapy against prostate cancer. Various PSA-based vaccines have been reported to induce cytotoxic T lymphocyte (CTL) responses in animal models. Here, we present the identification and validation of an immunodominant CTL epitope of PSA in C57Bl/6 mice (H-2(b)). METHODS PSA-specific CTLs were induced by immunization with a plasmid expressing PSA. Epitope specificity of the CTLs was determined by their reactivity against a panel of C-terminus truncated or mutated PSA proteins and use of bioinformatical prediction with the SYFPEITHI algorithm. RESULTS The majority of PSA-specific CTLs were directed against a single H-2D(b) restricted epitope corresponding to the amino acid residues 65-74 (HCIRNKSVIL) of the protein. The CTLs had similar functional avidity against two putative H-2D(b) binding peptides: a 9-aa-long psa65-73 (HCIRNKSVI) and a 10-aa-long psa65-74 (HCIRNKSVIL). CONCLUSIONS We demonstrate that the psa65-73 peptide can be used for reactivation of PSA-specific CTLs in vitro and ex vivo, and H-2D(b) pentamers assembled with this peptide are an efficient tool for monitoring of PSA-specific CTL responses after DNA vaccination.
Collapse
Affiliation(s)
- Maxim Pavlenko
- Department of Oncology and Pathology, Cancer Center Karolinska, Immune and Gene Therapy Laboratory, Karolinska Institute, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
16
|
Jin HT, Youn JI, Kim HJ, Lee JB, Ha SJ, Koh JS, Sung YC. Enhancement of Interleukin-12 Gene-Based Tumor Immunotherapy by the Reduced Secretion of p40 Subunit and the Combination with Farnesyltransferase Inhibitor. Hum Gene Ther 2005; 16:328-38. [PMID: 15812228 DOI: 10.1089/hum.2005.16.328] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Interleukin-12 (IL-12) gene was shown to produce both IL-12 and p40 subunit. The excess production of the p40 subunit as a natural antagonist of IL-12 is a major obstacle of IL-12 gene-based cancer therapy. We previously reported that IL-12N220L gene, which selectively reduces the secretion of the p40 subunit, induces long-lasting stronger type 1 helper T cells (T(H)1) and cytotoxic T lymphocyte (CTL) immunity in hepatitis C virus (HCV) E2 DNA vaccination model and higher protection from challenge with tumor cells expressing E2 than IL-12 in a prophylactic setting. Here, we demonstrated that intratumoral injection of IL-12N220L-expressing adenovirus showed better tumor growth inhibition and higher survival rate than that of IL-12 or granulocyte macrophage-colony stimulating factor (GM-CSF)-expressing adenovirus in a therapeutic setting. In particular, the mice cured by IL-12N220L treatment were protected against intravenous rechallenge of the same tumor cells better than those by IL-12 treatment. In addition, the enhanced antitumor activity of IL-12N220L was confirmed in B16F10 lung metastasis model, which correlated with the frequency of tumor-specific interferon (IFN)-gamma-secreting cells. When tested in CT26/NP tumor that expresses influenza nucleoprotein (NP) as a tumor antigen, IL-12N220L induced stronger NP-specific T(H)1 and CTL responses than IL-12, particularly at a later time point, indicating the generating long-term tumor-specific memory T-cell responses. Moreover, the potent antitumor effects of IL-12N220L were further augmented by combination with chemotherapy using farnesyltransferase inhibitor (FTI), LB42908. Taken together, our results suggest that IL-12N220L is superior to IL-12 in cancer immunotherapy, which can be further enhanced by combination with chemotherapy.
Collapse
Affiliation(s)
- Hyun-Tak Jin
- National Research Laboratory, Department of Life Science, Pohang University of Science & Technology, Pohang 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Patel P, Ashdown D, James N. Is gene therapy the answer for prostate cancer? Prostate Cancer Prostatic Dis 2004; 7 Suppl 1:S14-9. [PMID: 15365577 DOI: 10.1038/sj.pcan.4500743] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate cancer is the third most common cancer, accounting for one in 10 cancer diagnoses in men worldwide during 2000. Despite this high burden of morbidity, there is a lack of curative treatments for locally advanced and metastatic disease. Good anatomical accessibility of the prostate combined with substantial molecular understanding of the disease makes prostate cancer an attractive target for gene therapy. Considerable progress has been made in the development of suitable gene transfer vectors and prostate-targeting strategies. Therapeutic approaches being explored fall into two broad categories: corrective and cytoreductive/cytolytic. There are currently 63 prostate cancer gene therapy clinical trials based on these approaches registered in the United States and United Kingdom. Although significant hurdles remain to be overcome, early clinical trial results are encouraging, suggesting that gene therapy may become an important treatment option for prostate cancer.
Collapse
Affiliation(s)
- P Patel
- Cancer Research UK Institute for Cancer Studies, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | |
Collapse
|
19
|
Summers JB, Kaminski J. Letter to the editor. Cancer Treat Rev 2004; 30:213. [PMID: 15023439 DOI: 10.1016/j.ctrv.2003.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|