1
|
Vascular Occlusion Restores Endothelium-Dependent Effects of Adenosine Previously Diminished by Diabetes: The Preliminary Report. Sci Pharm 2018. [DOI: 10.3390/scipharm86040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the effect of adenosine in non-occluded or occluded femoral arteries (FA) that were isolated from healthy or diabetic Wistar rats. Determining the role of endothelium, and a transmembrane flow of potassium ions in adenosine actions were also of interest. Diabetes was experimentally induced by alloxan, while the vascular occlusion was performed for 45 min on randomly selected FA. Vascular tone changes were continuously recorded. Selected markers of endothelial dysfunction were measured in animal serum. Thus, adenosine produced a concentration-dependent relaxation of rat FA, which was endothelium-dependent, too, except in a group of diabetic animals. Moreover, serum asymmetric dimethylarginine (ADMA) levels were higher in diabetic animals, thus reflecting endothelial dysfunction (ED). Still, an occlusion of FA enhanced the relaxation effect of adenosine in endothelium-intact rings from diabetic animals. Oppositely, in the presence of high potassium concentration in the buffer, adenosine-induced relaxation was significantly reduced in all of the investigated groups/subgroups. These results suggest that in diabetic animals, an occlusion of FA most probably reversed adenosine-induced relaxation from endothelium-independent into an endothelium-dependent relaxation, thus indicating the possible protective mechanism against ischemic episodes of FA in the presence of diabetes.
Collapse
|
2
|
Radenkovic M, Stojanović M, Nešić IM, Prostran M. Angiotensin receptor blockers & endothelial dysfunction: Possible correlation & therapeutic implications. Indian J Med Res 2017; 144:154-168. [PMID: 27934794 PMCID: PMC5206866 DOI: 10.4103/0971-5916.195022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The endothelium is one of the most important constituents of vascular homeostasis, which is achieved through continual and balanced production of different relaxing and contractile factors. When there is a pathological disturbance in release of these products, endothelial dysfunction (ED) will probably occur. ED is considered to be the initial step in the development of atherosclerosis. This pathological activation and inadequate functioning of endothelial cells was shown to be to some extent a reversible process, which all together resulted in increased interest in investigation of different beneficial treatment options. To this point, the pharmacological approach, including for example, the use of angiotensin-converting enzyme inhibitors or statins, was clearly shown to be effective in the improvement of ED. One of many critical issues underlying ED represents instability in the balance between nitric oxide and angiotensin II (Ang II) production. Considering that Ang II was confirmed to be important for the development of ED, the aim of this review article was to summarize the findings of up to date clinical studies associated with therapeutic application of angiotensin receptor blockers and improvement in ED. In addition, it was of interest to review the pleiotropic actions of angiotensin receptor blockers linked to the improvement of ED. The prospective, randomized, double-blind, placebo or active-controlled clinical trials were identified and selected for the final evaluation.
Collapse
Affiliation(s)
- Miroslav Radenkovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Milićević Nešić
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Prostran
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Arsyad A, Dobson GP. Lidocaine relaxation in isolated rat aortic rings is enhanced by endothelial removal: possible role of K v, K ATP channels and A 2a receptor crosstalk. BMC Anesthesiol 2016; 16:121. [PMID: 27914476 PMCID: PMC5135802 DOI: 10.1186/s12871-016-0286-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/24/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lidocaine is an approved local anesthetic and Class 1B antiarrhythmic with a number of ancillary properties. Our aim was to investigate lidocaine's vasoreactivity properties in intact versus denuded rat thoracic aortic rings, and the effect of inhibitors of nitric oxide (NO), prostenoids, voltage-dependent Kv and KATP channels, membrane Na+/K+ pump, and A2a and A2b receptors. METHODS Aortic rings were harvested from adult male Sprague Dawley rats and equilibrated in an organ bath containing oxygenated, modified Krebs-Henseleit solution, pH 7.4, 37 °C. The rings were pre-contracted sub-maximally with 0.3 μM norepinephrine (NE), and the effect of increasing lidocaine concentrations was examined. Rings were tested for viability after each experiment with maximally dilating 100 μM papaverine. The drugs 4-aminopyridine (4-AP), glibenclamide, 5-hydroxydecanoate, ouabain, 8-(3-chlorostyryl) caffeine and PSB-0788 were examined. RESULTS All drugs tested had no significant effect on basal tension. Lidocaine relaxation in intact rings was biphasic between 1 and 10 μM (Phase 1) and 10 and 1000 μM (Phase 2). Mechanical removal of the endothelium resulted in further relaxation, and at lower concentrations ring sensitivity (% relaxation per μM lidocaine) significantly increased 3.5 times compared to intact rings. The relaxing factor(s) responsible for enhancing ring relaxation did not appear to be NO- or prostacyclin-dependent, as L-NAME and indomethacin had little or no effect on intact ring relaxation. In denuded rings, lidocaine relaxation was completely abolished by Kv channel inhibition and significantly reduced by antagonists of the MitoKATP channel, and to a lesser extent the SarcKATP channel. Curiously, A2a subtype receptor antagonism significantly inhibited lidocaine relaxation above 100 μM, but not the A2b receptor. CONCLUSIONS We show that lidocaine relaxation in rat thoracic aorta was biphasic and significantly enhanced by endothelial removal, which did not appear to be NO or prostacyclin dependent. The unknown factor(s) responsible for enhanced relaxation was significantly reduced by Kv inhibition, 5-HD inhibition, and A2a subtype inhibition indicating a potential role for crosstalk in lidocaine's vasoreactivity.
Collapse
Affiliation(s)
- Aryadi Arsyad
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, 4811 Queensland, Australia
- Physiology Department, Medical Faculty, Hasanuddin University, Jl. Perintis Kemerdekaan, Km. 10, 90213 Tamalanrea, Makassar Indonesia
| | - Geoffrey P. Dobson
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, 4811 Queensland, Australia
| |
Collapse
|
4
|
Arsyad A, Dobson GP. Adenosine relaxation in isolated rat aortic rings and possible roles of smooth muscle Kv channels, KATP channels and A2a receptors. BMC Pharmacol Toxicol 2016; 17:23. [PMID: 27211886 PMCID: PMC4876563 DOI: 10.1186/s40360-016-0067-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/29/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND An area of ongoing controversy is the role adenosine to regulate vascular tone in conduit vessels that regulate compliance, and the role of nitric oxide (NO), potassium channels and receptor subtypes involved. The aim of our study was to investigate adenosine relaxation in rat thoracic aortic rings, and the effect of inhibitors of NO, prostanoids, Kv, KATP channels, and A2a and A2b receptors. METHODS Aortic rings were freshly harvested from adult male Sprague Dawley rats and equilibrated in an organ bath containing oxygenated, modified Krebs-Henseleit solution, 11 mM glucose, pH 7.4, 37 °C. Isolated rings were pre-contracted sub-maximally with 0.3 μM norepinephrine (NE), and the effect of increasing concentrations of adenosine (1 to 1000 μM) were examined. The drugs L-NAME, indomethacin, 4-aminopyridine (4-AP), glibenclamide, 5-hydroxydecanoate, ouabain, 8-(3-chlorostyryl) caffeine and PSB-0788 were examined in intact and denuded rings. Rings were tested for viability after each experiment. RESULTS Adenosine induced a dose-dependent, triphasic relaxation response, and the mechanical removal of the endothelium significantly deceased adenosine relaxation above 10 μM. Interestingly, endothelial removal significantly decreased the responsiveness (defined as % relaxation per μM adenosine) by two-thirds between 10 and 100 μM, but not in the lower (1-10 μM) or higher (>100 μM) ranges. In intact rings, L-NAME significantly reduced relaxation, but not indomethacin. Antagonists of voltage-dependent Kv (4-AP), sarcolemma KATP (glibenclamide) and mitochondrial KATP channels (5-HD) led to significant reductions in relaxation in both intact and denuded rings, with ouabain having little or no effect. Adenosine-induced relaxation appeared to involve the A2a receptor, but not the A2b subtype. CONCLUSIONS It was concluded that adenosine relaxation in NE-precontracted rat aortic rings was triphasic and endothelium-dependent above 10 μM, and relaxation involved endothelial nitric oxide (not prostanoids) and a complex interplay between smooth muscle A2a subtype and voltage-dependent Kv, SarcKATP and MitoKATP channels. The possible in vivo significance of the regulation of arterial compliance to left ventricular function coupling is discussed.
Collapse
Affiliation(s)
- Aryadi Arsyad
- Physiology Department, Medical Faculty, Hasanuddin University, Jl. Perintis Kemerdekaan, Km. 10, Tamalanrea, Makassar, 90213, Indonesia
| | - Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Queensland, 4811, Australia.
| |
Collapse
|
5
|
El-Mas MM, El-Gowilly SM, Elsalakawy LK, El-Gowelli HM. Oestrogen compromises the facilitatory effect of chronic nicotine on adenosine A2Breceptor-K+channel-mediated renal vasodilation. Clin Exp Pharmacol Physiol 2014; 41:600-7. [DOI: 10.1111/1440-1681.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/20/2014] [Accepted: 05/05/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Alexandria University; Alexandria Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Alexandria University; Alexandria Egypt
| | - Lamia K Elsalakawy
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Alexandria University; Alexandria Egypt
| | - Hanan M El-Gowelli
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Alexandria University; Alexandria Egypt
| |
Collapse
|
6
|
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
7
|
El-Gowelli HM, El-Gowilly SM, Elsalakawy LK, El-Mas MM. Nitric oxide synthase/K+ channel cascade triggers the adenosine A(2B) receptor-sensitive renal vasodilation in female rats. Eur J Pharmacol 2013; 702:116-25. [PMID: 23396225 DOI: 10.1016/j.ejphar.2013.01.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 01/02/2023]
Abstract
Adenosine A2B-receptors mediate the adenosine-evoked renal vasodilations in male rats. Here, we tested whether this finding could be replicated in female renal vasculature and whether K(+) hyperpolarization induced by nitric oxide synthase (NOS) and/or heme oxygenase (HO) accounts for adenosine A2B receptor-sensitive renal vasodilations. In phenylephrine-preconstricted perfused kidneys, vasodilations caused by the adenosine analog 5'-N-ethylcarboxamidoadenosine (NECA, 1.6-50 nmol) were attenuated after blockade of adenosine A2B (alloxazine) but not A2A [8-(3-Chlorostyryl) caffeine, CSC] or A3 receptors (N-(2-methoxyphenyl)-N'-[2-(3-pyridinyl)-4-quinazolinyl]-urea, VUF 5574), confirming the preferential involvement of A2B receptors in NECA responses. NOS activation mediated the A2B receptor-mediated NECA response because: (i) NOS inhibition (N(ω)-nitro-L-arginine-methyl ester, L-NAME) attenuated NECA vasodilations, (ii) concurrent L-NAME/alloxazine exposure caused more inhibition of NECA responses, and (iii) inhibition of NECA responses by alloxazine disappeared in L-arginine-supplemented preparations. Although HO inhibition (zinc protoporphyrin) failed to modify NECA responses, the attenuation of these responses by alloxazine disappeared in hemin (HO inducer)-treated preparations. NECA vasodilations were also attenuated after exposure to BaCl2, glibenclamide but not tetraethylammonium (blockers of inward rectifier, ATP-sensitive, and Ca(2+)-dependent K(+)-channels, respectively). The combined alloxazine/BaCl2/glibenclamide infusion caused no additional attenuation of NECA vasodilations. Vasodilations caused by minoxidil (K(+)-channel opener) were reduced by L-NAME or BaCl2/glibenclamide, supporting the importance of NOS signaling in K(+) hyperpolarization. NECA or minoxidil vasodilations were attenuated by ouabain, Na(+)/K(+)-ATPase inhibitor, and in KCl-preconstricted preparations. Overall, facilitation of adenosine A2B receptor/NOS/K(+) channel/Na(+)/K(+)-ATPase cascade underlies NECA vasodilations in female rats. Enhancing HO activity, albeit not causally related to NECA vasodilations, improves the pharmacologically compromised (alloxazine) NECA response.
Collapse
Affiliation(s)
- Hanan M El-Gowelli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | | |
Collapse
|
8
|
Therapeutic approach in the improvement of endothelial dysfunction: the current state of the art. BIOMED RESEARCH INTERNATIONAL 2013; 2013:252158. [PMID: 23509696 PMCID: PMC3581156 DOI: 10.1155/2013/252158] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/30/2012] [Indexed: 01/05/2023]
Abstract
The endothelium has a central role in the regulation of blood flow through continuous modulation of vascular tone. This is primarily accomplished by balanced release of endothelial relaxing and contractile factors. The healthy endothelial cells are essential for maintenance of vascular homeostasis involving antioxidant, anti-inflammatory, pro-fibrinolytic, anti-adhesive, or anticoagulant effects. Oppositely, endothelial dysfunction is primarily characterized by impaired regulation of vascular tone as a result of reduced endothelial nitric oxide (NO) synthase activity, lack of cofactors for NO synthesis, attenuated NO release, or increased NO degradation. So far, the pharmacological approach in improving/reversal of endothelial dysfunction was shown to be beneficial in clinical trials that have investigated actions of different cardiovascular drugs. The aim of this paper was to summarize some of the latest clinical findings related to therapeutic possibilities for improving endothelial dysfunction in different pathological conditions. In the majority of presented clinical investigations, the assessment of improvement or reversal of endothelial dysfunction was performed through the flow-mediated dilatation measurement, and in some of those endothelial progenitor cells' count was used for the same purpose. Still, given the fast and continuous development of this field, the evidence acquisition included the MEDLINE data base screening and the selection of articles published between 2010 and 2012.
Collapse
|
9
|
Radenković M, Stojanović M, Janković R, Topalović M, Stojiljković M. Combined contribution of endothelial relaxing autacoides in the rat femoral artery response to CPCA: an adenosine A2 receptor agonist. ScientificWorldJournal 2012; 2012:143818. [PMID: 22619589 PMCID: PMC3349095 DOI: 10.1100/2012/143818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/24/2011] [Indexed: 11/17/2022] Open
Abstract
We examined the contribution of endothelial relaxing factors and potassium channels in actions of CPCA, potent adenosine A(2) receptor agonist, on isolated intact male rat femoral artery (FA). CPCA produced concentration-dependent relaxation of FA, which was notably, but not completely, reduced after endothelial denudation. DPCPX, A(1) receptor antagonist, had no significant effect, while SCH 58261 (A(2A) receptor antagonist) notably reduced CPCA-evoked effect. Pharmacological inhibition of nitric oxide synthase or cyclooxygenase comparably reduced CPCA-evoked action, still in a lesser degree than after denudation. In the presence of buffer with high K(+) (100 mM), CPCA-produced relaxations were almost abolished. TEA (nonselective K(Ca) blocker), glibenclamide (K(ATP) blocker), Ba(++) (K(IR) blocker), or ouabain (Na(+)/K(+)-ATPase inhibitor) did not change CPCA-induced relaxation. Concentration-response curve for CPCA was significantly shifted to the right after the incubation of apamin (SK channel blocker). CPCA produced concentration-dependent relaxation of FA that was partly dependent on endothelial cells. Endothelium-related portion of CPCA-elicited effect was mediated by combined action of endothelial NO, prostacyclin, and EDHF after activation of endothelial A(2A) receptors. Small conductance K(Ca) channels were involved in this action.
Collapse
Affiliation(s)
- Miroslav Radenković
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, P.O. Box 38, 11129 Belgrade, Serbia.
| | | | | | | | | |
Collapse
|
10
|
Wang S, Zhang Y, Wier WG, Yu X, Zhao M, Hu H, Sun L, He X, Wang Y, Wang B, Zang W. Role of store-operated Ca(2+) entry in adenosine-induced vasodilatation of rat small mesenteric artery. Am J Physiol Heart Circ Physiol 2009; 297:H347-54. [PMID: 19429831 DOI: 10.1152/ajpheart.00060.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) has recently been proposed to contribute to Ca(2+) influx in vascular smooth muscle cells (VSMCs). Adenosine is known for its protective role against hypoxia and ischemia by increasing nutrient and oxygen supply through vasodilation. This study was designed to examine the hypothesis that SOCE have a functional role in adenosine-induced vasodilation. Small mesenteric resistance arteries and mesenteric VSMCs were obtained from rats. Isometric tensions of isolated artery rings were measured by a sensitive myograph system. Laser-scanning confocal microscopy was used to determine the intracellular Ca(2+) concentration of fluo 3-loaded VSMCs. Adenosine (0.1-100 microM) relaxed artery rings that were precontracted by phenylephrine in a concentration-dependent manner. In cultured mesenteric VSMCs, passive store depletion by thapsigargin and active store depletion by phenylephrine both induced Ca(2+) influx due to SOCE. Adenosine inhibited SOCE-mediated increases in cytosolic Ca(2+) levels evoked by the emptying of the stores. In isolated artery rings, adenosine inhibited SOCE-induced contractions due to store depletion. A(2A) receptor antagonism with SCH-58261 and adenylate cyclase inhibition with SQ-22536 largely attenuated adenosine responses. The cAMP analog 8-bromo-cAMP mimicked the effects of adenosine on SOCE. Our results indicate a novel mechanism of vasodilatation by adenosine that involves regulation of SOCE through the cAMP signaling pathway due to activation of adenosine A(2A) receptors.
Collapse
Affiliation(s)
- Shengpeng Wang
- Department of Pharmacology, School of Medicine, Xi'an Jiaotong University, Xi'an, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Grbovic L, Djokic J, Radenkovic M, Pesic S. Analysis of the Vasorelaxant Action of Angiotensin II in the Isolated Rat Renal Artery. J Pharmacol Sci 2008; 106:376-84. [DOI: 10.1254/jphs.fp0071268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Li N, Harris PD, Zakaria ER, Matheson PJ, Garrison RN. Role of Adenosine Receptor Subtypes in Rat Jejunum in Unfed State Versus Glucose-Induced Hyperemia. J Surg Res 2007; 139:51-60. [PMID: 17291535 DOI: 10.1016/j.jss.2006.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 08/14/2006] [Accepted: 08/21/2006] [Indexed: 11/16/2022]
Abstract
BACKGROUND Adenosine is a key mediator in intestinal absorptive hyperemia. This study examines the role of adenosine receptor subtypes in the intestinal microvasculature at rest (unfed) and during glucose exposure. MATERIALS AND METHODS Intravital video microscopy was used to record vascular responses in the rat jejunum in unfed resting states versus active glucose absorption. Two series of experiments were performed: topical adenosine alone and with adenosine receptor antagonists, and topical glucose alone and with adenosine receptor antagonists. RESULTS We found that distal premucosal arterioles were more reactive to adenosine than were larger inflow arterioles. The selective A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (200 nm), and the A2b receptor antagonist, alloxazine (60 microm), decreased the sensitivity and reactivity of the inflow and premucosal arterioles to adenosine, whereas the selective A2a receptor antagonist 8-(3-chlorostyryl)caffeine (CSC) (200 nm) had no effect on inflow arteriole diameter and only slightly reduced the premucosal arteriolar sensitivity to adenosine. As previously observed, isotonic glucose caused vasodilation (24 +/- 3.4% of the control) in the distal premucosal arterioles. Conversely, premucosal arterioles did not dilate during exposure of the intestine to isotonic mannitol solution that is not actively absorbed. Adenosine A2a RA CSC and A2b RA alloxazine attenuated glucose-induced vasodilation, whereas adenosine A1 RA DPCPX completely abolished glucose-induced dilation. CONCLUSIONS These findings suggest that resting tone in premucosal vessels appears to be responsive to adenosine mediation rather than inflow arteriolar tone; the adenosine A1, A2a, and A2b receptors all contribute to adenosine-mediated vasodilation in the intestine, with the greatest attenuation seen with A1 receptor antagonism; and other vasoactive mediators might also contribute to glucose-induced jejunal vasodilation, and interaction might exist between adenosine receptors and other mediators.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology and Biophysics, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | | | | | |
Collapse
|
13
|
Hansen PB, Hashimoto S, Oppermann M, Huang Y, Briggs JP, Schnermann J. Vasoconstrictor and vasodilator effects of adenosine in the mouse kidney due to preferential activation of A1 or A2 adenosine receptors. J Pharmacol Exp Ther 2005; 315:1150-7. [PMID: 16120812 DOI: 10.1124/jpet.105.091017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The present experiments in mice were performed to determine the steady-state effects of exogenous adenosine on the vascular resistance of the whole kidney, of superficial blood vessels, and of afferent arterioles. The steady-state effect of an intravenous infusion of adenosine (5, 10, and 20 microg/min) in wild-type mice was vasodilatation as evidenced by significant reductions of renal and superficial vascular resistance. Resistance decreases were augmented in adenosine 1 receptor (A1AR) -/- mice. Renal vasodilatation by the A2aAR agonist CGS 21680A [2-p-(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxamido-adenosine hydrochloride] (0.25, 0.5, and 1 microg/kg/min) and inhibition of adenosine-induced relaxation by the A2aAR antagonist ZM-241385 [4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol] (20 mg/kg) suggests that the reduction of renovascular resistance was largely mediated by A2aAR. After treatment with Nomega-nitro-L-arginine methyl ester (L-NAME) adenosine was unable to alter superficial blood flow and resistance significantly indicating that adenosine-induced dilatation is NO-dependent. Absence of a dilatory effect in endothelial nitric-oxide synthase (NOS) -/- mice suggests endothelial NOS as the source of NO. When infused into the subcapsular interstitium, adenosine reduced superficial blood flow through A1AR activation. Adenosine (10(-7) M) constricted isolated perfused afferent arterioles when added to the bath but not when added to the luminal perfusate. Luminal adenosine caused vasoconstriction in the presence of L-NAME or the A2AR antagonist 3,7-dimethyl-1-(2-propynyl)xanthine. Our data show that global elevation of renal adenosine causes steady-state vasorelaxation resulting from adenosine 2 receptor (A2AR)-mediated generation of NO. In contrast, selective augmentation of adenosine around afferent arterioles causes persistent vasoconstriction, indicating A1AR dominance. Thus, adenosine is a renal constrictor only when it can interact with afferent arteriolar A1AR without affecting the bulk of renal A2AR at the same time.
Collapse
Affiliation(s)
- P B Hansen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 10, Room 4 D51, 10 Center Dr., MSC 1370, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
14
|
Wierema TKA, Houben AJHM, Kroon AA, Postma CT, Koster D, van Engelshoven JMA, Smits P, de Leeuw PW. Mechanisms of adenosine-induced renal vasodilatation in hypertensive patients. J Hypertens 2005; 23:1731-6. [PMID: 16093919 DOI: 10.1097/01.hjh.0000180160.89264.9d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Adenosine is an endogenous nucleoside with potent vasodilatory capacities, released under ischaemic conditions in particular. Its mechanisms of action, however, remain elusive. OBJECTIVE To evaluate the role of adenosine, using a non-selective purinergic receptor antagonist, and the possible involvement of nitric oxide in this mechanism. In addition, the production of renin and catecholamines was studied during infusion of adenosine, caffeine, or both. METHODS Thirty-three hypertensive patients who underwent diagnostic renal angiography received intrarenal infusions of adenosine either alone or in combination with caffeine or the nitric oxide synthase inhibitor, N-monomethyl-L-arginine (L-NMMA). The effects on renal blood flow (RBF) were assessed by the xenon-133 washout technique and both arterial and renal venous blood samples were taken for measurement of renin and catecholamine concentrations. Intra-arterial blood pressure and heart rate were monitored continuously. RESULTS Adenosine induced a dose-dependent vasodilatation. Caffeine alone did not change RBF, but shifted the dose-response curve of adenosine to the right during concomitant infusion of caffeine. RBF during combined infusion of L-NMMA and adenosine was not different from that during adenosine alone, but the decrease in renal vascular resistance was less pronounced during this combination. Renin secretion did not change during the infusion of either adenosine alone or adenosine in combination with caffeine. Catecholamine concentrations also did not change during any of the experiments. CONCLUSIONS Adenosine induces vasodilatation in the human hypertensive kidney and this effect is mediated by the adenosine receptor. Nitric oxide plays, at most, a minor part in the adenosine-induced vasodilatation. Furthermore, renin secretion is not affected by adenosine and caffeine.
Collapse
Affiliation(s)
- Thomas K A Wierema
- Departments of Internal Medicine, University Hospital Maastricht, 6202 AZ Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
El-Mas MM, Mohy El-Din MM, El-gowilly SM, Sharabi FM. Regional and endothelial differences in cyclosporine attenuation of adenosine receptor-mediated vasorelaxations. J Cardiovasc Pharmacol 2004; 43:562-73. [PMID: 15085068 DOI: 10.1097/00005344-200404000-00012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present study investigated the acute effects of the immunosuppressant drug cyclosporine A on vasorelaxations evoked via activation of adenosine receptors in the phenylephrine-preconstricted rat perfused kidney and isolated aorta. The roles of endothelial relaxing factors in this interaction were also evaluated. The adenosine analogue 5'-N-ethylcarboxamidoadenosine (NECA; kidney, 6 x 10(-9)-1 x 10(-7) mol; aorta, 1 x 10(-9)-1 x 10(-5) M) elicited dose-dependent vasorelaxations. In the perfused kidney, NECA responses were similarly and significantly attenuated by N-nitro-L-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor) or tetraethylammonium (K channel blocker) versus no effect for diclophenac (cyclooxygenase inhibitor). NECA relaxations in the aorta were reduced by the three inhibitors; the reduction in the response evoked by the highest dose of NECA (1 x 10(-5) M) amounted to 37.7 +/- 2.0% (L-NAME), 19.8 +/- 1.7% (tetraethylammonium), and 29.4 +/- 1.1% (diclophenac). A combination of the three inhibitors almost abolished NECA relaxations in the two preparations. Cyclosporine (2 microM) reduced NECA relaxations in the two preparations. In the aorta, cyclosporine attenuation of NECA responses was significantly reduced after exposure to L-NAME or diclophenac but not tetraethyl-ammonium, suggesting selective involvement of nitric oxide and vasodilator prostanoids in the interaction. In contrast, the cyclosporine attenuation of NECA responses in the kidney was reduced by L-NAME or tetraethylammonium. L-arginine, a nitric oxide substrate, partially restored NECA relaxations in cyclosporine-treated preparations. These findings demonstrate that cyclosporine attenuates endothelium-dependent vasorelaxations elicited via activation of adenosine receptors and highlight the interesting possibility that the relative contribution of the endothelial relaxing factors to cyclosporine-NECA interaction is largely region dependent.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| | | | | | | |
Collapse
|
16
|
Hansen PB, Schnermann J. Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am J Physiol Renal Physiol 2003; 285:F590-9. [PMID: 12954591 DOI: 10.1152/ajprenal.00051.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine is an ATP breakdown product that in most vessels causes vasodilatation and that contributes to the metabolic control of organ perfusion, i.e., to the match between oxygen demand and oxygen delivery. In the renal vasculature, in contrast, adenosine can produce vasoconstriction, a response that has been suggested to be an organ-specific version of metabolic control designed to restrict organ perfusion when transport work increases. However, the vasoconstriction elicited by an intravenous infusion of adenosine is only short lasting, being replaced within 1-2 min by vasodilatation. It appears that the steady-state response to the increase of plasma adenosine levels above normal resulting from the infusion is global renal vasorelaxation that is the result of A2AR activation in most parts of the renal vasculature, including larger renal arteries, juxtamedullary afferent arterioles, efferent arterioles, and medullary vessels. A2AR-mediated vasorelaxation is probably facilitated by endothelial receptors that cause the release of nitric oxide and other endothelial relaxing factors. In contrast, isolated perfused afferent arterioles of superficial and midcortical nephrons of rabbit and mouse, especially in their most distal segment at the entrance to the glomerulus, respond to adenosine with persistent vasoconstriction, indicating predominant or exclusive expression of A1AR. A1AR in afferent arterioles are selectively activated from the interstitial aspect of the vessel. This property can dissociate A1AR activation from changes in vascular adenosine concentration, a characteristic that is ideally suited for the role of renal adenosine as a paracrine factor in the control of glomerular function.
Collapse
Affiliation(s)
- Pernille B Hansen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Grbović L, Radenković M. Analysis of adenosine vascular effect in isolated rat aorta: possible role of Na+/K+-ATPase. PHARMACOLOGY & TOXICOLOGY 2003; 92:265-71. [PMID: 12787258 DOI: 10.1034/j.1600-0773.2003.920603.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present experiments were undertaken in order to examine the effect of adenosine in isolated rat aorta, to investigate the possible role of intact endothelium and endothelial relaxing factors in this action and to determine which population of adenosine receptors is involved in rat aorta response to adenosine. Adenosine (0.1-300 microM) produced concentration-dependent (intact rings: pD2=4.39+/-0.09) and endothelium-independent (denuded rings: pD2=4.52+/-0.12) relaxation of isolated rat aorta. In the presence of high concentration of K+ (100 mM) adenosine-evoked relaxation was significantly reduced (maximal relaxation in denuded rings: control - 92.1+/-9.8 versus K+- 54.4+/-5.0). Similar results were obtained after incubation of ouabain (100 microM) or glibenclamide (1 microM). In K+-free solution, K+ (1-10 mM)-induced rat aorta relaxant response was significantly inhibited by ouabain (100 microM). Application of indomethacin (10 microM), NG-nitro-L-arginine (10 microM) or tetraethylammonium (500 microM) did not alter the adenosine-elicited effect in rat aorta. 8-(3-Chlorostyril)-caffeine (0.3-3 microM), a selective A2A-receptor antagonist, significantly reduced adenosine-induced relaxation of rat aorta in a concentration-dependent manner (pKB=6.57). Conversely, 1,3-dipropyl-8-cyclopentylxanthine (10 nM), an A1-receptor antagonist, did not affect adenosine-evoked dilatation. These results indicate that in isolated rat aorta, adenosine produces endothelium-independent relaxation, which is most probably dependent upon activation of smooth muscle Na+/K+-ATPase, and opening of ATP-sensitive K+ channels, to a smaller extent. According to receptor analysis, vasorelaxant action of adenosine in rat aorta is partly induced by activation of smooth muscle adenosine A2A receptors.
Collapse
MESH Headings
- Adenosine/pharmacology
- Adenosine/physiology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- In Vitro Techniques
- Male
- Muscle Relaxation/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Purinergic P1 Receptor Agonists
- Purinergic P1 Receptor Antagonists
- Rats
- Rats, Wistar
- Receptor, Adenosine A2A
- Receptors, Purinergic P1/physiology
- Sodium-Potassium-Exchanging ATPase/metabolism
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Leposava Grbović
- Department of Clinical Pharmacology, Pharmacology and Toxicology, Medical Faculty, University of Belgrade, P.O. Box 840, 11000 Belgrade, Yugoslavia.
| | | |
Collapse
|