1
|
Harper AA, Adams DJ. Electrical properties and synaptic transmission in mouse intracardiac ganglion neurons in situ. Physiol Rep 2021; 9:e15056. [PMID: 34582125 PMCID: PMC8477906 DOI: 10.14814/phy2.15056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
The intrinsic cardiac nervous system represents the final site of signal integration for neurotransmission to the myocardium to enable local control of cardiac performance. The electrophysiological characteristics and ganglionic transmission of adult mouse intrinsic cardiac ganglion (ICG) neurons were investigated using a whole-mount ganglion preparation of the excised right atrial ganglion plexus and intracellular microelectrode recording techniques. The passive and active electrical properties of ICG neurons and synaptic transmission including synaptic response strength and efficacy as a function of stimulation frequency were examined. The resting membrane potential and input resistance of ICG neurons were -47.9 ± 4.0 mV and 197.2 ± 81.5 MΩ, respectively. All neurons had somatic action potentials with overshoots of >+15 mV and after-hyperpolarizations having an average of 10 mV amplitude and ~45 ms half duration. Phasic discharge activities were recorded from the majority of neurons studied and several types of excitatory synaptic responses were recorded following inputs from the vagus or interganglionic nerve trunk(s). Most postganglionic neurons (>75%) received a strong, suprathreshold synaptic input and reliably followed high-frequency repetitive nerve stimulation up to at least 50 Hz. Nerve-evoked synaptic transmission was blocked by extracellular Cd2+ , ω-conotoxin CVIE, or α-conotoxin RegIIA, a selective α3-containing nicotinic acetylcholine receptor antagonist. Synaptic transmission and the electrical properties of murine ICG neurons contribute to the pattern of discharge which regulates chronotropic, dromotropic, and inotropic elements of cardiac function.
Collapse
Affiliation(s)
- Alexander A. Harper
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| | - David J. Adams
- Illawarra Health and Medical Research Institute (IHMRI)University of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
2
|
Chen X, Zeng M, He D, Yan X, Chen H, Chen Y, Xia C, Wang J, Shen L, Zhu D, Wang J. Asthmatic Augmentation of Airway Vagal Activity Involves Decreased Central Expression and Activity of CD73 in Rats. ACS Chem Neurosci 2019; 10:2809-2822. [PMID: 30913879 DOI: 10.1021/acschemneuro.9b00023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The severity of asthma is closely related to the intensity of airway vagal activity; however, it is unclear how airway vagal activity is centrally augmented in asthma. Here we report that in an asthma model of male Sprague-Dawley rats, the expression and activity of ecto-5'-nucleotidase (CD73) were decreased in airway vagal centers, ATP concentration in cerebral spinal fluid was increased, and the inhibitory and excitatory airway vagal responses to intracisternally injected ATP (5 μmol) and CD73 inhibitor AMPCP (5 μmol), respectively, were attenuated. In airway vagal preganglionic neurons (AVPNs) identified in medullary slices of neonatal Sprague-Dawley rats, AMPCP (100 μmol·L-1) caused excitatory effects, as are shown in patch-clamp by depolarization, increased neuronal discharge, and facilitated spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, exogenous ATP (100 μmol·L-1, 1 mmol·L-1) primarily caused inhibitory effects, which are similar to those induced by exogenous adenosine (100 μmol·L-1). Adenosine A1 receptor antagonist CPT (5 μmol·L-1) blocked the inhibition of sEPSCs induced by 100 μmol·L-1 exogenous ATP and that by 100 μmol·L-1 exogenous adenosine, whereas 50 μmol·L-1 CPT converted the inhibition of sEPSCs induced by 1 mmol·L-1 ATP to facilitation that was blocked by addition of P2X receptor antagonist PPADS (20 μmol·L-1). These results demonstrate that in rat, the sEPSCs of AVPNs are facilitated by extracellular ATP via activation of P2X receptors and inhibited by extracellular adenosine via activation of A1 receptors; in experimental asthma, decreased CD73 expression and activity in airway vagal centers contribute to the augmentation of airway vagal activity through imbalanced ATP/ADO modulation of AVPNs.
Collapse
Affiliation(s)
- Xingxin Chen
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ding He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xianxia Yan
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yonghua Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Linlin Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Danian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jijiang Wang
- Department of Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Burnstock G. Purinergic signalling in the gastrointestinal tract and related organs in health and disease. Purinergic Signal 2014; 10:3-50. [PMID: 24307520 PMCID: PMC3944042 DOI: 10.1007/s11302-013-9397-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/04/2023] Open
Abstract
Purinergic signalling plays major roles in the physiology and pathophysiology of digestive organs. Adenosine 5'-triphosphate (ATP), together with nitric oxide and vasoactive intestinal peptide, is a cotransmitter in non-adrenergic, non-cholinergic inhibitory neuromuscular transmission. P2X and P2Y receptors are widely expressed in myenteric and submucous enteric plexuses and participate in sympathetic transmission and neuromodulation involved in enteric reflex activities, as well as influencing gastric and intestinal epithelial secretion and vascular activities. Involvement of purinergic signalling has been identified in a variety of diseases, including inflammatory bowel disease, ischaemia, diabetes and cancer. Purinergic mechanosensory transduction forms the basis of enteric nociception, where ATP released from mucosal epithelial cells by distension activates nociceptive subepithelial primary afferent sensory fibres expressing P2X3 receptors to send messages to the pain centres in the central nervous system via interneurons in the spinal cord. Purinergic signalling is also involved in salivary gland and bile duct secretion.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
4
|
Burnstock G, Fredholm BB, North RA, Verkhratsky A. The birth and postnatal development of purinergic signalling. Acta Physiol (Oxf) 2010; 199:93-147. [PMID: 20345419 DOI: 10.1111/j.1748-1716.2010.02114.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purinergic signalling system is one of the most ancient and arguably the most widespread intercellular signalling system in living tissues. In this review we present a detailed account of the early developments and current status of purinergic signalling. We summarize the current knowledge on purinoceptors, their distribution and role in signal transduction in various tissues in physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| | | | | | | |
Collapse
|
5
|
Dyavanapalli J, Rimmer K, Harper AA. Reactive oxygen species alters the electrophysiological properties and raises [Ca2+]i in intracardiac ganglion neurons. Am J Physiol Regul Integr Comp Physiol 2010; 299:R42-54. [PMID: 20445155 PMCID: PMC2917765 DOI: 10.1152/ajpregu.00053.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the effects of the reactive oxygen species (ROS) donors hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (t-BHP) on the intrinsic electrophysiological characteristics: ganglionic transmission and resting [Ca2+]i in neonate and adult rat intracardiac ganglion (ICG) neurons. Intracellular recordings were made using sharp microelectrodes filled with either 0.5 M KCl or Oregon Green 488 BAPTA-1, allowing recording of electrical properties and measurement of [Ca2+]i. H2O2 and t-BHP both hyperpolarized the resting membrane potential and reduced membrane resistance. In adult ICG neurons, the hyperpolarizing action of H2O2 was reversed fully by Ba2+ and partially by tetraethylammonium, muscarine, and linopirdine. H2O2 and t-BHP reduced the action potential afterhyperpolarization (AHP) amplitude but had no impact on either overshoot or AHP duration. ROS donors evoked an increase in discharge adaptation to long depolarizing current pulses. H2O2 blocked ganglionic transmission in most ICG neurons but did not alter nicotine-evoked depolarizations. By contrast, t-BHP had no significant action on ganglionic transmission. H2O2 and t-BHP increased resting intracellular Ca2+ levels to 1.6 ( ± 0.6, n = 11, P < 0.01) and 1.6 ( ± 0.3, n = 8, P < 0.001), respectively, of control value (1.0, ∼60 nM). The ROS scavenger catalase prevented the actions of H2O2, and this protection extended beyond the period of application. Superoxide dismutase partially shielded against the action of H2O2, but this was limited to the period of application. These data demonstrate that ROS decreases the excitability and ganglionic transmission of ICG neurons, attenuating parasympathetic control of the heart.
Collapse
Affiliation(s)
- Jhansi Dyavanapalli
- Division of Molecular Physiology, James Black Centre, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | | | | |
Collapse
|
6
|
Dyavanapalli J, Rimmer K, Harper AA. The action of high K+ and aglycaemia on the electrical properties and synaptic transmission in rat intracardiac ganglion neurones in vitro. Exp Physiol 2008; 94:201-12. [PMID: 18978036 PMCID: PMC2713859 DOI: 10.1113/expphysiol.2008.044784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have investigated the action of two elements of acute ischaemia, high potassium and aglycaemia, on the electrophysiological properties and ganglionic transmission of adult rat intracardiac ganglion (ICG) neurones. We used a whole-mount ganglion preparation of the right atrial ganglion plexus and sharp microelectrode recording techniques. Increasing extracellular K+ from its normal value of 4.7 mm to 10 mm decreased membrane potential and action potential after-hyperpolarization amplitude but otherwise had no effect on postganglionic membrane properties. It did, however, reduce the ability of synaptically evoked action potentials to follow high-frequency (100 Hz) repetitive stimulation. A further increase in K+ changed both the passive and the active membrane properties of the postganglionic neurone: time constant, membrane resistance and action potential overshoot were all decreased in high K+ (20 mm). The ICG neurones display a predominantly phasic discharge in response to prolonged depolarizing current pulses. High K+ had no impact on this behaviour but reduced the time-dependent rectification response to hyperpolarizing currents. At 20 mm, K+ practically blocked ganglionic transmission in most neurones at all frequencies tested. Aglycaemia, nominally glucose-free physiological saline solution (PSS), increased the time constant and membrane resistance of ICG neurones but otherwise had no action on their passive or active properties or ganglionic transmission. However, the combination of aglycaemia and 20 mm K+ displayed an improvement in passive properties and ganglionic transmission when compared with 20 mm K+ PSS. These data indicate that the presynaptic terminal is the primary target of high extracellular potassium and that aglycaemia may have protective actions against this challenge.
Collapse
|
7
|
Sperlágh B, Heinrich A, Csölle C. P2 receptor-mediated modulation of neurotransmitter release-an update. Purinergic Signal 2007; 3:269-84. [PMID: 18404441 PMCID: PMC2072919 DOI: 10.1007/s11302-007-9080-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 08/28/2007] [Indexed: 11/26/2022] Open
Abstract
Presynaptic nerve terminals are equipped with a number of presynaptic auto- and heteroreceptors, including ionotropic P2X and metabotropic P2Y receptors. P2 receptors serve as modulation sites of transmitter release by ATP and other nucleotides released by neuronal activity and pathological signals. A wide variety of P2X and P2Y receptors expressed at pre- and postsynaptic sites as well as in glial cells are involved directly or indirectly in the modulation of neurotransmitter release. Nucleotides are released from synaptic and nonsynaptic sites throughout the nervous system and might reach concentrations high enough to activate these receptors. By providing a fine-tuning mechanism these receptors also offer attractive sites for pharmacotherapy in nervous system diseases. Here we review the rapidly emerging data on the modulation of transmitter release by facilitatory and inhibitory P2 receptors and the receptor subtypes involved in these interactions.
Collapse
Affiliation(s)
- Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, POB 67, Budapest, 1450, Hungary,
| | | | | |
Collapse
|
8
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
9
|
Rimmer K, Harper AA. Developmental Changes in Electrophysiological Properties and Synaptic Transmission in Rat Intracardiac Ganglion Neurons. J Neurophysiol 2006; 95:3543-52. [PMID: 16611840 DOI: 10.1152/jn.01220.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We charted postnatal changes in the intrinsic electrophysiological properties and synaptic responses of rat intrinsic cardiac ganglion (ICG) neurons. We developed a whole-mount ganglion preparation of the excised right atrial ganglion plexus. Using intracellular recordings and nerve stimulation we tested the hypothesis that substantial transformations in the intrinsic electrical characteristics and synaptic transmission accompany postnatal development. Membrane potential ( Em) did not change but time constant (τ) and cell capacitance increased with postnatal development. Accordingly, input resistance ( Rin) decreased but specific membrane resistance ( Rm) increased postnatally. Comparison of the somatic active membrane properties revealed significant changes in electrical phenotype. All neonatal neurons had somatic action potentials (APs) with small overshoots and small afterhyperpolarizations (AHPs). Adult neurons had somatic APs with large overshoots and large AHP amplitudes. The range of AHP duration was larger in adults than in neonates. The AP characteristics of juvenile neurons resembled those of adults, with the exception of AHP duration, which fell midway between neonate and adult values. Phasic, multiply adapting, and tonic evoked discharge activities were recorded from ICG neurons. Most neurons displayed phasic discharge at each developmental stage. All neurons received excitatory synaptic inputs from the vagus or interganglionic nerve trunk(s), the strength of which did not change significantly with postnatal age. The changes in the electrophysiological properties of the postganglionic neuron suggest that increased complexity of parasympathetic regulation of cardiac function accompanies postnatal development.
Collapse
Affiliation(s)
- Katrina Rimmer
- Division of Molecular Physiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
10
|
Dunn PM, Gever J, Ruan HZ, Burnstock G. Developmental changes in heteromeric P2X(2/3) receptor expression in rat sympathetic ganglion neurons. Dev Dyn 2006; 234:505-11. [PMID: 15973739 DOI: 10.1002/dvdy.20466] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have used whole cell patch clamp recording and immunohistochemistry to investigate the expression of P2X(2/3) receptors in rat superior cervical ganglion neurons during late embryonic and early post-natal development. Neurons from E18 and P1 animals responded to the nicotinic agonist dimethylphenylpiperazinium (DMPP), and the purinoceptor agonists ATP and alpha,beta-meATP with sustained inward currents. Responsiveness to DMPP was maintained at P 17, while that to ATP declined dramatically, and responses to alpha,beta-meATP were rarely detected. Immunohistochemistry for the P2X(3) subunit revealed widespread staining in superior cervical ganglia from P1 rats, but little immunoreactivity in ganglia from P17 animals. In neurons from P1 animals, the response to alpha,beta-meATP exhibited pharmacological properties of the heteromeric P2X(2/3) receptor. In conclusion, sympathetic neurons of the rat superior cervical ganglion are more responsive to ATP and alpha,beta-meATP at birth and during the early post-natal period, due largely to the expression of the P2X(3) subunit, but these responses are much reduced in mature rats.
Collapse
Affiliation(s)
- Philip M Dunn
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, United Kingdom
| | | | | | | |
Collapse
|
11
|
Grelik C, Bennett GJ, Ribeiro-da-Silva A. Autonomic fibre sprouting and changes in nociceptive sensory innervation in the rat lower lip skin following chronic constriction injury. Eur J Neurosci 2005; 21:2475-87. [PMID: 15932605 DOI: 10.1111/j.1460-9568.2005.04089.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study we used immunocytochemistry to investigate whether autonomic fibres sprouted in the skin of the lower lip in a rat model of neuropathic pain. We used a bilateral chronic constriction injury (CCI) of the mental nerve (MN), a branch of the trigeminal nerve. In this model, we also studied the accompanying changes in peptidergic [calcitonin gene-related peptide (CGRP)-immunoreactive] sensory fibres, as well as in trkA receptor immunoreactivity in the sensory nerves. Autonomic (sympathetic and parasympathetic) fibre sprouting was first observed 1 week post-injury with a peak in the number of sprouted fibres occurring at 4 and 6 weeks post-CCI. CGRP-IR fibres almost disappeared at 2 weeks post-CCI, but quickly sprouted, leading to a significant peak above sham levels 4 weeks post-injury. trkA receptor expression was found to be up-regulated in small cutaneous nerves 4 weeks post-CCI, returning to sham levels by 8 weeks post-CCI. There was no sympathetic fibre sprouting in the trigeminal ganglion following CCI. At 4 weeks post-CCI, rats displayed spontaneous, directed grooming to the area innervated by the MN that was not seen in sham animals, which we interpreted as a sign of spontaneous pain or dysesthesiae. Collectively, our findings indicate that as a result of autonomic sprouting due to CCI of the MN, remaining intact nociceptive fibres may potentially develop sensitivity to sympathetic and parasympathetic stimulation, which may have a role in the generation of abnormal pain following nerve injury.
Collapse
Affiliation(s)
- C Grelik
- Department of Pharmacology & Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | |
Collapse
|
12
|
Ma B, Ruan HZ, Burnstock G, Dunn PM. Differential expression of P2X receptors on neurons from different parasympathetic ganglia. Neuropharmacology 2005; 48:766-77. [PMID: 15814110 DOI: 10.1016/j.neuropharm.2004.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Revised: 11/29/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
Whole-cell patch clamp recording and immunohistochemistry were used to investigate the expression of P2X receptors on rat parasympathetic ganglion neurons of the otic, sphenopalatine, submandibular, intracardiac and paratracheal ganglia. Neurons from all five ganglia responded to ATP with a rapidly activating, sustained inward current. Neurons of intracardiac and paratracheal ganglia were insensitive to alphabeta-meATP, while all neurons in the otic and some neurons of sphenopalatine and submandibular ganglia responded. Lowering pH potentiated ATP responses in neurons from all five ganglia. Co-application of Zn(2+) potentiated ATP responses in intracardiac, paratracheal and submandibular ganglion neurons. Immunohistochemistry revealed strong and specific staining for the P2X(2) subunit in all five ganglia and strong P2X(3) staining in otic, sphenopalatine and submandibular ganglia. In conclusion, there is heterogeneity in P2X receptor expression in different parasympathetic ganglia of the rat, but the predominant receptor subtypes involved appear to be homomeric P2X(2) and heteromeric P2X(2/3).
Collapse
Affiliation(s)
- Bei Ma
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London, UK
| | | | | | | |
Collapse
|
13
|
Endoh T. Modulation of voltage-dependent calcium channels by neurotransmitters and neuropeptides in parasympathetic submandibular ganglion neurons. Arch Oral Biol 2004; 49:539-57. [PMID: 15126136 DOI: 10.1016/j.archoralbio.2004.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2004] [Indexed: 12/20/2022]
Abstract
The control of saliva secretion is mainly under parasympathetic control, although there also could be a sympathetic component. Sympathetic nerves are held to have a limited action in secretion in submandibular glands because, on electrical stimulation, only a very small increase to the normal background, basal secretion occurs. Parasympathetic stimulation, on the other hand, caused a good flow of saliva with moderate secretion of acinar mucin, plus an extensive secretion of granules from the granular tubules. The submandibular ganglion (SMG) is a parasympathetic ganglion which receives inputs from preganglionic cholinergic neurons, and innervates the submandibular salivary gland to control saliva secretion. Neurotransmitters and neuropeptides acting via G-protein coupled receptors (GPCRs) change the electrical excitability of neurons. In these neurons, many neurotransmitters and neuropeptides modulate voltage-dependent calcium channels (VDCCs). The modulation is mediated by a family of GPCRs acting either directly through the membrane delimited G-proteins or through second messengers. However, the mechanism of modulation and the signal transduction pathway linked to an individual GPCRs depend on the animal species. This review reports how neurotransmitters and neuropeptides modulate VDCCs and how these modulatory actions are integrated in SMG systems. The action of neurotransmitters and neuropeptides on VDCCs may provide a mechanism for regulating SMG excitability and also provide a cellular mechanism of a variety of neuronal Ca(2+)-dependent processes.
Collapse
Affiliation(s)
- Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.
| |
Collapse
|
14
|
Ma B, Ruan HZ, Cockayne DA, Ford APDW, Burnstock G, Dunn PM. Identification of P2X receptors in cultured mouse and rat parasympathetic otic ganglion neurones including P2X knockout studies. Neuropharmacology 2004; 46:1039-48. [PMID: 15081800 DOI: 10.1016/j.neuropharm.2004.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 11/28/2003] [Accepted: 01/08/2004] [Indexed: 11/26/2022]
Abstract
We have used patch-clamp recording from cultured neurones, immunohistochemistry and gene deletion techniques to characterize the P2X receptors present in mouse otic ganglion neurones, and demonstrated the presence of similar receptors in rat neurones. All neurones from wild-type (WT) mice responded to ATP (EC(50) 109 microM), but only 38% also responded to alpha beta-meATP (EC(50) 39 microM). The response to alpha beta-meATP was blocked by TNP-ATP with an IC(50) of 38.6 nM. Lowering extracellular pH and co-application of Zn(2+) potentiated responses to ATP and alpha beta-meATP. In P2X(3)(-/-) mouse otic ganglion, all neurones tested responded to 100 microM ATP with a sustained current, but none responded to alpha beta-meATP. In P2X(2)(-/-) mice, no sustained currents were observed, but 36% of neurones responded to both ATP and alpha beta-meATP with transient currents. In P2X(2)/P2X(3)(Dbl-/-) mice, no responses to ATP or alpha beta-meATP were detected, suggesting that other P2X subunits were not involved. In rat otic ganglia, 96% of neurones responded to both ATP and alpha beta-meATP with sustained currents, suggesting a greater proportion of neurones expressing P2X(2/3) receptors. The maximum response to alpha beta-meATP was 40-60% of that evoked by ATP in the same cell. Immunohistochemistry revealed staining for P2X(2) and P2X(3) subunits in WT mouse otic ganglion neurones, which was absent in knockout animals. In conclusion, we have shown for the first time that at least two distinct P2X receptors are present in mouse and rat otic neurones, probably homomeric P2X(2) and heteromeric P2X(2/3) receptors.
Collapse
Affiliation(s)
- Bei Ma
- Autonomic Neuroscience Institute, Department of Anatomy and Developmental Biology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|
15
|
Watano T, Calvert JA, Vial C, Forsythe ID, Evans RJ. P2X receptor subtype-specific modulation of excitatory and inhibitory synaptic inputs in the rat brainstem. J Physiol 2004; 558:745-57. [PMID: 15181160 PMCID: PMC1665028 DOI: 10.1113/jphysiol.2004.066845] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of P2 receptors in synaptic transmission to the rat medial nucleus of the trapezoid body (MNTB) was studied in an in vitro brain slice preparation. Whole-cell patch recordings were made and spontaneous synaptic responses studied under voltage clamp during application of P2X receptor agonists. ATPgammaS (100 microm) had no effect on holding current, but facilitated spontaneous excitatory postsynaptic current (sEPSC) frequency in 41% of recordings and facilitated spontaneous inhibitory postsynaptic currents (sIPSCs) in 20% of recordings. These were blocked by the P2 receptor antagonist suramin (100 microm). alpha,beta-meATP also facilitated sEPSC and sIPSC frequency, while l-beta,gamma-meATP facilitated only sIPSCs. The sEPSC facilitation by ATPgammaS was blocked by TTX (but did not block facilitation of sIPSCs). sEPSC facilitation was blocked by PPADS (30 microm) and the selective P2X(3) receptor antagonist A-317491 (3 microm), suggesting that modulation of sEPSCs involves P2X(3) receptor subunits. alpha,beta-meATP-facilitated sIPSCs were also recorded in wild-type mouse MNTB neurones, but were absent in the MNTB from P2X(1) receptor-deficient mice demonstrating a functional role for P2X(1) receptors in the CNS.
Collapse
Affiliation(s)
- Tomokazu Watano
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, University Road, Leicester, LE1 9HN, UK
| | | | | | | | | |
Collapse
|
16
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 592] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
17
|
Calvert JA, Evans RJ. Heterogeneity of P2X receptors in sympathetic neurons: contribution of neuronal P2X1 receptors revealed using knockout mice. Mol Pharmacol 2004; 65:139-48. [PMID: 14722245 DOI: 10.1124/mol.65.1.139] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
P2X receptors are highly expressed throughout the nervous system, where ATP has been shown to be a neurotransmitter. The aim of this study was to characterize P2X receptor expression within sympathetic postganglionic neurons from the superior cervical ganglia. Reverse transcription-polymerase chain reaction showed the presence of mRNA for all P2X receptors, raising the possibility of multiple subunit expression within these ganglia. Whole-cell patch-clamp and calcium imaging studies revealed a heterogeneous population of P2X receptors in approximately 70% of neurons. We propose that the heterogeneity in properties could be caused by differential expression and/or subunit composition of the P2X receptor. The dominant phenotype was P2X2-like; neurons showed slow desensitization, sensitivity to antagonists, and a profile of ionic modulation that is characteristic of P2X2 receptors: potentiation by acidification and extracellular Zn2+ and attenuation by high extracellular Ca2+ and pH. A subpopulation of neurons (10-15%) were alpha,beta-methylene ATP (alpha,beta-meATP) sensitive, and in neurons from P2X1 receptor-deficient mice the alpha,beta-meATP response was reduced to 2% of all neurons, demonstrating a direct role for P2X1 subunits. Control alpha,beta-meATP responses were eliminated by high extracellular Ca(2+) and pH, indicating the presence of heteromeric channels incorporating the properties of P2X1 and P2X2 receptors. This study demonstrates that in neurons, the P2X1 receptor can contribute to the properties of heteromeric P2X receptors. Given the expression of P2X1 receptors in a range of neurons, it seems likely that regulation of the properties of P2X receptors by this subunit is more widespread.
Collapse
Affiliation(s)
- Jennifer A Calvert
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, LE1 9HN, UK
| | | |
Collapse
|
18
|
Abe M, Endoh T, Suzuki T. Extracellular ATP-induced calcium channel inhibition mediated by P1/P2Y purinoceptors in hamster submandibular ganglion neurons. Br J Pharmacol 2003; 138:1535-43. [PMID: 12721109 PMCID: PMC1573793 DOI: 10.1038/sj.bjp.0705174] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The presence and profile of purinoceptors in neurons of the hamster submandibular ganglion (SMG) have been studied using the whole-cell configuration of the patch-clamp technique. 2. Extracellular application of adenosine 5'-triphosphate (ATP) reversibly inhibited voltage-dependent Ca(2+) channel (VDCC) currents (I(Ca)) via G(i/o)-protein in a voltage-dependent manner. 3. Extracellular application of uridine 5'-triphosphate (UTP), 2-methylthioATP (2-MeSATP), alpha,beta-methylene ATP (alpha,beta-MeATP) and adenosine 5'-diphosphate (ADP) also inhibited I(Ca). The rank order of potency was ATP=UTP>ADP>2-MeSATP=alpha,beta-MeATP. 4. The P2 purinoceptor antagonists, suramin and pyridoxal-5-phosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS), partially antagonized the ATP-induced inhibition of I(Ca), while coapplication of suramin and the P1 purinoceptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), virtually abolished I(Ca) inhibition. DPCPX alone partially antagonized I(Ca) inhibition. 5. Suramin antagonized the UTP-induced inhibition of I(Ca), while DPCPX had no effect. 6. Extracellular application of adenosine (ADO) also inhibited I(Ca) in a voltage-dependent manner via G(i/o)-protein activation. 7. Mainly N- and P/Q-type VDCCs were inhibited by both ATP and ADO via G(i/o)-protein betagamma subunits in seemingly convergence pathways.
Collapse
Affiliation(s)
- Mitsuhiro Abe
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
| | - Takayuki Endoh
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
- Author for correspondence:
| | - Takashi Suzuki
- Department of Physiology, Tokyo Dental College, 1-2-2, Masago, Mihama-ku, Chiba 261-8502, Japan
| |
Collapse
|
19
|
Ramien M, Ruocco I, Cuello AC, St-Louis M, Ribeiro-Da-Silva A. Parasympathetic nerve fibers invade the upper dermis following sensory denervation of the rat lower lip skin. J Comp Neurol 2003; 469:83-95. [PMID: 14689474 DOI: 10.1002/cne.10998] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The sympathetic division of the autonomic nervous system is known to play a role in the genesis of neuropathic pain. In the skin of the rat lower lip (hairy skin), sympathetic and parasympathetic fibers normally innervate the same blood vessels in the lower dermis but do not occur in the upper dermis. However, we have shown that sympathetic fiber migration into the upper dermis occurs following mental nerve lesions (Ruocco et al. [2000] J. Comp. Neurol. 422:287-296). As sensory denervation has a dramatic effect on sympathetic fiber innervation patterns in the rat lower lip skin, we decided to investigate the possible changes in the other autonomic fiber type in the skin-the parasympathetic fiber. Sensory denervation of the rat lower lip was achieved by bilateral transection of the mental nerve, and animals were allowed to recover for 1-8 weeks. Lower lip tissue was processed for double-labeling light microscopic immunocytochemistry (ICC), using antibodies against substance P (SP), which labels a subpopulation of peptidergic sensory fibers, and against the vesicular acetycholine transporter (VAChT), as a marker for parasympathetic fibers. In sham-operated rats, SP-immunoreactive (IR) sensory fibers were found in the epidermis and upper and lower dermal regions, whereas VAChT-IR fibers were confined to the lower dermis. Mental nerve lesions induced the gradual disappearance of SP-IR fibers from all skin layers accompanied by the progressive migration of VAChT-IR fibers into the upper dermis. Cholinergic fiber migration was evident by the second week post surgery, and the ectopic innervation of the upper dermis by these fibers persisted even at the last time point studied (8 weeks) when SP-IR fibers have completely regrown. VAChT-IR fibers were observed in the upper dermis, well above the opening of the sebaceous glands into the hair follicles. These results show that considerable changes occur in the innervation patterns of parasympathetic fibers following mental nerve lesions.
Collapse
Affiliation(s)
- Michele Ramien
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
20
|
Abstract
P2X receptors are membrane ion channels that open in response to the binding of extracellular ATP. Seven genes in vertebrates encode P2X receptor subunits, which are 40-50% identical in amino acid sequence. Each subunit has two transmembrane domains, separated by an extracellular domain (approximately 280 amino acids). Channels form as multimers of several subunits. Homomeric P2X1, P2X2, P2X3, P2X4, P2X5, and P2X7 channels and heteromeric P2X2/3 and P2X1/5 channels have been most fully characterized following heterologous expression. Some agonists (e.g., alphabeta-methylene ATP) and antagonists [e.g., 2',3'-O-(2,4,6-trinitrophenyl)-ATP] are strongly selective for receptors containing P2X1 and P2X3 subunits. All P2X receptors are permeable to small monovalent cations; some have significant calcium or anion permeability. In many cells, activation of homomeric P2X7 receptors induces a permeability increase to larger organic cations including some fluorescent dyes and also signals to the cytoskeleton; these changes probably involve additional interacting proteins. P2X receptors are abundantly distributed, and functional responses are seen in neurons, glia, epithelia, endothelia, bone, muscle, and hemopoietic tissues. The molecular composition of native receptors is becoming understood, and some cells express more than one type of P2X receptor. On smooth muscles, P2X receptors respond to ATP released from sympathetic motor nerves (e.g., in ejaculation). On sensory nerves, they are involved in the initiation of afferent signals in several viscera (e.g., bladder, intestine) and play a key role in sensing tissue-damaging and inflammatory stimuli. Paracrine roles for ATP signaling through P2X receptors are likely in neurohypophysis, ducted glands, airway epithelia, kidney, bone, and hemopoietic tissues. In the last case, P2X7 receptor activation stimulates cytokine release by engaging intracellular signaling pathways.
Collapse
Affiliation(s)
- R Alan North
- Institute of Molecular Physiology, University of Sheffield, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
21
|
Masino SA, Diao L, Illes P, Zahniser NR, Larson GA, Johansson B, Fredholm BB, Dunwiddie TV. Modulation of hippocampal glutamatergic transmission by ATP is dependent on adenosine a(1) receptors. J Pharmacol Exp Ther 2002; 303:356-63. [PMID: 12235271 DOI: 10.1124/jpet.102.036731] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excitatory glutamatergic synapses in the hippocampal CA1 region of rats are potently inhibited by purines, including adenosine, ATP, and ATP analogs. Adenosine A(1) receptors are known to mediate at least part of the response to adenine nucleotides, either because adenine nucleotides activate A(1) receptors directly, or activate them secondarily upon the nucleotides' conversion to adenosine. In the present studies, the inhibitory effects of adenosine, ATP, the purportedly stable ATP analog adenosine-5'-O-(3-thio)triphosphate (ATPgammaS), and cyclic AMP were examined in mice with a null mutation in the adenosine A(1) receptor gene. ATPgammaS displaced the binding of A(1)-selective ligands to intact brain sections and brain homogenates from adenosine A(1) receptor wild-type animals. In homogenates, but not in intact brain sections, this displacement was abolished by adenosine deaminase. In hippocampal slices from wild-type mice, purines abolished synaptic responses, but slices from mice lacking functional A(1) receptors showed no synaptic modulation by adenosine, ATP, cAMP, or ATPgammaS. In slices from heterozygous mice the dose-response curve for both adenosine and ATP was shifted to the right. In all cases, inhibition of synaptic responses by purines could be blocked by prior treatment with the competitive adenosine A(1) receptor antagonist 8-cyclopentyltheophylline. Taken together, these results show that even supposedly stable adenine nucleotides are rapidly converted to adenosine at sites close to the A(1) receptor, and that inhibition of synaptic transmission by purine nucleotides is mediated exclusively by A(1) receptors.
Collapse
Affiliation(s)
- Susan A Masino
- Department of Pharmacology and Program in Neuroscience, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | | | | | |
Collapse
|