1
|
Shippy DC, Oliai SF, Ulland TK. Zinc utilization by microglia in Alzheimer's disease. J Biol Chem 2024; 300:107306. [PMID: 38648940 PMCID: PMC11103939 DOI: 10.1016/j.jbc.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia defined by two key pathological characteristics in the brain, amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglia, the primary innate immune cells of the central nervous system (CNS), provide neuroprotection through Aβ and tau clearance but may also be neurotoxic by promoting neuroinflammation to exacerbate Aβ and tau pathogenesis in AD. Recent studies have demonstrated the importance of microglial utilization of nutrients and trace metals in controlling their activation and effector functions. Trace metals, such as zinc, have essential roles in brain health and immunity, and zinc dyshomeostasis has been implicated in AD pathogenesis. As a result of these advances, the mechanisms by which zinc homeostasis influences microglial-mediated neuroinflammation in AD is a topic of continuing interest since new strategies to treat AD are needed. Here, we review the roles of zinc in AD, including zinc activation of microglia, the associated neuroinflammatory response, and the application of these findings in new therapeutic strategies.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Sophia F Oliai
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
2
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
3
|
Qi Z, Zhou X, Dong W, Timmins GS, Pan R, Shi W, Yuan S, Zhao Y, Ji X, Liu KJ. Neuronal Zinc Transporter ZnT3 Modulates Cerebral Ischemia-Induced Blood-Brain Barrier Disruption. Aging Dis 2023; 15:2727-2741. [PMID: 37962463 PMCID: PMC11567248 DOI: 10.14336/ad.2023.1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Zinc plays important roles in both physiological and pathological processes in the brain. Accumulation of free zinc in ischemic tissue is recognized to contribute to blood-brain barrier (BBB) disruption following cerebral ischemia, but little is known either about the source of free zinc in microvessels or the mechanism by which free zinc mediates ischemia-induced BBB damage. We utilized cellular and animal models of ischemic stroke to determine the source of high levels of free zinc and the mechanism of free zinc-mediated BBB damage after ischemia. We report that cerebral ischemia elevated the level of extracellular fluid (ECF-Zn) of ischemic brain, leading to exacerbated BBB damage in a rat stroke model. Specifically suppressing zinc release from neurons, utilizing neuronal-specific zinc transporter 3 (ZnT3) knockout mice, markedly reduced ECF-Zn and BBB permeability after ischemia. Intriguingly, the activity of zinc-dependent metalloproteinase-2 (MMP-2) was modulated by ECF-Zn levels. Elevated ECF-Zn during ischemia directly bound to MMP-2 in extracellular fluid, increased its zinc content and augmented MMP-2 activity, leading to the degradation of tight junction protein in cerebral microvessels and BBB disruption. These findings suggest the role of neuronal ZnT3 in modulating ischemia-induced BBB disruption and reveal a novel mechanism of MMP-2 activation in BBB disruption after stroke, demonstrating ZnT3 as an effective target for stroke treatment.
Collapse
Affiliation(s)
- Zhifeng Qi
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Wen Dong
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Graham S. Timmins
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | - Rong Pan
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Wenjuan Shi
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Shuhua Yuan
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Yongmei Zhao
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Xunming Ji
- Department of Neurology, Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
4
|
Benarroch E. What Are the Functions of Zinc in the Nervous System? Neurology 2023; 101:714-720. [PMID: 37845046 PMCID: PMC10585682 DOI: 10.1212/wnl.0000000000207912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 10/18/2023] Open
|
5
|
The Role of Zinc in Modulating Acid-Sensing Ion Channel Function. Biomolecules 2023; 13:biom13020229. [PMID: 36830598 PMCID: PMC9953155 DOI: 10.3390/biom13020229] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated, voltage-independent sodium channels widely expressed throughout the central and peripheral nervous systems. They are involved in synaptic plasticity, learning/memory, fear conditioning and pain. Zinc, an important trace metal in the body, contributes to numerous physiological functions, with neurotransmission being of note. Zinc has been implicated in the modulation of ASICs by binding to specific sites on these channels and exerting either stimulatory or inhibitory effects depending on the ASIC subtype. ASICs have been linked to several neurological and psychological disorders, such as Alzheimer's disease, Parkinson's disease, ischemic stroke, epilepsy and cocaine addiction. Different ASIC isoforms contribute to the persistence of each of these neurological and psychological disorders. It is critical to understand how various zinc concentrations can modulate specific ASIC subtypes and how zinc regulation of ASICs can contribute to neurological and psychological diseases. This review elucidates zinc's structural interactions with ASICs and discusses the potential therapeutic implications zinc may have on neurological and psychological diseases through targeting ASICs.
Collapse
|
6
|
Li Z, Liu Y, Wei R, Yong VW, Xue M. The Important Role of Zinc in Neurological Diseases. Biomolecules 2022; 13:28. [PMID: 36671413 PMCID: PMC9855948 DOI: 10.3390/biom13010028] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Zinc is one of the most abundant metal ions in the central nervous system (CNS), where it plays a crucial role in both physiological and pathological brain functions. Zinc promotes antioxidant effects, neurogenesis, and immune system responses. From neonatal brain development to the preservation and control of adult brain function, zinc is a vital homeostatic component of the CNS. Molecularly, zinc regulates gene expression with transcription factors and activates dozens of enzymes involved in neuronal metabolism. During development and in adulthood, zinc acts as a regulator of synaptic activity and neuronal plasticity at the cellular level. There are several neurological diseases that may be affected by changes in zinc status, and these include stroke, neurodegenerative diseases, traumatic brain injuries, and depression. Accordingly, zinc deficiency may result in declines in cognition and learning and an increase in oxidative stress, while zinc accumulation may lead to neurotoxicity and neuronal cell death. In this review, we explore the mechanisms of brain zinc balance, the role of zinc in neurological diseases, and strategies affecting zinc for the prevention and treatment of these diseases.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450001, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou 450001, China
| |
Collapse
|
7
|
Liu J, Dong J, Guo J. The effects of nutrition supplement on rehabilitation for patients with stroke: Analysis based on 16 randomized controlled trials. Medicine (Baltimore) 2022; 101:e29651. [PMID: 36123946 PMCID: PMC9478301 DOI: 10.1097/md.0000000000029651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Malnutrition is a relatively common and often unrecognized condition in stroke survivors, which may negatively affect functional recovery and survival. Though previous studies have indicated significant role of nutrition supplement for rehabilitation of patients with stroke, the results still remain controversy. OBJECTIVE The present analysis was designed to systematically review effective evidence of nutrition supplement on rehabilitation for patients with stroke. METHODS A systematic search of PubMed, EMBASE, the Cochrane Library, and Web of Science up to August 1, 2021 was performed to find relevant studies that analyzed the effect of nutrition supplement on rehabilitation of patients with stroke. The primary outcome was functional outcomes and activities of daily living (ADL). The secondary outcomes included disability, all-cause mortality, infections, pneumonia, walking ability, stroke recurrence, and laboratory results indicating nutrition status of patients. All statistical analyses were performed using standard statistical procedures with Review Manager 5.2. RESULTS Ultimately, 16 studies including 7547 patients were identified. Our pooled results found no significant difference in total, cognitive and motor FIM score between nutrition supplement and placebo groups, with pooled MDs of 7.64 (95% CI - 1.67 to 16.94; P = .11), 0.74 (95% CI - 1.33 to 2.81; P = .48), 1.11 (95% CI - 1.68 to 3.90; P = .44), respectively. However, our result showed that nutritional interventions had significant effect on ADL for patients with stroke (MD 3.26; 95% CI 0.59 to 5.93; P = .02). In addition, nutrition supplement reduced the incidence of infections for patients with stroke, with a pooled RR of 0.65 (95% CI 0.51 to 0.84; P = .0008). No significant results were found in disabilities, complication and laboratory outcomes. CONCLUSIONS The present meta-analysis indicated no statistically significant effect of nutrition supplement on functional outcomes as well as disabilities, complication and laboratory outcomes for patients with stroke. However, it increased ADL and reduced the incidence of infections.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Physical Therapy, Beijing Bo’ai Hospital, Chinese Rehabilitation Research Centre, Beijing, China
| | - Jige Dong
- Department of Rehabilitation and Treatment, Wangjing Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jiangzhou Guo
- Department of Rehabilitation and Treatment, Wangjing Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- *Correspondence: Jiangzhou Guo, Department of Rehabilitation and Treatment, Wangjing Hospital, Chinese Academy of Traditional Chinese Medicine, Huajiadi Street, Chaoyang District, Beijing 100102, China (e-mail: )
| |
Collapse
|
8
|
Kim YM, Choi SY, Hwang O, Lee JY. Pyruvate Prevents Dopaminergic Neurodegeneration and Motor Deficits in the 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Model of Parkinson's Disease. Mol Neurobiol 2022; 59:6956-6970. [PMID: 36057709 DOI: 10.1007/s12035-022-03017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the selective loss of dopamine(DA)rgic neurons in the substantia nigra of the midbrain, and primarily causes motor symptoms. While the pathological cause of PD remains uncertain, oxidative damage, neuroinflammation, and energy metabolic perturbation have been implicated. Pyruvate has been shown neuroprotective in animal models for many neurological disorders, presumably owing to its potent anti-oxidative, anti-inflammatory, and energy metabolic properties. We therefore investigated whether exogenous pyruvate could also protect nigral DA neurons from degeneration and reverse the associated motor deficits in an animal model of PD using the DA neuron-specific toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP (20 mg/kg) was injected four times every 2 h into the peritoneum of mice, which resulted in a massive loss of DA neurons as well as an increase in neuronal death and cytosolic labile zinc overload. There were rises in inflammatory and oxidative responses, a drop in the striatal DA level, and the emergence of PD-related motor deficits. In comparison, when sodium pyruvate was administered intraperitoneally at a daily dose of 250 mg/kg for 7 days starting 2 h after the final MPTP treatment, significant relief in the MPTP-induced neuropathology, neurodegeneration, DA depletion, and motor symptoms was observed. Equiosmolar dose of NaCl had no neuroprotective effect, and lower doses of sodium pyruvate did not have any statistically significant effects. These findings suggest that pyruvate has therapeutic potential for the treatment of PD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun-Mi Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Su Yeon Choi
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea.
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
9
|
Zhao Y, Ding M, Yang N, Huang Y, Sun C, Shi W. Zinc Accumulation Aggravates Cerebral Ischemia/Reperfusion Injury Through Inducing Endoplasmic Reticulum Stress. Neurochem Res 2022; 47:1419-1428. [PMID: 35129772 DOI: 10.1007/s11064-022-03536-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Zinc is highly enriched in the central nervous system. Numerous evidences suggest that high concentration of zinc acts as a critical mediator of neuronal death in the ischemic brain, however, the possible mechanisms of neurotoxicity of zinc during cerebral ischemia/reperfusion (I/R) remain elusive. Endoplasmic reticulum (ER) is a storage location of intracellular zinc. ER stress related genes were up-regulated during zinc-induced neuronal death in vascular-type senile dementia. In the present study, we investigated whether intracellular accumulated zinc aggravates I/R injury through ER stress and ER stress-associated apoptosis. Male Sprague-Dawley rats were subjected to 90 min middle cerebral artery occlusion (MCAO) and received either vehicle or zinc chelator TPEN 15 mg/kg. The expression of ER stress related factors glucose-regulated protein 78 (GRP78) and phosphorylated eukaryotic initiation factor 2α (p-eIF2α), ER stress related apoptotic proteins CCAAT-enhancer-binding protein homologous protein (CHOP) and caspase-12, as well as anti-apoptotic factor B-cell lymphoma-2 (Bcl-2) were assessed 24 h after reperfusion. Our results showed that the levels of GRP78 and p-eIF2α, as well as CHOP and caspase-12, were increased in ischemic brain, indicating that cerebral I/R triggers ER stress. Furthermore, GRP78, CHOP and caspase-12 were all colocalized with the zinc-specific dyes NG, suggesting that there is certain relationship between cytosolic labile zinc and ER stress following cerebral ischemia. Chelating zinc with TPEN reversed the expression of GRP78, p-eIF2α in ischemic rats. Moreover, CHOP and NeuN double staining positive cells, as well as caspase-12 and TUNEL double staining positive cells were also decreased after TPEN treatment, indicating that chelating zinc might inhibit ER stress and decreased ER stress associated neuronal apoptosis. In addition, TPEN treatment reversed the downregulated level of Bcl-2, which localized in the ER membrane and involved in the dysfunction of ER, confirming that the anti-apoptosis effects of chelating zinc following I/R are exerted via inhibition of the ER stress. Taken together, this study demonstrated that excessive zinc activates ER stress and zinc induced neuronal cell death is at least partially due to ER stress specific neuronal apoptosis in ischemic penumbra, which may provide an important mechanism of cerebral I/R injury.
Collapse
Affiliation(s)
- Yongmei Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,Beijing Geriatric Medical Research Center, Beijing, 100053, China.
| | - Mao Ding
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Geriatric Medical Research Center, Beijing, 100053, China
| | - Nan Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Geriatric Medical Research Center, Beijing, 100053, China
| | - Yuyou Huang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Chengjiao Sun
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Wenjuan Shi
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Geriatric Medical Research Center, Beijing, 100053, China
| |
Collapse
|
10
|
Masuoka N, Lei C, Li H, Hisatsune T. Influence of Imidazole-Dipeptides on Cognitive Status and Preservation in Elders: A Narrative Review. Nutrients 2021; 13:nu13020397. [PMID: 33513893 PMCID: PMC7912684 DOI: 10.3390/nu13020397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 01/02/2023] Open
Abstract
The worldwide increase in the number of patients with dementia is becoming a growing problem, while Alzheimer’s disease (AD), a primary neurodegenerative disorder, accounts for more than 70% of all dementia cases. Research on the prevention or reduction of AD occurrence through food ingredients has been widely conducted. In particular, histidine-containing dipeptides, also known as imidazole dipeptides derived from meat, have received much attention. Imidazole dipeptides are abundant in meats such as poultry, fish, and pork. As evidenced by data from recent human intervention trials conducted worldwide, daily supplementation of carnosine and anserine, which are both imidazole dipeptides, can improve memory loss in the elderly and reduce the risk of developing AD. This article also summarizes the latest researches on the biochemical properties of imidazole dipeptides and their effects on animal models associated with age-related cognitive decline. In this review, we focus on the results of human intervention studies using supplements of poultry-derived imidazole dipeptides, including anserine and carnosine, affecting the preservation of cognitive function in the elderly, and discuss how imidazole dipeptides act in the brain to prevent age-related cognitive decline and the onset of dementia.
Collapse
|
11
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
12
|
Mammadova-Bach E, Braun A. Zinc Homeostasis in Platelet-Related Diseases. Int J Mol Sci 2019; 20:E5258. [PMID: 31652790 PMCID: PMC6861892 DOI: 10.3390/ijms20215258] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Zn2+ deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn2+-deficient diets, accounting for 1-4% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn2+ deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn2+ status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn2+ uptake in the gut using different nutritional supplementation of Zn2+ could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn2+ diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn2+ in hemostasis. Storage protein metallothionein maintains or releases Zn2+ in the cytoplasm, and the dynamic change of this cytoplasmic Zn2+ pool is regulated by the redox status of the cell. An increase of labile Zn2+ pool can be toxic for the cells, and therefore cytoplasmic Zn2+ levels are tightly regulated by several Zn2+ transporters located on the cell surface and also on the intracellular membrane of Zn2+ storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn2+ is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn2+ transport and the physiological role of Zn2+ store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn2+ to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn2+ homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.
Collapse
Affiliation(s)
- Elmina Mammadova-Bach
- University Hospital and Rudolf Virchow Center, University of Würzburg, 97080 Würzburg, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians University Munich, German Center for Lung Research, 80336 Munich, Germany.
| |
Collapse
|
13
|
The relationship between plasma amino acids and circulating albumin and haemoglobin in postabsorptive stroke patients. PLoS One 2019; 14:e0219756. [PMID: 31412042 PMCID: PMC6693779 DOI: 10.1371/journal.pone.0219756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 07/01/2019] [Indexed: 01/15/2023] Open
Abstract
Background This retrospective study had two main aims: (1) to document possible correlations between plasma Amino Acids (AAs) and circulating Albumin (Alb) and Haemoglobin (Hb); and (2) to identify which AAs were predictors of Alb and Hb. Methods The study considered 125 stroke subjects (ST) (61.6% males; 65.6 +/- 14.9 years) who met the eligibility criteria (absence of co morbidities associated with altered plasma AAs and presence of plasma AAs determined after overnight fasting). Fifteen matched healthy subjects with measured plasma AAs served as controls. Results The best correlations of Alb were with tryptophan (Trp) and histidine (His) (r = + 0.53; p < 0.0001), and those of Hb were with histidine (r = +0.47) and Essential AAs (r = +0.47) (both p<0.0001). In multivariate analysis, Trp (p< 0.0001) and His (p = 0.01) were shown to be the best positive predictors of Alb, whereas glutamine (p = 0.006) was the best positive predictor of Hb. Conclusions The study shows that the majority of plasma AAs were positively correlated with Alb and Hb. The best predictors of circulating Alb and Hb were the levels of tryptophan and glutamine, respectively.
Collapse
|
14
|
Tuo QZ, Liuyang ZY, Lei P, Yan X, Shentu YP, Liang JW, Zhou H, Pei L, Xiong Y, Hou TY, Zhou XW, Wang Q, Wang JZ, Wang XC, Liu R. Zinc induces CDK5 activation and neuronal death through CDK5-Tyr15 phosphorylation in ischemic stroke. Cell Death Dis 2018; 9:870. [PMID: 30158515 PMCID: PMC6115431 DOI: 10.1038/s41419-018-0929-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/05/2023]
Abstract
CDK5 activation promotes ischemic neuronal death in stroke, with the recognized activation mechanism being calpain-dependent p35 cleavage to p25. Here we reported that CDK5-Tyr15 phosphorylation by zinc induced CDK5 activation in brain ischemic injury. CDK5 activation and CDK5-Tyr15 phosphorylation were observed in the hippocampus of the rats that had been subjected to middle cerebral artery occlusion, both of which were reversed by pretreatment with zinc chelator; while p35 cleavage and calpain activation in ischemia were not reversed. Zinc incubation resulted in CDK5-Tyr15 phosphorylation and CDK5 activation, without increasing p35 cleavage in cultured cells. Site mutation experiment confirmed that zinc-induced CDK5 activation was dependent on Tyr15 phosphorylation. Further exploration showed that Src kinase contributed to zinc-induced Tyr15 phosphorylation and CDK5 activation. Src kinase inhibition or expression of an unphosphorylable mutant Y15F-CDK5 abolished Tyr15 phosphorylation, prevented CDK5 activation and protected hippocampal neurons from ischemic insult in rats. We conclude that zinc-induced CDK5-Tyr15 phosphorylation underlies CDK5 activation and promotes ischemic neuronal death in stroke.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China
| | - Zhen-Yu Liuyang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, China
| | - Xiong Yan
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang-Ping Shentu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Wei Liang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Zhou
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xiong
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong-Yao Hou
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Wen Zhou
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Zhong YH, Dhawan J, Kovoor JA, Sullivan J, Zhang WX, Choi D, Biegon A. Aromatase and neuroinflammation in rat focal brain ischemia. J Steroid Biochem Mol Biol 2017; 174:225-233. [PMID: 28964927 DOI: 10.1016/j.jsbmb.2017.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Accumulating evidence suggests that expression of aromatase, the enzyme responsible for the conversion of androgens to estrogens, is transiently upregulated in rat stroke models. It was further suggested that increased aromatase expression is linked to neuroinflammation and that it is neuroprotective in females. Our goal was to investigate aromatase upregulation in male rats subjected to experimental stroke in relationship to neuroinflammation, infarct and response to treatment with different putative neuroprotective agents. Intact male rats were subjected to transient (90min) middle cerebral artery occlusion (MCAO) and administered selfotel (N-methyl-d-aspartic acid (NMDA) receptor competitive antagonist), TPEN (a zinc chelator), a combination of the two drugs or vehicle, injected immediately after reperfusion. Animals were killed 14days after MCAO and consecutive brain sections used to measure aromatase expression, cerebral infarct volume and neuroinflammation. Quantitative immunohistochemistry (IHC) demonstrated increased brain aromatase expression in the peri-infarct area relative to contralesional area, which was partially abrogated by neuroprotective agents. There was no correlation between aromatase expression in the peri-infarct zone and infarct volume, which was reduced by neuroprotective agents. Microglial activation, measured by quantitative autoradiography, was positively correlated with infarct and inversely correlated with aromatase expression in the peri-infarct zone. Our findings indicate that focal ischemia upregulates brain aromatase in the male rat brain at 14days post surgery, which is within the time frame documented in females. However, the lack of negative correlation between aromatase expression and infarct volume and lack of positive correlation between microgliosis and aromatase do not support a major role for aromatase as a mediator of neuroprotection or a causal relationship between microglial activation and increased aromatase expression in male focal ischemia.
Collapse
Affiliation(s)
- Yu H Zhong
- Department of Neurology, the First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, Guangdong Province 510080, PR China; Department of Neurology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2565, USA.
| | - Jasbeer Dhawan
- Department of Neurology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2565, USA.
| | - Joel A Kovoor
- Department of Neurology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2565, USA.
| | - John Sullivan
- Department of Neurology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2565, USA.
| | - Wei X Zhang
- Department of Neurology, the First Affiliated Hospital of Sun Yat-Sen University, No. 58, Zhongshan Road II, Guangzhou, Guangdong Province 510080, PR China.
| | - Dennis Choi
- Department of Neurology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2565, USA.
| | - Anat Biegon
- Department of Neurology, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-2565, USA.
| |
Collapse
|
16
|
Zhang F, Ma XL, Wang YX, He CC, Tian K, Wang HG, An D, Heng B, Xie LH, Liu YQ. TPEN, a Specific Zn 2+ Chelator, Inhibits Sodium Dithionite and Glucose Deprivation (SDGD)-Induced Neuronal Death by Modulating Apoptosis, Glutamate Signaling, and Voltage-Gated K + and Na + Channels. Cell Mol Neurobiol 2017; 37:235-250. [PMID: 26983717 PMCID: PMC11482146 DOI: 10.1007/s10571-016-0364-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/08/2016] [Indexed: 02/06/2023]
Abstract
Hypoxia-ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia-ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic-ischemic conditions. The effects of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn2+-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-D-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K+ and Na+ channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na+ channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K+ and Na+ channels in neurons. Hence, Zn2+ chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Xue-Ling Ma
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Yu-Xiang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Cong-Cong He
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Bin Heng
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
17
|
Influence of extracellular zinc on M1 microglial activation. Sci Rep 2017; 7:43778. [PMID: 28240322 PMCID: PMC5327400 DOI: 10.1038/srep43778] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/30/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30–60 μM ZnCl2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia–reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory.
Collapse
|
18
|
Sul JW, Kim TY, Yoo HJ, Kim J, Suh YA, Hwang JJ, Koh JY. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate. Arch Pharm Res 2016; 39:1151-9. [DOI: 10.1007/s12272-016-0814-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/05/2016] [Indexed: 01/12/2023]
|
19
|
Abstract
It has been nearly 15 years since the suggestion that synaptically released Zn2+ might contribute to excitotoxic brain injury after seizures, stroke, and brain trauma. In the original “zinc-translocation” model, it was proposed that synaptically released Zn2+ ions penetrated postsynaptic neurons, causing injury. According to the model, chelating zinc in the cleft was predicted to be neuroprotective. This proved to be true: zinc chelators have proved to be remarkably potent at reducing excitotoxic neuronal injury in many paradigms. Promising new zinc-based therapies for stroke, head trauma, and epileptic brain injury are under development. However, new evidence suggests that the original translocation model was incomplete. As many as three sources of toxic zinc ions may contribute to excitotoxicity: presynaptic vesicles, postsynaptic zincsequestering proteins, and (more speculatively) mitochondrial pools. The authors present a new model of zinc currents and zinc toxicity that offers expanded opportunities for zinc-selective therapeutic chelation interventions.
Collapse
|
20
|
Indomethacin preconditioning induces ischemic tolerance by modifying zinc availability in the brain. Neurobiol Dis 2015; 81:186-95. [DOI: 10.1016/j.nbd.2014.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/19/2022] Open
|
21
|
Kim HN, Kim TY, Yoon YH, Koh JY. Pyruvate and cilostazol protect cultured rat cortical pericytes against tissue plasminogen activator (tPA)-induced cell death. Brain Res 2015; 1628:317-326. [PMID: 26111647 DOI: 10.1016/j.brainres.2015.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/19/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
Since even a brief ischemia can cause permanent brain damage, rapid restoration of blood flow is critical to limiting damage. Although intravenous tPA during the acute stage is the treatment of choice for achieving reperfusion, this treatment is sometimes associated with brain hemorrhage. Agents that reduce tPA-related bleeding risk may help expand its therapeutic window. This study assessed whether zinc dyshomeostasis underlies the toxic effect of tPA on brain vascular pericytes; whether pyruvate, an inhibitor of zinc toxicity, protects pericytes against tPA-induced cell death; and whether cilostazol, which protects pericytes against tPA-induced cell death, affects zinc dyshomeostasis associated with tPA toxicity. Cultured pericytes from newborn rat brains were treated with 10-200 μg/ml tPA for 24 h, inducing cell death in a concentration-dependent manner. tPA-induced cell death was preceded by increases in intracellular free zinc levels, and was substantially attenuated by plasminogen activator inhibitor-1 (PAI-1) or TPEN. Pyruvate completely blocked direct zinc toxicity and tPA-induced pericyte cell death. Both cAMP and cilostazol, a PDE3 inhibitor that attenuates tPA-induced pericyte cell death in vitro and tPA-induced brain hemorrhage in vivo, reduced zinc- and tPA-induced pericyte cell death, suggesting that zinc dyshomeostasis may be targeted by cilostazol in tPA toxicity. These findings show that tPA-induced pericyte cell death may involve zinc dyshomeostasis, and that pyruvate and cilostazol attenuate tPA-induced cell death by reducing the toxic cascade triggered by zinc dyshomeostasis. Since pyruvate is an endogenous metabolite and cilostazol is an FDA-approved drug, in vivo testing of both as protectors against tPA-induced brain hemorrhage may be warranted. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Ha Na Kim
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Tae-Youn Kim
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Young Hee Yoon
- Department of Ophthalmology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - Jae-Young Koh
- Neural Injury Research Lab, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea; Department of Neurology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea.
| |
Collapse
|
22
|
Mizuno D, Konoha-Mizuno K, Mori M, Sadakane Y, Koyama H, Ohkawara S, Kawahara M. Protective activity of carnosine and anserine against zinc-induced neurotoxicity: a possible treatment for vascular dementia. Metallomics 2015; 7:1233-9. [PMID: 25846004 DOI: 10.1039/c5mt00049a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carnosine (β-alanyl-L-histidine) is a small dipeptide with numerous beneficial effects, including the maintenance of the acid-base balance, antioxidant properties, chelating agent, anti-crosslinking, and anti-glycation activities. High levels of carnosine and its analogue anserine (1-methyl carnosine) are found in skeletal muscle and the brain. Zinc (Zn)-induced neurotoxicity plays a crucial role in the pathogenesis of vascular dementia (VD), and carnosine inhibits Zn-induced neuronal death. Here, the protective activity of carnosine against Zn-induced neurotoxicity and its molecular mechanisms such as cellular Zn influx and Zn-induced gene expression were investigated using immortalised hypothalamic neurons (GT1-7 cells). Carnosine and anserine protected against Zn-induced neurotoxicity not by preventing increases in intracellular Zn(2+) but by participating in the regulation of the endoplasmic reticulum (ER) stress pathway and the activity-regulated cytoskeletal protein (Arc). Accordingly, carnosine and anserine protected against neurotoxicity induced by ER-stress inducers thapsigargin and tunicamycin. Hence, carnosine and anserine are expected to have future therapeutic potential for VD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dai Mizuno
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Choi BY, Lee BE, Kim JH, Kim HJ, Sohn M, Song HK, Chung TN, Suh SW. Colchicine induced intraneuronal free zinc accumulation and dentate granule cell degeneration. Metallomics 2015; 6:1513-20. [PMID: 24874779 DOI: 10.1039/c4mt00067f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colchicine has been discovered to inhibit many inflammatory processes such as gout, familial Mediterranean fever, pericarditis and Behcet disease. Other than these beneficial anti-inflammatory effects, colchicine blocks microtubule-assisted axonal transport, which results in the selective loss of dentate granule cells of the hippocampus. The mechanism of the colchicine-induced dentate granule cell death and depletion of mossy fiber terminals still remains unclear. In the present study, we hypothesized that colchicine-induced dentate granule cell death may be caused by accumulation of labile intracellular zinc. 10 μg kg(-1) of colchicine was injected into the adult rat hippocampus and then brain sections were evaluated at 1 day or 1 week later. Neuronal cell death was evaluated by H&E staining or Fluoro-Jade B. Zinc accumulation and vesicular zinc were detected by N-(6-methoxy-8-quinolyl)-para-toluene sulfonamide (TSQ) staining. To test whether an extracellular zinc chelator can prevent this process, CaEDTA was injected into the hippocampus over a 5 min period with colchicine. To test whether other microtubule toxins also produce similar effects as colchicine, vincristine was injected into the hippocampus. The present study found that colchicine injection induced intracellular zinc accumulation in the dentate granule cells and depleted vesicular zinc from mossy fiber terminals. Injection of a zinc chelator, CaEDTA, did not block the zinc accumulation and neuronal death. Vincristine also produced intracellular zinc accumulation and neuronal death. These results suggest that colchicine-induced dentate granule cell death is caused by blocking axonal zinc flow and accumulation of intracellular labile zinc.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, 1-Okcheon Dong, Chuncheon, Korea 200-702.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Prog Neurobiol 2015; 129:1-36. [PMID: 25817891 DOI: 10.1016/j.pneurobio.2014.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 12/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent a key link between electrical signals and non-electrical processes, such as contraction, secretion and transcription. Evolved to achieve high rates of Ca(2+)-selective flux, they possess an elaborate mechanism for selection of Ca(2+) over foreign ions. It has been convincingly linked to competitive binding in the pore, but the fundamental question of how this is reconcilable with high rates of Ca(2+) transfer remains unanswered. By virtue of their similarity to Ca(2+), polyvalent cations can interfere with the function of VGCCs and have proven instrumental in probing the mechanisms underlying selective permeation. Recent emergence of crystallographic data on a set of Ca(2+)-selective model channels provides a structural framework for permeation in VGCCs, and warrants a reconsideration of their diverse modulation by polyvalent cations, which can be roughly separated into three general mechanisms: (I) long-range interactions with charged regions on the surface, affecting the local potential sensed by the channel or influencing voltage-sensor movement by repulsive forces (electrostatic effects), (II) short-range interactions with sites in the ion-conducting pathway, leading to physical obstruction of the channel (pore block), and in some cases (III) short-range interactions with extracellular binding sites, leading to non-electrostatic modifications of channel gating (allosteric effects). These effects, together with the underlying molecular modifications, provide valuable insights into the function of VGCCs, and have important physiological and pathophysiological implications. Allosteric suppression of some of the pore-forming Cavα1-subunits (Cav2.3, Cav3.2) by Zn(2+) and Cu(2+) may play a major role for the regulation of excitability by endogenous transition metal ions. The fact that these ions can often traverse VGCCs can contribute to the detrimental intracellular accumulation of metal ions following excessive release of endogenous Cu(2+) and Zn(2+) or exposure to non-physiological toxic metal ions.
Collapse
|
25
|
Zhang E, Liao P. Brain transient receptor potential channels and stroke. J Neurosci Res 2014; 93:1165-83. [PMID: 25502473 DOI: 10.1002/jnr.23529] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/10/2014] [Accepted: 11/04/2014] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been increasingly implicated in the pathological mechanisms of CNS disorders. TRP expression has been detected in neurons, astrocytes, oligodendrocytes, microglia, and ependymal cells as well as in the cerebral vascular endothelium and smooth muscle. In stroke, TRPC3/4/6, TRPM2/4/7, and TRPV1/3/4 channels have been found to participate in ischemia-induced cell death, whereas other TRP channels, in particular those expressed in nonneuronal cells, have been less well studied. This review summarizes the current knowledge on the expression and functions of the TRP channels in various cell types in the brain and our current understanding of TRP channels in stroke pathophysiology. In an aging society, the occurrence of stroke is expected to increase steadily, and there is an urgent requirement to improve the current stroke management strategy. Therefore, elucidating the roles of TRP channels in stroke could shed light on the development of novel therapeutic strategies and ultimately improve stroke outcome.
Collapse
Affiliation(s)
- Eric Zhang
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore
| | - Ping Liao
- Calcium Signalling Laboratory, National Neuroscience Institute, Singapore.,Duke-NUS Graduate Medical School Singapore, Singapore
| |
Collapse
|
26
|
Milner E, Zhou ML, Johnson AW, Vellimana AK, Greenberg JK, Holtzman DM, Han BH, Zipfel GJ. Cerebral amyloid angiopathy increases susceptibility to infarction after focal cerebral ischemia in Tg2576 mice. Stroke 2014; 45:3064-9. [PMID: 25190447 DOI: 10.1161/strokeaha.114.006078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND PURPOSE We and others have shown that soluble amyloid β-peptide (Aβ) and cerebral amyloid angiopathy (CAA) cause significant cerebrovascular dysfunction in mutant amyloid precursor protein (APP) mice, and that these deficits are greater in aged APP mice having CAA compared with young APP mice lacking CAA. Amyloid β-peptide in young APP mice also increases infarction after focal cerebral ischemia, but the impact of CAA on ischemic brain injury is unknown. METHODS To determine this, we assessed cerebrovascular reactivity, cerebral blood flow (CBF), and extent of infarction and neurological deficits after transient middle cerebral artery occlusion in aged APP mice having extensive CAA versus young APP mice lacking CAA (and aged-matched littermate controls). RESULTS We found that aged APP mice have more severe cerebrovascular dysfunction that is CAA dependent, have greater CBF compromise during and immediately after middle cerebral artery occlusion, and develop larger infarctions after middle cerebral artery occlusion. CONCLUSIONS These data indicate CAA induces a more severe form of cerebrovascular dysfunction than amyloid β-peptide alone, leading to intra- and postischemic CBF deficits that ultimately exacerbate cerebral infarction. Our results shed mechanistic light on human studies identifying CAA as an independent risk factor for ischemic brain injury.
Collapse
Affiliation(s)
- Eric Milner
- From the Department of Neurological Surgery (E.M., M.-L.Z., A.W.J., A.K.V., J.K.G., B.H.H., G.J.Z.), Program in Neuroscience (E.M.), Department of Neurology (D.M.H., G.J.Z.), Department of Developmental Biology (D.M.H.), and Hope Center for Neurological Disorders (D.M.H., B.H.H., G.J.Z.), Washington University School of Medicine, St. Louis, MO
| | - Meng-Liang Zhou
- From the Department of Neurological Surgery (E.M., M.-L.Z., A.W.J., A.K.V., J.K.G., B.H.H., G.J.Z.), Program in Neuroscience (E.M.), Department of Neurology (D.M.H., G.J.Z.), Department of Developmental Biology (D.M.H.), and Hope Center for Neurological Disorders (D.M.H., B.H.H., G.J.Z.), Washington University School of Medicine, St. Louis, MO
| | - Andrew W Johnson
- From the Department of Neurological Surgery (E.M., M.-L.Z., A.W.J., A.K.V., J.K.G., B.H.H., G.J.Z.), Program in Neuroscience (E.M.), Department of Neurology (D.M.H., G.J.Z.), Department of Developmental Biology (D.M.H.), and Hope Center for Neurological Disorders (D.M.H., B.H.H., G.J.Z.), Washington University School of Medicine, St. Louis, MO
| | - Ananth K Vellimana
- From the Department of Neurological Surgery (E.M., M.-L.Z., A.W.J., A.K.V., J.K.G., B.H.H., G.J.Z.), Program in Neuroscience (E.M.), Department of Neurology (D.M.H., G.J.Z.), Department of Developmental Biology (D.M.H.), and Hope Center for Neurological Disorders (D.M.H., B.H.H., G.J.Z.), Washington University School of Medicine, St. Louis, MO
| | - Jacob K Greenberg
- From the Department of Neurological Surgery (E.M., M.-L.Z., A.W.J., A.K.V., J.K.G., B.H.H., G.J.Z.), Program in Neuroscience (E.M.), Department of Neurology (D.M.H., G.J.Z.), Department of Developmental Biology (D.M.H.), and Hope Center for Neurological Disorders (D.M.H., B.H.H., G.J.Z.), Washington University School of Medicine, St. Louis, MO
| | - David M Holtzman
- From the Department of Neurological Surgery (E.M., M.-L.Z., A.W.J., A.K.V., J.K.G., B.H.H., G.J.Z.), Program in Neuroscience (E.M.), Department of Neurology (D.M.H., G.J.Z.), Department of Developmental Biology (D.M.H.), and Hope Center for Neurological Disorders (D.M.H., B.H.H., G.J.Z.), Washington University School of Medicine, St. Louis, MO
| | - Byung Hee Han
- From the Department of Neurological Surgery (E.M., M.-L.Z., A.W.J., A.K.V., J.K.G., B.H.H., G.J.Z.), Program in Neuroscience (E.M.), Department of Neurology (D.M.H., G.J.Z.), Department of Developmental Biology (D.M.H.), and Hope Center for Neurological Disorders (D.M.H., B.H.H., G.J.Z.), Washington University School of Medicine, St. Louis, MO
| | - Gregory J Zipfel
- From the Department of Neurological Surgery (E.M., M.-L.Z., A.W.J., A.K.V., J.K.G., B.H.H., G.J.Z.), Program in Neuroscience (E.M.), Department of Neurology (D.M.H., G.J.Z.), Department of Developmental Biology (D.M.H.), and Hope Center for Neurological Disorders (D.M.H., B.H.H., G.J.Z.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
27
|
Zhao Y, Pan R, Li S, Luo Y, Yan F, Yin J, Qi Z, Yan Y, Ji X, Liu KJ. Chelating intracellularly accumulated zinc decreased ischemic brain injury through reducing neuronal apoptotic death. Stroke 2014; 45:1139-47. [PMID: 24643405 DOI: 10.1161/strokeaha.113.004296] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Zinc has been reported to possess both neurotoxic and neuroprotective capabilities. The effects of elevated intracellular zinc accumulation following transient focal cerebral ischemia remain to be fully elucidated. Here, we investigated whether removing zinc with the membrane-permeable zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), would decrease the intracellular levels of zinc in the ischemic tissue, leading to reduced brain damage and improved neurological outcomes. METHODS Rats were pretreated with TPEN or vehicle before or after a 90-minute middle cerebral artery occlusion. Cerebral infarct volume, neurological functions, neuronal apoptosis, poly(ADP-ribose) polymerase activity, and cytosolic labile zinc were assessed after ischemia and reperfusion. RESULTS Cerebral ischemia caused a dramatic cytosolic labile zinc accumulation in the ischemic tissue, which was decreased markedly by TPEN (15 mg/kg) pretreatment. Chelating zinc lead to reduced infarct volume compared with vehicle-treated middle cerebral artery occlusion rats, accompanied by much improved neurological assessment and motor function, which were sustained for 14 days after reperfusion. We also determined that reducing zinc accumulation rescued neurons from ischemia-induced apoptotic death by reducing poly(ADP-ribose) polymerase-1 activation. CONCLUSIONS Ischemia-induced high accumulation of intracellular zinc significantly contributed to ischemic brain damage through promotion of neuronal apoptotic death. Removing zinc may be an effective and novel approach to reduce ischemic brain injury.
Collapse
Affiliation(s)
- Yongmei Zhao
- From the Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China (Y.Z., S.L., Y.L., F.Y., J.Y., Z.Q., Y.Y., X.J.); Beijing Geriatric Medical Research Center, Beijing, China (Y.Z., S.L., Y.L., F.Y., Z.Q., Y.Y., X.J.); Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China (Y.Z., Y.L., F.Y., J.Y., Z.Q., X.J.); Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China (Y.Z., Y.L., F.Y., J.Y., Z.Q., X.J.); and Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque (R.P., K.J.L.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cheng CY, Lin JG, Tang NY, Kao ST, Hsieh CL. Electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints protects rats against subacute-phase cerebral ischemia-reperfusion injuries by reducing S100B-mediated neurotoxicity. PLoS One 2014; 9:e91426. [PMID: 24626220 PMCID: PMC3953388 DOI: 10.1371/journal.pone.0091426] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/09/2014] [Indexed: 11/30/2022] Open
Abstract
Objectives The purpose of this study was to evaluate the effects of electroacupuncture-like stimulation at the Baihui (GV20) and Dazhui (GV14) acupoints (EA at acupoints) during the subacute phase of cerebral ischemia-reperfusion (I/R) injury and to establish the neuroprotective mechanisms involved in the modulation of the S100B-mediated signaling pathway. Methods The experimental rats were subjected to middle cerebral artery occlusion (MCAo) for 15 min followed by 1 d or 7 d of reperfusion. EA at acupoints was applied 1 d postreperfusion then once daily for 6 consecutive days. Results We observed that 15 min of MCAo caused delayed infarct expansion 7 d after reperfusion. EA at acupoints significantly reduced the cerebral infarct and neurological deficit scores. EA at acupoints also downregulated the expression of the glial fibrillary acidic protein (GFAP), S100B, nuclear factor-κB (NF-κB; p50), and tumor necrosis factor-α (TNF-α), and reduced the level of inducible nitric oxide synthase (iNOS) and apoptosis in the ischemic cortical penumbra 7 d after reperfusion. Western blot analysis showed that EA at acupoints significantly downregulated the cytosolic expression of phospho-p38 MAP kinase (p-p38 MAP kinase), tumor necrosis factor receptor type 1-associated death domain (TRADD), Fas-associated death domain (FADD), cleaved caspase-8, and cleaved caspase-3 in the ischemic cortical penumbra 7 d after reperfusion. EA at acupoints significantly reduced the numbers of GFAP/S100B and S100B/nitrotyrosine double-labeled cells. Conclusion Our study results indicate that EA at acupoints initiated 1 d postreperfusion effectively downregulates astrocytic S100B expression to provide neuroprotection against delayed infarct expansion by modulating p38 MAP kinase-mediated NF-κB expression. These effects subsequently reduce oxidative/nitrative stress and inhibit the TNF-α/TRADD/FADD/cleaved caspase-8/cleaved caspase-3 apoptotic pathway in the ischemic cortical penumbra 7 d after reperfusion.
Collapse
Affiliation(s)
- Chin-Yi Cheng
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Nou-Ying Tang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Liang Hsieh
- Acupuncture Research Center, China Medical University, Taichung, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
29
|
Ugarte M, Osborne NN. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 2014; 6:189-200. [DOI: 10.1039/c3mt00291h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Matosziuk LM, Leibowitz JH, Heffern MC, MacRenaris KW, Ratner MA, Meade TJ. Structural optimization of Zn(II)-activated magnetic resonance imaging probes. Inorg Chem 2013; 52:12250-61. [PMID: 23777423 PMCID: PMC3805786 DOI: 10.1021/ic400681j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the structural optimization and mechanistic investigation of a series of bioactivated magnetic resonance imaging contrast agents that transform from low relaxivity to high relaxivity in the presence of Zn(II). The change in relaxivity results from a structural transformation of the complex that alters the coordination environment about the Gd(III) center. Here, we have performed a series of systematic modifications to determine the structure that provides the optimal change in relaxivity in response to the presence of Zn(II). Relaxivity measurements in the presence and absence of Zn(II) were used in conjunction with measurements regarding water access (namely, number of water molecules bound) to the Gd(III) center and temperature-dependent (13)C NMR spectroscopy to determine how the coordination environment about the Gd(III) center is affected by the distance between the Zn(II)-binding domain and the Gd(III) chelate, the number of functional groups on the Zn(II)-binding domain, and the presence of Zn(II). The results of this study provide valuable insight into the design principles for future bioactivated magnetic resonance probes.
Collapse
Affiliation(s)
- Lauren M. Matosziuk
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Jonathan H. Leibowitz
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Marie C. Heffern
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Keith W. MacRenaris
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| | - Mark A. Ratner
- Department of Chemistry, and Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208-3113
| | - Thomas J. Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
31
|
Carter RE, Seidel JL, Lindquist BE, Sheline CT, Shuttleworth CW. Intracellular Zn2+ accumulation enhances suppression of synaptic activity following spreading depolarization. J Neurochem 2013; 125:673-84. [PMID: 23495967 PMCID: PMC3666321 DOI: 10.1111/jnc.12237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/27/2022]
Abstract
Spreading depolarization (SD) is a feed-forward wave that propagates slowly throughout brain tissue and recovery from SD involves substantial metabolic demand. Presynaptic Zn(2+) release and intracellular accumulation occurs with SD, and elevated intracellular Zn(2+) ([Zn(2+) ]i ) can impair cellular metabolism through multiple pathways. We tested here whether increased [Zn(2+) ]i could exacerbate the metabolic challenge of SD, induced by KCl, and delay recovery in acute murine hippocampal slices. [Zn(2+) ]i loading prior to SD, by transient ZnCl2 application with the Zn(2+) ionophore pyrithione (Zn/Pyr), delayed recovery of field excitatory post-synaptic potentials (fEPSPs) in a concentration-dependent manner, prolonged DC shifts, and significantly increased extracellular adenosine accumulation. These effects could be due to metabolic inhibition, occurring downstream of pyruvate utilization. Prolonged [Zn(2+) ]i accumulation prior to SD was required for effects on fEPSP recovery and consistent with this, endogenous synaptic Zn(2+) release during SD propagation did not delay recovery from SD. The effects of exogenous [Zn(2+) ]i loading were also lost in slices preconditioned with repetitive SDs, implying a rapid adaptation. Together, these results suggest that [Zn(2+) ]i loading prior to SD can provide significant additional challenge to brain tissue, and could contribute to deleterious effects of [Zn(2+) ]i accumulation in a range of brain injury models.
Collapse
Affiliation(s)
- Russell E. Carter
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jessica L. Seidel
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Britta E. Lindquist
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christian T. Sheline
- Department of Ophthalmology and the Neuroscience Center of Excellence LSU, Health Sciences Center, New Orleans, LA, USA
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
32
|
Kukic I, Lee JK, Coblentz J, Kelleher SL, Kiselyov K. Zinc-dependent lysosomal enlargement in TRPML1-deficient cells involves MTF-1 transcription factor and ZnT4 (Slc30a4) transporter. Biochem J 2013; 451:155-63. [PMID: 23368743 PMCID: PMC3654546 DOI: 10.1042/bj20121506] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zinc is critical for a multitude of cellular processes, including gene expression, secretion and enzymatic activities. Cellular zinc is controlled by zinc-chelating proteins and by zinc transporters. The recent identification of zinc permeability of the lysosomal ion channel TRPML1 (transient receptor potential mucolipin 1), and the evidence of abnormal zinc levels in cells deficient in TRPML1, suggested a role for TRPML1 in zinc transport. In the present study we provide new evidence for such a role and identify additional cellular components responsible for it. In agreement with the previously published data, an acute siRNA (small interfering RNA)-driven TRPML1 KD (knockdown) leads to the build-up of large cytoplasmic vesicles positive for LysoTracker™ and zinc staining, when cells are exposed to high concentrations of zinc. We now show that lysosomal enlargement and zinc build-up in TRPML1-KD cells exposed to zinc are ameliorated by KD of the zinc-sensitive transcription factor MTF-1 (metal-regulatory-element-binding transcription factor-1) or the zinc transporter ZnT4. TRPML1 KD is associated with a build-up of cytoplasmic zinc and with enhanced transcriptional response of mRNA for MT2a (metallothionein 2a). TRPML1 KD did not suppress lysosomal secretion, but it did delay zinc leak from the lysosomes into the cytoplasm. These results underscore a role for TRPML1 in zinc metabolism. Furthermore, they suggest that TRPML1 works in concert with ZnT4 to regulate zinc translocation between the cytoplasm and lysosomes.
Collapse
Affiliation(s)
- Ira Kukic
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey K. Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Coblentz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon L. Kelleher
- Departments of Nutrition, Surgery and Cell & Molecular Physiology, The Pennsylvania State University, State College, PA, USA
| | - Kirill Kiselyov
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
33
|
Kawahara M, Sadakane Y, Koyama H, Konoha K, Ohkawara S. D-histidine and L-histidine attenuate zinc-induced neuronal death in GT1-7 cells. Metallomics 2013; 5:453-60. [PMID: 23503404 DOI: 10.1039/c3mt20264j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although zinc (Zn) is an essential trace element, excess Zn causes neuronal death following transient global ischemia and plays a central role in the pathogenesis of vascular-type dementia. In this study, we developed a rapid and convenient screening system for substances that prevent Zn-induced neurotoxicity by using GT1-7 cells (immortalized hypothalamic neurons), with the aim of identifying a treatment for vascular-type dementia. Among tested, we found a protective substance in the extract of round herring (Etrumeus teres), and determined its structure as l-histidine. Analysis of the structure-activity relationship by using histidine analogues revealed that both l-histidine and d-histidine exhibit the same neuroprotective activity. Furthermore, we investigated the molecular mechanisms underlying the protective effect of histidine on Zn-induced neurotoxicity using Zn imaging and gene expression analysis, and found that histidine protects against Zn-induced neurotoxicity not by inhibiting Zn chelation, thereby preventing increases in intracellular Zn(2+). Moreover, it is also suggested that endoplasmic reticulum (ER) stress and activity-regulated cytoskeleton associated protein (Arc) are implicated in Zn-induced degeneration of neurons.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | | | | | | | | |
Collapse
|
34
|
Ho HTB, Dahlin A, Wang J. Expression Profiling of Solute Carrier Gene Families at the Blood-CSF Barrier. Front Pharmacol 2012; 3:154. [PMID: 22936914 PMCID: PMC3426838 DOI: 10.3389/fphar.2012.00154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus (CP) is a highly vascularized tissue in the brain ventricles and acts as the blood-cerebrospinal fluid (CSF) barrier (BCSFB). A main function of the CP is to secrete CSF, which is accomplished by active transport of small ions and water from the blood side to the CSF side. The CP also supplies the brain with certain nutrients, hormones, and metal ions, while removing metabolites and xenobiotics from the CSF. Numerous membrane transporters are expressed in the CP in order to facilitate the solute exchange between the blood and the CSF. The solute carrier (SLC) superfamily represents a major class of transporters in the CP that constitutes the molecular mechanisms for CP function. Recently, we systematically and quantitatively examined Slc gene expression in 20 anatomically comprehensive brain areas in the adult mouse brain using high-quality in situ hybridization data generated by the Allen Brain Atlas. Here we focus our analysis on Slc gene expression at the BCSFB using previously obtained data. Of the 252 Slc genes present in the mouse brain, 202 Slc genes were found at detectable levels in the CP. Unsupervised hierarchical cluster analysis showed that the CP Slc gene expression pattern is substantially different from the other 19 analyzed brain regions. The majority of the Slc genes in the CP are expressed at low to moderate levels, whereas 28 Slc genes are present in the CP at the highest levels. These highly expressed Slc genes encode transporters involved in CSF secretion, energy production, and transport of nutrients, hormones, neurotransmitters, sulfate, and metal ions. In this review, the functional characteristics and potential importance of these Slc transporters in the CP are discussed, with particular emphasis on their localization and physiological functions at the BCSFB.
Collapse
Affiliation(s)
- Horace T B Ho
- Department of Pharmaceutics, University of Washington Seattle, WA, USA
| | | | | |
Collapse
|
35
|
Ion channels and zinc: mechanisms of neurotoxicity and neurodegeneration. J Toxicol 2012; 2012:785647. [PMID: 22645609 PMCID: PMC3356718 DOI: 10.1155/2012/785647] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/17/2012] [Indexed: 11/17/2022] Open
Abstract
Ionotropic glutamate receptors, such as NMDA, AMPA and kainate receptors, are ligand-gated ion channels that mediate much of the excitatory neurotransmission in the brain. Not only do these receptors bind glutamate, but they are also regulated by and facilitate the postsynaptic uptake of the trace metal zinc. This paper discusses the role of the excitotoxic influx and accumulation of zinc, the mechanisms responsible for its cytotoxicity, and a number of disorders of the central nervous system that have been linked to these neuronal ion channels and zinc toxicity including ischemic brain injury, traumatic brain injury, and epilepsy.
Collapse
|
36
|
Gower-Winter SD, Levenson CW. Zinc in the central nervous system: From molecules to behavior. Biofactors 2012; 38:186-93. [PMID: 22473811 PMCID: PMC3757551 DOI: 10.1002/biof.1012] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/08/2012] [Indexed: 01/28/2023]
Abstract
The trace metal zinc is a biofactor that plays essential roles in the central nervous system across the lifespan from early neonatal brain development through the maintenance of brain function in adults. At the molecular level, zinc regulates gene expression through transcription factor activity and is responsible for the activity of dozens of key enzymes in neuronal metabolism. At the cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Given these key roles, it is not surprising that alterations in brain zinc status have been implicated in a wide array of neurological disorders including impaired brain development, neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression. Zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.
Collapse
Affiliation(s)
- Shannon D. Gower-Winter
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL, USA
| | - Cathy W. Levenson
- Department of Biomedical Sciences, Florida State University, College of Medicine, Tallahassee, FL, USA
- Program in Neuroscience, Florida State University, College of Medicine, Tallahassee, FL, USA
| |
Collapse
|
37
|
Aquilani R, Sessarego P, Iadarola P, Barbieri A, Boschi F. Nutrition for brain recovery after ischemic stroke: an added value to rehabilitation. Nutr Clin Pract 2011; 26:339-45. [PMID: 21586419 DOI: 10.1177/0884533611405793] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In patients who undergo rehabilitation after ischemic stroke, nutrition strategies are adopted to provide tube-fed individuals with adequate nutrition and/or to avoid the body wasting responsible for poor functional outcome and prolonged stay in the hospital. Investigations have documented that nutrition interventions can enhance the recovery of neurocognitive function in individuals with ischemic stroke. Experimental studies have shown that protein synthesis is suppressed in the ischemic penumbra. In clinical studies on rehabilitation patients designed to study the effects of counteracting or limiting this reduction of protein synthesis by providing protein supplementation, patients receiving such supplementation had enhanced recovery of neurocognitive function. Cellular damage in cerebral ischemia is also partly caused by oxidative damage secondary to free radical formation and lipid peroxidation. Increased oxidative stress negatively affects a patient's life and functional prognosis. Some studies have documented that nutrition supplementation with B-group vitamins may mitigate oxidative damage after acute ischemic stroke. Experimental investigations have also shown that cerebral ischemia changes synaptic zinc release and that acute ischemia increases zinc release, aggravating neuronal injury. In clinical practice, patients with ischemic stroke were found to have a lower than recommended dietary intake of zinc. Patients in whom daily zinc intake was normalized had better recovery of neurological deficits than subjects given a placebo. The aim of this review is to highlight those brain metabolic alterations susceptible to nutrition correction in clinical practice. The mechanisms underlying the relationship between cerebral ischemia and nutrition metabolic conditions are discussed.
Collapse
Affiliation(s)
- Roberto Aquilani
- Servizio di Fisiopatologia Metabolico-Nutrizionale e Nutrizione Clinica, Fondazione S Maugeri, IRCCS, Istituto Scientifico di Montescano, Montescano, Pavia, Italy
| | | | | | | | | |
Collapse
|
38
|
Bae CYJ, Sun HS. TRPM7 in cerebral ischemia and potential target for drug development in stroke. Acta Pharmacol Sin 2011; 32:725-33. [PMID: 21552293 DOI: 10.1038/aps.2011.60] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Searching for effective pharmacological agents for stroke treatment has largely been unsuccessful. Despite initial excitement, antagonists for glutamate receptors, the most studied receptor channels in ischemic stroke, have shown insufficient neuroprotective effects in clinical trials. Outside the traditional glutamate-mediated excitotoxicity, recent evidence suggests few non-glutamate mechanisms, which may also cause ionic imbalance and cell death in cerebral ischemia. Transient receptor potential melastatin 7 (TRPM7) is a Ca(2+) permeable, non-selective cation channel that has recently gained attention as a potential cation influx pathway involved in ischemic events. Compelling new evidence from an in vivo study demonstrated that suppression of TRPM7 channels in adult rat brain in vivo using virally mediated gene silencing approach reduced delayed neuronal cell death and preserved neuronal functions in global cerebral ischemia. In this review, we will discuss the current understanding of the role of TRPM7 channels in physiology and pathophysiology as well as its therapeutic potential in stroke.
Collapse
|
39
|
Shuttleworth CW, Weiss JH. Zinc: new clues to diverse roles in brain ischemia. Trends Pharmacol Sci 2011; 32:480-6. [PMID: 21621864 DOI: 10.1016/j.tips.2011.04.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 12/22/2022]
Abstract
Cerebral ischemia is a leading cause of morbidity and mortality, reflecting the extraordinary sensitivity of the brain to a brief loss of blood flow. A significant goal has been to identify pathways of neuronal injury that are selectively activated after stroke and may be amenable to drug therapy. An important advance was made nearly 25 years ago when Ca(2+) overload was implicated as a critical link between glutamate excitotoxicity and ischemic neurodegeneration. However, early hope for effective therapies faded as glutamate-targeted trials repeatedly failed to demonstrate efficacy in humans. In a review in 2000 in this journal, we described new evidence linking a related cation, zinc (Zn(2+)), to neuronal injury, emphasizing sources and mechanisms of Zn(2+) toxicity. The current review highlights progress over the last decade, emphasizing mechanisms through which Zn(2+) ions (from multiple sources) participate together with Ca(2+) in different stages of cascades of ischemic injury.
Collapse
Affiliation(s)
- C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque NM 87131, USA
| | | |
Collapse
|
40
|
Carter RE, Aiba I, Dietz RM, Sheline CT, Shuttleworth CW. Spreading depression and related events are significant sources of neuronal Zn2+ release and accumulation. J Cereb Blood Flow Metab 2011; 31:1073-84. [PMID: 20978516 PMCID: PMC3070966 DOI: 10.1038/jcbfm.2010.183] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/27/2010] [Accepted: 09/11/2010] [Indexed: 11/09/2022]
Abstract
Spreading depression (SD) involves coordinated depolarizations of neurons and glia that propagate through the brain tissue. Repetitive SD-like events are common following human ischemic strokes, and are believed to contribute to the enlargement of infarct volume. Accumulation of Zn(2+) is also implicated in ischemic neuronal injury. Synaptic glutamate release contributes to SD propagation, and because Zn(2+) is costored with glutamate in some synaptic vesicles, we examined whether Zn(2+) is released by SD and may therefore provide a significant source of Zn(2+) in the postischemic period. Spreading depression-like events were generated in acutely prepared murine hippocampal slices by deprivation of oxygen and glucose (OGD), and Zn(2+) release was detected extracellularly by a Zn(2+)-selective indicator FluoZin-3. Deprivation of oxygen and glucose-SD produced large FluoZin-3 increases that propagated with the event, and signals were abolished in tissues from ZnT3 knockout animals lacking synaptic Zn(2+). Synaptic Zn(2+) release was also maintained with repetitive SDs generated by microinjections of KCl under normoxic conditions. Intracellular Zn(2+) accumulation in CA1 neurons, assessed using microinjection of FluoZin-3, showed significant increases following SD that was attributed to synaptic Zn(2+) release. These results suggest that Zn(2+) is released during SDs and could provide a significant source of Zn(2+) that contributes to neurodegeneration in the postischemic period.
Collapse
Affiliation(s)
- Russell E Carter
- Department of Neurosciences University of New Mexico, Albuquerque, New Mexico, USA
| | - Isamu Aiba
- Department of Neurosciences University of New Mexico, Albuquerque, New Mexico, USA
| | - Robert M Dietz
- Department of Neurosciences University of New Mexico, Albuquerque, New Mexico, USA
| | - Christian T Sheline
- LSU Health Sciences Center, Department of Ophthalmology and the Neuroscience Center of Excellence, New Orleans, Louisiana, USA
| | | |
Collapse
|
41
|
Kiedrowski L. Cytosolic zinc release and clearance in hippocampal neurons exposed to glutamate--the role of pH and sodium. J Neurochem 2011; 117:231-43. [PMID: 21255017 DOI: 10.1111/j.1471-4159.2011.07194.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although Zn(2+) homeostasis in neurons is tightly regulated and its destabilization has been linked to a number of pathologies including Alzheimer's disease and ischemic neuronal death, the primary mechanisms affecting intracellular Zn(2+) concentration ([Zn(2+) ](i)) in neurons exposed to excitotoxic stimuli remain poorly understood. The present work addressed these mechanisms in cultured hippocampal neurons exposed to glutamate and glycine (Glu/Gly). [Zn(2+)](i) and intracellular Ca(2+) concentration were monitored simultaneously using FluoZin-3 and Fura-2FF, and intracellular pH (pH(i)) was studied in parallel experiments using 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein. Glu/Gly applications under Na(+)-free conditions (Na(+) substituted with N-methyl-D-glucamine(+)) caused Ca(2+) influx, pH(i) drop, and Zn(2+) release from intracellular stores. Experimental maneuvers resulting in a pH(i) increase during Glu/Gly applications, such as stimulation of Na(+) -dependent pathways of H(+) efflux, forcing H(+) efflux via gramicidin-formed channels, or increasing extracellular pH counteracted [Zn(2+)](i) elevations. In the absence of Na(+), the rate of [Zn(2+)](i) decrease could be correlated with the rate of pH(i) increase. In the presence of Na(+), the rate of [Zn(2+) ](i) decrease was about twice as fast as expected from the rate of pH(i) elevation. The data suggest that Glu/Gly-induced cytosolic acidification promotes [Zn(2+) ](i) elevations and that Na(+) counteracts the latter by promoting pH(i)-dependent and pH(i)-independent mechanisms of cytosolic Zn(2+) clearance.
Collapse
Affiliation(s)
- Lech Kiedrowski
- Department of Psychiatry, The Psychiatric Institute, The University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| |
Collapse
|
42
|
Bhatt A, Farooq MU, Enduri S, Pillainayagam C, Naravetla B, Razak A, Safdar A, Hussain S, Kassab M, Majid A. Clinical significance of serum zinc levels in cerebral ischemia. Stroke Res Treat 2011; 2010:245715. [PMID: 21403822 PMCID: PMC3042622 DOI: 10.4061/2010/245715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/04/2010] [Accepted: 12/15/2010] [Indexed: 12/02/2022] Open
Abstract
Background. Zinc mediates several vital physiological, enzymatic and cellular functions. The association between serum zinc and stroke outcome has not been previously evaluated.
Methods. This single center retrospective study was conducted on consecutive stroke (n = 158) and TIA (n = 74) patients. We sought to determine whether serum zinc concentrations in patients with acute ischemic strokes were associated with stroke severity and poor functional status at discharge, respectively.
Results. Overall, out of the 224 patients analyzed (mean age 67 years), 35.7% patients had low zinc levels (65 mcg/dL). Patients with stroke (n = 152) were more likely to have low zinc levels (OR = 2.62, CI 1.92–3.57, P < .003) compared to patients with TIA (n = 72). For patients with stroke (n = 152), multivariate analysis showed that low serum zinc levels (OR 2.82, CI 1.35–5.91, P = .035) and strokes with admission severe strokes (NIHSS > 8) (OR 2.68, CI 1.1–6.5, P = .03) were independently associated with poor functional status (MRS > 3) at discharge from the hospital. Conclusion. Low serum zinc concentrations are associated with more severe strokes on admission and poor functional status at discharge.
Collapse
Affiliation(s)
- Archit Bhatt
- Division of Cerebrovascular Diseases and Sparrow Hospital William and Claire Dart Stroke Center, A-217 Clinical Center, Department of Neurology and Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tian Y, Yang Z, Zhang T. Zinc ion as modulator effects on excitability and synaptic transmission in hippocampal CA1 neurons in Wistar rats. Neurosci Res 2010; 68:167-75. [DOI: 10.1016/j.neures.2010.07.2030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
|
44
|
Lee SJ, Koh JY. Roles of zinc and metallothionein-3 in oxidative stress-induced lysosomal dysfunction, cell death, and autophagy in neurons and astrocytes. Mol Brain 2010; 3:30. [PMID: 20974010 PMCID: PMC2988061 DOI: 10.1186/1756-6606-3-30] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 10/26/2010] [Indexed: 12/18/2022] Open
Abstract
Zinc dyshomeostasis has been recognized as an important mechanism for cell death in acute brain injury. An increase in the level of free or histochemically reactive zinc in astrocytes and neurons is considered one of the major causes of death of these cells in ischemia and trauma. Although zinc dyshomeostasis can lead to cell death via diverse routes, the major pathway appears to involve oxidative stress. Recently, we found that a rise of zinc in autophagic vacuoles, including autolysosomes, is a prerequisite for lysosomal membrane permeabilization and cell death in cultured brain cells exposed to oxidative stress conditions. The source of zinc in this process is likely redox-sensitive zinc-binding proteins such as metallothioneins, which release zinc under oxidative conditions. Of the metallothioneins, metallothionein-3 is especially enriched in the central nervous system, but its physiologic role in this tissue is not well established. Like other metallothioneins, metallothionein-3 may function as metal detoxicant, but is also known to inhibit neurite outgrowth and, sometimes, promote neuronal death, likely by serving as a source of toxic zinc release. In addition, metallothionein-3 regulates lysosomal functions. In the absence of metallothionein-3, there are changes in lysosome-associated membrane protein-1 and -2, and reductions in certain lysosomal enzymes that result in decreased autophagic flux. This may have dual effects on cell survival. In acute oxidative injury, zinc dyshomeostasis and lysosomal membrane permeabilization are diminished in metallothionein-3 null cells, resulting in less cell death. But over the longer term, diminished lysosomal function may lead to the accumulation of abnormal proteins and cause cytotoxicity. The roles of zinc and metallothionein-3 in autophagy and/or lysosomal function have just begun to be investigated. In light of evidence that autophagy and lysosomes may play significant roles in the pathogenesis of various neurological diseases, further insight into the contribution of zinc dynamics and metallothionein-3 function may help provide ways to effectively regulate these processes in brain cells.
Collapse
Affiliation(s)
- Sook-Jeong Lee
- Neural Injury Research Center, Department of Neurology, Asan Institute for Life Science, University of Ulsan, College of Medicine, Seoul 138-736, Korea
| | | |
Collapse
|
45
|
Sheline CT, Cai AL, Zhu J, Shi C. Serum or target deprivation-induced neuronal death causes oxidative neuronal accumulation of Zn2+ and loss of NAD+. Eur J Neurosci 2010; 32:894-904. [PMID: 20722716 DOI: 10.1111/j.1460-9568.2010.07372.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Trophic deprivation-mediated neuronal death is important during development, after acute brain or nerve trauma, and in neurodegeneration. Serum deprivation (SD) approximates trophic deprivation in vitro, and an in vivo model is provided by neuronal death in the mouse dorsal lateral geniculate nucleus (LGNd) after ablation of the visual cortex (VCA). Oxidant-induced intracellular Zn(2+) release ([Zn(2+) ](i) ) from metallothionein-3 (MT-III), mitochondria or 'protein Zn(2+) ', was implicated in trophic deprivation neurotoxicity. We have previously shown that neurotoxicity of extracellular Zn(2+) required entry, increased [Zn(2+) ](i) , and reduction of NAD(+) and ATP levels causing inhibition of glycolysis and cellular metabolism. Exogenous NAD(+) and sirtuin inhibition attenuated Zn(2+) neurotoxicity. Here we show that: (1) Zn(2+) is released intracellularly after oxidant and SD injuries, and that sensitivity to these injuries is proportional to neuronal Zn(2+) content; (2) NAD(+) loss is involved - restoration of NAD(+) using exogenous NAD(+) , pyruvate or nicotinamide attenuated these injuries, and potentiation of NAD(+) loss potentiated injury; (3) neurons from genetically modified mouse strains which reduce intracellular Zn(2+) content (MT-III knockout), reduce NAD(+) catabolism (PARP-1 knockout) or increase expression of an NAD(+) synthetic enzyme (Wld(s) ) each had attenuated SD and oxidant neurotoxicities; (4) sirtuin inhibitors attenuated and sirtuin activators potentiated these neurotoxicities; (5) visual cortex ablation (VCA) induces Zn(2+) staining and death only in ipsilateral LGNd neurons, and a 1 mg/kg Zn(2+) diet attenuated injury; and finally (6) NAD(+) synthesis and levels are involved given that LGNd neuronal death after VCA was dramatically reduced in Wld(s) animals, and by intraperitoneal pyruvate or nicotinamide. Zn(2+) toxicity is involved in serum and trophic deprivation-induced neuronal death.
Collapse
Affiliation(s)
- Christian T Sheline
- Department of Ophthalmology and the Neuroscience Center of Excellence, LSU Health Sciences Center, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
46
|
Chemical blocking of zinc ions in CNS increases neuronal damage following traumatic brain injury (TBI) in mice. PLoS One 2010; 5:e10131. [PMID: 20396380 PMCID: PMC2852423 DOI: 10.1371/journal.pone.0010131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 03/12/2010] [Indexed: 12/02/2022] Open
Abstract
Background Traumatic brain injury (TBI) is one of the leading causes of disability and death among young people. Although much is already known about secondary brain damage the full range of brain tissue responses to TBI remains to be elucidated. A population of neurons located in cerebral areas associated with higher cognitive functions harbours a vesicular zinc pool co-localized with glutamate. This zinc enriched pool of synaptic vesicles has been hypothesized to take part in the injurious signalling cascade that follows pathological conditions such as seizures, ischemia and traumatic brain injury. Pathological release of excess zinc ions from pre-synaptic vesicles has been suggested to mediate cell damage/death to postsynaptic neurons. Methodology/Principal Findings In order to substantiate the influence of vesicular zinc ions on TBI, we designed a study in which damage and zinc movements were analysed in several different ways. Twenty-four hours after TBI ZnT3-KO mice (mice without vesicular zinc) were compared to littermate Wild Type (WT) mice (mice with vesicular zinc) with regard to histopathology. Furthermore, in order to evaluate a possible neuro-protective dimension of chemical blocking of vesicular zinc, we treated lesioned mice with either DEDTC or selenite. Our study revealed that chemical blocking of vesicular zinc ions, either by chelation with DEDTC or accumulation in zinc-selenium nanocrystals, worsened the effects on the aftermath of TBI in the WT mice by increasing the number of necrotic and apoptotic cells within the first 24 hours after TBI, when compared to those of chemically untreated WT mice. Conclusion/Significance ZnT3-KO mice revealed more damage after TBI compared to WT controls. Following treatment with DEDTC or selenium an increase in the number of both dead and apoptotic cells were seen in the controls within the first 24 hours after TBI while the degree of damage in the ZnT3-KO mice remained largely unchanged. Further analyses revealed that the damage development in the two mouse strains was almost identical after either zinc chelation or zinc complexion therapy.
Collapse
|
47
|
Muhammad S, Aller MI, Maser-Gluth C, Schwaninger M, Wisden W. Expression of the kcnk3 potassium channel gene lessens the injury from cerebral ischemia, most likely by a general influence on blood pressure. Neuroscience 2010; 167:758-64. [PMID: 20167264 DOI: 10.1016/j.neuroscience.2010.02.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/08/2010] [Accepted: 02/10/2010] [Indexed: 01/27/2023]
Abstract
We examined the possible protective effect of TASK-1 (TWIK-related acid-sensitive potassium channel-1, kcnk3) and -3 potassium channels during stroke. TASK-1 and TASK-3, members of the two pore domain (K2P or kcnk) potassium channel family, form hetero or homodimers and help set the resting membrane potential. We used male TASK-1 and TASK-3 knockout mice in a model of focal cerebral ischemia, permanent middle cerebral artery occlusion (pMCAO). Infarct volume was measured 48 h after pMCAO. The TASK-1 knockout brains had larger infarct volumes (P=0.004), and those in TASK-3 knockouts were unchanged. As the TASK-1 gene is expressed in adrenal gland, heart and possibly blood vessels, the higher infarct volumes in the TASK-1 knockout mice could be due to TASK-1 regulating blood vessel tone and hence blood pressure or influencing blood vessel microarchitecture and blood flow rate. Indeed, we found that male TASK-1 knockout mice had reduced blood pressure, likely explaining the increased brain injury seen after pMCAO. Thus to make precise conclusions about how TASK-1 protects neurons, neural- or organ-specific deletions of the gene will be needed. Nevertheless, a consequence of having TASK-1 channels expressed (in various non-neuronal tissues and organs) is that neuronal damage is lessened when stroke occurs.
Collapse
Affiliation(s)
- S Muhammad
- Department of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
48
|
Belloni-Olivi L, Marshall C, Laal B, Andrews GK, Bressler J. Localization of zip1 and zip4 mRNA in the adult rat brain. J Neurosci Res 2009; 87:3221-30. [PMID: 19530166 DOI: 10.1002/jnr.22144] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The localization of two members of the Slc39a (zip1 and zip4) family of zinc transporters was examined in the brains of adult mice. Zip1 was highly enriched in brain regions with high densities of neuronal cell bodies, including the hippocampus, thalamus, and perifontal cortex. Zip1 was also expressed in commissural fiber tracts such as the corpus callosum and anterior commissure, but little was found in the internal and external capsules. Also, very low amounts of zip1 mRNA were detected in resting astrocytes and reactive astrocytes that were examined at 14 days after inflicting a stab wound. Zip1 mRNA was detected in ependymal cells lining the third and lateral ventricles and epithelium cells in the choroid plexus. Interestingly, zip4 mRNA was detected in the choroid plexus but not in the ependymal cells or other neural elements. Zip4 mRNA was also detected in brain capillaries, but zip1 mRNA was not. In zip4 knockout heterozygotes that express green fluorescent protein regulated by the zip4 promoter, green fluorescent protein was detected in brain capillaries. Because zip4 levels are regulated by dietary Zn, our studies suggest that the brain has the potential of adapting to changes in Zn status.
Collapse
|
49
|
Abstract
Zinc is a life-sustaining trace element, serving structural, catalytic, and regulatory roles in cellular biology. It is required for normal mammalian brain development and physiology, such that deficiency or excess of zinc has been shown to contribute to alterations in behavior, abnormal central nervous system development, and neurological disease. In this light, it is not surprising that zinc ions have now been shown to play a role in the neuromodulation of synaptic transmission as well as in cortical plasticity. Zinc is stored in specific synaptic vesicles by a class of glutamatergic or "gluzinergic" neurons and is released in an activity-dependent manner. Because gluzinergic neurons are found almost exclusively in the cerebral cortex and limbic structures, zinc may be critical for normal cognitive and emotional functioning. Conversely, direct evidence shows that zinc might be a relatively potent neurotoxin. Neuronal injury secondary to in vivo zinc mobilization and release occurs in several neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis, in addition to epilepsy and ischemia. Thus, zinc homeostasis is integral to normal central nervous system functioning, and in fact its role may be underappreciated. This article provides an overview of zinc neurobiology and reviews the experimental evidence that implicates zinc signals in the pathophysiology of neuropsychiatric diseases. A greater understanding of zinc's role in the central nervous system may therefore allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Byron K Y Bitanihirwe
- Laboratory of Behavioral Neurobiology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | |
Collapse
|
50
|
Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 2009; 10:780-91. [PMID: 19826435 DOI: 10.1038/nrn2734] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The past few years have witnessed dramatic progress on all frontiers of zinc neurobiology. The recent development of powerful tools, including zinc-sensitive fluorescent probes, selective chelators and genetically modified animal models, has brought a deeper understanding of the roles of this cation as a crucial intra- and intercellular signalling ion of the CNS, and hence of the neurophysiological importance of zinc-dependent pathways and the injurious effects of zinc dyshomeostasis. The development of some innovative therapeutic strategies is aimed at controlling and preventing the damaging effects of this cation in neurological conditions such as stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Stefano L Sensi
- Department of Basic and Applied Medical Science, Molecular Neurology Unit, CeSI-Center for Excellence on Aging, University G. dAnnunzio, Chieti, 66013, Italy.
| | | | | | | |
Collapse
|