1
|
Caspase-3 Mediated Cell Death in the Normal Development of the Mammalian Cerebellum. Int J Mol Sci 2018; 19:ijms19123999. [PMID: 30545052 PMCID: PMC6321612 DOI: 10.3390/ijms19123999] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 01/08/2023] Open
Abstract
Caspase-3, onto which there is a convergence of the intrinsic and extrinsic apoptotic pathways, is the main executioner of apoptosis. We here review the current literature on the intervention of the protease in the execution of naturally occurring neuronal death (NOND) during cerebellar development. We will consider data on the most common altricial species (rat, mouse and rabbit), as well as humans. Among the different types of neurons and glia in cerebellum, there is ample evidence for an intervention of caspase-3 in the regulation of NOND of the post-mitotic cerebellar granule cells (CGCs) and Purkinje neurons, as a consequence of failure to establish proper synaptic contacts with target (secondary cell death). It seems possible that the GABAergic interneurons also undergo a similar type of secondary cell death, but the intervention of caspase-3 in this case still remains to be clarified in full. Remarkably, CGCs also undergo primary cell death at the precursor/pre-migratory stage of differentiation, in this instance without the intervention of caspase-3. Glial cells, as well, undergo a process of regulated cell death, but it seems possible that expression of caspase-3, at least in the Bergmann glia, is related to differentiation rather than death.
Collapse
|
2
|
Wang L, Fu H, Nanayakkara G, Li Y, Shao Y, Johnson C, Cheng J, Yang WY, Yang F, Lavallee M, Xu Y, Cheng X, Xi H, Yi J, Yu J, Choi ET, Wang H, Yang X. Novel extracellular and nuclear caspase-1 and inflammasomes propagate inflammation and regulate gene expression: a comprehensive database mining study. J Hematol Oncol 2016; 9:122. [PMID: 27842563 PMCID: PMC5109738 DOI: 10.1186/s13045-016-0351-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/03/2016] [Indexed: 12/19/2022] Open
Abstract
Background Caspase-1 is present in the cytosol as an inactive zymogen and requires the protein complexes named “inflammasomes” for proteolytic activation. However, it remains unclear whether the proteolytic activity of caspase-1 is confined only to the cytosol where inflammasomes are assembled to convert inactive pro-caspase-1 to active caspase-1. Methods We conducted meticulous data analysis methods on proteomic, protein interaction, protein intracellular localization, and gene expressions of 114 experimentally identified caspase-1 substrates and 38 caspase-1 interaction proteins in normal physiological conditions and in various pathologies. Results We made the following important findings: (1) Caspase-1 substrates and interaction proteins are localized in various intracellular organelles including nucleus and secreted extracellularly; (2) Caspase-1 may get activated in situ in the nucleus in response to intra-nuclear danger signals; (3) Caspase-1 cleaves its substrates in exocytotic secretory pathways including exosomes to propagate inflammation to neighboring and remote cells; (4) Most of caspase-1 substrates are upregulated in coronary artery disease regardless of their subcellular localization but the majority of metabolic diseases cause no significant expression changes in caspase-1 nuclear substrates; and (5) In coronary artery disease, majority of upregulated caspase-1 extracellular substrate-related pathways are involved in induction of inflammation; and in contrast, upregulated caspase-1 nuclear substrate-related pathways are more involved in regulating cell death and chromatin regulation. Conclusions Our identification of novel caspase-1 trafficking sites, nuclear and extracellular inflammasomes, and extracellular caspase-1-based inflammation propagation model provides a list of targets for the future development of new therapeutics to treat cardiovascular diseases, inflammatory diseases, and inflammatory cancers. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0351-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luqiao Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Hangfei Fu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Gayani Nanayakkara
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Yafeng Li
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Ying Shao
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Candice Johnson
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Jiali Cheng
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Fan Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Muriel Lavallee
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Yanjie Xu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, Jiangxi, 330006, China
| | - Hang Xi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Jonathan Yi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Jun Yu
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Eric T Choi
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Surgery, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA. .,Cardiovascular Research and Thrombosis Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA. .,Department of Physiology, 3500 North Broad Street, MERB-1059, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Biochemical Characterization of a Caspase-3 Far-red Fluorescent Probe for Non-invasive Optical Imaging of Neuronal Apoptosis. J Mol Neurosci 2014; 54:451-62. [DOI: 10.1007/s12031-014-0325-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/05/2014] [Indexed: 11/26/2022]
|
4
|
Sakowski SA, Schuyler AD, Feldman EL. Insulin-like growth factor-I for the treatment of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2009; 10:63-73. [PMID: 18608100 DOI: 10.1080/17482960802160370] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects both upper and lower motorneurons (MN) resulting in weakness, paralysis and subsequent death. Insulin-like growth factor-I (IGF-I) is a potent neurotrophic factor that has neuroprotective properties in the central and peripheral nervous systems. Due to the efficacy of IGF-I in the treatment of other diseases and its ability to promote neuronal survival, IGF-I is being extensively studied in ALS therapeutic trials. This review covers in vitro and in vivo studies examining the efficacy of IGF-I in ALS model systems and also addresses the mechanisms by which IGF-I asserts its effects in these models, the status of the IGF-I system in ALS patients, results of clinical trials, and the need for the development of better delivery mechanisms to maximize IGF-I efficacy. The knowledge obtained from these studies suggests that IGF-I has the potential to be a safe and efficacious therapy for ALS.
Collapse
Affiliation(s)
- Stacey A Sakowski
- Department of Neurology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
5
|
Unahara Y, Kojima-Yuasa A, Higashida M, Kennedy DO, Murakami A, Ohigashi H, Matsui-Yuasa I. Cellular thiol status-dependent inhibition of tumor cell growth via modulation of p27kip1 translocation and retinoblastoma protein phosphorylation by 1′-acetoxychavicol acetate. Amino Acids 2006; 33:469-76. [PMID: 17031475 DOI: 10.1007/s00726-006-0437-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 09/01/2006] [Indexed: 12/23/2022]
Abstract
1'-Acetoxychavicol acetate (ACA) has been shown to inhibit tumor cell growth, but there is limited information on its effects on cell signaling and the cell cycle control pathway. In this study, we sought to determine how ACA alters cell cycle and its related control factors in its growth inhibitory effect in Ehrlich ascites tumor cells (EATC). ACA caused an accumulation of cells in the G1 phase and an inhibition of DNA synthesis, which were reversed by supplementation with N-acetylcysteine (NAC) or glutathione ethyl ester (GEE). Furthermore, ACA decreased hyperphosphorylated Rb levels and increased hypophosphorylated Rb levels. NAC and GEE also abolished the decease in Rb phosphorylation by ACA. As Rb phosphorylation is regulated by G1 cyclin dependent kinase and CDK inhibitor p27(kip1), which is an important regulator of the mammalian cell cycle, we estimated the amount of p27(kip1) levels by western blotting. Treatment with ACA had virtually no effect on the amount of p27(kip1) levels, but caused a decrease in phosphorylated p27(kip1) and an increase in unphosphorylated p27(kip1) as well as an increase in the nuclear localization of p27(kip1). These events were abolished in the presence of NAC or GEE. These results suggest that in EATC, cell growth inhibition elicited by ACA involves decreases in Rb and p27(kip1) phosphorylation and an increase in nuclear localization of p27(kip1), and these events are dependent on the cellular thiol status.
Collapse
Affiliation(s)
- Y Unahara
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
6
|
Chen S, Hirata K, Ren Y, Sugimori M, Llinas R, Hillman DE. Robust axonal sprouting and synaptogenesis in organotypic slice cultures of rat cerebellum exposed to increased potassium chloride. Brain Res 2006; 1057:88-97. [PMID: 16125152 DOI: 10.1016/j.brainres.2005.07.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/15/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Organotypic slices of the rat cerebellum, cultured in physiological levels [K+]o (5 mM) for 14 days, loose the majority of granule cells in the anterior lobe resulting in few axons and atypical Purkinje cell dendrites with vacant spines. When the culture medium was switched from 5 mM to 20, 30 or 40 mM [K+]o during the last 7 days of cultures, slices developed axons with numerous vesicle-filled boutons that made synaptic contact with Purkinje cell spines. Most boutons had one or two spine profile contacts, while some were unusually large. Enlarged boutons abutted Purkinje cell somata or their dendrites, causing intervening spines to invaginate terminals to form rosette synaptic complexes. Calbindin immuno-labeling excluded Purkinje cell axonal collaterals as the source of rosette boutons and suggested a granule cell origin. Quantification of vacant spines as compared to those on boutons revealed a threshold for potassium, between 10 and 20 mM, where the number of synaptic spines increased and vacant spines decreased drastically. These findings suggest that elevated [K+]o triggers an activity-dependent plasticity in rat cerebellar slice cultures by promoting axonal sprouting with formation of vesicle-filled boutons and synaptogenesis on open receptor sites of Purkinje cell spines.
Collapse
Affiliation(s)
- Suzanne Chen
- Department of Otolaryngology and Physiology and Neuroscience, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
7
|
Varela-Nieto I, de la Rosa EJ, Valenciano AI, León Y. Cell death in the nervous system: lessons from insulin and insulin-like growth factors. Mol Neurobiol 2003; 28:23-50. [PMID: 14514984 DOI: 10.1385/mn:28:1:23] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 02/28/2003] [Indexed: 12/11/2022]
Abstract
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, E-28029 Madrid, Spain.
| | | | | | | |
Collapse
|
8
|
Arimura T, Kojima-Yuasa A, Suzuki M, Kennedy DO, Matsui-Yuasa I. Caspase-independent apoptosis induced by evening primrose extract in Ehrlich ascites tumor cells. Cancer Lett 2003; 201:9-16. [PMID: 14580681 DOI: 10.1016/s0304-3835(03)00440-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously demonstrated that evening primrose extract (EPE) induced apoptosis in Ehrlich ascites tumor cells, while mouse embryo fibroblast cells (NIH3T3) used as a normal cell model, showed no effect of cell viability by treatment of EPE. Furthermore, our results demonstrated the rapid increase in intracellular peroxides levels, loss of mitochondrial membrane potential and the release of cytochrome c to cytosol, suggesting that the rapid increase in intracellular peroxides levels after addition of EPE triggers off induction of apoptosis. In this study, we identified that EPE elicited the translocation of Bax to mitochondria and apoptosis-inducing factor (AIF) to nuclei, but no activation of caspase-3-like protease. We also demonstrated that the rapid EPE-induced increase in hydrogen peroxide levels caused the translocation of Bax to mitochondria, and then mitochondrial cytochrome c was released. One of the main consequences of mitochondrial cytochrome c release is the activation of caspase-3. However, no caspase-3 activation was observed. On the other hand, AIF was translocated from mitochondria to nuclei. The EPE-induced translocation of AIF was suppressed with the addition of catalase, suggesting that the rapid intracellular peroxide levels after addition of EPE triggers off induction of apoptosis, which is AIF-mediated and caspase-independent.
Collapse
Affiliation(s)
- Tsutomu Arimura
- Department of Food and Human Health Sciences, Graduated School of Human Life Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | |
Collapse
|
9
|
Arimura T, Kojima-Yuasa A, Watanabe S, Suzuki M, Kennedy DO, Matsui-Yuasa I. Role of intracellular reactive oxygen species and mitochondrial dysfunction in evening primrose extract-induced apoptosis in Ehrlich ascites tumor cells. Chem Biol Interact 2003; 145:337-47. [PMID: 12732460 DOI: 10.1016/s0009-2797(03)00060-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herbal medicines are increasingly being utilized to treat a wide variety of disease processes. Evening primrose extract (EPE) is extracted from Oenothera biennis L., one species of evening primroses, which has been shown to have several pharmacological effects. However, anti-tumor activity in the extract of defatted seeds of O. biennis L. has not been defined thus far. In this study, we identified the major biochemical changes upon EPE treatment and investigated the functional relationship between these changes. We found that EPE-induced apoptosis in Ehrlich ascites tumor cells as evidenced by morphological changes. Furthermore, our results demonstrated rapid increase of intracellular peroxides levels, loss of mitochondrial membrane potential and the release of cytochrome c from mitochondria to cytosol. These results suggest that the rapid increase of intracellular peroxides levels after addition of EPE triggers off induction of apoptosis.
Collapse
Affiliation(s)
- Tsutomu Arimura
- Department of Food and Nutrition, Faculty of Human Life Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Contestabile A. Cerebellar granule cells as a model to study mechanisms of neuronal apoptosis or survival in vivo and in vitro. CEREBELLUM (LONDON, ENGLAND) 2002; 1:41-55. [PMID: 12879973 DOI: 10.1080/147342202753203087] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Granule cells of the cerebellum constitute the largest homogeneous neuronal population of mammalian brain. Due to their postnatal generation and the feasibility of well characterized primary in vitro cultures, cerebellar granule cells are a model of election for the study of cellular and molecular correlates of mechanisms of survival/apoptosis and neurodegeneration/neuroprotection. The present review mainly deals with recent data on mechanisms and factors promoting survival or apoptotic elimination of cerebellar granule neurons, with a particular focus on the molecular correlates at the level of gene expression and induction of cellular signal pathways. The in vivo development is first analysed with particular reference to the role played by several neurotrophic factors and by the NMDA subtype of glutamate receptor. Then, mechanisms of survival/apoptosis are examined in the model of primary in vitro cultures, where the role of neurotrophins acting on cerebellar granule cells is followed by the large deal of data coming from the paradigm of potassium/serum withdrawal. The role of some key genes of the Bcl family, of some kinase systems and of transcriptional factors is primarily highlighted. Furthermore, the involvement of mitochondria, free radicals and proteases of the caspase family is considered. Finally, the use of cerebellar granule neurons in primary culture to experimentally address the issue of neurodegeneration and pharmacological neuroprotection is considered, with some comments on models at the borderline between necrosis and apoptosis, such as the excitotoxic neuronal damage. The overlapping of cellular signal pathways activated in granule neurons by apparently unrelated stimuli, such as neurotrophins and neurotransmitters/neuromodulators is stressed to put into light the special 'trophic' role played by activity in neurons. Finally, the advantage of designing and performing conceptually equivalent experiments on cerebellar granule neurons during development in vivo and in vitro, is stressed. On the basis of the reviewed material, it is concluded that cerebellar granule neurons have acquired a special position in modern neuroscience as one of the most reliable models for the study of neural development, function and pathology.
Collapse
|
11
|
White LD, Barone S. Qualitative and quantitative estimates of apoptosis from birth to senescence in the rat brain. Cell Death Differ 2001; 8:345-56. [PMID: 11550086 DOI: 10.1038/sj.cdd.4400816] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Revised: 10/20/2000] [Accepted: 11/21/2000] [Indexed: 11/08/2022] Open
Abstract
Apoptosis is crucial for proper development of the CNS, wherein a significant percentage of all central neurons produced during early ontogeny die by apoptosis. To characterize the pattern of developmental programmed cell death, we assayed rat brainstem, neocortex, hippocampus, and cerebellum from birth through senescence. Quantitatively, using an ELISA for oligonucleosomal DNA fragments, we demonstrated that PND1 brainstem, neocortex, and hippocampus have the highest levels of fragmented DNA compared to older ages. Cerebellum displayed a large peak at PND10 and a smaller peak at PND21. Low levels were observed throughout adulthood and into senescence, which was corroborated qualitatively by agarose gel and TUNEL data. These data provide a temporal and regional baseline for further studies of the effects of perturbations of cell death during neural development. Quantitative and qualitative changes in these regional profiles of apoptosis due to environmental insults during early ontogeny may alter neuron number and function later in life.
Collapse
Affiliation(s)
- L D White
- Neurotoxicology Division, Cellular and Molecular Toxicology Branch, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina, NC 27711, USA
| | | |
Collapse
|
12
|
Vaudry D, Gonzalez BJ, Basille M, Pamantung TF, Fontaine M, Fournier A, Vaudry H. The neuroprotective effect of pituitary adenylate cyclase-activating polypeptide on cerebellar granule cells is mediated through inhibition of the CED3-related cysteine protease caspase-3/CPP32. Proc Natl Acad Sci U S A 2000; 97:13390-5. [PMID: 11087878 PMCID: PMC27234 DOI: 10.1073/pnas.97.24.13390] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Caspase-3 knockout mice exhibit thickening of the internal granule cell layer of the cerebellum. Concurrently, it has been shown that intracerebral injection of pituitary adenylate cyclase-activating polypeptide (PACAP) induces a transient increase of the thickness of the cerebellar cortex. In the present study, we have investigated the possible effect of PACAP on caspase activity in cultured cerebellar granule cells from 8-day-old rat. Incubation of granule neurons with PACAP for 24 h promoted cell survival and prevented DNA fragmentation. Exposure of cerebellar granule cells to the specific caspase-3 inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethylketone (Z-DEVD-FMK) for 24 h markedly enhanced cell survival and inhibited apoptotic cell death. Time-course studies revealed that PACAP causes a prolonged inhibition of caspase-3 activity without affecting caspase-1. Administration of graded concentrations of PACAP for 3 h induced a dose-dependent inhibition of caspase-3 activity. Incubation of granule cells with both dibutyryl-cAMP (dbcAMP) and phorbol 12-myristate 13-acetate (PMA) mimicked the inhibitory effect of PACAP on caspase-3. Cotreatment of cultured neurons with the protein kinase A inhibitor H89 and the protein kinase C inhibitor chelerythrine abrogated the effect of PACAP on caspase-3 activity. In contrast, the ERK kinase inhibitor U0126 did not affect the action of PACAP on caspase-3 activity. These data demonstrate that PACAP prevents cerebellar granule neurons from apoptotic cell death through a protein kinase A- and protein kinase C-dependent inhibition of caspase-3 activity.
Collapse
Affiliation(s)
- D Vaudry
- European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides No. 23), Institut National de la Santé et de la Recherche Médicale U413, University of Rouen, France
| | | | | | | | | | | | | |
Collapse
|
13
|
D'Arceuil H, Rhine W, de Crespigny A, Yenari M, Tait JF, Strauss WH, Engelhorn T, Kastrup A, Moseley M, Blankenberg FG. 99mTc annexin V imaging of neonatal hypoxic brain injury. Stroke 2000; 31:2692-700. [PMID: 11062296 DOI: 10.1161/01.str.31.11.2692] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Delayed cell loss in neonates after cerebral hypoxic-ischemic injury (HII) is believed to be a major cause of cerebral palsy. In this study, we used radiolabeled annexin V, a marker of delayed cell loss (apoptosis), to image neonatal rabbits suffering from HII. METHODS Twenty-two neonatal New Zealand White rabbits had ligation of the right common carotid artery with reduction of inspired oxygen concentration to induce HII. Experimental animals (n=17) were exposed to hypoxia until an ipsilateral hemispheric decrease in the average diffusion coefficient occurred. After reversal of hypoxia and normalization of average diffusion coefficient values, experimental animals were injected with (99m)Tc annexin V. Radionuclide images were recorded 2 hours later. RESULTS Experimental animals showed no MR evidence of blood-brain barrier breakdown or perfusion abnormalities after hypoxia. Annexin images demonstrated multifocal brain uptake in both hemispheres of experimental but not control animals. Histology of the brains from experimental animals demonstrated scattered pyknotic cortical and hippocampal neurons with cytoplasmic vacuolization of glial cells without evidence of apoptotic nuclei by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining. Double staining with markers of cell type and exogenous annexin V revealed that annexin V was localized in the cytoplasm of scattered neurons and astrocytes in experimental and, less commonly, control brains in the presence of an intact blood-brain barrier. CONCLUSIONS Apoptosis may develop after HII even in brains that appear normal on diffusion-weighted and perfusion MR. These data suggest a role of radiolabeled annexin V screening of neonates at risk for the development of cerebral palsy.
Collapse
Affiliation(s)
- H D'Arceuil
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305-5105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
During development, control of proliferation of neuronal precursor cells plays a crucial role in determining the number of neurons. Proliferation is driven by mitogens, but how it is terminated remains a mystery. In this study, we examined the role of cyclin-dependent kinase inhibitors in the control of proliferation of cerebellar granule cell precursors (GCPs). Among the inhibitors we examined, only p27/Kip1 (p27) was expressed at significant levels in cells of the granule cell lineage in the developing and adult cerebellum. In developing cerebella, p27 was expressed in the external germinal layer (the deeper regions), the molecular layer, and the granule layer. In adult cerebella, p27 was expressed in the cells of the granule layer. We isolated and purified GCPs from cerebella of developing mice and examined their bromodeoxyuridine (BrdU) uptake and p27 expression at various times. We found that there was an inverse correlation between BrdU uptake and p27 expression. Even in the presence of saturating amounts of Sonic hedgehog, a potent mitogen, the cells eventually stopped dividing and differentiated, expressing p27 strongly. We also examined mice in which one or both copies of the p27 gene have been inactivated by targeted gene disruption and found that their cerebella were larger than those of wild-type mice. In cell cultures, GCPs prepared from p27-deficient mice showed enhanced proliferation compared with GCPs from wild-type mice. Taken together, these results suggest that there is an intracellular mechanism that stops GCP division and causes GCPs to differentiate and that p27 is part of this mechanism.
Collapse
|
15
|
Contestabile A. Roles of NMDA receptor activity and nitric oxide production in brain development. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:476-509. [PMID: 10760552 DOI: 10.1016/s0165-0173(00)00018-7] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The concept that neural activity is important for brain maturation has focused much research interest on the developmental role of the NMDA receptor, a key mediator of experience-dependent synaptic plasticity. However, a mechanism able to link spatial and temporal parameters of synaptic activity during development emerged as a necessary condition to explain how axons segregate into a common brain region and make specific synapses on neuronal sub-populations. To comply with this developmental constraint, it was proposed that nitric oxide (NO), or other substances having similar chemical and biological characteristics, could act as short-lived, activity-dependent spatial signals, able to stabilize active synapses by diffusing through a local volume of tissue. The present article addresses this issue, by reviewing the experimental evidence for a correlated role of the activity of the NMDA receptor and the production of NO in key steps of neural development. Evidence for such a functional coupling emerges not only concerning synaptogenesis and formation of neural maps, for which it was originally proposed, but also for some earlier phases of neurogenesis, such as neural cell proliferation and migration. Regarding synaptogenesis and neural map formation in some cases, there is so far no conclusive experimental evidence for a coupled functional role of NMDA receptor activation and NO production. Some technical problems related to the use of inhibitors of NO formation and of gene knockout animals are discussed. It is also suggested that other substances, known to act as spatial signals in adult synaptic plasticity, could have a role in developmental plasticity. Concerning the crucial developmental phase of neuronal survival or elimination through programmed cell death, the well-documented survival role related to NMDA receptor activation also starts to find evidence for a concomitant requirement of downstream NO production. On the basis of the reviewed literature, some of the major controversial issues are addressed and, in some cases, suggestions for possible future experiments are proposed.
Collapse
Affiliation(s)
- A Contestabile
- Department of Biology, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| |
Collapse
|
16
|
Schipper RG, Penning LC, Verhofstad AA. Involvement of polyamines in apoptosis. Facts and controversies: effectors or protectors? Semin Cancer Biol 2000; 10:55-68. [PMID: 10888272 DOI: 10.1006/scbi.2000.0308] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The natural polyamines (putrescine, spermidine and spermine) are ubiquitous low-molecular aliphatic amines that play multifunctional roles in cell growth and differentiation. Recently, evidence has merging that polyamines are actively involved in cell death. Changes in polyamine homeostasis have been reported during cell death of nerve cells, in programmed cell death of embryonic cells and in various in vitro models of apoptosis. Polyamines and many of their structural analogs exert cytotoxic effects in vitro as well in vivo. Furthermore, polyamine analogs and inhibitors of the polyamine anabolic/catabolic pathways modulate processes of cell death in a cell-type specific way. Much ambiguity exists in the working mechanisms by which polyamines mediate apoptosis since they have been shown to act as promoting, modulating or protective agents in apoptosis. Nevertheless, from the studies reviewed here it can be concluded that polyamines are critically involved in cellular survival which makes them suitable targets for therapeutic intervention that is specifically directed to cell death pathways.
Collapse
Affiliation(s)
- R G Schipper
- Department of Pathology, University Hospital Nijmegen, The Netherlands
| | | | | |
Collapse
|
17
|
Lackey BR, Gray SL, Henricks DM. Actions and interactions of the IGF system in Alzheimer's disease: review and hypotheses. Growth Horm IGF Res 2000; 10:1-13. [PMID: 10753587 DOI: 10.1054/ghir.1999.0129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factors (IGF) are pleiotrophic polypeptides affecting all aspects of growth and development. The IGF system, including ligands, receptors, binding proteins and proteases is also involved in pathophysiological conditions, such as cancer and degenerative conditions. In this review, the actions and interactions of the IGF system as it relates to Alzheimer's disease will be investigated.
Collapse
Affiliation(s)
- B R Lackey
- Endocrine Physiology Laboratory, Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| | | | | |
Collapse
|
18
|
Delaney CL, Cheng HL, Feldman EL. Insulin-like growth factor-I prevents caspase-mediated apoptosis in Schwann cells. JOURNAL OF NEUROBIOLOGY 1999; 41:540-8. [PMID: 10590177 DOI: 10.1002/(sici)1097-4695(199912)41:4<540::aid-neu9>3.0.co;2-p] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Both neurons and glia succumb to programmed cell death (PCD) when deprived of growth factors at critical periods in development or following injury. Insulin-like growth factor-I (IGF-I) prevents apoptosis in neurons in vitro. To investigate whether IGF-I can protect Schwann cells (SC) from apoptosis, SC were harvested from postnatal day 3 rats and maintained in serum-containing media until confluency. When cells were switched to serum-free defined media (DM) for 12-72 h, they underwent PCD. Addition of insulin or IGF-I prevented apoptosis. Bisbenzamide staining revealed nuclear condensation and formation of apoptotic bodies in SC grown in DM alone, but SC grown in DM plus IGF-I had normal nuclear morphology. The phosphatidylinositol 3-kinase (PI 3-K) inhibitor LY294002 blocked IGF-I-mediated protection. Caspase-3 activity was rapidly activated upon serum withdrawal in SC, and the caspase inhibitor BAF blocked apoptosis. These results suggest that IGF-I rescues SC from apoptosis via PI 3-K signaling which is upstream from caspase activation.
Collapse
Affiliation(s)
- C L Delaney
- Department of Neurology, University of Michigan, 200 Zina Pitcher Place, 4414 Kresge III, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
19
|
Isgaard J, Tivesten A. The role of growth hormone and insulin-like growth factor I in the regulation of apoptosis. Growth Horm IGF Res 1999; 9 Suppl A:125-128. [PMID: 10429896 DOI: 10.1016/s1096-6374(99)80025-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- J Isgaard
- Research Center for Endocrinology and Metabolism, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | |
Collapse
|
20
|
Tanaka M, Marunouchi T. Immunohistochemical analysis of developmental stage of external granular layer neurons which undergo apoptosis in postnatal rat cerebellum. Neurosci Lett 1998; 242:85-8. [PMID: 9533400 DOI: 10.1016/s0304-3940(98)00032-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some granule neurons naturally undergo apoptosis in the external granular layer (EGL) of the postnatally developing rat cerebellum. We analyzed the developmental stage-specificity of this apoptosis using double staining by in situ nick end labeling and immunohistochemistry against three proteins expressed at specific stages of granule neuron development. The amount of apoptosis of EGL neurons peaked on postnatal day 9. In the 9-day-old rat cerebellum, 54.0% of apoptotic EGL neurons expressed proliferating cell nuclear antigen. On the other hand, 22.2 and 15.4% of apoptotic EGL neurons existed in the postmitotic and premigratory zone defined by expression of TAG-1 and 440 kDa ankyrinB, respectively. Thus, proliferative granule neurons undergo apoptosis more frequently than postmitotic granule neurons in EGL of the developing cerebellum. This suggests that there are developmental stage-specific mechanisms of apoptosis of cerebellar granule neurons.
Collapse
Affiliation(s)
- M Tanaka
- Division of Cell Biology, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | | |
Collapse
|