1
|
Chuhma N, Rayport S. Regional heterogeneity in the membrane properties of mouse striatal neurons. Front Cell Neurosci 2024; 18:1412897. [PMID: 39144155 PMCID: PMC11321984 DOI: 10.3389/fncel.2024.1412897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/19/2024] [Indexed: 08/16/2024] Open
Abstract
The cytoarchitecture of the striatum is remarkably homogeneous, in contrast to the regional variation in striatal functions. Whether differences in the intrinsic membrane properties of striatal neurons contribute to regional heterogeneity has not been addressed systematically. We made recordings throughout the young adult mouse striatum under identical conditions, with synaptic input blocked, from four major striatal neuron types, namely, the two subtypes of spiny projection neurons (SPNs), cholinergic interneurons (ChIs), and fast-spiking GABAergic interneurons (FSIs), sampling at least 100 cells per cell type. Regional variation manifested across all cell types. All cell types in the nucleus accumbens (NAc) shell had higher input impedance and increased excitability. Cells in the NAc core were differentiated from the caudate-putamen (CPu) for both SPN subtypes by smaller action potentials and increased excitability. Similarity between the two SPN subtypes showed regional variation, differing more in the NAc than in the CPu. So, in the Str, both the intrinsic properties of interneurons and projection neurons are regionally heterogeneous, with the greatest difference between the NAc and CPu; greater excitability of NAc shell neurons may make the region more susceptible to activity-dependent plasticity.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, Columbia University, New York, NY, United States
| |
Collapse
|
2
|
Jovanovic Z. The electrophysiological effects of cadmium on Retzius nerve cells of the leech Haemopis sanguisuga. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109062. [PMID: 33905825 DOI: 10.1016/j.cbpc.2021.109062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/03/2021] [Accepted: 04/18/2021] [Indexed: 11/30/2022]
Abstract
Cadmium is considered one of the most toxic heavy metals which can cause cytotoxicity in multiple organs including the brain. Despite many studies over the past decades, the cellular and molecular mechanisms underlying its neurotoxicity remain unclear. The present study was designed to examine the acute effects of cadmium chloride (CdCl2) on the electrical activity of the Retzius nerve cells of leech Haemopis sanguisuga using electrophysiological techniques. CdCl2, in concentrations of 10-100 μM, produced a dose- and time-dependent depolarization of Retzius neurons, paralleled by an increase in firing frequency and action potential duration. To examine potential mechanisms, we studied the effects of cadmium on the outward potassium current upon depolarization using a point microelectrode voltage-clamp technique. Reduction of the fast, and partial inhibition of the slow outward current were observed after adding 50 and 100 μM CdCl2 in the external fluid. The present results support the view that the effect of cadmium on the outward potassium channel may be a potential contributing mechanism for cadmium-induced neurotoxic damage. The proposed mechanism of cadmium action on the electrical properties of leech Retzius neurons might have broader significance concerning not only the leeches but vertebrate brains as well.
Collapse
Affiliation(s)
- Zorica Jovanovic
- Department of Pathological Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia.
| |
Collapse
|
3
|
Calcium currents in striatal fast-spiking interneurons: dopaminergic modulation of Ca V1 channels. BMC Neurosci 2018; 19:42. [PMID: 30012109 PMCID: PMC6048700 DOI: 10.1186/s12868-018-0441-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/07/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Striatal fast-spiking interneurons (FSI) are a subset of GABAergic cells that express calcium-binding protein parvalbumin (PV). They provide feed-forward inhibition to striatal projection neurons (SPNs), receive cortical, thalamic and dopaminergic inputs and are coupled together by electrical and chemical synapses, being important components of the striatal circuitry. It is known that dopamine (DA) depolarizes FSI via D1-class DA receptors, but no studies about the ionic mechanism of this action have been reported. Here we ask about the ion channels that are the effectors of DA actions. This work studies their Ca2+ currents. RESULTS Whole-cell recordings in acutely dissociated and identified FSI from PV-Cre transgenic mice were used to show that FSI express an array of voltage gated Ca2+ channel classes: CaV1, CaV2.1, CaV2.2, CaV2.3 and CaV3. However, CaV1 Ca2+ channel carries most of the whole-cell Ca2+ current in FSI. Activation of D1-like class of DA receptors by the D1-receptor selective agonist SKF-81297 (SKF) enhances whole-cell Ca2+ currents through CaV1 channels modulation. A previous block of CaV1 channels with nicardipine occludes the action of the DA-agonist, suggesting that no other Ca2+ channel is modulated by D1-receptor activation. Bath application of SKF in brain slices increases the firing rate and activity of FSI as measured with both whole-cell and Ca2+ imaging recordings. These actions are reduced by nicardipine. CONCLUSIONS The present work discloses one final effector of DA modulation in FSI. We conclude that the facilitatory action of DA in FSI is in part due to CaV1 Ca2+ channels positive modulation.
Collapse
|
4
|
Tamura A, Yamada N, Yaguchi Y, Machida Y, Mori I, Osanai M. Both neurons and astrocytes exhibited tetrodotoxin-resistant metabotropic glutamate receptor-dependent spontaneous slow Ca2+ oscillations in striatum. PLoS One 2014; 9:e85351. [PMID: 24454845 PMCID: PMC3893197 DOI: 10.1371/journal.pone.0085351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs) are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca2+ signaling. To characterize Ca2+ signaling in striatal cells, spontaneous cytoplasmic Ca2+ transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP) in the astrocytes. In both the GFP-negative cells (putative-neurons) and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca2+ transients (referred to as slow Ca2+ oscillations), which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca2+ oscillation. Depletion of the intracellular Ca2+ store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca2+ oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca2+ oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca2+ oscillation in both putative-neurons and astrocytes. The slow Ca2+ oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca2+ oscillation may involve in the neuron-glia interaction in the striatum.
Collapse
Affiliation(s)
- Atsushi Tamura
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Naohiro Yamada
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yuichi Yaguchi
- Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Yoshio Machida
- Department of Medical Imaging and Applied Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Issei Mori
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Makoto Osanai
- Department of Radiological Imaging and Informatics, Tohoku University Graduate School of Medicine, Sendai, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
- * E-mail:
| |
Collapse
|
5
|
Coppi E, Pedata F, Gibb AJ. P2Y1 receptor modulation of Ca2+-activated K+ currents in medium-sized neurons from neonatal rat striatal slices. J Neurophysiol 2011; 107:1009-21. [PMID: 22131374 PMCID: PMC3289470 DOI: 10.1152/jn.00816.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ATP signaling to neurons and glia in the nervous system occurs via activation of both P2Y and P2X receptors. Here, we investigated the effects of P2Y1 receptor stimulation in developing striatal medium-sized neurons using patch-clamp recordings from acute brain slices of 7- and 28-day-old rats. Application of the selective P2Y1 receptor agonist 2-(Methylthio) ADP trisodium salt (2-MeSADP; 250 nM) increased outward K+ currents evoked by a ramp depolarization protocol in voltage-clamp recordings. This effect was observed in 59 out of 82 cells (72%) and was blocked completely by the P2Y1 antagonist, 2′-deoxy-N6-methyl adenosine 3′,5′-diphosphate. The averaged 2-MeSADP-sensitive conductance was fitted by the sum of a linear conductance and a Boltzmann relation, giving one-half activation voltage of −14.2 mV and an equivalent charge of 2.91. The 2MeSADP-mediated effect was sensitive to submillimolar concentrations of tetraethylammonium (TEA; 200 μM), to 200 nM iberiotoxin and to 100 nM apamin, suggesting the involvement of both big and small potassium (BK and SK, respectively) calcium-activated channels. In current-clamp experiments, 2-MeSADP decreased depolarization-evoked action potential (AP) firing in all 26 cells investigated, and this effect was reversed by TEA and by apamin but not by iberiotoxin. We conclude that the stimulation of P2Y1 receptors in developing striatal neurons leads to activation of calcium-activated potassium channels [IK(Ca)] of both BK and SK subtypes, the latter responsible for decreasing the frequency of AP firing in response to current injection. Therefore, P2Y1 signaling leading to activation of IK(Ca) may be important in regulating the activity of medium-sized neurons in the striatum.
Collapse
Affiliation(s)
- E Coppi
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom
| | | | | |
Collapse
|
6
|
Garcia-Munoz M, Carrillo-Reid L, Arbuthnott GW. Functional anatomy: dynamic States in Basal Ganglia circuits. Front Neuroanat 2010; 4:144. [PMID: 21151374 PMCID: PMC2996244 DOI: 10.3389/fnana.2010.00144] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/19/2010] [Indexed: 11/24/2022] Open
Abstract
The most appealing models of how the basal ganglia function propose distributed patterns of cortical activity selectively interacting with striatal networks to yield the execution of context-dependent movements. If movement is encoded by patterns of activity then these may be disrupted by influences at once more subtle and more devastating than the increase or decrease of neuronal firing that dominate the usual models of the circuit. In the absence of dopamine the compositional capabilities of cell assemblies in the network could be disrupted by the generation of dominant synchronous activity that engages most of the system. Experimental evidence about Parkinson's disease suggests that dopamine loss produces abnormal patterns of activity in different nuclei. For example, increased oscillatory activity arises in the GPe, GPi, and STN and is reflected as increased cortical beta frequency coherence disrupting the ability to produce motor sequences. When the idea of deep brain stimulation was proposed – it was supported by the information that lesions of the subthalamus reversed the effects of damage to the dopamine input to the system. However, it seems increasingly unlikely that the stimulation acts by silencing the nucleus as was at first proposed. Perhaps the increased cortical beta activity caused by the lack of dopamine could have disabled the patterning of network activity. Stimulation of the subthalamic nucleus disrupts the on-going cortical rhythms. Subsequently asynchronous firing is reinstated and striatal cell assemblies and the whole basal ganglia circuit engage in a more normal pattern of activity. We will review the different variables involved in the generation of sequential activity patterns, integrate our data on deep brain stimulation and network population dynamics, and thus provide a novel interpretation of functional aspects of basal ganglia circuitry.
Collapse
Affiliation(s)
- Marianela Garcia-Munoz
- Brain Mechanisms for Behaviour Unit, Okinawa Institute for Science and Technology Onna, Okinawa, Japan
| | | | | |
Collapse
|
7
|
Hopf FW, Seif T, Mohamedi ML, Chen BT, Bonci A. The small-conductance calcium-activated potassium channel is a key modulator of firing and long-term depression in the dorsal striatum. Eur J Neurosci 2010; 31:1946-59. [PMID: 20497469 DOI: 10.1111/j.1460-9568.2010.07231.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The striatum is considered to be critical for the control of goal-directed action, with the lateral dorsal striatum (latDS) being implicated in modulation of habits and the nucleus accumbens thought to represent a limbic-motor interface. Although medium spiny neurons from different striatal subregions exhibit many similar properties, differential firing and synaptic plasticity could contribute to the varied behavioral roles across subregions. Here, we examined the contribution of small-conductance calcium-activated potassium channels (SKs) to action potential generation and synaptic plasticity in adult rat latDS and nucleus accumbens shell (NAS) projection neurons in vitro. The SK-selective antagonist apamin exerted a prominent effect on latDS firing, significantly decreasing the interspike interval. Furthermore, prolonged latDS depolarization increased the interspike interval and reduced firing, and this enhancement was reversed by apamin. In contrast, NAS neurons exhibited greater basal firing rates and less regulation of firing by SK inhibition and prolonged depolarization. LatDS neurons also had greater SK currents than NAS neurons under voltage-clamp. Importantly, SK inhibition with apamin facilitated long-term depression (LTD) induction in the latDS but not the NAS, without alterations in glutamate release. In addition, SK activation in the latDS prevented LTD induction. Greater SK function in the latDS than in the NAS was not secondary to differences in sodium or inwardly rectifying potassium channel function, and apamin enhancement of firing did not reflect indirect action through cholinergic interneurons. Thus, these data demonstrate that SKs are potent modulators of action potential generation and LTD in the dorsal striatum, and could represent a fundamental cellular mechanism through which habits are regulated.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, 5858 Horton St, Suite 200, Emeryville, CA 94608, USA.
| | | | | | | | | |
Collapse
|
8
|
Hopf FW, Bowers MS, Chang SJ, Chen BT, Martin M, Seif T, Cho SL, Tye K, Bonci A. Reduced nucleus accumbens SK channel activity enhances alcohol seeking during abstinence. Neuron 2010; 65:682-94. [PMID: 20223203 DOI: 10.1016/j.neuron.2010.02.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2010] [Indexed: 10/19/2022]
Abstract
The cellular mechanisms underlying pathological alcohol seeking remain poorly understood. Here, we show an enhancement of nucleus accumbens (NAcb) core action potential firing ex vivo after protracted abstinence from alcohol but not sucrose self-administration. Increased firing is associated with reduced small-conductance calcium-activated potassium channel (SK) currents and decreased SK3 but not SK2 subunit protein expression. Furthermore, SK activation ex vivo produces greater firing suppression in NAcb core neurons from alcohol- versus sucrose-abstinent rats. Accordingly, SK activation in the NAcb core significantly reduces alcohol but not sucrose seeking after abstinence. In contrast, NAcb shell and lateral dorsal striatal firing ex vivo are not altered after abstinence from alcohol, and SK activation in these regions has little effect on alcohol seeking. Thus, decreased NAcb core SK currents and increased excitability represents a critical mechanism that facilitates motivation to seek alcohol after abstinence.
Collapse
Affiliation(s)
- F Woodward Hopf
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, San Francisco, CA 94608, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Perez-Burgos A, Prieto G, Galarraga E, Bargas J. CaV2.1 channels are modulated by muscarinic M1 receptors through phosphoinositide hydrolysis in neostriatal neurons. Neuroscience 2010; 165:293-9. [DOI: 10.1016/j.neuroscience.2009.10.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/24/2009] [Accepted: 10/22/2009] [Indexed: 11/30/2022]
|
10
|
Abstract
The basal ganglia occupy the core of the forebrain and consist of evolutionarily conserved motor nuclei that form recurrent circuits critical for motivation and motor planning. The striatum is the main input nucleus of the basal ganglia and a key neural substrate for procedural learning and memory. The vast majority of striatal neurons are spiny GABAergic projection neurons, which exhibit slow but temporally precise spiking in vivo. Contributing to this precision are several different types of interneurons that constitute only a small fraction of total neuron number but play a critical role in regulating striatal output. This review examines the cellular physiology and modulation of striatal neurons that give rise to their unique properties and function.
Collapse
Affiliation(s)
- Anatol C Kreitzer
- Gladstone Institute of Neurological Disease and Departments of Physiology and Neurology, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
11
|
Perez-Burgos A, Perez-Rosello T, Salgado H, Flores-Barrera E, Prieto GA, Figueroa A, Galarraga E, Bargas J. Muscarinic M(1) modulation of N and L types of calcium channels is mediated by protein kinase C in neostriatal neurons. Neuroscience 2008; 155:1079-97. [PMID: 18644425 DOI: 10.1016/j.neuroscience.2008.06.047] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 11/29/2022]
Abstract
In some neurons, muscarinic M(1)-class receptors control L-type (Ca(V)1) Ca(2+)-channels via protein kinase C (PKC) or calcineurin (phosphatase 2B; PP-2B) signaling pathways. Both PKC and PP-2B pathways start with phospholipase C (PLC) activation. In contrast, P/Q- and N-type (Ca(V)2.1, 2.2, respectively) Ca(2+)-channels are controlled by M(2)-class receptors via G proteins that may act, directly, to modulate these channels. The hypothesis of this work is that this description is not enough to explain muscarinic modulation of Ca(2+) channels in rat neostriatal projection neurons. Thus, we took advantage of the specific muscarinic toxin 3 (MT-3) to block M(4)-type receptors in neostriatal neurons, and leave in isolation the M(1)-type receptors to study them separately. We then asked what Ca(2+) channels are modulated by M(1)-type receptors only. We found that M(1)-receptors do modulate L, N and P/Q-types Ca(2+) channels. This modulation is blocked by the M(1)-class receptor antagonist (muscarinic toxin 7, MT-7) and is voltage-independent. Thereafter, we asked what signaling pathways, activated by M(1)-receptors would control these channels. We found that inactivation of PLC abolishes the modulation of all three channel types. PKC activators (phorbol esters) mimic muscarinic actions, whereas reduction of intracellular calcium virtually abolishes all modulation. As expected, PKC inhibitors prevented the muscarinic reduction of the afterhyperpolarizing potential (AHP), an event known to be dependent on Ca(2+) entry via N- and P/Q-type Ca(2+) channels. However, PKC inhibitors (bisindolylmaleimide I and PKC-1936) only block modulation of currents through N and L types Ca(2+) channels; while the modulation of P/Q-type Ca(2+) channels remains unaffected. These results show that different branches of the same signaling cascade can be used to modulate different Ca(2+) channels. Finally, we found no evidence of calcineurin modulating these Ca(2+) channels during M(1)-receptor activation, although, in the same cells, we demonstrate functional PP-2B by activating dopaminergic D(2)-receptor modulation.
Collapse
Affiliation(s)
- A Perez-Burgos
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City DF, Mexico 04510
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Carter AG, Soler-Llavina GJ, Sabatini BL. Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J Neurosci 2007; 27:8967-77. [PMID: 17699678 PMCID: PMC6672187 DOI: 10.1523/jneurosci.2798-07.2007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Medium spiny neurons (MSNs) are the principal cells of the striatum and perform a central role in sensorimotor processing. MSNs must integrate many excitatory inputs located across their dendrites to fire action potentials and enable striatal function. However, the dependence of synaptic responses on the temporal and spatial distribution of these inputs remains unknown. Here, we use whole-cell recordings, two-photon microscopy, and two-photon glutamate uncaging to examine subthreshold synaptic integration in MSNs from acute rat brain slices. We find that synaptic responses can summate sublinearly, linearly, or supralinearly depending on the spatiotemporal pattern of activity. Repetitive activity at single inputs leads to sublinear summation, reflecting long-lived AMPA receptor desensitization. In contrast, asynchronous activity at multiple inputs generates linear summation, with synapses on neighboring spines functioning independently. Finally, synchronous activity at multiple inputs triggers supralinear summation at depolarized potentials, reflecting activation of NMDA receptors and L-type calcium channels. Thus, the properties of subthreshold integration in MSNs are determined by the distribution of synaptic inputs and the differential activation of multiple postsynaptic conductances.
Collapse
Affiliation(s)
- Adam G. Carter
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
13
|
Ibáñez-Sandoval O, Carrillo-Reid L, Galarraga E, Tapia D, Mendoza E, Gomora JC, Aceves J, Bargas J. Bursting in substantia nigra pars reticulata neurons in vitro: possible relevance for Parkinson disease. J Neurophysiol 2007; 98:2311-23. [PMID: 17715194 DOI: 10.1152/jn.00620.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Projection neurons of the substantia nigra reticulata (SNr) convey basal ganglia (BG) processing to thalamocortical and brain stem circuits responsible for movement. Two models try to explain pathological BG performance during Parkinson disease (PD): the rate model, which posits an overexcitation of SNr neurons due to hyperactivity in the indirect pathway and hypoactivity of the direct pathway, and the oscillatory model, which explains PD as the product of pathological pattern generators disclosed by dopamine reduction. These models are, apparently, incompatible. We tested the predictions of the rate model by increasing the excitatory drive and reducing the inhibition on SNr neurons in vitro. This was done pharmacologically with bath application of glutamate agonist N-methyl-d-aspartate and GABA(A) receptor blockers, respectively. Both maneuvers induced bursting behavior in SNr neurons. Therefore synaptic changes forecasted by the rate model induce the electrical behavior predicted by the oscillatory model. In addition, we found evidence that Ca(V)3.2 Ca(2+) channels are a critical step in generating the bursting firing pattern in SNr neurons. Other ion channels involved are: hyperpolarization-activated cation channels, high-voltage-activated Ca(2+) channels, and Ca(2+)-activated K(+) channels. However, although these channels shape the temporal structure of bursting, only Ca(V)3.2 Ca(2+) channels are indispensable for the initiation of the bursting pattern.
Collapse
Affiliation(s)
- Osvaldo Ibáñez-Sandoval
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Galarraga E, Vilchis C, Tkatch T, Salgado H, Tecuapetla F, Perez-Rosello T, Perez-Garci E, Hernandez-Echeagaray E, Surmeier DJ, Bargas J. Somatostatinergic modulation of firing pattern and calcium-activated potassium currents in medium spiny neostriatal neurons. Neuroscience 2007; 146:537-54. [PMID: 17324523 DOI: 10.1016/j.neuroscience.2007.01.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 12/27/2006] [Accepted: 01/20/2007] [Indexed: 11/24/2022]
Abstract
Somatostatin is synthesized and released by aspiny GABAergic interneurons of the neostriatum, some of them identified as low threshold spike generating neurons (LTS-interneurons). These neurons make synaptic contacts with spiny neostriatal projection neurons. However, very few somatostatin actions on projection neurons have been described. The present work reports that somatostatin modulates the Ca(2+) activated K(+) currents (K(Ca) currents) expressed by projection cells. These actions contribute in designing the firing pattern of the spiny projection neuron; which is the output of the neostriatum. Small conductance (SK) and large conductance (BK) K(Ca) currents represent between 30% and 50% of the sustained outward current in spiny cells. Somatostatin reduces SK-type K(+) currents and at the same time enhances BK-type K(+) currents. This dual effect enhances the fast component of the after hyperpolarizing potential while reducing the slow component. Somatostatin then modifies the firing pattern of spiny neurons which changed from a tonic regular pattern to an interrupted "stuttering"-like pattern. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) tissue expression analysis of dorsal striatal somatostatinergic receptors (SSTR) mRNA revealed that all five SSTR mRNAs are present. However, single cell RT-PCR profiling suggests that the most probable receptor in charge of this modulation is the SSTR2 receptor. Interestingly, aspiny interneurons may exhibit a "stuttering"-like firing pattern. Therefore, somatostatin actions appear to be the entrainment of projection neurons to the rhythms generated by some interneurons. Somatostatin is then capable of modifying the processing and output of the neostriatum.
Collapse
Affiliation(s)
- E Galarraga
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, PO Box 70-253, México City, DF 04510, Mexico.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jose X, Pineda JC, Rodriguez C, Mendoza E, Galarraga E, Bargas J, Barral J. Delta opioids reduce the neurotransmitter release probability by enhancing transient (KV4) K+-currents in corticostriatal synapses as evaluated by the paired pulse protocol. Neurosci Lett 2007; 414:150-4. [PMID: 17197081 DOI: 10.1016/j.neulet.2006.12.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/28/2006] [Accepted: 12/08/2006] [Indexed: 11/17/2022]
Abstract
Field recordings were used to determine the influence of delta-opioid receptor activation on corticostriatal synaptic transmission. Application of the selective delta-opioid receptor agonist, [Tyr-D-Pen-Gly-Phe-D-Pen]-enkephalin (DPDPE, 1 microM), decreased the amplitude of the field-excitatory synaptic potential and at the same time increased the paired pulse ratio (PPR) suggesting a presynaptic site of action. This response reversed rapidly when DPDPE was washed and blocked by 1 nM of the selective delta-receptor antagonist naltrindole. Neither omega-conotoxin GVIA (1 microM) nor omega-agatoxin TK (400 nM), blockers of N- and P/Q-type Ca2+-channels, respectively, nor TEA (1 mM), blocker of some classes of K+-channels, occluded the effects of DPDPE. Instead, 1 mM 4-AP or 400 microM Ba2+ occluded completely the effects of DPDPE. Therefore, the results suggest that the modulation by delta opioids at corticostriatal terminals is mediated by transient (KV4) K+-conductances.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Electric Stimulation
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Male
- Narcotic Antagonists/pharmacology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neurotransmitter Agents/metabolism
- Opioid Peptides/metabolism
- Organ Culture Techniques
- Potassium Channel Blockers/pharmacology
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Rats
- Rats, Wistar
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Shal Potassium Channels/agonists
- Shal Potassium Channels/antagonists & inhibitors
- Shal Potassium Channels/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Xochitl Jose
- Neurociencias, FES Iztacala, Universidad Nacional Autónoma de México, Mexico
| | | | | | | | | | | | | |
Collapse
|
16
|
Salgado H, Tecuapetla F, Perez-Rosello T, Perez-Burgos A, Perez-Garci E, Galarraga E, Bargas J. A Reconfiguration of CaV2 Ca2+ Channel Current and Its Dopaminergic D2 Modulation in Developing Neostriatal Neurons. J Neurophysiol 2005; 94:3771-87. [PMID: 16120665 DOI: 10.1152/jn.00455.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The modulatory effect of D2 dopamine receptor activation on calcium currents was studied in neostriatal projection neurons at two stages of rat development: postnatal day (PD)14 and PD40. D2-class receptor agonists reduced whole cell calcium currents by about 35% at both stages, and this effect was blocked by the D2 receptor antagonist sulpiride. Nitrendipine partially occluded this modulation at both stages, indicating that modulation of CaV1 channels was present throughout this developmental interval. Nevertheless, modulation of CaV1 channels was significantly larger in PD40 neurons. ω-Conotoxin GVIA occluded most of the Ca2+ current modulation in PD14 neurons. However, this occlusion was greatly decreased in PD40 neurons. ω-Agatoxin TK occluded a great part of the modulation in PD40 neurons but had a negligible effect in PD14 neurons. The data indicate that dopaminergic D2-mediated modulation undergoes a change in target during development: from CaV2.2 to CaV2.1 Ca2+ channels. This change occurred while CaV2.2 channels were being down-regulated and CaV2.1 channels were being up-regulated. Presynaptic modulation mediated by D2 receptors reflected these changes; CaV2.2 type channels were used for release in young animals but very little in mature animals, suggesting that changes took place simultaneously at the somatodendritic and the synaptic membranes.
Collapse
Affiliation(s)
- Humberto Salgado
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City
| | | | | | | | | | | | | |
Collapse
|
17
|
Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O'Donnell P, Finkel LH. NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 2005; 25:9080-95. [PMID: 16207867 PMCID: PMC6725747 DOI: 10.1523/jneurosci.2220-05.2005] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We describe a computational model of the principal cell in the nucleus accumbens (NAcb), the medium spiny projection (MSP) neuron. The model neuron, constructed in NEURON, includes all of the known ionic currents in these cells and receives synaptic input from simulated spike trains via NMDA, AMPA, and GABAA receptors. After tuning the model by adjusting maximal current conductances in each compartment, the model cell closely matched whole-cell recordings from an adult rat NAcb slice preparation. Synaptic inputs in the range of 1000-1300 Hz are required to maintain an "up" state in the model. Cell firing in the model required concurrent depolarization of several dendritic branches, which responded independently to afferent input. Depolarization from action potentials traveled to the tips of the dendritic branches and increased Ca2+ influx through voltage-gated Ca2+ channels. As NMDA/AMPA current ratios were increased, the membrane showed an increase in hysteresis of "up" and "down" state dwell times, but intrinsic bistability was not observed. The number of oscillatory inputs required to entrain the model cell was determined to be approximately 20% of the "up" state inputs. Altering the NMDA/AMPA ratio had a profound effect on processing of afferent input, including the ability to entrain to oscillations in afferent input in the theta range (4-12 Hz). These results suggest that afferent information integration by the NAcb MSP cell may be compromised by pathology in which the NMDA current is altered or modulated, as has been proposed in both schizophrenia and addiction.
Collapse
Affiliation(s)
- John A Wolf
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Perez-Rosello T, Figueroa A, Salgado H, Vilchis C, Tecuapetla F, Guzman JN, Galarraga E, Bargas J. Cholinergic Control of Firing Pattern and Neurotransmission in Rat Neostriatal Projection Neurons: Role of CaV2.1 and CaV2.2 Ca2+ Channels. J Neurophysiol 2005; 93:2507-19. [PMID: 15615835 DOI: 10.1152/jn.00853.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Besides a reduction of L-type Ca2+-currents (CaV1), muscarine and the peptidic M1-selective agonist, MT-1, reduced currents through CaV2.1 (P/Q) and CaV2.2 (N) Ca2+ channel types. This modulation was strongly blocked by the peptide MT-7, a specific muscarinic M1-type receptor antagonist but not significantly reduced by the peptide MT-3, a specific muscarinic M4-type receptor antagonist. Accordingly, MT-7, but not MT-3, blocked a muscarinic reduction of the afterhyperpolarizing potential (AHP) and decreased the GABAergic inhibitory postsynaptic currents (IPSCs) produced by axon collaterals that interconnect spiny neurons. Both these functions are known to be dependent on P/Q and N types Ca2+ channels. The action on the AHP had an important effect in increasing firing frequency. The action on the IPSCs was shown to be caused presynaptically as it coursed with an increase in the paired-pulse ratio. These results show: first, that muscarinic M1-type receptor activation is the main cholinergic mechanism that modulates Ca2+ entry through voltage-dependent Ca2+ channels in spiny neurons. Second, this muscarinic modulation produces a postsynaptic facilitation of discharge together with a presynaptic inhibition of the GABAergic control mediated by axon collaterals. Together, both effects would tend to recruit more spiny neurons for the same task.
Collapse
Affiliation(s)
- Tamara Perez-Rosello
- Departamento de Biofísica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City DF, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hu XT, Basu S, White FJ. Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons. J Neurophysiol 2004; 92:1597-607. [PMID: 15331648 DOI: 10.1152/jn.00217.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus accumbens (NAc) is an important forebrain area involved in sensitization, withdrawal effects, and self-administration of cocaine. However, little is known about cocaine-induced alterations in the neuronal excitability and whole cell neuroplasticity in this region that may affect behaviors. Our recent investigations have demonstrated that repeated cocaine administration decreases voltage-sensitive sodium and calcium currents (VSSCs and VSCCs, respectively) in freshly dissociated NAc neurons of rats. In this study, current-clamp recordings were performed in slice preparations to determine the effects of chronic cocaine on evoked Ca(2+) potentials and voltage-sensitive K(+) currents in NAc neurons. Repeated cocaine administration with 3-4 days of withdrawal caused significant alterations in Ca(2+) potentials, including suppression of Ca(2+)-mediated spikes, increase in the intracellular injected current intensity required for generation of Ca(2+) potentials (rheobase), reduced duration of Ca(2+) plateau potentials, and abolishment of secondary Ca(2+) potentials associated with the primary Ca(2+) plateau potential. Application of nickel (Ni(2+)), which blocks low-voltage activated T-type Ca(2+) channels, had no impact on evoked Ca(2+) plateau potentials in NAc neurons, indicating that these Ca(2+) potentials are high-voltage activated (HVA). In addition, repeated cocaine pretreatment also hyperpolarized the resting membrane potential, increased the amplitude of afterhyperpolarization in Ca(2+) spikes, and enhanced the outward rectification observed during membrane depolarization. These findings indicate that repeated cocaine administration not only suppressed HVA-Ca(2+) potentials but also significantly enhanced the activity of various K(+) channels in NAc neurons. They also demonstrate an integrative role of whole cell neuroplasticity during cocaine withdrawal, by which the subthreshold membrane excitability of NAc neurons is significantly decreased.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Neuropsychopharmacology Laboratory, Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3095, USA.
| | | | | |
Collapse
|
20
|
Escobar LI, Martínez-Téllez JC, Salas M, Castilla SA, Carrisoza R, Tapia D, Vázquez M, Bargas J, Bolívar JJ. A voltage-gated K+ current in renal inner medullary collecting duct cells. Am J Physiol Cell Physiol 2004; 286:C965-74. [PMID: 14684382 DOI: 10.1152/ajpcell.00074.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the K+-selective conductances in primary cultures of rat renal inner medullary collecting duct (IMCD) using perforated-patch and conventional whole cell techniques. Depolarizations above –20 mV induced a time-dependent outward K+ current ( Ivto) similar to a delayed rectifier. Ivto showed a half-maximal activation around 5.6 mV with a slope factor of 6.8 mV. Its K+/Na+ selectivity ratio was 11.7. It was inhibited by tetraethylammonium, quinidine, 4-aminopyridine, and Ba2+ and was not Ca2+ dependent. The delayed rectifying characteristics of Ivto prompted us to screen the expression of Kv1 and Kv3 families by RT-PCR. Analysis of RNA isolated from cell cultures revealed the presence of three Kv α-subunits (Kv1.1, Kv1.3, and Kv1.6). Western blot analysis with Kv α-subunit antibodies for Kv1.1 and Kv1.3 showed labeling of ∼70-kDa proteins from inner medulla plasmatic and microsome membranes. Immunocytochemical analysis of cell culture and kidney inner medulla showed that Kv1.3 is colocalized with the Na+-K+-ATPase at the basolateral membrane, although it is also in the cytoplasm. This is the first evidence of recording, protein expression, and localization of a voltage-gated Kv1 in the kidney IMCD cells.
Collapse
Affiliation(s)
- Laura I Escobar
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, México City DF, 04510, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vergara R, Rick C, Hernández-López S, Laville JA, Guzman JN, Galarraga E, Surmeier DJ, Bargas J. Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol 2003; 553:169-82. [PMID: 12963790 PMCID: PMC2343500 DOI: 10.1113/jphysiol.2003.050799] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In a rat corticostriatal slice, brief, suprathreshold, repetitive cortical stimulation evoked long-lasting plateau potentials in neostriatal neurons. Plateau potentials were often followed by spontaneous voltage transitions between two preferred membrane potentials. While the induction of plateau potentials was disrupted by non-NMDA and NMDA glutamate receptor antagonists, the maintenance of spontaneous voltage transitions was only blocked by NMDA receptor and L-type Ca2+ channel antagonists. The frequency and duration of depolarized events, resembling up-states described in vivo, were increased by NMDA and L-type Ca2+ channel agonists as well as by GABAA receptor and K+ channel antagonists. NMDA created a region of negative slope conductance and a positive slope crossing indicative of membrane bistability in the current-voltage relationship. NMDA-induced bistability was partially blocked by L-type Ca2+ channel antagonists. Although evoked by synaptic stimulation, plateau potentials and voltage oscillations could not be evoked by somatic current injection--suggesting a dendritic origin. These data show that NMDA and L-type Ca2+ conductances of spiny neurons are capable of rendering them bistable. This may help to support prolonged depolarizations and voltage oscillations under certain conditions.
Collapse
Affiliation(s)
- R Vergara
- Department of Biophysics, Instituto de Fisiología Celular UNAM, Mexico City 04510, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pérez-Garci E, Bargas J, Galarraga E. The role of Ca2+ channels in the repetitive firing of striatal projection neurons. Neuroreport 2003; 14:1253-6. [PMID: 12824770 DOI: 10.1097/00001756-200307010-00013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Blockade of L-type Ca2+ channels results in a decrease in firing frequency of neostriatal neurons. In contrast, N- and P/Q-types of Ca2+ channel cooperate to tune firing pattern, since both of these channel types have to be blocked to enhance firing frequency. Parameters of the intensity-frequency plot were differentially modified by Ca2+ channel antagonists: while L-type Ca2+ channel block reduced the dynamic range by about 80%, block of N- and P/Q-types of Ca2+ channel generated a steeper intensity-frequency plot. These effects are explained in terms of the sustained depolarization and the afterhyperpolarizing potential known to be dependent upon L- and N-, P/Q-types of Ca2+ channels, respectively.
Collapse
|
23
|
Vilchis C, Bargas J, Pérez-Roselló T, Salgado H, Galarraga E. Somatostatin modulates Ca2+ currents in neostriatal neurons. Neuroscience 2002; 109:555-67. [PMID: 11823066 DOI: 10.1016/s0306-4522(01)00503-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Somatostatin is synthesized and released by aspiny interneurons of the neostriatum. This work investigates the actions of somatostatin on rat neostriatal neurons of medium size (ca. 6 pF). Somatostatin (1 microM) reduces both calcium action potentials (20 mM tetraethylammonium) by ca. 24% and calcium currents by ca. 35%, in all cells tested. This action was produced in the presence of tetrodotoxin and in dissociated cells and was blocked by cyclo(-7-aminoheptanoyl-phe-d-try-lys-O-benzyl-thr) acetate (CPP-1), a somatostatin receptor antagonist. Except for nitrendipine (5 microM), several calcium channel antagonists, 1 microM omega-conotoxin GVIA, 400 nM omega-agatoxin TK, and 1 microM omega-conotoxin MVIIC, partially occluded somatostatin action. According to the calcium channel types known to be blocked by these antagonists, P/Q-type channels appeared to be the channels mainly modulated by somatostatin, followed by N-type channels. Since these channel types generate the afterhyperpolarizing potential in spiny neurons, we investigated the action of somatostatin on this event. Somatostatin reduces the amplitude of the afterhyperpolarizing potential by ca. 39%. This action is occluded by omega-agatoxin TK and omega-conotoxin MVIIC but not by omega-conotoxin GVIA or nicardipine. Thus, the action of somatostatin on the afterhyperpolarizing potential is mainly mediated by P/Q-type calcium channels. The block of the slow afterhyperpolarizing potential made most neurons exhibit an irregular firing mode, suggesting that ion currents other than calcium may also be affected by somatostatin. We conclude that somatostatin exerts a direct postsynaptic effect on neostriatal neurons via the activation of somatostatin receptors. This action affects non-L-type calcium channels and therefore modifies the afterhyperpolarizing potential and the firing pattern. It is proposed that somatostatin and its analogues may have profound effects on the motor functions controlled by the basal ganglia.
Collapse
Affiliation(s)
- C Vilchis
- Departamento de Biofísica, Instituto de Fisiología Celular, UNAM, PO Box 70-253, D.F. 04510, México City, Mexico
| | | | | | | | | |
Collapse
|
24
|
Abstract
Osteocytes play an important role in signaling within bone. Communication of osteocytes with each other and with bone lining cells may have a function in mineral homeostasis and mechanotransduction. However, very little is known of the expression of ion channels in these cells. Using the whole-cell patch-clamp technique, we have detected three types of K(+) currents in the mouse osteocyte-like cell line MLO-Y4. The most commonly observed current (48% of cells) activated rapidly (20 msec) in response to depolarizing steps from -40 mV and exhibited voltage-dependent inactivation. The current was inhibited by 20 mmol/L tetraethyl ammonium (TEA) and abolished by intracellular 2 mmol/L 4-aminopyridine (4-AP). Biophysical and pharmacological characteristics of the current differed from those of inactivating K(+) currents in osteoblastic cells. In 22% of cells, a slowly activating, voltage-activated current was observed (threshold at 20-30 mV). This current was TEA insensitive, was abolished by intracellular application of 2 mmol/L 4-AP, and was strongly inhibited by apamin, a selective inhibitor of small conductance (SK) Ca(2+)-activated K(+) channels. A third current developed during whole-cell dialysis (37% of cells). This current showed little voltage sensitivity. It was abolished by intracellular application of 2 mmol/L 4-AP, high-extracellular Ba(2+) (108 mmol/L), or by inclusion of ATP in the intracellular solution, but was insensitive to TEA, apamin, Cs(+), and glibenclamide. None of these currents was affected by replacement of chloride with acetate in the bath or pipette salines. Reverse-transcription polymerase chain reaction confirmed the presence of mRNA for the types 1 and 2 SK channels, but message for the large conductance (BK) Ca(2+)-activated K(+) channel was not detected in these cells. Message for the sulphonylurea receptor SUR2, a subunit of glibenclamide-insensitive ATP-dependent K(+) channels (K(ATP)), was also detected, but the glibenclamide-sensitive SUR1 subunit was not. These data are the first descriptions of SK- and ATP-sensitive, glibenclamide-insensitive channels in cells of osteoblastic lineage. Our findings are consistent with a change in K(+) channel expression during differentiation from osteoblast to osteocyte. K(+) channels of osteocytes will contribute to maintenance of the cell membrane potential and thus may participate in mechanosensitivity and osteocyte intercellular communication. In addition, they may be involved in homeostatic maintenance of the extracellular fluid occupying the periosteocytic space.
Collapse
Affiliation(s)
- Y Gu
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | |
Collapse
|
25
|
Abstract
After the unilateral destruction of the dopamine input to the neostriatum there are enduring changes in rat behaviour. These have been ascribed to the loss of dopamine and the animals are often referred to as 'hemiparkinsonian'. In the denervated neostriatum, we have shown that not only are the tyrosine hydroxylase positive boutons missing, but also the medium sized densely spiny output cells have fewer spines. Spines usually have asymmetric synapses on their heads. In a recent stereological study we were able to show that there is a loss of approximately 20% of asymmetric synapses in the lesioned neostriatum by 1 mo after the lesion. Current experiments are trying to establish the specificity of this loss. So far we have evidence suggesting that there is no obvious preferential loss of synapses from either D1 or D2 receptor immunostained dendrites in the neostriatum with damaged dopamine innervation. These experiments suggest that dopamine is somehow necessary for the maintenance of corticostriatal synapses in the neostriatum. In a different series of experiments slices of cortex and neostriatum were maintained in vitro in such a way as to preserve at least some of the corticostriatal connections. In this preparation we have been able to show that cortical stimulation results in robust excitatory postsynaptic potentials (EPSPs) recorded from inside striatal neurons. Using stimulation protocols derived from the experiments on hippocampal synaptic plasticity we have shown that the usual consequence of trains of high frequency stimulation of the cortex is the depression of the size of EPSPs in the striatal cell. In agreement with similar experiments by others, the effect seems to be influenced by NMDA receptors since the unblocking of these receptors with low Mg++ concentrations in the perfusate uncovers a potentiation of the EPSPs after trains of stimulation. Dopamine applied in the perfusion fluid round the slices has no effect but pulsatile application of dopamine, close to the striatal cell being recorded from, and in temporal association with the cortical trains, leads to a similar LTP like effect. The reduction of K+ channel conductance in the bath with TEA also has the effect of making cortical trains induce potentiation of corticostriatal transmission. TEA applied only to the cell being recorded from has no similar effect; the cortical stimulation again depresses the EPSP amplitude, so the site of action of TEA may well be presynaptic to the striatal cell. The morphological and physiological experiments may not necessarily be related but it is tempting to suggest that dopamine protects some corticostriatal synapses by potentiating them but that in the absence of dopamine others simply disconnect and are no longer detectable on electron microscopy.
Collapse
Affiliation(s)
- G W Arbuthnott
- Centre for Neuroscience and Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, UK.
| | | | | |
Collapse
|
26
|
Vilchis C, Bargas J, Ayala GX, Galván E, Galarraga E. Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons. Neuroscience 2000; 95:745-52. [PMID: 10670441 DOI: 10.1016/s0306-4522(99)00493-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is demonstrated that not all voltage-gated calcium channel types expressed in neostriatal projection neurons (L, N, P, Q and R) contribute equally to the activation of calcium-dependent potassium currents. Previous work made clear that different calcium channel types contribute with a similar amount of current to whole-cell calcium current in neostriatal neurons. It has also been shown that spiny neurons possess both "big" and "small" types of calcium-dependent potassium currents and that activation of such currents relies on calcium entry through voltage-gated calcium channels. In the present work it was investigated whether all calcium channel types equally activate calcium-dependent potassium currents. Thus, the action of organic calcium channel antagonists was investigated on the calcium-activated outward current. Transient potassium currents were reduced by 4-aminopyridine and sodium currents were blocked by tetrodotoxin. It was found that neither 30 nM omega-Agatoxin-TK, a blocker of P-type channels, nor 200 nM calciseptine or 5 microM nitrendipine, blockers of L-type channels, were able to significantly reduce the outward current. In contrast, 400 nM omega-Agatoxin-TK, which at this concentration is able to block Q-type channels, and 1 microM omega-Conotoxin GVIA, a blocker of N-type channels, both reduced outward current by about 50%. These antagonists given together, or 500 nM omega-Conotoxin MVIIC, a blocker of N- and P/Q-type channels, reduced outward current by 70%. In addition, the N- and P/Q-type channel blockers preferentially reduce the afterhyperpolarization recorded intracellularly. The results show that calcium-dependent potassium channels in neostriatal neurons are preferentially activated by calcium entry through N- and Q-type channels in these conditions.
Collapse
Affiliation(s)
- C Vilchis
- Instituto de Fisiología Celular, UNAM, México City, DF, México
| | | | | | | | | |
Collapse
|
27
|
Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 1999. [PMID: 10212321 DOI: 10.1523/jneurosci.19-09-03629.1999] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is demonstrated that acetylcholine released from cholinergic interneurons modulates the excitability of neostriatal projection neurons. Physostigmine and neostigmine increase input resistance (RN) and enhance evoked discharge of spiny projection neurons in a manner similar to muscarine. Muscarinic RN increase occurs in the whole subthreshold voltage range (-100 to -45 mV), remains in the presence of TTX and Cd2+, and can be blocked by the relatively selective M1,4 muscarinic receptor antagonist pirenzepine but not by M2 or M3 selective antagonists. Cs+ occludes muscarinic effects at potentials more negative than -80 mV. A Na+ reduction in the bath occludes muscarinic effects at potentials more positive than -70 mV. Thus, muscarinic effects involve different ionic conductances: inward rectifying and cationic. The relatively selective M2 receptor antagonist AF-DX 116 does not block muscarinic effects on the projection neuron but, surprisingly, has the ability to mimic agonistic actions increasing RN and firing. Both effects are blocked by pirenzepine. HPLC measurements of acetylcholine demonstrate that AF-DX 116 but not pirenzepine greatly increases endogenous acetylcholine release in brain slices. Therefore, the effects of the M2 antagonist on the projection neurons were attributable to autoreceptor block on cholinergic interneurons. These experiments show distinct opposite functions of muscarinic M1- and M2-type receptors in neostriatal output, i.e., the firing of projection neurons. The results suggest that the use of more selective antimuscarinics may be more profitable for the treatment of motor deficits.
Collapse
|