1
|
Zhang K, Man X, Hu X, Tan P, Su J, Abbas MN, Cui H. GATA binding protein 6 regulates apoptosis in silkworms through interaction with poly (ADP-ribose) polymerase. Int J Biol Macromol 2024; 256:128515. [PMID: 38040165 DOI: 10.1016/j.ijbiomac.2023.128515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The GATA family of genes plays various roles in crucial biological processes, such as development, cell differentiation, and disease progression. However, the roles of GATA in insects have not been thoroughly explored. In this study, a genome-wide characterization of the GATA gene family in the silkworm, Bombyx mori, was conducted, revealing lineage-specific expression profiles. Notably, GATA6 is ubiquitously expressed across various developmental stages and tissues, with predominant expression in the midgut, ovaries, and Malpighian tubules. Overexpression of GATA6 inhibits cell growth and promotes apoptosis, whereas, in contrast, knockdown of PARP mitigates the apoptotic effects driven by GATA6 overexpression. Co-immunoprecipitation (co-IP) has demonstrated that GATA6 can interact with Poly (ADP-ribose) polymerase (PARP), suggesting that GATA6 may induce cell apoptosis by activating the enzyme's activity. These findings reveal a dynamic and regulatory relationship between GATA6 and PARP, suggesting a potential role for GATA6 as a key regulator in apoptosis through its interaction with PARP. This research deepens the understanding of the diverse roles of the GATA family in insects, shedding light on new avenues for studies in sericulture and pest management.
Collapse
Affiliation(s)
- Kui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.
| | - Xu Man
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Xin Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Peng Tan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Jingjing Su
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Li M, Tang H, Li Z, Tang W. Emerging Treatment Strategies for Cerebral Ischemia-Reperfusion Injury. Neuroscience 2022; 507:112-124. [PMID: 36341725 DOI: 10.1016/j.neuroscience.2022.10.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) injury is a common feature of ischemic stroke which occurs when the blood supply is restored after a period of ischemia in the brain. Reduced blood-flow to the brain during CI/RI compromises neuronal cell health as a result of mitochondrial dysfunction, oxidative stress, cytokine production, inflammation and tissue damage. Reperfusion therapy during CI/RI can restore the blood flow to ischemic regions of brain which are not yet infarcted. The long-term goal of CI/RI therapy is to reduce stroke-related neuronal cell death, disability and mortality. A range of drug and interventional therapies have emerged that can alleviate CI/RI mediated oxidative stress, inflammation and apoptosis in the brain. Herein, we review recent studies on CI/RI interventions for which a mechanism of action has been described and the potential of these therapeutic modalities for future use in the clinic.
Collapse
Affiliation(s)
- Mengxing Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Heyong Tang
- College of Integrated Chinese and Western Medicine (School of Life Sciences), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhen Li
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wei Tang
- College of Acupuncture and Massage (Rehabilitation Medical College), Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
3
|
Cheng B, Du Y, Wen Y, Zhao Y, He A, Ding M, Fan Q, Li P, Liu L, Liang X, Guo X, Zhang F, Ma X. Integrative analysis of genome-wide association study and chromosomal enhancer maps identified brain region related pathways associated with ADHD. Compr Psychiatry 2019; 88:65-69. [PMID: 30529763 DOI: 10.1016/j.comppsych.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/17/2022] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is among the most common childhood onset psychiatric behavioral disorders, and the pathogenesis of ADHD is still unclear. Utilizing the latest genome wide association studies (GWAS) data and enhancer map, we explored the brain region related biological pathways associated with ADHD. The GWAS summary data of ADHD was driven from a published study, involving 20,183 ADHD cases and 35,191 healthy controls. The brain-related enhancer map was collected from ENCODE and Roadmap Epigenomics (ENCODE + Roadmap) including 489,581 enhancers. Firstly, the chromosomal enhancer maps of four brain regions were aligned with the ADHD GWAS summary data in order to obtain enhancer SNPs. Then the significant enhancers SNPs were subjected to the gene set enrichment analysis (GSEA) for identifying ADHD associated gene sets. A total of 866 pathways and 4 brain tissues were analyzed in this study. We detected several candidate genes for ADHD, such as AHI1, ALG2 and DNM1. We also detected several candidate biological pathways associated with ADHD, such as Reactome SEMA4D in semaphorin signaling and Reactome NCAM1 interactions. Our findings may provide a novel insight into the complex genetic mechanism of ADHD.
Collapse
Affiliation(s)
- Bolun Cheng
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Yanan Du
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Wen
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Yan Zhao
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Awen He
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Miao Ding
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Qianrui Fan
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Ping Li
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Li Liu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiao Liang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Xiong Guo
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China
| | - Feng Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China.
| | - Xiancang Ma
- School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
4
|
Defective glucocorticoid receptor signaling and keratinocyte-autonomous defects contribute to skin phenotype of mouse embryos lacking the Hsp90 co-chaperone p23. PLoS One 2017. [PMID: 28650975 PMCID: PMC5484504 DOI: 10.1371/journal.pone.0180035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
p23 is a small acidic protein with intrinsic molecular chaperone activity. It is best known as a co-chaperone of the major cytosolic molecular chaperone Hsp90. p23 binds the N-terminus of Hsp90 and stabilizes the ATP-bound and N-terminally closed Hsp90 dimer. It is in this configuration that many Hsp90 clients are most stably bound. Considering the important role of p23 in the Hsp90 cycle, it came as a surprise that it is not absolutely essential for viability in the budding yeast or for mouse development. Mice without p23 develop quite normally until birth and then all die perinatally because of immature lungs. The only other apparent phenotype of late stage embryos and newborns is a skin defect, which we have further characterized here. We found that skin differentiation is impaired, and that both apoptosis and cell proliferation are augmented in the absence of p23; the consequences are a severe thinning of the stratum corneum and reduced numbers of hair follicles. The altered differentiation, spontaneous apoptosis and proliferation are all mimicked by isolated primary keratinocytes indicating that they do require p23 functions in a cell-autonomous fashion. Since the phenotype of p23-null embryos is strikingly similar to that of embryos lacking the glucocorticoid receptor, a paradigmatic Hsp90-p23 client protein, we investigated glucocorticoid signaling. We discovered that it is impaired in vivo and for some aspects in isolated keratinocytes. Our results suggest that part of the phenotype of p23-null embryos can be explained by an impact on this particular Hsp90 client, but do not exclude that p23 by itself or in association with Hsp90 affects skin development and homeostasis through yet other pathways.
Collapse
|
5
|
Tian L, Liu S, Liu H, Li S. 20-hydroxyecdysone upregulates apoptotic genes and induces apoptosis in the Bombyx fat body. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 79:207-219. [PMID: 22517444 DOI: 10.1002/arch.20457] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During insect metamorphosis, obsolete larval tissues are removed by programed cell death (PCD), mainly apoptosis and autophagy, which is directed by the molting hormone, 20-hydroxyecdysone (20E) and the 20E-triggered transcriptional cascade. Here, we investigated how 20E regulates apoptosis at the transcriptional level in the fat body of the silkworm, Bombyx mori. As detected by TdT-mediated dUTP Nick-End Labeling (TUNEL), apoptosis weakly occurred during the fourth larval molting, decreased to undetected levels during the early fifth instar, and gradually increased from day 4 of fifth instar to the wandering stage to the prepupal stage. Meanwhile, as determined by quantitative real-time PCR, eight genes involved in apoptosis, including Apaf-1, Nedd2 like1, Nedd2 like2, ICE1, ICE3, ICE5, Arp, and IAP, were highly expressed during molting and pupation, when the 20E titer is high. Injection of 20E into day 2 of fifth instar larvae significantly induced apoptosis and upregulated apoptotic genes after 6 h of treatment, and in vitro treatment of larval fat body tissues with 20E upregulated all the eight apoptotic genes. Moreover, RNAi knockdown of USP, a component of the 20E receptor complex EcR-USP, at the early-wandering stage reduced apoptosis and downregulated apoptotic genes after 24 h of treatment. Taken together, we infer that 20E upregulates apoptotic genes and thus induces apoptosis in the Bombyx fat body during larval molting and the larval-pupal transition.
Collapse
Affiliation(s)
- Ling Tian
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | | | | | |
Collapse
|
6
|
Chen Y, Zhao M, Wang S, Chen J, Wang Y, Cao Q, Zhou W, Liu J, Xu Z, Tong G, Li J. A novel role for DYX1C1, a chaperone protein for both Hsp70 and Hsp90, in breast cancer. J Cancer Res Clin Oncol 2009; 135:1265-76. [PMID: 19277710 DOI: 10.1007/s00432-009-0568-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 02/23/2009] [Indexed: 01/24/2023]
Abstract
AIMS With three consecutive tetratricopeptide repeat (TPR) motifs at its C-terminus essential for neuronal migration, and a p23 domain at its N-terminus, DYX1C1 was the first gene proposed to have a role in developmental dyslexia. In this study, we attempted to identify the potential interaction of DYX1C1 and heat shock protein, and the role of DYX1C1 in breast cancer. MAIN METHODS GST pull-down, a yeast two-hybrid system, RT-PCR, site-directed mutagenesis approach. KEY FINDINGS Our study initially confirmed DYX1C1, a dyslexia related protein, could interact with Hsp70 and Hsp90 via GST pull-down and a yeast two-hybrid system. And we verified that EEVD, the C-terminal residues of DYX1C1, is responsible for the identified association. Further, DYX1C1 mRNA was significantly overexpressed in malignant breast tumor, linking with the up-regulated expression of Hsp70 and Hsp90. SIGNIFICANCE These results suggest that DYX1C1 is a novel Hsp70 and Hsp90-interacting co-chaperone protein and its expression is associated with malignancy.
Collapse
Affiliation(s)
- Yuxin Chen
- Lab of Reproductive Medicine, Department of Cell Biology and Medical Genetics, Nanjing Medical University, 210029 Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Xu X, Zheng X. Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygen-glucose deprivation in cultured hippocampal neurons. JOURNAL OF ETHNOPHARMACOLOGY 2007; 113:421-6. [PMID: 17698307 DOI: 10.1016/j.jep.2007.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 05/29/2007] [Accepted: 06/29/2007] [Indexed: 05/16/2023]
Abstract
The aim of this study was to clarify the mechanisms underlying neuroprotection of puerarin (Pur) against cerebral hypoxia-ischemia. Primary hippocampal cultures were prepared from 2-day-old Sprague-Dawley rats. After 8 days in vitro, the cultures subjected to 3h oxygen/glucose deprivation (OGD). Flow cytometric analysis of annexin-V and propidium iodide (PI) labeling cells found that apoptosis and necrosis were significantly reduced in the cultured hippocampal neurons by addition of Pur during 3h OGD and for the following 24h. Pur (40 and 100 microM) also attenuated glutamate (Glu) induced neuronal damage, suppressing apoptosis and necrosis induced by Glu of 0.5mM. Furthermore, the changes in intracellular Ca(2+) and generation of nitric oxide (NO) were measured by confocal laser scanning microscopy with Fluo-3, a Ca(2+) probe, and diaminofluorescein diacetate (DAF DA), a NO probe, respectively. In agreement with the results from flow cytometric analysis, Pur (40 and 100 microM) markedly slowed down OGD-induced Ca(2+) influx and lowered the intracellular Ca(2+) peak. Meanwhile, NO synthesis induced by OGD was significantly inhibited by Pur. Our findings suggest that Pur can ameliorate hippocampal neuronal death induced by OGD in vitro. The protective effects of Pur are associated with inhibiting the action of glutaminergic transmitter, intracellular Ca(2+) elevation and neuronal NO synthesis.
Collapse
Affiliation(s)
- Xiaohong Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | | |
Collapse
|
8
|
Mollerup J, Berchtold MW. The co-chaperone p23 is degraded by caspases and the proteasome during apoptosis. FEBS Lett 2005; 579:4187-92. [PMID: 16038904 DOI: 10.1016/j.febslet.2005.06.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 06/23/2005] [Accepted: 06/27/2005] [Indexed: 11/25/2022]
Abstract
The heat shock protein 90 co-chaperone p23 has recently been shown to be up-regulated in cancer cells and down-regulated in atheroschlerotic plaques. We found that p23 is degraded during apoptosis induced by several stimuli, including Fas and TNFalpha-receptor activation as well as staurosporine treatment. Caspase inhibition protected p23 from degradation in several cell lines. In addition, recombinant caspase-3 and 8 cleaved p23 at Asp 142 generating a degradation product of 18 kDa as seen in apoptotic cells. Truncated p23 is further degraded in a proteasome dependent process during apoptosis. Furthermore, we found that the anti-aggregating activity of truncated p23 was reduced compared to full length p23 indicating that caspase mediated p23 degradation contributes to protein destabilisation in apoptosis.
Collapse
Affiliation(s)
- Jens Mollerup
- Institute of Molecular Biology and Physiology, Department of Molecular Cell Biology, University of Copenhagen, Oester Farimagsgade 2A, 1353 Copenhagen K, Denmark.
| | | |
Collapse
|
9
|
Pozuelo Rubio M, Geraghty KM, Wong BHC, Wood NT, Campbell DG, Morrice N, Mackintosh C. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Biochem J 2004; 379:395-408. [PMID: 14744259 PMCID: PMC1224091 DOI: 10.1042/bj20031797] [Citation(s) in RCA: 368] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 01/26/2004] [Accepted: 01/27/2004] [Indexed: 01/14/2023]
Abstract
14-3-3-interacting proteins were isolated from extracts of proliferating HeLa cells using 14-3-3 affinity chromatography, eluting with a phosphopeptide that competes with targets for 14-3-3 binding. The isolated proteins did not bind to 14-3-3 proteins (14-3-3s) after dephosphorylation with protein phosphatase 2A (PP2A), indicating that binding to 14-3-3s requires their phosphorylation. The binding proteins identified by tryptic mass fingerprinting and Western blotting include many enzymes involved in generating precursors such as purines (AMP, GMP and ATP), FAD, NADPH, cysteine and S-adenosylmethionine, which are needed for cell growth, regulators of cell proliferation, including enzymes of DNA replication, proteins of anti-oxidative metabolism, regulators of actin dynamics and cellular trafficking, and proteins whose deregulation has been implicated in cancers, diabetes, Parkinsonism and other neurological diseases. Several proteins bound to 14-3-3-Sepharose in extracts of proliferating cells, but not in non-proliferating, serum-starved cells, including a novel microtubule-interacting protein ELP95 (EMAP-like protein of 95 kDa) and a small HVA22/Yop1p-related protein. In contrast, the interactions of 14-3-3s with the N-methyl-D-aspartate receptor 2A subunit and NuMA (nuclear mitotic apparatus protein) were not regulated by serum. Overall, our findings suggest that 14-3-3s may be central to integrating the regulation of biosynthetic metabolism, cell proliferation, survival, and other processes in human cells.
Collapse
Affiliation(s)
- Mercedes Pozuelo Rubio
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Hemming FJ, Fraboulet S, Blot B, Sadoul R. Early increase of apoptosis-linked gene-2 interacting protein X in areas of kainate-induced neurodegeneration. Neuroscience 2004; 123:887-95. [PMID: 14751282 DOI: 10.1016/j.neuroscience.2003.10.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis-linked gene-2 interacting protein X (Alix) is thought to be involved in both cell death and vesicular trafficking. We examined Alix expression 2 h, 6 h and 24 h after triggering seizure-dependent neuronal death by i.p. kainic acid injection. In the hippocampus, intense, transient immunolabelling was observed in the strata lucidum, oriens and radiatum, areas of high synaptic activity. The similarity of this distribution to those of synaptophysin and endophilin suggests a presynaptic localisation. Alix labelling was increased in neuronal cell bodies in kainate-sensitive regions before or concomitant with the first signs of oedema and/or neuronal eosinophilia. The increase persisted 24 h after kainate-injection in CA3 and the piriform cortex which are areas with massive swelling and numerous pyknotic neurons. This suggests that Alix may play an early role in the mechanisms leading to cell death. Taken together, our results suggest that Alix may be a molecular link between synaptic functioning and neuronal death.
Collapse
Affiliation(s)
- F J Hemming
- Neurodégénérescence et Plasticité, EMI 0108, INSERM/UJF, Hôpital A. Michallon, CHU, BP 217, 38043 Grenoble 9, France.
| | | | | | | |
Collapse
|
11
|
Mollerup J, Krogh TN, Nielsen PF, Berchtold MW. Properties of the co-chaperone protein p23 erroneously attributed to ALG-2 (apoptosis-linked gene 2). FEBS Lett 2003; 555:478-82. [PMID: 14675759 DOI: 10.1016/s0014-5793(03)01310-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A commercial antibody (clone 22) directed against the apoptosis-linked gene 2 (alg2, pdcd6) encoded protein has been used by several groups. Up-regulated expression of the antigen was observed in primary tumours and in metastatic tissue and also during rat brain ischemia. Furthermore, antigen down-regulation was found in human atherosclerotic plaques. Recently, we found that the clone 22 antibody does not recognise ALG-2. In the present study the antigen of the clone 22 antibody was identified as the heat shock protein 90 (HSP90) co-chaperone protein p23, identical to the cytosolic prostaglandin E2 synthase, by immunoprecipitation followed by tryptic in-gel digests and mass spectrometry of the purified peptides. Moreover, the heterogeneous ribonuclear protein A2/B1 was found to be a part of the p23 co-immunoprecipitated protein complex.
Collapse
Affiliation(s)
- Jens Mollerup
- Department of Molecular Cell Biology, Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark.
| | | | | | | |
Collapse
|
12
|
la Cour JM, Mollerup J, Winding P, Tarabykina S, Sehested M, Berchtold MW. Up-regulation of ALG-2 in hepatomas and lung cancer tissue. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:81-9. [PMID: 12819013 PMCID: PMC1868153 DOI: 10.1016/s0002-9440(10)63632-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ALG-2 was isolated in a screen for proteins involved in programmed cell death and is the first Ca(2+)-binding protein found to be directly involved in apoptosis. We have generated polyclonal antibodies that are suitable for detecting ALG-2 using different immunological methods. Three commercial antibodies against ALG-2 did neither detect mouse recombinant ALG-2 nor endogenous ALG-2 in Jurkat cell lysates, whereas our own affinity-purified antibody recognized recombinant as well as endogenous ALG-2. The specificity of the antibody was shown by preabsorbtion experiments and on ALG-2-deficient cells using Western blot analysis and immunohistochemistry. Western blot analysis of 15 different adult mouse tissues demonstrated that ALG-2 is ubiquitously expressed. We found that ALG-2 was more than threefold overexpressed in rat liver hepatoma compared to normal rat liver using Western blot analysis, a result confirmed by immunohistochemical analysis. Staining of four different lung cancer tissue microarrays including specimens of 263 patients showed that ALG-2 is mainly localized to epithelial cells and significantly up-regulated in small-cell lung cancers and in non-small-cell lung cancers. Our results lead to the conclusion that ALG-2 beside its known proapoptotic functions may be a player in survival pathways.
Collapse
Affiliation(s)
- Jonas M la Cour
- Department of Molecular Cell Biology, University of Copenhagen, Copenhagen, and the Department of Pathology, University Hospital, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
13
|
Leker RR, Neufeld MY. Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2003; 42:187-203. [PMID: 12791439 DOI: 10.1016/s0165-0173(03)00170-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many similarities exist between cerebral ischemia and epilepsy regarding brain-damaging and auto-protective mechanisms that are activated following the injurious insult. Therefore, drugs that are effective in minimizing seizure-induced brain damage may also be useful in minimizing ischemic injury. Use of such drugs in stroke victims may have important clinical and financial advantages. Therefore, the authors conducted a Medline search of studies involving the use of anti-epileptic drugs (AEDs) as possible neuroprotectants and summarize the data. Most AEDs have been tested in animal models of focal or global ischemia and some were already tested in humans, for a possible neuroprotective effect. The existing data is rather scant and insufficient but it appears that only drugs that have multiple mechanisms of action seem to have some potential in conferring a degree of neuroprotection that could be clinically applicable to stroke patients. In conclusion, some of the newer AEDs show promise as possible neuroprotectants in the setup of acute ischemic stroke but more studies are needed before clinical trials in humans could be undertaken.
Collapse
Affiliation(s)
- R R Leker
- Department of Neurology and the Agnes Ginges Center for Human Neurogenetics, Hebrew University-Hadassah Medical School, Hadassah University Hospital, Jerusalem, Israel.
| | | |
Collapse
|
14
|
Leker RR, Constantini S. Experimental models in focal cerebral ischemia: are we there yet? ACTA NEUROCHIRURGICA. SUPPLEMENT 2003; 83:55-9. [PMID: 12442622 DOI: 10.1007/978-3-7091-6743-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Therapeutic options available for acute stroke management are sparse and inadequate. Therefore, new insights into stroke pathophysiology leading to new therapeutic targets are needed. In order to attain these goals, adequate animal models for cerebral ischemia are needed. In the following paper the authors will review the various animal models for stroke and emphasize their potential strengths and weaknesses.
Collapse
Affiliation(s)
- R R Leker
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | | |
Collapse
|
15
|
Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H. Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1600:51-60. [PMID: 12445459 DOI: 10.1016/s1570-9639(02)00444-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Penta-EF-hand (PEF) proteins comprise a family of Ca(2+)-binding proteins that have five repetitive EF-hand motifs. Among the eight alpha-helices (alpha1-alpha8), alpha4 and alpha7 link EF2-EF3 and EF4-EF5, respectively. In addition to the structural similarities in the EF-hand regions, the PEF protein family members have common features: (i) dimerization through unpaired C-terminal EF5s, (ii) possession of hydrophobic Gly/Pro-rich N-terminal domains, and (iii) Ca(2+)-dependent translocation to membranes. Based on comparison of amino acid sequences, mammalian PEF proteins are classified into two groups: Group I PEF proteins (ALG-2 and peflin) and Group II PEF proteins (Ca(2+)-dependent protease calpain subfamily members, sorcin and grancalcin). The Group I genes have also been found in lower animals, plants, fungi and protists. Recent findings of specific interacting proteins have started to gradually unveil the functions of the noncatalytic mammalian PEF proteins.
Collapse
Affiliation(s)
- Masatoshi Maki
- Laboratory of Molecular and Cellular Regulation, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
16
|
Jin K, Mao XO, Eshoo MW, del Rio G, Rao R, Chen D, Simon RP, Greenberg DA. cDNA microarray analysis of changes in gene expression induced by neuronal hypoxia in vitro. Neurochem Res 2002; 27:1105-12. [PMID: 12462408 DOI: 10.1023/a:1020913123054] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We used cDNA microarray gene expression profiling to characterize the transcriptional response to exposure of cultured mouse cerebral cortical neurons to hypoxia for 24 hr. Of 11,200 genes examined, 1,405 (12.5%) were induced or repressed at least 1.5-fold, whereas 26 known genes were induced and 20 known genes were repressed at least 2.5-fold. The most strongly induced genes included genes coding for endoplasmic reticulum proteins (Ero1L/Giig11, Sac1p, Ddit3/Gadd153), proteins involved in ubiquitination (Arih2, P4hb), proteins induced by hypoxia in non-neuronal systems (Gpi1, Aldo1, Anxa2, Hig1), and proteins that might promote cell death (Gas5, Egr1, Ndr1, Vdac2). These findings reinforce the importance of endoplasmic reticulum-based mechanisms and of protein-ubiquitination pathways in the neuronal response to hypoxia.
Collapse
Affiliation(s)
- K Jin
- Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Jang IK, Hu R, Lacaná E, D'Adamio L, Gu H. Apoptosis-linked gene 2-deficient mice exhibit normal T-cell development and function. Mol Cell Biol 2002; 22:4094-100. [PMID: 12024023 PMCID: PMC133871 DOI: 10.1128/mcb.22.12.4094-4100.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The apoptosis-linked gene product, ALG-2, is a member of the family of intracellular Ca(2+)-binding proteins and a part of the apoptotic machinery controlled by T-cell receptor (TCR), Fas, and glucocorticoid signals. To explore the physiologic function of ALG-2 in T-cell development and function, we generated mice harboring a null mutation in the alg-2 gene. The alg-2 null mutant mice were viable and fertile and showed neither gross developmental abnormality nor immune dysfunction. Analyses of apoptotic responses of ALG-2-deficient T cells demonstrated that ALG-2 deficiency failed to block apoptosis induced by TCR, Fas, or dexamethasone signals. These findings indicate that ALG-2 is physiologically dispensable for apoptotic responses induced by the above signaling pathways and suggest that other functionally redundant proteins might exist in mammalian cells.
Collapse
Affiliation(s)
- Ihn Kyung Jang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | |
Collapse
|
18
|
Jin K, Nagayama T, Mao X, Kawaguchi K, Hickey RW, Greenberg DA, Simon RP, Graham SH. Two caspase-2 transcripts are expressed in rat hippocampus after global cerebral ischemia. J Neurochem 2002; 81:25-35. [PMID: 12067235 DOI: 10.1046/j.1471-4159.2002.00781.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caspase family genes play a critical role in the initiation and execution of programmed cell death. Programmed cell death is an important contributor to neuronal loss following cerebral ischemia. We have performed a series of experiments to investigate the role of a specific caspase, caspase-2, in the development of delayed neuronal death following transient global ischemia in the rat. A rat ischemic brain cDNA library was screened, and two splice-variants of caspase-2 mRNA were identified, caspase-2S and caspase-2L, which were highly homologous with the sequences of human and mouse caspase-2S and caspase-2L genes, respectively. RT-PCR demonstrated an increase in expression of both caspase-2S and caspase-2L mRNA at 8, 24 and 72 h of reperfusion after global ischemia. The ratio of the two PCR fragments did not change significantly throughout the time course of reperfusion. Western blot with monoclonal antibody specific to the pro-apoptotic caspase-2L splice variant revealed an increase in procaspase-2 (51 kDa) protein from 4 to 72 h following ischemia compared with sham-operated controls. Furthermore, an approximately 30-kDa cleavage product appeared at 8 h and increased with increasing duration of reperfusion. Thus, caspase-2L is both translated and activated following transient global ischemia. Finally, intraventricular administration of the caspase-2-like inhibitor (VDVAD-FMK) 30 min before induction of ischemia decreased the number of CA1 neurons staining positively for DNA damage (Klenow-labeling assay) and increased the number of healthy-appearing CA1 neurons (cresyl violet) compared with vehicle-treated controls. Taken together, the data suggest that caspase-2 induction and activation are important mediators of delayed neuronal death following transient global ischemia.
Collapse
Affiliation(s)
- Kunlin Jin
- Buck Institute for Age Research, Novato, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Snider BJ, Du C, Wei L, Choi DW. Cycloheximide reduces infarct volume when administered up to 6 h after mild focal ischemia in rats. Brain Res 2001; 917:147-57. [PMID: 11640900 DOI: 10.1016/s0006-8993(01)02822-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously described a rodent model of brief (30 min) middle cerebral artery occlusion followed by reperfusion, in which infarction develops gradually, reaching completion more than 3 days after ischemia, accompanied by morphological, biochemical, and pharmacological evidence of apoptosis. In the present study, we tested the hypotheses that delayed administration of a protein synthesis inhibitor would be effective in reducing tissue injury in this slowly evolving ischemic infarction, and that efficacy of this treatment would wane with more prolonged ischemia. Focal cerebral ischemia was induced in Long-Evans rats by occlusion of the right middle cerebral artery. Infarction volume was analyzed using triphenyl tetrazolium chloride staining, and morphology was studied using hematoxylin and eosin stained sections. Following 30 min middle cerebral artery occlusion and reperfusion, the core ischemic region exhibited vacuolization in the neuropil by 36 h after ischemia, and infarction reached full size by 7 days after ischemia. Cycloheximide reduced infarct volume when given up to 6 h after ischemia. If the duration of ischemic insult was increased to 90 min, the therapeutic window for delayed cycloheximide was only 30 min. In permanent middle cerebral artery occlusion, cycloheximide was ineffective even when given prior to ischemia onset. After mild, but not severe, ischemic insults, cerebral infarction develops slowly and may be treatable with protein synthesis inhibitors, even when treatment is delayed for up to 6 h after the onset of ischemia.
Collapse
Affiliation(s)
- B J Snider
- Center for the Study of Nervous System Injury and Department of Neurology, Washington University School of Medicine, Campus Box 8111, 660 S. Euclid, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
20
|
Jin K, Mao XO, Eshoo MW, Nagayama T, Minami M, Simon RP, Greenberg DA. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 2001; 50:93-103. [PMID: 11456315 DOI: 10.1002/ana.1073] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The brain's response to ischemia, which helps determine clinical outcome after stroke, is regulated partly by competing genetic programs that respectively promote cell survival and delayed cell death. Many genes involved in this response have been identified individually or systematically, providing insights into the molecular basis of ischemic injury and potential targets for therapy. The development of microarray systems for gene expression profiling permits screening of large numbers of genes for possible involvement in biological or pathological processes. Therefore, we used an oligodeoxynucleotide-based microarray consisting of 374 human genes, most implicated previously in apoptosis or related events, to detect alterations in gene expression in the hippocampus of rats subjected to 15 minutes of global cerebral ischemia followed by up to 72 hours of reperfusion. We found 1.7-fold or greater increases in the expression of 57 genes and 1.7-fold or greater decreases in the expression of 34 genes at 4, 24, or 72 hours after ischemia. The number of induced genes increased from 4 to 72 hours, whereas the number of repressed genes decreased. The induced genes included genes involved in protein synthesis, genes mutated in hereditary human diseases, proapoptotic genes, antiapoptotic genes, injury-response genes, receptors, ion channels, and enzymes. We detected transcriptional induction of several genes implicated previously in cerebral ischemia, including ALG2, APP, CASP3, CLU, ERCC3, GADD34, GADD153, IGFBP2, TIAR, VEGF, and VIM, as well as other genes not so implicated. We also found coinduction of several groups of related genes that might represent functional modules within the ischemic neuronal transcriptome, including VEGF and its receptor, NRP1; the IGF1 receptor and the IGF1-binding protein IGFBP2; Rb, the Rb-binding protein E2F1, and the E2F-related transcription factor, TFDP1; the CACNB3 and CACNB4 beta-subunits of the voltage-gated calcium channel; and caspase-3 and its substrates, ACINUS, FEM1, and GSN. To test the hypothesis that genes identified through this approach might have roles in the pathophysiology of cerebral ischemia, we measured expression of the products of two induced genes not heretofore implicated in cerebral ischemia-GRB2, an adapter protein involved in growth-factor signaling pathways, and SMN1, which participates in RNA processing and is deleted in most cases of spinal muscular atrophy. Western analysis showed enhanced expression of both proteins in hippocampus at 24 to 72 hours after ischemia, and SMN1 was localized by immunohistochemistry to hippocampal neurons. These results suggest that microarray analysis of gene expression may be useful for elucidating novel molecular mediators of cell death and survival in the ischemic brain.
Collapse
Affiliation(s)
- K Jin
- Buck Institute for Age Research, Novato, CA 94945, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
This review examines the appearance of hallmarks of apoptosis following experimental stroke. The reviewed literature leaves no doubt that ischemic cell death in the brain is active, that is, requires energy; is gene directed, that is, requires new gene expression; and is capase-mediated, that is, uses apoptotic proteolytic machinery. However, sufficient differences to both classical necrosis and apoptosis exist which prevent easy mechanistic classification. It is concluded that ischemic cell death in the brain is neither necrosis nor apoptosis but is a chimera which appears on a continuum that has apoptosis and necrosis at the poles. The position on this continuum could be modulated by the intensity of the ischemic injury, the consequent availability of ATP and new protein synthesis, and both the age and context of the neuron in question. Thus the ischemic neuron may look necrotic but have actively died in an energy dependent manner with new gene expression and destruction via the apoptotic proteolytic machinery.
Collapse
Affiliation(s)
- J P MacManus
- Apoptosis Research Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | |
Collapse
|