1
|
Borland JM. A review of the effects of different types of social behaviors on the recruitment of neuropeptides and neurotransmitters in the nucleus accumbens. Front Neuroendocrinol 2025; 77:101175. [PMID: 39892577 DOI: 10.1016/j.yfrne.2025.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 01/25/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
There is a lack of understanding of the neural mechanisms regulating the rewarding effects of social interactions. A significant contributor to this lack of clarity is the diversity of social behaviors and animal models utilized to investigate mechanisms. Other sources of the lack of clarity are the diversity of brain regions that can regulate social reward and the diversity of signaling pathways that regulate reward. To provide some clarity into the mechanisms of social reward, this review focused on the brain region most implicated in reward for multiple stimuli, the nucleus accumbens, and surveyed (systematically reviewed) studies that investigated the relationship between social interaction and five signaling systems implicated in the regulation of reward and social behavior: oxytocin, vasopressin, serotonin, opioids and endocannabinoids. Moreover, all of these studies were organized by the type of social behavior studied: affiliative interactions, play behavior, aggression, social defeat, sex behavior, pair-bonding, parental behavior and social isolation. From this survey and organization, this review concludes that oxytocin, endocannabinoids and mu-opioid receptors in the nucleus accumbens positively regulate the rewarding social behaviors, and kappa-opioid receptors negatively regulate the rewarding social behaviors. The opposite profile is observed for these signaling systems for the aversive social behaviors. More studies are needed to investigate the directional role of the serotonin system in the nucleus accumbens in the regulation of many types of social behaviors, and vasopressin likely does not act in the nucleus accumbens in the regulation of the valence of social behaviors. Many of these different signaling systems are also interdependent of one another in the regulation of different types of social behaviors. Finally, the interaction of these signaling systems with dopamine in the nucleus accumbens is briefly discussed.
Collapse
|
2
|
Vörös D, Kiss O, Taigiszer M, László BR, Ollmann T, Péczely L, Zagorácz O, Kertes E, Kállai V, Berta B, Kovács A, Karádi Z, Lénárd L, László K. The role of intraamygdaloid oxytocin in spatial learning and avoidance learning. Peptides 2024; 175:171169. [PMID: 38340898 DOI: 10.1016/j.peptides.2024.171169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The goal of the present study is to investigate the role of intraamygdaloid oxytocin in learning-related mechanisms. Oxytocin is a neuropeptide which is involved in social bonding, trust, emotional responses and various social behaviors. By conducting passive avoidance and Morris water maze tests on male Wistar rats, the role of intraamygdaloid oxytocin in memory performance and learning was investigated. Oxytocin doses of 10 ng and 100 ng were injected into the central nucleus of the amygdala. Our results showed that 10 ng oxytocin significantly reduced the time required to locate the platform during the Morris water maze test while significantly increasing the latency time in the passive avoidance test. However, the 100 ng oxytocin experiment failed to produce a significant effect in either of the tests. Wistar rats pretreated with 20 ng oxytocin receptor antagonist (L-2540) were administered 10 ng of oxytocin into the central nucleus of the amygdala and were also subjected to the aforementioned tests to highlight the role of oxytocin receptors in spatial- and avoidance learning. Results suggest that oxytocin supports memory processing during both the passive avoidance and the Morris water maze tests. Oxytocin antagonists can however block the effects of oxytocin in both tests. The results substantiate that oxytocin uses oxytocin receptors to enhance memory and learning performance.
Collapse
Affiliation(s)
- Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Márton Taigiszer
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Bettina Réka László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Olga Zagorácz
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Anita Kovács
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Zoltán Karádi
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - Kristóf László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary.
| |
Collapse
|
3
|
Asker M, Krieger JP, Liles A, Tinsley IC, Borner T, Maric I, Doebley S, Furst CD, Börchers S, Longo F, Bhat YR, De Jonghe BC, Hayes MR, Doyle RP, Skibicka KP. Peripherally restricted oxytocin is sufficient to reduce food intake and motivation, while CNS entry is required for locomotor and taste avoidance effects. Diabetes Obes Metab 2023; 25:856-877. [PMID: 36495318 PMCID: PMC9987651 DOI: 10.1111/dom.14937] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Oxytocin (OT) has a well-established role in reproductive behaviours; however, it recently emerged as an important regulator of energy homeostasis. In addition to central nervous system (CNS), OT is found in the plasma and OT receptors (OT-R) are found in peripheral tissues relevant to energy balance regulation. Here, we aim to determine whether peripheral OT-R activation is sufficient to alter energy intake and expenditure. METHODS AND RESULTS We first show that systemic OT potently reduced food intake and food-motivated behaviour for a high-fat reward in male and female rats. As it is plausible that peripherally, intraperitoneally (IP) injected OT crosses the blood-brain barrier (BBB) to produce some of the metabolic effects within the CNS, we screened, with a novel fluorescently labelled-OT (fAF546-OT, Roxy), for the presence of IP-injected Roxy in CNS tissue relevant to feeding control and compared such with BBB-impermeable fluorescent OT-B12 (fCy5-OT-B12; BRoxy). While Roxy did penetrate the CNS, BRoxy did not. To evaluate the behavioural and thermoregulatory impact of exclusive activation of peripheral OT-R, we generated a novel BBB-impermeable OT (OT-B12 ), with equipotent binding at OT-R in vitro. In vivo, IP-injected OT and OT-B12 were equipotent at food intake suppression in rats of both sexes, suggesting that peripheral OT acts on peripheral OT-R to reduce feeding behaviour. Importantly, OT induced a potent conditioned taste avoidance, indistinguishable from that induced by LiCl, when applied peripherally. Remarkably, and in contrast to OT, OT-B12 did not induce any conditioned taste avoidance. Limiting the CNS entry of OT also resulted in a dose-dependent reduction of emesis in male shrews. While both OT and OT-B12 proved to have similar effects on body temperature, only OT resulted in home-cage locomotor depression. CONCLUSIONS Together our data indicate that limiting systemic OT CNS penetrance preserves the anorexic effects of the peptide and reduces the clinically undesired side effects of OT: emesis, taste avoidance and locomotor depression. Thus, therapeutic targeting of peripheral OT-R may be a viable strategy to achieve appetite suppression with better patient outcomes.
Collapse
Affiliation(s)
- Mohammed Asker
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for molecular and translational medicine, University of Gothenburg, Gothenburg, Sweden
| | - Jean-Philippe Krieger
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Amber Liles
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Ian C Tinsley
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
| | - Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ivana Maric
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sarah Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
| | - C Daniel Furst
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
| | - Stina Börchers
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for molecular and translational medicine, University of Gothenburg, Gothenburg, Sweden
| | - Francesco Longo
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Yashaswini R Bhat
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Departments of Medicine and Pharmacology, State University of New York, Upstate Medical University, Syracuse, New York, USA
| | - Karolina P Skibicka
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for molecular and translational medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
4
|
Barcomb K, Olah SS, Kennedy MJ, Ford CP. Properties and modulation of excitatory inputs to the locus coeruleus. J Physiol 2022; 600:4897-4916. [PMID: 36156249 PMCID: PMC9669264 DOI: 10.1113/jp283605] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/22/2022] [Indexed: 01/12/2023] Open
Abstract
Excitatory inputs drive burst firing of locus coeruleus (LC) noradrenaline (NA) neurons in response to a variety of stimuli. Though a small number of glutamatergic LC afferents have been investigated, the overall landscape of these excitatory inputs is largely unknown. The current study used an optogenetic approach to isolate three glutamatergic afferents: the prefrontal cortex (PFC), lateral hypothalamus (LH) and periaqueductal grey (PAG). AAV5-DIO-ChR2 was injected into each region in male and female CaMKII-Cre mice and the properties of excitatory inputs on LC-NA cells were measured. Notably we found differences among these inputs. First, the pattern of axonal innervation differed between inputs such that LH afferents were concentrated in the posterior portion of the LC-NA somatic region while PFC afferents were denser in the medial dendritic region. Second, basal intrinsic properties varied for afferents, with LH inputs having the highest connectivity and the largest amplitude excitatory postsynaptic currents while PAG inputs had the lowest initial release probability. Third, while orexin and oxytocin had minimal effects on any input, dynorphin strongly inhibited excitatory inputs originating from the LH and PAG, and corticotrophin releasing factor (CRF) selectively inhibited inputs from the PAG. Overall, these results demonstrate that individual afferents to the LC have differing properties, which may contribute to the modularity of the LC and its ability to mediate various behavioural outcomes. KEY POINTS: Excitatory inputs to the locus coeruleus (LC) are important for driving noradrenaline neuron activity and downstream behaviours in response to salient stimuli, but little is known about the functional properties of different glutamate inputs that innervate these neurons We used a virus-mediated optogenetic approach to compare glutamate afferents from the prefrontal cortex (PFC), the lateral hypothalamus (LH) and the periaqueductal grey (PAG). While PFC was predicted to make synaptic inputs, we found that the LH and PAG also drove robust excitatory events in LC noradrenaline neurons. The strength, kinetics, and short-term plasticity of each input differed as did the extent of neuromodulation by both dynorphin and corticotrophin releasing factor. Thus each input displayed a unique set of basal properties and modulation by peptides. This characterization is an important step in deciphering the heterogeneity of the LC.
Collapse
Affiliation(s)
- Kelsey Barcomb
- Department of PharmacologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Samantha S. Olah
- Department of PharmacologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Matthew J. Kennedy
- Department of PharmacologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Christopher P. Ford
- Department of PharmacologyUniversity of Colorado School of MedicineAuroraCOUSA
| |
Collapse
|
5
|
Bazaz A, Ghanbari A, Vafaei AA, Khaleghian A, Rashidy-Pour A. Oxytocin in dorsal hippocampus facilitates auditory fear memory extinction in rats. Neuropharmacology 2022; 202:108844. [PMID: 34687711 DOI: 10.1016/j.neuropharm.2021.108844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/11/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Fear extinction is impaired in some psychiatric disorders. Any treatment that facilitates the extinction of fear is a way to advance the treatment of related psychiatric disorders. Recent studies have highlighted the role of oxytocin (OT) in fear extinction, but the endogenous release of OT during fear extinction in the dorsal hippocampal (dHPC) is not clear. We investigated the release of OT during fear extinction and the role of the HPC - medial prefrontal cortex (mPFC) circuit and BDNF in the effects of exogenous OT on auditory fear conditioning in male rats. We found that the release of endogenous OT in the dHPC is significantly increased during the fear extinction process as measured by the microdialysis method. Increased freezing response in the OT-treated rats compared to saline-treated rats showed that exogenous OT in the dHPC enhanced the fear extinction. Injection of BDNF antagonist (ANA-12) into the infralimbic (IL) blocked the effect of exogenous OT on the dHPC. Following OT injection, BDNF levels increased in the dHPC, ventral HPC, and IL cortex; but decreased in the prelimbic cortex (PL). Finally, OT microinjected into the dHPC significantly increased neural activity of pyramidal neurons of the CA1-vHPC and IL but decreased the neural activity in the PL cortex. Our findings strongly support that the dHPC endogenous OT plays a crucial role in enhancing fear extinction. It seems that the activation of the HPC-mPFC pathway, and consequently, the release of BDNF in the IL cortex mediates the enhancing effects of OT on fear extinction.
Collapse
Affiliation(s)
- Amir Bazaz
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Department of physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Khaleghian
- Department of Biochemistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
6
|
Yang LN, Chen K, Yin XP, Liu D, Zhu LQ. The Comprehensive Neural Mechanism of Oxytocin in Analgesia. Curr Neuropharmacol 2021; 20:147-157. [PMID: 34525934 PMCID: PMC9199553 DOI: 10.2174/1570159x19666210826142107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/19/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022] Open
Abstract
Oxytocin (OXT) is a nine amino acid neuropeptide hormone that has become one of the most intensively studied molecules in the past few decades. The vast majority of OXT is synthesized in the periventricular nucleus and supraoptic nucleus of the hypothalamus, and a few are synthesized in some peripheral organs (such as the uterus, ovaries, adrenal glands, thymus, pancreas, etc.) OXT modulates a series of physiological processes, including lactation, parturition, as well as some social behaviors. In addition, more and more attention has recently been focused on the analgesic effects of oxytocin. It has been reported that OXT can relieve tension and pain without other adverse effects. However, the critical role and detailed mechanism of OXT in analgesia remain unclear. This review aims to summarize the mechanism of OXT in analgesia and some ideas about the mechanism.
Collapse
Affiliation(s)
- Liu-Nan Yang
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Kai Chen
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Xiao-Ping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang. China
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030. China
| |
Collapse
|
7
|
Møller M. Vasopressin and oxytocin beyond the pituitary in the human brain. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:7-24. [PMID: 34225951 DOI: 10.1016/b978-0-12-820107-7.00002-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vasopressin and oxytocin are primarily synthesized in the magnocellular supraoptic and paraventricular nuclei of the hypothalamus and transported to the posterior pituitary. In the human, an extensive accessory magnocellular neuroendocrine system is present with contact to the posterior pituitary and blood vessels in the hypothalamus itself. Vasopressin and oxytocin are involved in social and behavioral functions. However, only few neocortical areas are targeted by vasopressinergic and oxytocinergic nerve fibers, which mostly project to limbic areas in the forebrain, where also their receptors are located. Vasopressinergic/oxytocinergic perikarya in the forebrain project to the brain stem and spinal cord targeting nuclei and areas involved in autonomic functions. Parvocellular neurons containing vasopressin are located in the suprachiasmatic nucleus and synchronize the activity of the pacemaker in this nucleus. From the suprachiasmatic nucleus fibers project to the parvocellular part of the paraventricular nucleus, where preautonomic neurons project to the intermediolateral nucleus in the thoracic spinal cord, from where the superior cervical ganglion is reached whose noradrenergic fibers terminate in the pineal gland to stimulate melatonin secretion at night. The pineal gland is also innervated by vasopressin- and oxytocin-containing fibers reaching the gland via the "central innervation" in the pineal stalk, which might be involve in an annual regulation of melatonin secretion.
Collapse
Affiliation(s)
- Morten Møller
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Hammack SE, Braas KM, May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:385-402. [PMID: 34225977 DOI: 10.1016/b978-0-12-819975-6.00025-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a compact but neurophenotypically complex structure in the ventral forebrain that is structurally and functionally linked to other limbic structures, including the amygdala nuclear complex, hypothalamic nuclei, hippocampus, and related midbrain structures, to participate in a wide range of functions, especially emotion, emotional learning, stress-related responses, and sexual behaviors. From a variety of sensory inputs, the BNST acts as a node for signal integration and coordination for information relay to downstream central neuroendocrine and autonomic centers for appropriate homeostatic physiological and behavioral responses. In contrast to the role of the amygdala in fear, the BNST has gained wide interest from work suggesting that it has main roles in mediating sustained responses to diffuse, unpredictable and/or long-duration threats that are typically associated with anxiety-related responses. Further, some BNST subregions are highly sexually dimorphic which appear contributory to the differential stress and social interactive behaviors, including reproductive responses, between males and females. Notably, maladaptive BNST neuroplasticity and function have been implicated in chronic pain, depression, anxiety-related abnormalities, and other psychopathologies including posttraumatic stress disorders. The BNST circuits are predominantly GABAergic-the glutaminergic neurons represent a minor population-but the complexity of the system results from an overlay of diverse neuropeptide coexpression in these neurons. More than a dozen neuropeptides may be differentially coexpressed in BNST neurons, and from variable G protein-coupled receptor signaling, may inhibit or activate downstream circuit activities. The mechanisms and roles of these peptides in modulating intrinsic BNST neurocircuit signaling and BNST long-distance target cell projections are still not well understood. Nevertheless, an understanding of some of the principal players may allow assembly of the circuit interactions.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
9
|
Sharma SR, Gonda X, Dome P, Tarazi FI. What's Love Got to do with it: Role of oxytocin in trauma, attachment and resilience. Pharmacol Ther 2020; 214:107602. [PMID: 32512017 DOI: 10.1016/j.pharmthera.2020.107602] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Oxytocin (OT) is a neurohypophysial hormone and neuropeptide produced by the hypothalamus and released by the pituitary gland. It has multiple physiological roles including stimulation of parturition and lactation, and promotion of pro-adaptive social behaviors necessary for mammalian survival. OT interacts with one receptor subtype: the OT receptor (OTR) which, upon stimulation, triggers different intracellular signal transduction cascades to mediate its physiological actions. Preclinical studies show that OT regulates social behaviors such as pair bonding, recognition and social interaction. It also coordinates the activation of the hypothalamic-pituitary-adrenal (HPA) axis and the release of corticotrophin-releasing hormone. Further evidence suggests that OT plays an important role in regulating caloric intake and metabolism, and in maintaining electrolyte and cardiovascular homeostasis. OT is also involved in attenuating the neurophysiological and neurochemical effects of trauma on the brain and body by facilitating both physical attachment such as wound healing, and psychological/social attachment, thereby increasing resilience to subsequent traumatic events. Clinical trials have reported that intranasal administration of OT provides therapeutic benefits for patients diagnosed with traumatic stress-related diseases such as major depressive disorders and post-traumatic stress disorder. OT's therapeutic benefits may result from context-dependent interactions with key neural pathways (social, cognitive, and reward), neurotransmitters (dopamine, norepinephrine, serotonin, and endogenous opioids), and biomarkers (adrenocorticotropic hormone, cortisol, and dehydroepiandrosterone sulfate), that lead to a decrease in stress -associated behaviors, and facilitate post-traumatic growth, ultimately leading to increased resilience, through improved social cohesion and attachment. OT induced-augmentation of physical and cognitive resilience may play a significant role in both the prevention of, and improved clinical outcomes for, traumatic stress-related disorders following either acute or enduring traumatic experiences.
Collapse
Affiliation(s)
- Samata R Sharma
- Department of Psychiatry, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Xenia Gonda
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; MTA-SE Neurochemistry and Neuropsychopharmacology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary; NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary; Laboratory of Suicide Prevention and Research, National Institute for Psychiatry and Addictions, Budapest, Hungary
| | - Peter Dome
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; Laboratory of Suicide Prevention and Research, National Institute for Psychiatry and Addictions, Budapest, Hungary
| | - Frank I Tarazi
- Department of Psychiatry and Neuroscience Program, Harvard Medical School, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
10
|
Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Sadowski B. Differential role of specific cardiovascular neuropeptides in pain regulation: Relevance to cardiovascular diseases. Neuropeptides 2020; 81:102046. [PMID: 32284215 DOI: 10.1016/j.npep.2020.102046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022]
Abstract
In many instances, the perception of pain is disproportionate to the strength of the algesic stimulus. Excessive or inadequate pain sensation is frequently observed in cardiovascular diseases, especially in coronary ischemia. The mechanisms responsible for individual differences in the perception of cardiovascular pain are not well recognized. Cardiovascular disorders may provoke pain in multiple ways engaging molecules released locally in the heart due to tissue ischemia, inflammation or cellular stress, and through neurogenic and endocrine mechanisms brought into action by hemodynamic disturbances. Cardiovascular neuropeptides, namely angiotensin II (Ang II), angiotensin-(1-7) [Ang-(1-7)], vasopressin, oxytocin, and orexins belong to this group. Although participation of these peptides in the regulation of circulation and pain has been firmly established, their mutual interaction in the regulation of pain in cardiovascular diseases has not been profoundly analyzed. In the present review we discuss the regulation of the release, and mechanisms of the central and systemic actions of these peptides on the cardiovascular system in the context of their central and peripheral nociceptive (Ang II) and antinociceptive [Ang-(1-7), vasopressin, oxytocin, orexins] properties. We also consider the possibility that they may play a significant role in the modulation of pain in cardiovascular diseases. The rationale for focusing attention on these very compounds was based on the following premises (1) cardiovascular disturbances influence the release of these peptides (2) they regulate vascular tone and cardiac function and can influence the intensity of ischemia - the factor initiating pain signals in the cardiovascular system, (3) they differentially modulate nociception through peripheral and central mechanisms, and their effect strongly depends on specific receptors and site of action. Accordingly, an altered release of these peptides and/or pharmacological blockade of their receptors may have a significant but different impact on individual sensation of pain and comfort of an individual patient.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland.
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, Warsaw, Poland
| | - Bogdan Sadowski
- School of Engineering and Health, Bitwy Warszawskiej 1920 r. 18, Warsaw, Poland
| |
Collapse
|
11
|
Chow LH, Chen YH, Lai CF, Lin TY, Chen YJ, Kao JH, Huang EYK. Sex Difference of Angiotensin IV-, LVV-Hemorphin 7-, and Oxytocin-Induced Antiallodynia at the Spinal Level in Mice With Neuropathic Pain. Anesth Analg 2019; 126:2093-2101. [PMID: 29381512 DOI: 10.1213/ane.0000000000002795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND We demonstrated previously that angiotensin IV (Ang IV) and LVV-hemorphin 7 (LVV-H7) act through the blockade of insulin-regulated aminopeptidase to decrease oxytocin degradation, thereby causing antihyperalgesia at the spinal level in rats. We determined that intrathecal oxytocin can induce significant antihyperalgesia in male rats with inflammation but not in female rats. Thus, we speculate that Ang IV, LVV-H7, and oxytocin can induce antiallodynia, which could be of great therapeutic potential. Because the antihyperalgesia by using these peptides was with sex difference, their possible antiallodynia was examined in male and female mice for comparison. We investigated whether Ang IV, LVV-H7, and oxytocin produce antiallodynia at the spinal level in mice and whether this antiallodynia differs between the sexes. METHODS Partial sciatic nerve ligation surgery was performed on adult male and female C57BL/6 mice from the same litter (25-30 g). The effects of intrathecal injections of Ang IV (25.8 nmol), LVV-H7 (27.2 nmol), and oxytocin (0.125 or 1.25 nmol) were assessed through the von Frey test 3 days after partial sciatic nerve ligation. RESULTS Intrathecal injection of Ang IV, LVV-H7, and oxytocin all produced a potent antiallodynia in male mice. However, these antiallodynia effects were either extremely weak or absent in female mice at the same dose. CONCLUSIONS Intrathecal Ang IV, LVV-H7, and oxytocin can all cause significant antiallodynia in male mice. The Ang IV-, LVV-H7-, and oxytocin-induced antiallodynia effects differed between the sexes at the spinal level in mice.
Collapse
Affiliation(s)
- Lok-Hi Chow
- From the Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming University, School of Medicine, Taipei, Taiwan.,Departments of Anesthesiology
| | - Yuan-Hao Chen
- Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Fu Lai
- Department of Family Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Tsu-You Lin
- Department of Family Medicine, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Jie Chen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jen-Hsin Kao
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
12
|
A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology 2019; 152:90-101. [DOI: 10.1016/j.neuropharm.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
|
13
|
Yuan W, He Z, Hou W, Wang L, Li L, Zhang J, Yang Y, Jia R, Qiao H, Tai F. Role of oxytocin in the medial preoptic area (MPOA) in the modulation of paternal behavior in mandarin voles. Horm Behav 2019; 110:46-55. [PMID: 30836063 DOI: 10.1016/j.yhbeh.2019.02.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 11/15/2022]
Abstract
Parental care plays an important role in individual survival and development in mammals. Many studies have focused on the mechanisms underlying maternal behavior. However, the underlying neural mechanisms of paternal behavior are less understood. Using monogamous mandarin voles (Microtus mandarinus), the present study found that fathers initiated more paternal behavior and the virgin male showed more infanticide. Moreover fathers had shorter latency to approach a pup at the postnatal day (PND) 10 than PND1, PND20 than nonfathers. Fathers had a shorter latency to take care of unfamiliar pups than nonfathers. They had higher levels of paternal behavior at PND 10 than PND1 and PND20 toward the mandarin vole pups. Fathers had a significantly higher serum concentration of oxytocin (OT) than virgin males. Both RT-PCR and Western blot results indicated that the levels of the oxytocin receptor (OTR) in the medial preoptic area (MPOA) of fathers were significantly higher than in virgin males, but the levels of vasopressin 1a receptor (V1AR) mRNA and protein expression in the MPOA did not show significant differences. Microinjection of an oxytocin receptor antagonist into the MPOA significantly reduced the total duration of paternal behavior and increased the latency to approach the pup and initiate paternal behavior. Our results indicated that OT plays a key role in the modulation of paternal behavior via the MPOA.
Collapse
Affiliation(s)
- Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hui Qiao
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
14
|
Proteomic Analysis of the Maternal Preoptic Area in Rats. Neurochem Res 2019; 44:2314-2324. [PMID: 30847857 PMCID: PMC6776485 DOI: 10.1007/s11064-019-02755-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 10/29/2022]
Abstract
The behavior of female rats changes profoundly as they become mothers. The brain region that plays a central role in this regulation is the preoptic area, and lesions in this area eliminates maternal behaviors in rodents. The molecular background of the behavioral changes has not been established yet; therefore, in the present study, we applied proteomics to compare protein level changes associated with maternal care in the rat preoptic area. Using 2-dimensional fluorescence gel electrophoresis followed by identification of altered spots with mass spectrometry, 12 proteins were found to be significantly increased, and 6 proteins showed a significantly reduced level in mothers. These results show some similarities with a previous proteomics study of the maternal medial prefrontal cortex and genomics approaches applied to the preoptic area. Gene ontological analysis suggested that most altered proteins are involved in glucose metabolism and neuroplasticity. These proteins may support the maintenance of increased neuronal activity in the preoptic area, and morphological changes in preoptic neuronal circuits are known to take place in mothers. An increase in the level of alpha-crystallin B chain (Cryab) was confirmed by Western blotting. This small heat shock protein may also contribute to maintaining the increased activity of preoptic neurons by stabilizing protein structures. Common regulator and target analysis of the altered proteins suggested a role of prolactin in the molecular changes in the preoptic area. These results first identified the protein level changes in the maternal preoptic area. The altered proteins contribute to the maintenance of maternal behaviors and may also be relevant to postpartum depression, which can occur as a molecular level maladaptation to motherhood.
Collapse
|
15
|
Lin YT, Hsu KS. Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Prog Neurobiol 2018; 171:1-14. [DOI: 10.1016/j.pneurobio.2018.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 10/20/2018] [Indexed: 12/23/2022]
|
16
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
17
|
Bakermans-Kranenburg MJ, van IJzendoorn MH. Oxytocin and Human Sensitive and Protective Parenting. Curr Top Behav Neurosci 2018; 35:421-448. [PMID: 29019101 DOI: 10.1007/7854_2017_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this chapter we review the evidence for the role of oxytocin in parenting, and discuss some crucial but outstanding questions. This is not meant to be a comprehensive review of all studies on oxytocin and parenting in general. Instead, special attention will be paid to a dimension of parenting that has been largely neglected in behavioral and neurobiological research on parental caregiving, namely protection. Parental protection has received considerable attention in animal research but, despite its evolutionary importance, not in studies on humans. It is argued that oxytocin may have specific significance for the protective dimension of parenting. The effects of exogenous oxytocin may be dependent not only on contextual factors, but also on personal characteristics, most notably gender, on endogenous levels of oxytocin, and on early childhood experiences. Examining the contextual, personal, hormonal, neural, genetic, and behavioral mechanisms of protective parenting in tandem is essential for the development of a comprehensive theory of protective parenting, and for the identification of "biomarkers" for insensitive and unprotective parenting that should be taken into account in preventive parenting interventions.
Collapse
Affiliation(s)
| | - Marinus H van IJzendoorn
- Graduate School of Social and Behavioral Sciences, Leiden University, Leiden, The Netherlands
- Center for Moral Socialization Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Saito R, Sonoda S, Ueno H, Motojima Y, Yoshimura M, Maruyama T, Hashimoto H, Tanaka K, Yamamoto Y, Kusuhara K, Ueta Y. Involvement of central nesfatin-1 neurons on oxytocin-induced feeding suppression in rats. Neurosci Lett 2017; 655:54-60. [PMID: 28684238 DOI: 10.1016/j.neulet.2017.06.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 11/26/2022]
Abstract
Peripheral anorectic hormones, such as peptide YY (PYY) and oxytocin (OXT), suppress food intake. A newly identified anorectic neuropeptide, nesfatin-1, is synthesized in both peripheral tissue and the central nervous system, particularly by various nuclei in the hypothalamus and brainstem. Here, we examined the effects of intraperitoneal (ip) administration of PYY3-36, OXT, and OXT analog, on nesfatin-1-immunoreactive (ir) neurons in the rat hypothalamus and brainstem, using Fos double fluorescence-immunohistochemistry. The ip administration of OXT and OXT analog significantly increased the number of nesfatin-1-ir neurons expressing Fos-ir in the paraventricular nucleus, the arcuate nucleus, and the nucleus tractus solitarius, but not in the supraoptic nucleus, the lateral hypothalamic area, and the area postrema. No differences in the percentage of nesfatin-1-ir neurons expressing Fos in the nuclei of the hypothalamus and brainstem were observed, between rats treated with vehicle or those treated with PYY3-36. The decreased food intake, induced by OXT and OXT analog, was attenuated significantly by pretreatment with intracerebroventricular administration of antisense nesfatin-1. These results suggested that nesfatin-1-expressing neurons in the hypothalamus and brainstem may play a role in sensing the peripheral level of OXT and its suppression of feeding in rats.
Collapse
Affiliation(s)
- Reiko Saito
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Satomi Sonoda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hiromichi Ueno
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Yasuhito Motojima
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Kentaro Tanaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yukiyo Yamamoto
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Koichi Kusuhara
- Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan.
| |
Collapse
|
19
|
Zimmermann-Peruzatto JM, Lazzari VM, Agnes G, Becker RO, de Moura AC, Guedes RP, Lucion AB, Almeida S, Giovenardi M. The Impact of Oxytocin Gene Knockout on Sexual Behavior and Gene Expression Related to Neuroendocrine Systems in the Brain of Female Mice. Cell Mol Neurobiol 2017; 37:803-815. [PMID: 27558735 PMCID: PMC11482067 DOI: 10.1007/s10571-016-0419-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 01/13/2023]
Abstract
Social relations are built and maintained from the interaction among individuals. The oxytocin (OT), vasopressin (VP), estrogen, dopamine, and their receptors are involved in the modulation of sexual behavior in females. This study aimed to analyze the impact of OT gene knockout (OTKO) on sexual behavior and the gene expression of oxytocin (OTR), estrogen alpha (ERα), estrogen beta (ERβ), vasopressin (V1aR), and dopamine (D2R) receptors in the olfactory bulb (OB), prefrontal cortex (PFC), hippocampus (HPC), and hypothalamus (HPT), as well as in the synthesis of VP in the HPT of female mice. Wild-type (WT) littermates were used for comparisons. The CDNAs were synthesized by polymerase chain reaction and the gene expression was calculated with the 2-ΔΔCt formula. Our results showed that the absence of OT caused an increase in the frequency and duration of non-receptive postures and a decrease in receptive postures in the OTKO. OTKO females showed a significant decrease in the gene expression of OTR in the HPC, V1aR in the HPT, and ERα and ERβ in the PFC. There was no significant difference in the gene expression of D2R of OTKO. However, OTKO showed an increased gene expression of V1aR in the HPC. There is no significant difference in VP mRNA synthesis in the HPT between OTKO and WT. Our findings demonstrate that the absence of OT leads to significant changes in the expression of the studied genes (OTR, ERα, ERβ, V1aR), and these changes may contribute to the decreased sexual behavior observed in OTKO females.
Collapse
Affiliation(s)
- Josi Maria Zimmermann-Peruzatto
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Virgínia Meneghini Lazzari
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Grasiela Agnes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Roberta Oriques Becker
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Ana Carolina de Moura
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Renata Padilha Guedes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Aldo Bolten Lucion
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Silvana Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245/308C, 90050-170, Porto Alegre, Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil.
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245/308C, 90050-170, Porto Alegre, Brazil.
| |
Collapse
|
20
|
Manipulating cognitive reserve: Pre-injury environmental conditions influence the severity of concussion symptomology, gene expression, and response to melatonin treatment in rats. Exp Neurol 2017; 295:55-65. [PMID: 28579327 DOI: 10.1016/j.expneurol.2017.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/21/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022]
Abstract
In an effort to understand the factors that contribute to heterogeneity in outcomes often associated with mTBI in youth, this study examined the role of premorbid differences in cognitive reserve on post-concussive symptoms (PCS), molecular markers, and treatment response. Male and female rats matured in one of three environmental conditions (Stress, Enrichment, Control), received a mTBI in adolescence, and were randomized to melatonin or placebo treatment. All animals underwent a behavioural test battery designed to examine PCS. Using prefrontal cortex and hippocampus tissue, expression of 9 genes was assessed in an effort to determine how the brain's epigenome was influenced by cognitive reserve, mTBI, and melatonin. Enrichment increased cognitive reserve (CR) and prevented lingering symptoms. Conversely, stress was associated with progressive worsening and manifestation of PCS in the longer-term. Melatonin was able to restore baseline function for control and enriched animals, but was ineffective for the stress condition. Epigenetic change in the prefrontal cortex was largely driven by the injury, while gene expression changes in the hippocampus were dependent upon cognitive reserve. The occurrence and severity of PCS is dependent upon a complex and multifaceted array of factors that modify behavioural and epigenetic responses to mTBI and its treatment.
Collapse
|
21
|
Florez Acevedo S, Cardenas Parra LF. Rol Modulador de la Oxitocina en la Interacción Social y el Estrés Social. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.rmoi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La Oxitocina es un neuropéptido conocido por facilitar funciones del sistema nervioso periférico, relacionadas específicamente con el sistema reproductivo. Sin embargo, en las últimas décadas se ha reconocido la función moduladora de la Oxitocina en el comportamiento social, a través de su liberación en el sistema nervioso central. Así mismo, estudios han mencionado que la Oxitocina es un potencial ansiolítico cuando un individuo ha sido sometido a estrés social. Por lo tanto, el objetivo de esta revisión es presentar una caracterización de la Oxitocina y su relación con distintas formas de interacción social y el estrés social; a través de los resultados presentados en distintos estudios, tanto en modelos animales como en humanos. Además, se intenta mostrar la importancia de continuar con el estudio de la Oxitocina, dados los posibles vacíos teóricos y experimentales existentes, teniendo en cuenta las potenciales cualidades ansiolíticas de esta hormona.
Collapse
|
22
|
Diamond LM. Contributions of Psychophysiology to Research on Adult Attachment: Review and Recommendations. PERSONALITY AND SOCIAL PSYCHOLOGY REVIEW 2016. [DOI: 10.1207/s15327957pspr0504_1] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Despite the increasing use of psychophysiological measures to investigate social and interpersonal phenomena, few studies of adult romantic attachment have taken advantage of this approach. In this article I argue for a biologically-specific, theory-based integration of psychophysiological measures into adult attachment research. This approach would help elucidate the normative psychobiological properties of the attachment system, which have received little study in humans. Specifically, it would allow researchers to test targeted hypotheses regarding affect and arousal regulation in attachment relationships. I provide a general introduction to 2 biological systems that hold particular promise for adult attachment research: the parasympathetic branch of the autonomic nervous system and the hypothalamic-pituitary-adrenocortical axis of the endocrine system. I highlight the relevance of these systems for attachment phenomena and review findings from selected social psychophysiological research. I conclude by outlining a tentative theoretical model of the psychobiology of adult attachment and identifying specific directions for future research.
Collapse
|
23
|
Hehar H, Ma I, Mychasiuk R. Effects of Metabolic Programming on Juvenile Play Behavior and Gene Expression in the Prefrontal Cortex of Rats. Dev Neurosci 2016; 38:96-104. [PMID: 26967530 DOI: 10.1159/000444015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/14/2016] [Indexed: 11/19/2022] Open
Abstract
Early developmental processes, such as metabolic programming, can provide cues to an organism, which allow it to make modifications that are predicted to be beneficial for survival. Similarly, social play has a multifaceted role in promoting survival and fitness of animals. Play is a complex behavior that is greatly influenced by motivational and reward circuits, as well as the energy reserves and metabolism of an organism. This study examined the association between metabolic programming and juvenile play behavior in an effort to further elucidate insight into the consequences that early adaptions have on developmental trajectories. The study also examined changes in expression of four genes (Drd2, IGF1, Opa1, and OxyR) in the prefrontal cortex known to play significant roles in reward, bioenergetics, and social-emotional functioning. Using four distinct variations in developmental programming (high-fat diet, caloric restriction, exercise, or high-fat diet combined with exercise), we found that dietary programming (high-fat diet vs. caloric restriction) had the greatest impact on play behavior and gene expression. However, exercise also induced changes in both measures. This study demonstrates that metabolic programming can alter neural circuits and bioenergetics involved in play behavior, thus providing new insights into mechanisms that allow programming to influence the evolutionary success of an organism.
Collapse
Affiliation(s)
- Harleen Hehar
- Alberta Children's Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alta., Canada
| | | | | |
Collapse
|
24
|
Grinevich V, Knobloch-Bollmann HS, Eliava M, Busnelli M, Chini B. Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain. Biol Psychiatry 2016; 79:155-64. [PMID: 26001309 DOI: 10.1016/j.biopsych.2015.04.013] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/01/2015] [Accepted: 04/19/2015] [Indexed: 12/24/2022]
Abstract
Oxytocin (OT) is a neuropeptide, which can be seen to be one of the molecules of the decade due to its profound prosocial effects in nonvertebrate and vertebrate species, including humans. Although OT can be detected in various physiological fluids (blood, saliva, urine, cerebrospinal fluid) and brain tissue, it is unclear whether peripheral and central OT releases match and synergize. Moreover, the pathways of OT delivery to brain regions involved in specific behaviors are far from clear. Here, we discuss the evolutionarily and ontogenetically determined pathways of OT delivery and OT signaling, which orchestrate activity of the mesolimbic social decision-making network. Furthermore, we speculate that both the alteration in OT delivery and OT receptor expression may cause behavioral abnormalities in patients afflicted with psychosocial diseases.
Collapse
Affiliation(s)
- Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center DKFZ, Heidelberg, Germany; CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany.
| | - H Sophie Knobloch-Bollmann
- Schaller Research Group on Neuropeptides, German Cancer Research Center DKFZ, Heidelberg, Germany; CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany
| | - Marina Eliava
- Schaller Research Group on Neuropeptides, German Cancer Research Center DKFZ, Heidelberg, Germany; CellNetworks Cluster of Excellence, University of Heidelberg, Heidelberg, Germany
| | - Marta Busnelli
- National Research Council, Institute of Neuroscience, Milan, Italy
| | - Bice Chini
- National Research Council, Institute of Neuroscience, Milan, Italy
| |
Collapse
|
25
|
Zimmermann-Peruzatto JM, Lazzari VM, de Moura AC, Almeida S, Giovenardi M. Examining the Role of Vasopressin in the Modulation of Parental and Sexual Behaviors. Front Psychiatry 2015; 6:130. [PMID: 26441691 PMCID: PMC4585274 DOI: 10.3389/fpsyt.2015.00130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/04/2015] [Indexed: 11/13/2022] Open
Abstract
Vasopressin (VP) and VP-like neuropeptides are evolutionarily stable peptides found in all vertebrate species. In non-mammalian vertebrates, vasotocin (VT) plays a role similar to mammalian VP, whereas mesotocin and isotocin are functionally similar to mammalian oxytocin (OT). Here, we review the involvement of VP in brain circuits, synaptic plasticity, evolution, and function, highlighting the role of VP in social behavior. In all studied species, VP is encoded on chromosome 20p13, and in mammals, VP is produced in specific hypothalamic nuclei and released by the posterior pituitary. The role of VP is mediated by the stimulation of the V1a, V1b, and V2 receptors as well as the oxytocinergic and purinergic receptors. VT and VP functions are usually related to osmotic and cardiovascular homeostasis when acting peripherally. However, these neuropeptides are also critically involved in the central modulation of social behavior displays, such as pairing recognition, pair-bonding, social memory, sexual behavior, parental care, and maternal and aggressive behavior. Evidence suggests that these effects are primarily mediated by V1a receptor in specific brain circuits that provide important information for the onset and control of social behaviors in normal and pathological conditions.
Collapse
Affiliation(s)
- Josi Maria Zimmermann-Peruzatto
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Virgínia Meneghini Lazzari
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Ana Carolina de Moura
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Silvana Almeida
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| | - Márcia Giovenardi
- Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil ; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) , Porto Alegre , Brazil
| |
Collapse
|
26
|
Hashimoto H, Matsuura T, Ueta Y. Fluorescent visualization of oxytocin in the hypothalamo-neurohypophysial system. Front Neurosci 2014; 8:213. [PMID: 25100939 PMCID: PMC4107947 DOI: 10.3389/fnins.2014.00213] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/02/2014] [Indexed: 11/13/2022] Open
Abstract
Oxytocin (OXT) is well known for its ability to the milk ejection reflex and uterine contraction. It is also involved in several other behaviors, such as anti-nociception, anxiety, feeding, social recognition, and stress responses. OXT is synthesized in the magnocellular neurosecretory cells (MNCs) in the hypothalamic paraventricular (PVN) and the supraoptic nuclei (SON) that terminate their axons in the posterior pituitary (PP). We generated transgenic rats that express the OXT and fluorescent protein fusion gene in order to visualize OXT in the hypothalamo-neurohypophysial system (HNS). In these transgenic rats, fluorescent proteins were observed in the MNCs and axon terminals in the PP. This transgenic rat is a new tool to study the physiological role of OXT in the HNS.
Collapse
Affiliation(s)
- Hirofumi Hashimoto
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| | - Takanori Matsuura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health Kitakyushu, Japan
| |
Collapse
|
27
|
Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development. Psychol Bull 2014; 140:256-282. [PMID: 23607429 PMCID: PMC3844011 DOI: 10.1037/a0032671 10.1037/a0032671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Discovering the stress-buffering effects of social relationships has been one of the major findings in psychobiology in the last century. However, an understanding of the underlying neurobiological and psychological mechanisms of this buffering is only beginning to emerge. An important avenue of this research concerns the neurocircuitry that can regulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present review is a translational effort aimed at integrating animal models and human studies of the social regulation of the HPA axis from infancy to adulthood, specifically focusing on the process that has been named social buffering. This process has been noted across species and consists of a dampened HPA axis stress response to threat or challenge that occurs with the presence or assistance of a conspecific. We describe aspects of the relevant underlying neurobiology when enough information exists and expose major gaps in our understanding across all domains of the literatures we aimed to integrate. We provide a working conceptual model focused on the role of oxytocinergic systems and prefrontal neural networks as 2 of the putative biological mediators of this process, and propose that the role of early experiences is critical in shaping later social buffering effects. This synthesis points to both general future directions and specific experiments that need to be conducted to build a more comprehensive model of the HPA social buffering effect across the life span that incorporates multiple levels of analysis: neuroendocrine, behavioral, and social.
Collapse
Affiliation(s)
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan S. Kline Institute, Department of Child and Adolescent Psychiatry, New York University Langone Medical Center
| | | |
Collapse
|
28
|
Hostinar CE, Sullivan RM, Gunnar MR. Psychobiological mechanisms underlying the social buffering of the hypothalamic-pituitary-adrenocortical axis: a review of animal models and human studies across development. Psychol Bull 2013; 140:256-82. [PMID: 23607429 DOI: 10.1037/a0032671] [Citation(s) in RCA: 472] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Discovering the stress-buffering effects of social relationships has been one of the major findings in psychobiology in the last century. However, an understanding of the underlying neurobiological and psychological mechanisms of this buffering is only beginning to emerge. An important avenue of this research concerns the neurocircuitry that can regulate the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis. The present review is a translational effort aimed at integrating animal models and human studies of the social regulation of the HPA axis from infancy to adulthood, specifically focusing on the process that has been named social buffering. This process has been noted across species and consists of a dampened HPA axis stress response to threat or challenge that occurs with the presence or assistance of a conspecific. We describe aspects of the relevant underlying neurobiology when enough information exists and expose major gaps in our understanding across all domains of the literatures we aimed to integrate. We provide a working conceptual model focused on the role of oxytocinergic systems and prefrontal neural networks as 2 of the putative biological mediators of this process, and propose that the role of early experiences is critical in shaping later social buffering effects. This synthesis points to both general future directions and specific experiments that need to be conducted to build a more comprehensive model of the HPA social buffering effect across the life span that incorporates multiple levels of analysis: neuroendocrine, behavioral, and social.
Collapse
Affiliation(s)
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan S. Kline Institute, Department of Child and Adolescent Psychiatry, New York University Langone Medical Center
| | | |
Collapse
|
29
|
Hashimoto H, Uezono Y, Ueta Y. Pathophysiological function of oxytocin secreted by neuropeptides: A mini review. PATHOPHYSIOLOGY 2012; 19:283-98. [DOI: 10.1016/j.pathophys.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/04/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022] Open
|
30
|
Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging (Albany NY) 2012; 3:1169-77. [PMID: 22184277 PMCID: PMC3273897 DOI: 10.18632/aging.100408] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Recent studies suggest that oxytocin (Oxt) is implicated in energy metabolism. We aimed to explore acute and sub-chronic effects of peripheral Oxt treatment via different routes on food intake and energy balance. Intraperitoneal (ip) injection of Oxt concentration-dependently decreased food intake in mice. Ip Oxt injection induced c-Fos expression in the hypothalamus and brain stem including arcuate nucleus (ARC), paraventricular nucleus (PVN) and nucleus tractus solitarius (NTS). Subcutaneous (sc) injection of Oxt suppressed food intake in normal and high fat diet-induced obese (DIO) mice. Daily sc injection of Oxt for 17 days in DIO mice reduced food intake for 6 days and body weight for the entire treatment period and additional 9 days after terminating Oxt. Oxt infusion by sc implanted osmotic minipumps for 13 days in DIO mice reduced food intake, body weight, and visceral fat mass and adipocyte size. Oxt infusion also decreased respiratory quotient specifically in light phase, ameliorated fatty liver and glucose intolerance, without affecting normal blood pressure in DIO mice. These results demonstrate that peripheral Oxt treatment reduces food intake and visceral fat mass, and ameliorates obesity, fatty liver and glucose intolerance. Peripheral Oxt treatment provides a new therapeutic avenue for treating obesity and hyperphagia.
Collapse
|
31
|
Abstract
Functional magnetic resonance imaging (fMRI) has been used to investigate the responsiveness of the maternal rat brain to pup-suckling under various experimental paradigms. Our research employing the lactating rat model has explored the cortical sensory processing of pup stimuli and the effect of suckling on the brain's reward system. Suckling was observed to increase blood-oxygen-level-dependent (BOLD) signal intensity in the midbrain, striatum and prefrontal cortex, which are areas that receive prominent dopaminergic inputs. The BOLD activation of the reward system occurs in parallel with the activation of extensive cortical sensory areas. The observed regions include the olfactory cortex, auditory cortex and gustatory cortex, and could correspond to cortical representations of pup odours, vocalisations and taste that are active during lactation. Activation patterns within reward regions are consistent with past research on maternal motivation and we explore the possibility that exposure to drugs of abuse might be disruptive of maternal neural responses to pups, particularly in the prefrontal cortex. Our ongoing fMRI studies support and extend past research on the maternal rat brain and its functional neurocircuitry.
Collapse
Affiliation(s)
- M Febo
- Department of Psychiatry, The McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610-0256, USA.
| |
Collapse
|
32
|
Timmer M, Cordero MI, Sevelinges Y, Sandi C. Evidence for a role of oxytocin receptors in the long-term establishment of dominance hierarchies. Neuropsychopharmacology 2011; 36:2349-56. [PMID: 21750583 PMCID: PMC3176572 DOI: 10.1038/npp.2011.125] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Exposure to stress can affect the establishment of dominance hierarchies. In our model, a social hierarchy established by two male rats during a first encounter is not maintained 1 week later. If one of the two rats is stressed, the stressed rat becomes subordinate and the hierarchy that is formed is maintained. In this study, we investigated the changes in the expression of oxytocin (Otr) and vasopressin (V1aR) receptor genes in the medial amygdala (MeA) and the lateral septum (LS) in the hours following hierarchy establishment under both stressed and basal conditions. We found that the potentiation of a social hierarchy induced by stress is accompanied by social status- and region-specific changes in the expression of Otr mRNA in the MeA 3 h after the social encounter. At this time point, no evidence was found for the regulation of V1aR mRNA in any of the brain regions examined. Results from pharmacological experiments involving the microinfusion of a specific OTR antagonist immediately after the acquisition of a subordinate status under basal, non-stress conditions suggested a role for this receptor in the MeA on the long-term establishment of the subordinate status. Altogether, these findings highlight a role for the oxytocinergic system in the mechanisms through which stress facilitates the long-term establishment of a social hierarchy.
Collapse
Affiliation(s)
- Marjan Timmer
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EFPL), Lausanne, Switzerland
| | - M Isabel Cordero
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EFPL), Lausanne, Switzerland
| | - Yannick Sevelinges
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EFPL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EFPL), Lausanne, Switzerland,Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EFPL), Station 19, Lausanne 1015, Switzerland, Tel: +41 21 693 17 62, Fax: +41 21 693 96 36, E-mail:
| |
Collapse
|
33
|
Abstract
Love and compassion exert pleasant feelings and rewarding effects. Besides their emotional role and capacity to govern behavior, appetitive motivation, and a general ‘positive state’, even ‘spiritual’ at times, the behaviors shown in love and compassion clearly rely on neurobiological mechanisms and underlying molecular principles. These processes and pathways involve the brain’s limbic motivation and reward circuits, that is, a finely tuned and profound autoregulation. This capacity to self-regulate emotions, approach behaviors and even pair bonding, as well as social contact in general, i.e., love, attachment and compassion, can be highly effective in stress reduction, survival and overall health. Yet, molecular biology is the basis of interpersonal neurobiology, however, there is no answer to the question of what comes first or is more important: It is a cybernetic capacity and complex circuit of autoregulation that is clearly ‘amazing’.
Collapse
Affiliation(s)
- Tobias Esch
- Division of Integrative Health Promotion, Coburg University of Applied Sciences, Coburg, Germany.
| | | |
Collapse
|
34
|
Viero C, Shibuya I, Kitamura N, Verkhratsky A, Fujihara H, Katoh A, Ueta Y, Zingg HH, Chvatal A, Sykova E, Dayanithi G. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther 2010; 16:e138-56. [PMID: 20626426 PMCID: PMC2972642 DOI: 10.1111/j.1755-5949.2010.00185.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Is oxytocin the hormone of happiness? Probably not. However, this small nine amino acid peptide is involved in a wide variety of physiological and pathological functions such as sexual activity, penile erection, ejaculation, pregnancy, uterus contraction, milk ejection, maternal behavior, osteoporosis, diabetes, cancer, social bonding, and stress, which makes oxytocin and its receptor potential candidates as targets for drug therapy. In this review, we address the issues of drug design and specificity and focus our discussion on recent findings on oxytocin and its heterotrimeric G protein‐coupled receptor OTR. In this regard, we will highlight the following topics: (i) the role of oxytocin in behavior and affectivity, (ii) the relationship between oxytocin and stress with emphasis on the hypothalamo–pituitary–adrenal axis, (iii) the involvement of oxytocin in pain regulation and nociception, (iv) the specific action mechanisms of oxytocin on intracellular Ca2+ in the hypothalamo neurohypophysial system (HNS) cell bodies, (v) newly generated transgenic rats tagged by a visible fluorescent protein to study the physiology of vasopressin and oxytocin, and (vi) the action of the neurohypophysial hormone outside the central nervous system, including the myometrium, heart and peripheral nervous system. As a short nine amino acid peptide, closely related to its partner peptide vasopressin, oxytocin appears to be ideal for the design of agonists and antagonists of its receptor. In addition, not only the hormone itself and its binding to OTR, but also its synthesis, storage and release can be endogenously and exogenously regulated to counteract pathophysiological states. Understanding the fundamental physiopharmacology of the effects of oxytocin is an important and necessary approach for developing a potential pharmacotherapy.
Collapse
Affiliation(s)
- Cedric Viero
- Department of Cardiology, Wales Heart Research Institute, Cardiff University, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Olszewski PK, Klockars A, Schiöth HB, Levine AS. Oxytocin as feeding inhibitor: maintaining homeostasis in consummatory behavior. Pharmacol Biochem Behav 2010; 97:47-54. [PMID: 20595062 DOI: 10.1016/j.pbb.2010.05.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 05/12/2010] [Accepted: 05/26/2010] [Indexed: 12/13/2022]
Abstract
Initial studies showed that the anorexigenic peptide oxytocin (OT) regulates gastric motility, responds to stomach distention and to elevated osmolality, and blocks consumption of toxic foods. Most recently, it has been proposed to act as a mediator of general and carbohydrate-specific satiety and regulator of body weight. In the current review, we discuss the function of OT as a homeostatic inhibitor of consumption, capable of mitigating multiple aspects of ingestive behavior and energy metabolism.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Minnesota Obesity Center, Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | |
Collapse
|
36
|
Veening JG, de Jong T, Barendregt HP. Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiol Behav 2010; 101:193-210. [PMID: 20493198 DOI: 10.1016/j.physbeh.2010.05.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/21/2010] [Accepted: 05/04/2010] [Indexed: 12/16/2022]
Abstract
The cerebrospinal fluid (CSF) usually is considered as a protective 'nutrient and waste control' system for the brain. Recent findings suggest, however, that the composition of CSF is actively controlled and may play an influential role in the changes in brain activity, underlying different behavioral states. In the present review, we present an overview of available data concerning the release of oxytocin into the CSF, the location of the oxytocin-receptive brain areas and the behavioral effects of intracerebroventricular oxytocin. About 80% of the oxytocin-receptive areas are located close to the ventricular or subarachnoid CSF, including the hypothalamic 'Behavior Control Column' (L.W.Swanson, 2003). As a conclusion we suggest that 'CSF-oxytocin' contributes considerably to the non-synaptic communication processes involved in hypothalamic-, brainstem- and olfactory brain areas and behavioral states and that the flowing CSF is used as a 'broadcasting system' to send coordinated messages to a wide variety of nearby and distant brain areas.
Collapse
Affiliation(s)
- Jan G Veening
- Department of Anatomy (109), UMC St Radboud, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
37
|
Uchoa ET, Mendes da Silva LEC, de Castro M, Antunes-Rodrigues J, Elias LLK. Hypothalamic oxytocin neurons modulate hypophagic effect induced by adrenalectomy. Horm Behav 2009; 56:532-8. [PMID: 19778539 DOI: 10.1016/j.yhbeh.2009.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 09/04/2009] [Accepted: 09/13/2009] [Indexed: 10/20/2022]
Abstract
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.
Collapse
Affiliation(s)
- Ernane Torres Uchoa
- Department of Physiology, School of Medicine of Ribeirao Preto, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
38
|
Frye CA, Walf AA. Oxytocin and/or steroid hormone binding globulin infused into the ventral tegmental area modulates progestogen-mediated lordosis. Neuropharmacology 2009; 58:44-9. [PMID: 19596020 DOI: 10.1016/j.neuropharm.2009.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/29/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022]
Abstract
Estradiol (E(2)) and progesterone (P(4)) have classical, steroid receptor-mediated actions in the ventral medial hypothalamus to initiate lordosis of female rodents. P(4) and the P(4) metabolite and neurosteroid, 5 alpha-pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), have non-classical actions in the midbrain ventral tegmental area (VTA) to modulate lordosis. We investigated the role of steroid hormone binding globulin (SHBG) and oxytocin in the VTA as mechanisms for these effects. Rats were ovariectomized and surgically implanted with bilateral guide cannulae aimed at the VTA. Rats were E(2)-primed (10 microg/0.2 ml) at hour 0, and administered 100 (Experiments 1 and 2), 500 (Experiment 3), or 0 (Experiment 1 and 4) microg/0.2 ml P(4) at hour 44. At hour 47.5, rats received bilateral infusions to the VTA, and were tested for lordosis 30 min post-infusion. Experiment 1: rats were infused with sterile saline vehicle or SHBG (4.5 pg/microl) to the VTA. SHBG, compared to vehicle, to the midbrain VTA significantly increased lordosis in E(2)- and P(4)-primed, but not E(2)-primed, rats. Experiment 2: rats were infused with bilateral infusions of sterile saline or oxytocin (1.0 pg/microl). Compared to vehicle, oxytocin to the VTA increased lordosis. Experiment 3: rats were administered bilateral intra-VTA infusions of saline or an oxytocin receptor antagonist, d(CH(2))(5),[TYr(ME)(2),Thr(4),Tyr-NH(9,2)] (1.2 pg/microl). Compared to vehicle, the oxytocin receptor antagonist to the VTA attenuated lordosis of E(2)- and P(4)-primed rats. Experiment 4: rats were E(2)-primed and infused with vehicle, oxytocin, or oxytocin antagonist. There were no effects of these manipulations in E(2)-primed rats. Thus, SHBG and/or oxytocin may have actions in the VTA for progestogen-facilitated lordosis.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, The University at Albany - SUNY, Albany, NY 12222, USA.
| | | |
Collapse
|
39
|
Lee HJ, Macbeth AH, Pagani JH, Young WS. Oxytocin: the great facilitator of life. Prog Neurobiol 2009; 88:127-51. [PMID: 19482229 DOI: 10.1016/j.pneurobio.2009.04.001] [Citation(s) in RCA: 352] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/24/2009] [Accepted: 04/02/2009] [Indexed: 01/01/2023]
Abstract
Oxytocin (Oxt) is a nonapeptide hormone best known for its role in lactation and parturition. Since 1906 when its uterine-contracting properties were described until 50 years later when its sequence was elucidated, research has focused on its peripheral roles in reproduction. Only over the past several decades have researchers focused on what functions Oxt might have in the brain, the subject of this review. Immunohistochemical studies revealed that magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei are the neurons of origin for the Oxt released from the posterior pituitary. Smaller cells in various parts of the brain, as well as release from magnocellular dendrites, provide the Oxt responsible for modulating various behaviors at its only identified receptor. Although Oxt is implicated in a variety of "non-social" behaviors, such as learning, anxiety, feeding and pain perception, it is Oxt's roles in various social behaviors that have come to the fore recently. Oxt is important for social memory and attachment, sexual and maternal behavior, and aggression. Recent work implicates Oxt in human bonding and trust as well. Human disorders characterized by aberrant social interactions, such as autism and schizophrenia, may also involve Oxt expression. Many, if not most, of Oxt's functions, from social interactions (affiliation, aggression) and sexual behavior to eventual parturition, lactation and maternal behavior, may be viewed as specifically facilitating species propagation.
Collapse
Affiliation(s)
- Heon-Jin Lee
- Section on Neural Gene Expression, NIMH, NIH, DHHS, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Meddle SL, Bishop VR, Gkoumassi E, van Leeuwen FW, Douglas AJ. Dynamic changes in oxytocin receptor expression and activation at parturition in the rat brain. Endocrinology 2007; 148:5095-104. [PMID: 17628000 DOI: 10.1210/en.2007-0615] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oxytocin plays a pivotal role in rat parturition, acting within the brain to facilitate its own release in the supraoptic nucleus (SON) and paraventricular nucleus, and to stimulate maternal behavior. We investigated oxytocin receptor (OTR) expression and activation perinatally. Using a (35)S-labeled riboprobe complementary to OTR mRNA, OTR expression was quantified in proestrus virgin, 21- and 22-day pregnant, parturient (90 min. from pup 1 birth), and postpartum (4-12 h from parturition) rats. Peak OTR mRNA expression was observed at parturition in the SON, brainstem regions, medial preoptic area (mPOA), bed nucleus of the stria terminalis (BnST), and olfactory bulbs, but there was no change in the paraventricular nucleus and lateral septum. OTR mRNA expression was increased on the day of expected parturition in the SON and brainstem, suggesting that oxytocin controls the pathway mediating input from uterine signals. Likewise, OTR mRNA expression was increased in the mPOA and BnST during labor/birth. In the olfactory bulbs and medial amygdala, parturition induced increased OTR mRNA expression compared with pre-parturition, reflecting their immediate response to new stimuli at birth. Postpartum OTR expression in all brain regions returned to levels observed in virgin rats. Parturition significantly increased the number of double-immunolabeled cells for Fos and OTR within the SON, brainstem, BnST, and mPOA regions compared with virgin rats. Thus, there are dynamic region-dependent changes in OTR-expressing cells at parturition. This altered OTR distribution pattern in the brain perinatally reflects the crucial role oxytocin plays in orchestrating both birth and maternal behavior.
Collapse
Affiliation(s)
- Simone L Meddle
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, George Square, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
41
|
Gu XL, Yu LC. Involvement of Opioid Receptors in Oxytocin-Induced Antinociception in the Nucleus Accumbens of Rats. THE JOURNAL OF PAIN 2007; 8:85-90. [PMID: 17097925 DOI: 10.1016/j.jpain.2006.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/28/2006] [Accepted: 07/03/2006] [Indexed: 11/18/2022]
Abstract
UNLABELLED Antinociceptive effects of oxytocin have been demonstrated in mice, rats, dogs, and humans. It has been shown that oxytocin receptors and fibers with oxytocin were distributed in the nucleus accumbens (NAc) of rats. The present study was performed to investigate the regulating role of oxytocin in nociception in the NAc of rats. Intra-NAc administration of oxytocin-induced dose-dependent increases in the hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation in rats, indicating that oxytocin has antinociceptive effects in the NAc of rats. Furthermore, the oxytocin-induced antinociceptive effects were attenuated by intra-NAc administration of the opioid-receptor antagonist naloxone, suggesting that the endogenous opioid system is involved in the oxytocin-induced antinociception in the NAc. Moreover, the oxytocin-induced antinociception was attenuated by intra-NAc injection of the kappa-receptor antagonist nor-binaltorphimine (nor-BNI) and the mu-receptor antagonist beta-funaltrexamine, but not by the delta-receptor antagonist naltrindole, demonstrating the involvements of mu- and kappa-receptors, but not delta-receptor, in the oxytocin-induced antinociception in the NAc of rats. PERSPECTIVE This article supplements the evidence that oxytocin regulates nociception in the central nervous system. It presents additional material for clinical application of oxytocin as an analgesia drug.
Collapse
Affiliation(s)
- Xing-Long Gu
- Neurobiology Laboratory and National Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing, China
| | | |
Collapse
|
42
|
Frye CA, Walf AA, Petralia SM. Progestins' effects on sexual behaviour of female rats and hamsters involving D1 and GABA(A) receptors in the ventral tegmental area may be G-protein-dependent. Behav Brain Res 2006; 172:286-93. [PMID: 16780967 DOI: 10.1016/j.bbr.2006.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 05/05/2006] [Accepted: 05/12/2006] [Indexed: 11/24/2022]
Abstract
In the ventral tegmental area (VTA), progestins have actions involving dopamine type 1-like receptors (D(1)) and gamma-aminobutyric acid (GABA)(A)/benzodiazepine receptor complexes (GBRs) for lordosis. Evidence suggests that D(1) and GBRs can have G-protein-mediated effects. We investigated if, in the VTA, inhibiting G-proteins prevents D(1)- and/or GBR-mediated increases in progestin-facilitated lordosis. Hamsters, with bilateral guide cannulae to the VTA, received systemic E(2) (10 microg) at hour 0 and progesterone (P, 250 microg) at hour 45. At hour 48, hamsters were pre-tested for lordosis and infused with the G-protein inhibitor, guanosine 5'-O-(2-thiodiphosphate) (GDP-beta-S, 50 microM/side), or 10% DMSO saline vehicle. Thirty minutes after initial infusions, hamsters were re-tested and then immediately infused with the D(1) agonist, SKF38393 (100 ng/side), the GBR agonist, muscimol (100 ng/side), or saline vehicle. Hamsters were post-tested for lordosis 30 min later. For rats, E(2) (10 microg) priming at hour 0 was followed by lordosis pre-testing at hour 44. After pre-testing, rats received infusions of GDP-beta-S or vehicle, followed by infusions of SKF38393, muscimol, or vehicle and then infusions of the neurosteroid, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP, 100 or 200 ng/side), or beta-cyclodextrin vehicle. Rats were tested immediately after each infusion of SKF38393, muscimol or vehicle, as well as 10 and 60 min after 3alpha,5alpha-THP or vehicle infusions. Inhibiting G-proteins, in the VTA, reduced the ability of systemic P or intra-VTA SKF38393 or muscimol to facilitate lordosis of E(2)-primed hamsters. Blocking G-proteins, in the VTA, prevented SKF38393-, muscimol- and/or 3alpha,5alpha-THP-mediated increases in lordosis of E(2)-primed rats. Thus, progestins' actions in the VTA for lordosis that involve D(1) and/or GBRs may also include recruitment of G-proteins.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, Life Sciences 1058, The University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
43
|
Zubrzycka M, Fichna J, Janecka A. Inhibition of trigemino-hypoglossal reflex in rats by oxytocin is mediated by μ and κ opioid receptors. Brain Res 2005; 1035:67-72. [PMID: 15713278 DOI: 10.1016/j.brainres.2004.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2004] [Indexed: 11/17/2022]
Abstract
Recent studies showed that oxytocin plays an important role in the modulation of pain at different levels of the central nervous system. The present study was undertaken to investigate the effect of oxytocin on trigemino-hypoglossal reflex in rats. With the experimental settings used in this study, we have demonstrated that oxytocin showed significant analgesic effect after intracerebroventricular administration in rats, as assayed by the amplitude of the retractory movements of the tongue after tooth pulp stimulation. Antinociceptive effect of oxytocin was inhibited by subsequent perfusion of cerebral ventricles with oxytocin antagonist, [deamino-Cys1-D-Tyr(OEt)2-Thr4-Orn8]-oxytocin, atosiban. An involvement of opioid system in the oxytocin-induced analgesia was studied after intracerebroventricular administration of different opioid antagonists: non-selective naloxone, mu-selective beta-funaltrexamine, delta-selective naltrindole, and kappa-selective nor-binaltorphimine. It was shown that inhibition of antinociceptive effects was mediated through mu and kappa opioid receptors, indicating that there is a synergy between oxytocin and opioid systems in transmitting and modulating pain stimuli. Co-administration of oxytocin and a mu-selective endogenous opioid ligand endomorphin-2 did not significantly increase the antinociceptive activity of endomorphin-2.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Analysis of Variance
- Animals
- Dose-Response Relationship, Drug
- Drug Interactions
- Electric Stimulation
- Hormone Antagonists/pharmacology
- Male
- Narcotic Antagonists/pharmacology
- Neural Inhibition/drug effects
- Neural Networks, Computer
- Oligopeptides/pharmacology
- Oxytocin/pharmacology
- Rats
- Rats, Long-Evans
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Reflex/drug effects
- Tongue/drug effects
- Tongue/innervation
- Tongue/physiology
- Trigeminal Nerve/drug effects
- Trigeminal Nerve/physiology
- Vasotocin/analogs & derivatives
- Vasotocin/pharmacology
Collapse
Affiliation(s)
- Maria Zubrzycka
- Department of Experimental and Clinical Physiology, Institute of Physiology and Biochemistry, Medical University of Lodz 92-215 Lodz, ul. Mazowiecka 6/8 Poland
| | | | | |
Collapse
|
44
|
Fitts DA, Thornton SN, Ruhf AA, Zierath DK, Johnson AK, Thunhorst RL. Effects of central oxytocin receptor blockade on water and saline intake, mean arterial pressure, and c-Fos expression in rats. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1331-9. [PMID: 12907413 DOI: 10.1152/ajpregu.00254.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Central injection of ANG II has been proposed to have dual effects on salt appetite including a direct stimulatory effect and an indirect inhibitory effect through an activation of central oxytocinergic neurons. The inhibition was demonstrated by pretreating rats with central ornithine vasotocin (OVT; oxytocin antagonist) 30 min before a central ANG II injection. The OVT pretreatment produced a large increase in ANG II-induced saline intake. The present paper reports a failure to replicate that influential experiment. However, we also report for the first time that OVT by itself: 1) provokes drinking of both water and saline solution with a latency almost as short as that produced by ANG II; 2) produces a mild pressor response; and 3) increases c-Fos expression in the organum vasculosum laminae terminalis (OVLT) and the median preoptic nucleus (MnPO). Oxytocin activity may provide an inhibitory control of drinking responses as has been suggested, but the inhibition is tonic and includes both water and saline drinking. Inhibition of this tonic activity may stimulate drinking by increasing neural activity in the OVLT and MnPO.
Collapse
Affiliation(s)
- Douglas A Fitts
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Gould BR, Zingg HH. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor–LacZ reporter mouse. Neuroscience 2003; 122:155-67. [PMID: 14596857 DOI: 10.1016/s0306-4522(03)00283-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The hypothalamic nonapeptide oxytocin (OT) has an established role as a circulating hormone but can also act as a neurotransmitter and as a neuromodulator by interacting with its central OT receptor (OTR). To understand the role of the OTR in the mouse brain we investigated the expression of the OTR gene at the cellular level. We targeted the lacZ reporter gene to the OTR gene locus downstream of the endogenous OTR regulatory elements. Using lactating mouse mammary gland as a control for OTR promoter directed specificity of lacZ gene expression, X-gal histochemistry on tissue sections confirmed that gene expression was restricted to the myoepithelial cells. We also identified for the first time in mice the expression of the OTR gene in neighbouring adipocytes. Further, investigation in the mouse brain identified numerous nuclei containing neurons expressing the OTR gene. Whilst some of these regions had been described for rat or sheep, the OTR-LacZ reporter mouse enabled the identification of novel sites of central OTR gene expression. These regions include the accessory olfactory bulb, the medial septal nucleus, the posterolateral cortical amygdala nucleus, the posterior aspect of the basomedial amygdala nucleus, the medial part of the supramammillary nucleus, the dorsotuberomammillary nucleus, the medial and lateral entorhinal cortices, as well as specific dorsal tegmental, vestibular, spinal trigeminal, and solitary tract subnuclei. By mapping the distribution of OTR gene expression, depicted through histochemical detection of beta-galactosidase, we were able to identify single OTR gene expressing neurons and small neuron clusters that would have remained undetected by conventional approaches. These novel sites of OTR gene expression suggest additional functions of the oxytocinergic system in the mouse. These results lay the foundation for future investigation into the neural role of the OTR and provide a useful model for further study of oxytocin functions in the mouse.
Collapse
Affiliation(s)
- B R Gould
- Laboratory of Molecular Endocrinology, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1
| | | |
Collapse
|
46
|
Wang JW, Lundeberg T, Yu LC. Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of μ-opioid receptor. ACTA ACUST UNITED AC 2003; 115:153-9. [PMID: 14556956 DOI: 10.1016/s0167-0115(03)00152-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent studies showed that oxytocin plays an important role in nociceptive modulation in the central nervous system. The present study was undertaken to investigate the role of oxytocin in antinociception in the nucleus raphe magnus (NRM) of rats and the possible interaction between oxytocin and the opioid systems. Intra-NRM injection of oxytocin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulation in rats. The antinociceptive effect of oxytocin was significantly attenuated by subsequent intra-NRM injection of the oxytocin antagonist 1-deamino-2-D-Tyr-(Oet)-4-Thr-8-Orn-oxytocin. Intra-NRM injection of naloxone dose-dependently antagonized the increased HWLs induced by preceding intra-NRM injection of oxytocin, indicating an involvement of opioid receptors in oxytocin-induced antinociception in the NRM of rats. Furthermore, the antinociceptive effect of oxytocin was dose-dependently attenuated by subsequent intra-NRM injection of the mu-opioid antagonist beta-funaltrexamine (beta-FNA), but not by the kappa-opioid antagonist nor-binaltorphimine (nor-BNI) or the delta-opioid antagonist naltrindole. The results demonstrated that oxytocin plays an antinociceptive role in the NRM of rats through activating the oxytocin receptor. Moreover, mu-opioid receptors, not kappa and delta receptors, are involved in the oxytocin-induced antinociception in the NRM of rats.
Collapse
MESH Headings
- Analgesics/administration & dosage
- Analgesics/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Hot Temperature
- Male
- Naltrexone/pharmacology
- Oxytocin/administration & dosage
- Oxytocin/antagonists & inhibitors
- Oxytocin/pharmacology
- Physical Stimulation
- Raphe Nuclei/drug effects
- Raphe Nuclei/physiology
- Rats
- Rats, Wistar
- Reaction Time/drug effects
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/physiology
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/physiology
Collapse
Affiliation(s)
- Jing-Wen Wang
- Laboratory of Neurobiology, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
47
|
Abstract
This paper examines the developmental effects of the mammalian neuropeptide, oxytocin (OT). In adults, OT is the most abundant neuropeptide in the hypothalamus and serves integrative functions, coordinating behavioral and physiological processes. For example, OT has been implicated in parturition, lactation, maternal behavior and pair bond formation. In addition, OT is capable of moderating behavioral responses to various stressors as well as the reactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Neonates may be exposed to hormones of maternal origin, possibly including peptides administered to the mother in the perinatal period to hasten or delay birth and in milk; however, whether peptide hormones from the mother influence the developing infant remains to be determined. In rodents, endogenous OT is first synthesized during the early postnatal period, although its functions at this time are not well known. Experiments in neonatal prairie voles have documented the capacity of OT and OT receptor antagonists to have immediate and lifelong consequences for social behaviors, including adult pair bonding and parental behaviors, as well as the reactivity of the HPA axis; most of these effects are sexually dimorphic. Possible mechanisms for such effects, including long-lasting changes in OT and vasopressin, are summarized.
Collapse
Affiliation(s)
- C Sue Carter
- Department of Psychiatry, Brain-Body Center, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
48
|
Cushing BS, Yamamoto Y, Hoffman GE, Carter CS. Central expression of c-Fos in neonatal male and female prairie voles in response to treatment with oxytocin. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:129-36. [PMID: 12855184 DOI: 10.1016/s0165-3806(03)00105-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Early postnatal exposure to both exogenous and endogenous oxytocin (OT) can have long-term effects on behavior and physiology, although the mechanisms of these effects are not known. c-Fos expression was used to investigate the immediate neural effects of neonatal manipulations of OT in male and female prairie voles. On the day of birth prairie vole pups received an intraperitoneal injection of OT, a selective OT antagonist (OTA), or saline (vehicle control), while an additional group was handled but not injected. One hour after treatment brains were collected and fixed via spinning immersion and immunocytochemistry was then used to label for c-Fos immunoreactivity (IR). There were significant differences between males and females. Handled only females displayed significantly higher levels of c-Fos IR in the mediodorsal thalamic nucleus (MD) than males while handled males had higher c-Fos IR in the paraventricular nucleus of the hypothalamus than females. Exogenous OT stimulated neuronal activity in the supraoptic nucleus (SON) in males, while treatment with OTA increased Fos IR in the SON and was associated with reduced Fos IR in the MD in females. The results indicate that neuronal activity and responses to OT are sexually dimorphic in newborn prairie voles. In females changes in Fos expression were stimulated by treatment with OTA, suggesting that endogenous OT affects cellular activity while males responded to exogenous OT.
Collapse
Affiliation(s)
- Bruce S Cushing
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| | | | | | | |
Collapse
|
49
|
Teicher MH, Andersen SL, Polcari A, Anderson CM, Navalta CP. Developmental neurobiology of childhood stress and trauma. Psychiatr Clin North Am 2002; 25:397-426, vii-viii. [PMID: 12136507 DOI: 10.1016/s0193-953x(01)00003-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Severe early stress and maltreatment produces a cascade of events that have the potential to alter brain development. The first stage of the cascade involves the stress-induced programming of the glucocorticoid, noradrenergic, and vasopressin-oxytocin stress response systems to augment stress responses. These neurohumors then produce effects on neurogenesis, synaptic overproduction and pruning, and myelination during specific sensitive periods. Major consequences include reduced size of the mid-portions of the corpus callosum; attenuated development of the left neocortex, hippocampus, and amygdala along with abnormal frontotemporal electrical activity; and reduced functional activity of the cerebellar vermis. These alterations, in turn, provide the neurobiological framework through which early abuse increases the risk of developing post-traumatic stress disorder (PTSD), depression, symptoms of attention-deficit/hyperactivity, borderline personality disorder, dissociative identity disorder, and substance abuse.
Collapse
Affiliation(s)
- Martin H Teicher
- Department of Psychiatry, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
50
|
Broad KD, Lévy F, Evans G, Kimura T, Keverne EB, Kendrick KM. Previous maternal experience potentiates the effect of parturition on oxytocin receptor mRNA expression in the paraventricular nucleus. Eur J Neurosci 1999; 11:3725-37. [PMID: 10564379 DOI: 10.1046/j.1460-9568.1999.00782.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In sheep, central oxytocin release at parturition induces maternal behaviour which is thought to be mediated by changes in the expression of central oxytocin receptors. The distribution, effects of parturition, previous maternal experience and hormonal status on the distribution of an oxytocin receptor was investigated using immunocytochemistry and in situ hybridization. In ewes with no previous maternal experience, parturition induced significant increases in oxytocin receptor mRNA expression in the anterior olfactory nucleus, medial preoptic area, ventromedial hypothalamus, lateral septum, medial amygdala, bed nucleus of the stria terminalis and diagonal band of Broca. In maternally experienced ewes, parturition induced additional increases in two areas, the paraventricular nucleus and the Islands of Calleja. The changes in progesterone and oestrogen that occur during late pregnancy and parturition appear to contribute to increases in expression in the anterior olfactory nucleus, Islands of Calleja, medial preoptic area, ventromedial hypothalamus, bed nucleus of the stria terminalis and diagonal band of Broca, but not in the paraventricular nucleus, lateral septum and medial amygdala. These results demonstrate that progesterone and oestrogen priming enhance oxytocin receptor mRNA expression in a number of regions in the olfactory system, hypothalamus and limbic brain. These effects appear to be independent of maternal experience. Parturition increases oxytocin receptor mRNA expression in all the areas influenced by hormonal priming and the lateral septum, medial amygdala and paraventricular nucleus. Maternal experience also enhances expression of oxytocin receptor mRNA in the paraventricular nucleus and the Islands of Calleja. Because the paraventricular nucleus is the main source of oxytocin release in the brain, this upgrading of autoreceptors as a result of maternal experience may serve to enhance release of this peptide in projection sites regulating maternal behaviour.
Collapse
Affiliation(s)
- K D Broad
- Sub-dept of Animal Behaviour, University of Cambridge, Madingley, UK.
| | | | | | | | | | | |
Collapse
|