1
|
Yoon AR, Hong J, Jung BK, Ahn HM, Zhang S, Yun CO. Oncolytic adenovirus as pancreatic cancer-targeted therapy: Where do we go from here? Cancer Lett 2023; 579:216456. [PMID: 37940067 DOI: 10.1016/j.canlet.2023.216456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic cancer remains one of the deadliest cancers with extremely high mortality rate, and the number of cases is expected to steadily increase with time. Pancreatic cancer is refractory to conventional cancer treatment options, like chemotherapy and radiotherapy, and commercialized immunotherapeutics, owing to its immunosuppressive and desmoplastic phenotype. Due to these reasons, development of an innovative treatment option that can overcome these challenges posed by the pancreatic tumor microenvironment (TME) is in an urgent need. The present review aims to summarize the evolution of oncolytic adenovirus (oAd) engineering and usage as therapeutics (either monotherapy or combination therapy) over the last decade to overcome these hurdles to instigate a potent antitumor effect against desmoplastic and immunosuppressive pancreatic cancer.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Bo-Kyeong Jung
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Hyo Min Ahn
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Songnam Zhang
- Department of Medical Oncology, Yanbian University Hospital, Jilin, China
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Nyati S, Stricker H, Barton KN, Li P, Elshaikh M, Ali H, Brown SL, Hwang C, Peabody J, Freytag SO, Movsas B, Siddiqui F. A phase I clinical trial of oncolytic adenovirus mediated suicide and interleukin-12 gene therapy in patients with recurrent localized prostate adenocarcinoma. PLoS One 2023; 18:e0291315. [PMID: 37713401 PMCID: PMC10503775 DOI: 10.1371/journal.pone.0291315] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/06/2023] [Indexed: 09/17/2023] Open
Abstract
In a phase I dose escalation and safety study (NCT02555397), a replication-competent oncolytic adenovirus expressing yCD, TK and hIL-12 (Ad5-yCD/mutTKSR39rep-hIL-12) was administered in 15 subjects with localized recurrent prostate cancer (T1c-T2) at increasing doses (1 × 1010, to 1 × 1012 viral particles) followed by 7-day treatment of 5-fluorocytosine (5-FC) and valganciclovir (vGCV). The primary endpoint was toxicity through day 30 while the secondary and exploratory endpoints were quantitation of IL-12, IFNγ, CXCL10 and peripheral blood mononuclear cells (PBMC). The study maximum tolerated dose (MTD) was not reached indicating 1012 viral particles was safe. Total 115 adverse events were observed, most of which (92%) were grade 1/2 that did not require any treatment. Adenoviral DNA was detected only in two patients. Increase in IL-12, IFNγ, and CXCL10 was observed in 57%, 93%, and 79% patients, respectively. Serum cytokines demonstrated viral dose dependency, especially apparent in the highest-dose cohorts. PBMC analysis revealed immune system activation after gene therapy in cohort 5. The PSA doubling time (PSADT) pre and post treatment has a median of 1.55 years vs 1.18 years. This trial confirmed that replication-competent Ad5-IL-12 adenovirus (Ad5-yCD/mutTKSR39rep-hIL-12) was well tolerated when administered locally to prostate tumors.
Collapse
Affiliation(s)
- Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- Department of Radiology, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Hans Stricker
- Vattikuti Urology Institute, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Kenneth N. Barton
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Pin Li
- Department of Public Health Sciences, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Mohamed Elshaikh
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Haythem Ali
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Clara Hwang
- Department of Internal Medicine, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - James Peabody
- Vattikuti Urology Institute, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Svend O. Freytag
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, United States of America
| |
Collapse
|
3
|
Thoidingjam S, Sriramulu S, Freytag S, Brown SL, Kim JH, Chetty IJ, Siddiqui F, Movsas B, Nyati S. Oncolytic virus-based suicide gene therapy for cancer treatment: a perspective of the clinical trials conducted at Henry Ford Health. TRANSLATIONAL MEDICINE COMMUNICATIONS 2023; 8:11. [PMID: 37065938 PMCID: PMC10088621 DOI: 10.1186/s41231-023-00144-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Gene therapy manipulates or modifies a gene that provides a new cellular function to treat or correct a pathological condition, such as cancer. The approach of using gene manipulation to modify patient's cells to improve cancer therapy and potentially find a cure is gaining popularity. Currently, there are 12 gene therapy products approved by US-FDA, EMA and CFDA for cancer management, these include Rexin-G, Gendicine, Oncorine, Provange among other. The Radiation Biology Research group at Henry Ford Health has been actively developing gene therapy approaches for improving clinical outcome in cancer patients. The team was the first to test a replication-competent oncolytic virus armed with a therapeutic gene in humans, to combine this approach with radiation in humans, and to image replication-competent adenoviral gene expression/activity in humans. The adenoviral gene therapy products developed at Henry Ford Health have been evaluated in more than 6 preclinical studies and evaluated in 9 investigator initiated clinical trials treating more than100 patients. Two phase I clinical trials are currently following patients long term and a phase I trial for recurrent glioma was initiated in November 2022. This systematic review provides an overview of gene therapy approaches and products employed for treating cancer patients including the products developed at Henry Ford Health.
Collapse
Affiliation(s)
- Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Svend Freytag
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Stephen L. Brown
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Jae Ho Kim
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Indrin J. Chetty
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Health, 1 Ford Place, 5D-42, Detroit, MI 48202 USA
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
4
|
Najafi S, Majidpoor J, Mortezaee K. The impact of oncolytic adenoviral therapy on the therapeutic efficacy of PD-1/PD-L1 blockade. Biomed Pharmacother 2023; 161:114436. [PMID: 36841031 DOI: 10.1016/j.biopha.2023.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Immunotherapy has revolutionized treatment of cancer during the last decades. Oncolytic virotherapy has also emerged as a strategy to fight against cancer cells both via lysis of malignant cells and activating immune responses. Accepted as a logical strategy, combination of monoclonal antibodies particularly against the programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) is introduced to improve clinical responses to immune checkpoint inhibitors (ICIs). Accordingly, Talimogene laherparepvec (T-VEC) has received approval for clinical use, while a number of oncolytic Adenoviruses (Ads) are being investigated in clinical trials of malignancies. Combination of oncolytic Ads with PD-1/PD-L1 inhibitors have shown potentials in promoting responses to ICIs, changing the tumor microenvironment, inducing long-term protection against tumor, and promoting survival among mice models of malignancies. Regarding the increasing importance of oncolytic Ads in combination therapy of cancers, in this review we decide to outline recent studies in this field.
Collapse
Affiliation(s)
- Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
5
|
Yun CO, Hong J, Yoon AR. Current clinical landscape of oncolytic viruses as novel cancer immunotherapeutic and recent preclinical advancements. Front Immunol 2022; 13:953410. [PMID: 36091031 PMCID: PMC9458317 DOI: 10.3389/fimmu.2022.953410] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OVs) have been gaining attention in the pharmaceutical industry as a novel immunotherapeutic and therapeutic adjuvant due to their ability to induce and boost antitumor immunity through multiple mechanisms. First, intrinsic mechanisms of OVs that enable exploitation of the host immune system (e.g., evading immune detection) can nullify the immune escape mechanism of tumors. Second, many types of OVs have been shown to cause direct lysis of tumor cells, resulting in an induction of tumor-specific T cell response mediated by release of tumor-associated antigens and danger signal molecules. Third, armed OV-expressing immune stimulatory therapeutic genes could be highly expressed in tumor tissues to further improve antitumor immunity. Last, these OVs can inflame cold tumors and their microenvironment to be more immunologically favorable for other immunotherapeutics. Due to these unique characteristics, OVs have been tested as an adjuvant of choice in a variety of therapeutics. In light of these promising attributes of OVs in the immune-oncology field, the present review will examine OVs in clinical development and discuss various strategies that are being explored in preclinical stages for the next generation of OVs that are optimized for immunotherapy applications.
Collapse
Affiliation(s)
- Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
- GeneMedicine CO., Ltd., Seoul, South Korea
| | | | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, South Korea
| |
Collapse
|
6
|
Moaven O, W Mangieri C, A Stauffer J, Anastasiadis PZ, Borad MJ. Evolving Role of Oncolytic Virotherapy: Challenges and Prospects in Clinical Practice. JCO Precis Oncol 2021; 5:PO.20.00395. [PMID: 34250386 DOI: 10.1200/po.20.00395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/04/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Selective oncotropism and cytolytic activity against tumors have made certain viruses subject to investigation as novel treatment modalities. However, monotherapy with oncolytic viruses (OVs) has shown limited success and modest clinical benefit. The capacity to genetically engineer OVs makes them a desirable platform to design complementary treatment modalities to overcome the existing treatment options' shortcomings. In recent years, our knowledge of interactions of the tumors with the immune system has expanded profoundly. There is a growing body of literature supporting immunomodulatory roles for OVs. The concept of bioengineering these platforms to induce the desired immune response and complement the current immunotherapeutic modalities to make immune-resistant tumors responsive to immunotherapy is under investigation in preclinical and early clinical trials. This review provides an overview of attempts to optimize oncolytic virotherapy as essential components of the multimodality anticancer therapeutic approach and discusses the challenges in translation to clinical practice.
Collapse
Affiliation(s)
- Omeed Moaven
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | - Christopher W Mangieri
- Section of Surgical Oncology, Department of Surgery, Wake Forest University, Winston-Salem, NC
| | - John A Stauffer
- Section of Surgical Oncology, Department of Surgery, Mayo Clinic Florida, Jacksonville, FL
| | | | - Mitesh J Borad
- Division of Medical Oncology, Department of Medicine, Mayo Clinic Arizona, Scottsdale, AZ
| |
Collapse
|
7
|
Barton KN, Siddiqui F, Pompa R, Freytag SO, Khan G, Dobrosotskaya I, Ajlouni M, Zhang Y, Cheng J, Movsas B, Kwon D. Phase I trial of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for the treatment of metastatic pancreatic cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 20:94-104. [PMID: 33575474 PMCID: PMC7851493 DOI: 10.1016/j.omto.2020.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
The safety of oncolytic adenovirus-mediated suicide and interleukin-12 (IL12) gene therapy was evaluated in metastatic pancreatic cancer patients. In this phase I study, a replication-competent adenovirus (Ad5-yCD/mutTKSR39rep-hIL-12) expressing yCD/mutTKSR39 (yeast cytidine deaminase/mutant S39R HSV-1 thymidine kinase) and human IL-12 (IL12) was injected into tumors of 12 subjects with metastatic pancreatic cancer (T2N0M1-T4N1M1) at escalating doses (1 × 1011, 3 × 1011, or 1 × 1012 viral particles). Subjects received 5-fluorocytosine (5-FC) therapy for 7 days followed by chemotherapy (FOLFIRINOX or gemcitabine/albumin-bound paclitaxel) starting 21 days after adenovirus injection. The study endpoint was toxicity through day 21. Experimental endpoints included measurements of serum IL12, interferon gamma (IFNG), and CXCL10 to assess immune system activation. Peripheral blood mononuclear cells and proliferation markers were analyzed by flow cytometry. Twelve patients received Ad5-yCD/mutTKSR39rep-hIL-12 and oral 5-FC. Approximately 94% of the 121 adverse events observed were grade 1/2 requiring no medical intervention. Ad5-yCD/mutTKSR39rep-hIL-12 DNA was detected in the blood of two patients. Elevated serum IL12, IFNG, and CXCL10 levels were detected in 42%, 75%, and 92% of subjects, respectively. Analysis of immune cell populations indicated activation after Ad5-yCD/mutTKSR39rep-hIL-12 administration. The median survival of patients in the third cohort is 18.1 (range, 3.5–20.0) months. The study maximum tolerated dose (MTD) was not reached.
Collapse
Affiliation(s)
- Kenneth N Barton
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Robert Pompa
- Department of Gastroenterology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Svend O Freytag
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Gazala Khan
- Department of Oncology Hematology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Irina Dobrosotskaya
- Department of Oncology Hematology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Munther Ajlouni
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Yingshu Zhang
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Jingfang Cheng
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| | - David Kwon
- Division of Surgical Oncology, Department of Surgery, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, MI 48202, USA
| |
Collapse
|
8
|
Motamer M, Haghjooy Javanmard S, Mortazavi ZS, Bahrani S. Evaluation the effect of testosterone on the number of endothelial progenitor cells and amount of SDF-1α, PDGF, bFGF, and NO. Int J Prev Med 2020; 10:214. [PMID: 31929861 PMCID: PMC6941377 DOI: 10.4103/ijpvm.ijpvm_79_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/24/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Recent therapeutic advances in cardiovascular disease, thanks to the discovery of endothelial progenitor cells (EPCs). Stromal cell-derived factor-1α (SDF-1α), platelet-derived growth factor (PDGF), basic fibroblast growth factor (bFGF), and nitric oxide (NO) play a role in migration, homing, and differentiation of EPCs into mature endothelial cells. The incidence of cardiovascular disease is higher in men than in women. This fact suggests the influence of sex hormones on incidence of cardiovascular disease. Methods: Twenty-four female wistar rats weighing 160–180 g were randomly divided into four groups (N = 6): 1. sham-treated by sesame oil, 2. ovariectomized (OVX)-treated by sesame oil, 3. OVX-treated by 10 μg/kg/day testosterone, and 4. OVX-treated by 100 μg/kg/day testosterone. After 21 days, the animals were euthanized and blood samples were saved for determination of EPC count and serum levels of SDF-1α, PDGF, bFGF, and NO production. Results: High-dose testosterone induced significant increase in EPC count in OVX rats (P < 0.05). Also 100 μg/kg/day testosterone increased serum level of SDF-1α more than OVX-treated by 10 μg/kg/day testosterone (P < 0.05). But 10 μg/kg/day testosterone increased significantly the serum level of PDGF >100 μg/kg/day testosterone-treated group (P < 0.05). The serum level of bFGF in sham-treated by sesame oil was equal with its concentration in OVX-treated by 100 μg/kg/day testosterone. And the serum concentration of NO production in testosterone-treated groups were significantly less than other groups (P < 0.05). Conclusions: This study suggests that testosterone might be effective on cardiovascular disease in females by increasing EPC count through SDF-1α and PDGF mechanisms which are some of the vascular healing factors.
Collapse
Affiliation(s)
- Maryam Motamer
- Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zahra Sadat Mortazavi
- Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeide Bahrani
- Department of Physiology, Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Medical Student Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Robson T, Worthington J, McKeown SR, Hirst DG. Radiogenic Therapy: Novel Approaches for Enhancing Tumor Radiosensitivity. Technol Cancer Res Treat 2016; 4:343-61. [PMID: 16029055 DOI: 10.1177/153303460500400404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy (RT) is a well established modality for treating many forms of cancer. However, despite many improvements in treatment planning and delivery, the total radiation dose is often too low for tumor cure, because of the risk of normal tissue damage. Gene therapy provides a new adjunctive strategy to enhance the effectiveness of RT, offering the potential for preferential killing of cancer cells and sparing of normal tissues. This specificity can be achieved at several levels including restricted vector delivery, transcriptional targeting and specificity of the transgene product. This review will focus on those gene therapy strategies that are currently being evaluated in combination with RT, including the use of radiation sensitive promoters to control the timing and location of gene expression specifically within tumors. Therapeutic transgenes chosen for their radiosensitizing properties will also be reviewed, these include: gene correction therapy, in which normal copies of genes responsible for radiation-induced apoptosis are transfected to compensate for the deletions or mutated variants in tumor cells (p53 is the most widely studied example). enzymes that synergize the radiation effect, by generation of a toxic species from endogenous precursors ( e.g., inducible nitric oxide synthase) or by activation of non toxic prodrugs to toxic species ( e.g., herpes simplex virus thymidine kinase/ganciclovir) within the target tissue. conditionally replicating oncolytic adenoviruses that synergize the radiation effect. membrane transport proteins ( e.g., sodium iodide symporter) to facilitate uptake of cytotoxic radionuclides. The evidence indicates that many of these approaches are successful for augmenting radiation induced tumor cell killing with clinical trials currently underway.
Collapse
Affiliation(s)
- T Robson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | | | |
Collapse
|
10
|
Tetzlaff MT, Teh BS, Timme TL, Fujita T, Satoh T, Tabata KI, Mai WY, Vlachaki MT, Amato RJ, Kadmon D, Miles BJ, Ayala G, Wheeler TM, Aguilar-Cordova E, Thompson TC, Butler EB. Expanding the Therapeutic Index of Radiation Therapy by Combining In Situ Gene Therapy in the Treatment of Prostate Cancer. Technol Cancer Res Treat 2016; 5:23-36. [PMID: 16417399 DOI: 10.1177/153303460600500104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The advances in radiotherapy (3D-CRT, IMRT) have enabled high doses of radiation to be delivered with the least possible associated toxicity. However, the persistence of cancer (local recurrence after radiotherapy) despite these increased doses as well as distant failure suggesting the existence of micro-metastases, especially in the case of higher risk disease, have underscored the need for continued improvement in treatment strategies to manage local and micro-metastatic disease as definitively as possible. This has prompted the idea that an increase in the therapeutic index of radiotherapy might be achieved by combining it with in situ gene therapy. The goal of these combinatorial therapies is to maximize the selective pressure against cancer cell growth while minimizing treatment-associated toxicity. Major efforts utilizing different gene therapy strategies have been employed in conjunction with radiotherapy. We reviewed our and other published clinical trials utilizing this combined radio-genetherapy approach including their associated pre-clinical in vitro and in vivo models. The use of in situ gene therapy as an adjuvant to radiation therapy dramatically reduced cell viability in vitro and tumor growth in vivo. No significant worsening of the toxicities normally observed in single-modality approaches were identified in Phase I/II clinical studies. Enhancement of both local and systemic T-cell activation was noted with this combined approach suggesting anti-tumor immunity. Early clinical outcome including biochemical and biopsy data was very promising. These results demonstrate the increased therapeutic efficacy achieved by combining in situ gene therapy with radiotherapy in the management of local prostate cancer. The combined approach maximizes tumor control, both local-regional and systemic through radio-genetherapy induced cytotoxicity and anti-tumor immunity.
Collapse
Affiliation(s)
- Michael T Tetzlaff
- Scott Department of Urology, Baylor College of Medicine, 6560 Fannin, ST 2100, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Long-term outcome of a phase II trial using immunomodulatory in situ gene therapy in combination with intensity-modulated radiotherapy with or without hormonal therapy in the treatment of prostate cancer. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13566-015-0239-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Wei WZ, Jones RF, Juhasz C, Gibson H, Veenstra J. Evolution of animal models in cancer vaccine development. Vaccine 2015; 33:7401-7407. [PMID: 26241945 DOI: 10.1016/j.vaccine.2015.07.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 12/29/2022]
Abstract
Advances in cancer vaccine development are facilitated by animal models reflecting key features of human cancer and its interface with host immunity. Several series of transplantable preneoplastic and neoplastic mouse mammary lesions have been used to delineate mechanisms of anti-tumor immunity. Mimicking immune tolerance to tumor-associated antigens (TAA) such as HER2/neu, transgenic mice developing spontaneous mammary tumors are strong model systems for pre-clinical vaccine testing. In these models, HER2 DNA vaccines are easily administered, well-tolerated, and induce both humoral and cellular immunity. Although engineered mouse strains have advanced cancer immunotherapy, basic shortcomings remain. For example, multiple mouse strains have to be tested to recapitulate genetic regulation of immune tolerance in humans. Outbred domestic felines more closely parallel humans in the natural development of HER2 positive breast cancer and their varying genetic background. Electrovaccination with heterologous HER2 DNA induces robust adaptive immune responses in cats. Importantly, homologous feline HER2 DNA with a single amino acid substitution elicits unique antibodies to feline mammary tumor cells, unlocking a new vaccine principle. As an alternative approach to targeted vaccination, non-surgical tumor ablation such as cryoablation induces anti-tumor immunity via in situ immunization, particularly when combined with toll-like receptor (TLR) agonist. As strategies for vaccination advance, non-invasive monitoring of host response becomes imperative. As an example, magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning following administration of tryptophan metabolism tracer [11C]-alpha-methyl-tryptophan (AMT) provides non-invasive imaging of both tumor growth and metabolic activities. Because AMT is a substrate of indoleamine-pyrrole 2,3-dioxygenase (IDO), an enzyme that produces the immune regulatory molecule kynurenine, AMT imaging can provide novel insight of host response. In conclusion, new feline models improve the predictive power of cancer immunotherapy and real-time PET imaging enables mechanistic monitoring of host immunity. Strategic utilization of these new tools will expedite cancer vaccine development.
Collapse
Affiliation(s)
- Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States.
| | - Richard F Jones
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Csaba Juhasz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Heather Gibson
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Jesse Veenstra
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
13
|
Preclinical toxicology of oncolytic adenovirus-mediated cytotoxic and interleukin-12 gene therapy for prostate cancer. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:S2372-7705(16)30008-0. [PMID: 26767191 PMCID: PMC4707660 DOI: 10.1038/mto.2015.6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to examine the toxicity of combining oncolytic adenovirus-mediated cytotoxic and interleukin 12 (IL-12) gene therapy in a preclinical model to support future phase 1 trials. One hundred and twenty C57BL/6 male mice received an intraprostatic injection of saline (n = 24) or an oncolytic adenovirus (Ad5-yCD/mutTKSR39rep-mIL12) expressing two suicide genes and mouse IL-12 (n = 96). The adenovirus was administered at three dose levels (1.3 × 106, 1.3 × 107, 1.3 × 108 vp/kg) followed by 2 weeks of 5-flurocytosine (5-FC) and gancliclovir (GCV) prodrug therapy. There were no premature deaths. Daily observations of animals did not reveal any obvious clinical problems throughout the 78-day in-life phase of the study. Animals in the highest adenovirus dose group exhibited lymphopenia and transaminitis on day 3, both of which resolved by day 17. Except for mild inflammation of the prostate and seminal vesicles, histopathology of major organs was largely unremarkable. IL-12 and interferon-gamma levels in prostate and serum peaked on day 3 and were either undetectable or returned to baseline levels by day 17. No adenoviral DNA was detected in serum in any group at any time point. The results demonstrate that local administration of an oncolytic adenovirus expressing two suicide genes and IL-12 is well tolerated and support moving this investigational approach into human trials.
Collapse
|
14
|
Gibson H, Munns S, Freytag S, Barton K, Veenstra J, Bettahi I, Bissonette J, Wei WZ. Immunotherapeutic intervention with oncolytic adenovirus in mouse mammary tumors. Oncoimmunology 2015; 4:e984523. [PMID: 25949865 PMCID: PMC4368120 DOI: 10.4161/2162402x.2014.984523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
The goal is to elucidate the immune modulating activity of an adenovirus (Adv) vector which showed therapeutic activity in human clinical trials. The oncolytic adenovirus (Adv/CD-TK) expressing two suicide genes was tested in two HER2/neu positive BALB/c mouse mammary tumor systems: rat neu-induced TUBO and human HER2-transfected D2F2/E2. Intra-tumoral (i.t.) Adv/CD-TK injection of TUBO tumor plus systemic prodrug therapy showed limited antitumor activity, not exceeding that by the virus itself. Antibody (Ab) to the virus was induced in Adv-/Luc-treated mice, to coincide with the loss of transgene expression. Low replication activity of adenoviruses in rodent cells may limit viral persistence. Host immunity against Adv or Adv-infected cells further mutes suicide gene activity. Treatment of TUBO tumors with Adv/CD-TK alone, however, induced neu-specific Ab responses. Treatment with Adv/CD-TK/GM (Adv/GM) that also expressed mouse granulocyte macrophage colony stimulating factor (GM-CSF), but without prodrug treatment, delayed tumor growth, enhanced anti-neu Ab production and conferred complete protection against secondary tumor challenge. D2F2/E2 tumor-bearing mice showed decreased tumor growth following i.t. Adv/GM treatment and they generated greater HER2-specific T-cell responses. These data suggest that i.t. injection of Adv itself induces immune reactivity to tumor-associated antigens and the encoded cytokine, GM-CSF, amplifies that immune response, resulting in tumor growth inhibition. Incorporation of suicide gene therapy did not improve the efficacy of Adv therapy in this mouse mammary tumor system. Oncolytic adenoviral therapy may be streamlined and improved by substituting the suicide genes with immune modulating genes to exploit tumor immunity for therapeutic benefit.
Collapse
Key Words
- 5-FC, 5-fluorocytosine
- 5-FU, 5-fluorouracil
- Ab, antibody
- Adv, adenovirus
- CD, cytosine deaminase
- GCV, ganciclovir
- GCV-MP, ganciclovir monophosphate
- GFP, green fluorescent protein
- GM-CSF, granulocyte macrophage colony stimulating factor
- HER2/neu
- HSV-1, herpes simplex virus 1
- IFNγ, interferon gamma
- IL-12, interleukin 12
- IgG, immunoglobulin
- MOI, multiplicity of infection
- PFU, plaque-forming unit
- PSA, prostate-specific antigen
- SC, splenocytes
- SFU, spot forming units
- TK, thymidine kinase
- adenovirus
- granulocyte macrophage colony stimulating factor
- i.p., intra-peritoneal
- i.t., intra-tumoral
- immunotherapy
- mAb, monoclonal antibody
- mouse mammary tumor
- s.c., subcutaneous
- suicide gene
Collapse
Affiliation(s)
- Heather Gibson
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Stephanie Munns
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Svend Freytag
- Department of Radiation Oncology; Henry Ford Health System ; Detroit, MI USA
| | - Kenneth Barton
- Department of Radiation Oncology; Henry Ford Health System ; Detroit, MI USA
| | - Jesse Veenstra
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Ilham Bettahi
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Jayne Bissonette
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| | - Wei-Zen Wei
- Karmanos Cancer Institute; Wayne State University ; Detroit, MI USA
| |
Collapse
|
15
|
Jenrow KA, Brown SL, Kolozsvary AJJ, Lapanowski K, Kim JH. Time-dependent inhibition of pan-inflammatory cytokines mitigates radiation-induced skin injury in mice. Radiat Res 2014; 182:316-21. [PMID: 25098729 DOI: 10.1667/rr13711.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation injury to skin poses substantial morbidity risks in the curative treatment of cancers and is also of concern in the context of radiological attack or nuclear accident scenarios. Late effects can be severe and are frequently characterized by subcutaneous fibrosis and morbidity. These experiments presented here assess the potential of MW01-2-151SRM (MW-151), a novel small-molecule inhibitor of microglial activation and associated proinflammatory cytokine/chemokine production, as a mitigator of radiation-induced skin injury. Groups of C57BL/6 mice received focal irradiation of the right hind leg at a dose of 30 Gy. Therapy was initiated either on day 3, day 7 or day 14 postirradiation and maintained subsequently for 21 days by intraperitoneal injections administered three times per week. The primary end point was skin injury, which was assessed three times a week for at least 60 days postirradiation and scored using a semi-quantitative scale. Secondary end points measured at selected times included histology (primarily H&E) and immunofluorescence labeling of various macrophage (F4-80) and inflammatory (TGF-β, TNF-α, MMP9) markers. Relative to untreated controls, mitigation of radiation-induced skin injury in mice receiving MW-151 was highly dependent on the timing of therapy initiation. Initiation on day 3 postirradiation had no discernable effect, whereas mitigating effects were maximal following initiation on day 7 and present to a lesser degree following initiation on day 14. The response to MW-151 therapy in individual animals was essentially all-or-none and the relative benefits associated with the timing of therapy initiation primarily reflected differences in the number of responders. These data support the hypothesis that proinflammatory cytokines/chemokines play complex roles in orchestrating the response to radiation-induced skin injury and suggest that there is a critical period during which they initiate the pathogenesis resulting in late effects.
Collapse
|
16
|
Freytag SO, Barton KN, Zhang Y. Efficacy of oncolytic adenovirus expressing suicide genes and interleukin-12 in preclinical model of prostate cancer. Gene Ther 2013; 20:1131-9. [PMID: 23842593 DOI: 10.1038/gt.2013.40] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 01/23/2023]
Abstract
Oncolytic adenovirus-mediated suicide gene therapy has been shown to improve local tumor control in preclinical tumor models and in the clinic. Although local tumor control is important, for most human cancers, new therapies must also target metastatic disease if they are to have an impact on survival. Here, we test the hypothesis that adding cytokine gene therapy to our multimodal platform improves both local and metastatic tumor control in a preclinical model of prostate cancer. An oncolytic adenovirus (Ad5-yCD/mutTKSR39rep-mIL12) expressing two suicide genes and mouse interleukin-12 (IL-12) was generated. Relative to an adenovirus lacking IL-12 (Ad5-yCD/mutTKSR39rep), Ad5-yCD/mutTKSR39rep-mIL12 improved local and metastatic tumor control in the TRAMP-C2 prostate adenocarcinoma model, resulting in a significant increase in survival. Ad5-yCD/mutTKSR39rep-mIL12 resulted in high levels of IL-12 and interferon gamma in serum and tumor, increased natural killer (NK) and cytotoxic T-lymphocyte lytic activities, and the development of tumor-specific antitumor immunity. Immune cell depletion studies indicated that both the innate and adaptive arms of immunity were required for maximal Ad5-yCD/mutTKSR39rep-mIL12 activity. The results demonstrate that the addition of IL-12 significantly improves the efficacy of oncolytic adenovirus-mediated suicide gene therapy and provide the scientific basis for future trials targeting locally aggressive cancers.
Collapse
Affiliation(s)
- S O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, USA
| | | | | |
Collapse
|
17
|
Fujita T, Satoh T, Timme TL, Hirayama T, Zhu JX, Kusaka N, Naruishi K, Yang G, Goltsov A, Wang J, Vlachaki MT, Teh BS, Brian Butler E, Thompson TC. Combined therapeutic effects of adenoviral vector-mediated GLIPR1 gene therapy and radiotherapy in prostate and bladder cancer models. Urol Oncol 2013; 32:92-100. [PMID: 23433894 DOI: 10.1016/j.urolonc.2012.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/28/2012] [Accepted: 10/11/2012] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The objectives of this study are to explore the potential benefits of combining AdGlipr1 (or AdGLIPR1) gene therapy with radiotherapy using subcutaneous prostate and bladder cancer models. MATERIALS AND METHODS Combination adenoviral vector-mediated gene therapy and radiotherapy were applied to 178-2 BMA and TSU-Pr1 cells in vitro and colony formation and apoptosis were analyzed. In addition, combination therapies were administered to mice bearing subcutaneous 178-2 BMA and TSU-Pr1 tumors, and tumor growth suppression and survival extension were compared with the monotherapies (AdGlipr1/AdGLIPR1 and radiotherapy) or control vector Adv/CMV/βgal, as well as single-cycle treatment with 2-cycle treatment. RESULTS Combination treatment significantly suppressed colony formation and increased apoptosis in vitro. In vivo, combination therapy produced significant 178-2 BMA and TSU-Pr1 tumor growth suppression and survival extension compared with the monotherapies or the control. Further tumor growth suppression and survival extension were observed after 2 cycles of the combination treatment. CONCLUSIONS Combining AdGlipr1 (AdGLIPR1) with radiotherapy may achieve additive or synergistic tumor control in selected prostate and bladder tumors, and additional therapeutic effects may result with repeated treatment cycles.
Collapse
Affiliation(s)
- Tetsuo Fujita
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Takefumi Satoh
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Terry L Timme
- Scott Department of Urology, Baylor College of Medicine, Houston, TX; Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX
| | - Takahiro Hirayama
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Julie X Zhu
- Department of Radiology, Baylor College of Medicine, Houston, TX
| | - Nobuyuki Kusaka
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Koji Naruishi
- Scott Department of Urology, Baylor College of Medicine, Houston, TX
| | - Guang Yang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexei Goltsov
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jianxiang Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Maria T Vlachaki
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX; Department of Radiology, Baylor College of Medicine, Houston, TX
| | - Bin S Teh
- Department of Radiology, Baylor College of Medicine, Houston, TX
| | - E Brian Butler
- Department of Radiology, Baylor College of Medicine, Houston, TX
| | - Timothy C Thompson
- Scott Department of Urology, Baylor College of Medicine, Houston, TX; Department of Radiology, Baylor College of Medicine, Houston, TX; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
18
|
Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts. Transl Oncol 2012; 5:77-84. [PMID: 22496923 DOI: 10.1593/tlo.11316] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 12/07/2011] [Accepted: 12/07/2011] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.
Collapse
|
19
|
Valerie NCK, Casarez EV, Dasilva JO, Dunlap-Brown ME, Parsons SJ, Amorino GP, Dziegielewski J. Inhibition of neurotensin receptor 1 selectively sensitizes prostate cancer to ionizing radiation. Cancer Res 2011; 71:6817-26. [PMID: 21903767 DOI: 10.1158/0008-5472.can-11-1646] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy combined with androgen depletion is generally successful for treating locally advanced prostate cancer. However, radioresistance that contributes to recurrence remains a major therapeutic problem in many patients. In this study, we define the high-affinity neurotensin receptor 1 (NTR1) as a tractable new molecular target to radiosensitize prostate cancers. The selective NTR1 antagonist SR48692 sensitized prostate cancer cells in a dose- and time-dependent manner, increasing apoptotic cell death and decreasing clonogenic survival. The observed cancer selectivity for combinations of SR48692 and radiation reflected differential expression of NTR1, which is highly expressed in prostate cancer cells but not in normal prostate epithelial cells. Radiosensitization was not affected by androgen dependence or androgen receptor expression status. NTR1 inhibition in cancer cell-attenuated epidermal growth factor receptor activation and downstream signaling, whether induced by neurotensin or ionizing radiation, establish a molecular mechanism for sensitization. Most notably, SR48692 efficiently radiosensitized PC-3M orthotopic human tumor xenografts in mice, and significantly reduced tumor burden. Taken together, our findings offer preclinical proof of concept for targeting the NTR1 receptor as a strategy to improve efficacy and outcomes of prostate cancer treatments using radiotherapy.
Collapse
Affiliation(s)
- Nicholas C K Valerie
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Touchefeu Y, Vassaux G, Harrington KJ. Oncolytic viruses in radiation oncology. Radiother Oncol 2011; 99:262-70. [PMID: 21704402 DOI: 10.1016/j.radonc.2011.05.078] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 05/27/2011] [Accepted: 05/28/2011] [Indexed: 10/18/2022]
Abstract
Oncolytic viruses are investigational cancer treatments. They are currently being assessed as single agents or in combination with standard therapies such as external beam radiotherapy - a DNA damaging agent that is a standard of care for many tumour types. Preclinical data indicate that combinations of oncolytic viruses and radiation therapy are promising, showing additional or synergistic antitumour effects in in vitro and in vivo studies. This interaction has the potential to be multifaceted: viruses may act as radiosensitizing agents, but radiation may also enhance viral oncolysis by increasing viral uptake, replication, gene expression and cell death (apoptosis, autophagy or necrosis) in irradiated cells. Phase I and II clinical trials investigating combinations of viruses and radiation therapy have been completed, paving the way for ongoing phase III studies. The aim of this review is to focus on the therapeutic potential of these combinations and to highlight their mechanistic bases, with particular emphasis on the role of the DNA damage response.
Collapse
Affiliation(s)
- Yann Touchefeu
- The Institute of Cancer Research, Section of Cell and Molecular Biology, London, UK
| | | | | |
Collapse
|
21
|
Pesonen S, Kangasniemi L, Hemminki A. Oncolytic Adenoviruses for the Treatment of Human Cancer: Focus on Translational and Clinical Data. Mol Pharm 2010; 8:12-28. [PMID: 21126047 DOI: 10.1021/mp100219n] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sari Pesonen
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Lotta Kangasniemi
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program & Transplantation Laboratory & Haartman Institute & Finnish Institute for Molecular Medicine, P.O. Box 63, 00014 University of Helsinki, Helsinki, Finland, HUSLAB, Helsinki University Central Hospital, Finland, and Oncos Therapeutics Ltd., Tukholmankatu 8, 00290 Helsinki, Finland
| |
Collapse
|
22
|
Abstract
Cancer treatments have improved steadily, but still only few metastatic solid tumors can be cured. Apoptosis-resistant clones frequently develop following standard treatments. Resistance factors are shared between different treatment regimens and, therefore, loss of response can occur rapidly, despite changing the drug, and there is a tendency for crossresistance between modalities. Therefore, new agents with novel mechanisms of action are desperately needed. Oncolytic adenoviruses, featuring cancer-selective cell lysis and spread, constitute an interesting drug platform aimed towards the goals of tumor specificity, and have been engineered in a variety of ways to improve their selectivity and efficacy. They allow rational drug development by the genetic incorporation of targeting mechanisms that can exert their function at different stages of the viral replication cycle. Owing to their immunogenicity, adenoviruses are particularly attractive for immunostimulatory purposes.
Collapse
Affiliation(s)
| | - Akseli Hemminki
- HUSLAB, Helsinki University Central Hospital, Finland; Cancer Gene Therapy Group, Molecular Cancer Biology Program & Haartman Institute & Transplantation Laboratory & Finnish Institute for Molecular Medicine, University of Helsinki, PO Box 63, Biomedicum B506b, 00014 University of Helsinki, Finland
| |
Collapse
|
23
|
Liikanen I, Dias JD, Nokisalmi P, Sloniecka M, Kangasniemi L, Rajecki M, Dobner T, Tenhunen M, Kanerva A, Pesonen S, Ahtiainen L, Hemminki A. Adenoviral E4orf3 and E4orf6 proteins, but not E1B55K, increase killing of cancer cells by radiotherapy in vivo. Int J Radiat Oncol Biol Phys 2010; 78:1201-9. [PMID: 20832189 DOI: 10.1016/j.ijrobp.2010.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 05/13/2010] [Accepted: 05/25/2010] [Indexed: 12/20/2022]
Abstract
PURPOSE Radiotherapy is widely used for treatment of many tumor types, but it can damage normal tissues. It has been proposed that cancer cells can be selectively sensitized to radiation by adenovirus replication or by using radiosensitizing transgenes. Adenoviral proteins E1B55K, E4orf3, and E4orf6 play a role in radiosensitization, by targeting the Mre11, Rad50, and NBS1 complex (MRN) and inhibiting DNA double-strand break (DSB) repair. We hypothesize that combined with irradiation, these adenoviral proteins increase cell killing through the impairment of DSB repair. METHODS AND MATERIALS We assessed the radiosensitizing/additive potential of replication-deficient adenoviruses expressing E1B55K, E4orf3, and E4orf6 proteins. Combination treatments with low-dose external photon beam radiotherapy were studied in prostate cancer (PC-3MM2 and DU-145), breast cancer (M4A4-LM3), and head and neck cancer (UT-SCC8) cell lines. We further demonstrated radiosensitizing or additive effects in mice with PC-3MM2 tumors. RESULTS We show enhanced cell killing with adenovirus and radiation combination treatment. Co-infection with several of the viruses did not further increase cell killing, suggesting that both E4orf6 and E4orf3 are potent in MRN inhibition. Our results show that adenoviral proteins E4orf3 and E4orf6, but not E1B55K, are effective also in vivo. Enhanced cell killing was due to inhibition of DSB repair resulting in persistent double-strand DNA damage, indicated by elevated phospho-H2AX levels at 24 h after irradiation. CONCLUSIONS This knowledge can be applied for improving the treatment of malignant tumors, such as prostate cancer, for development of more effective combination therapies and minimizing radiation doses and reducing side effects.
Collapse
Affiliation(s)
- Ilkka Liikanen
- Haartman Institute & Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Cancer remains a leading cause of morbidity and mortality. Despite advances in understanding, detection, and treatment, it accounts for almost one-fourth of all deaths per year in Western countries. Prostate cancer is currently the most commonly diagnosed noncutaneous cancer in men in Europe and the United States, accounting for 15% of all cancers in men. As life expectancy of individuals increases, it is expected that there will also be an increase in the incidence and mortality of prostate cancer. Prostate cancer may be inoperable at initial presentation, unresponsive to chemotherapy and radiotherapy, or recur following appropriate treatment. At the time of presentation, patients may already have metastases in their tissues. Preventing tumor recurrence requires systemic therapy; however, current modalities are limited by toxicity or lack of efficacy. For patients with such metastatic cancers, the development of alternative therapies is essential. Gene therapy is a realistic prospect for the treatment of prostate and other cancers, and involves the delivery of genetic information to the patient to facilitate the production of therapeutic proteins. Therapeutics can act directly (eg, by inducing tumor cells to produce cytotoxic agents) or indirectly by upregulating the immune system to efficiently target tumor cells or by destroying the tumor's vasculature. However, technological difficulties must be addressed before an efficient and safe gene medicine is achieved (primarily by developing a means of delivering genes to the target cells or tissue safely and efficiently). A wealth of research has been carried out over the past 20 years, involving various strategies for the treatment of prostate cancer at preclinical and clinical trial levels. The therapeutic efficacy observed with many of these approaches in patients indicates that these treatment modalities will serve as an important component of urological malignancy treatment in the clinic, either in isolation or in combination with current approaches.
Collapse
Affiliation(s)
- Mark Tangney
- Cork Cancer Research Centre, Mercy University Hospital, Cork, Ireland.
| | | | | | | |
Collapse
|
25
|
In vivo bioluminescent imaging of irradiated orthotopic pancreatic cancer xenografts in nonobese diabetic-severe combined immunodeficient mice: a novel method for targeting and assaying efficacy of ionizing radiation. Transl Oncol 2010; 3:153-9. [PMID: 20563256 DOI: 10.1593/tlo.09184] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 12/17/2009] [Accepted: 12/29/2009] [Indexed: 01/23/2023] Open
Abstract
Adenocarcinoma of the pancreas is a lethal malignancy, and better models to study tumor behavior in vivo are needed for the development ofmore effective therapeutics. Ionizing radiation is a treatment modality that is commonly used in the clinical setting, in particular, for locally confined disease; however, good model systems to study the effect of ionizing radiation in orthotopic tumors have not been established. In an attempt to create clinically relevant models for studying treatments directed against pancreatic cancer, we have defined a methodology to measure the effect of varying doses of radiation in established human pancreatic cancer orthotopic xenografts using two different pancreatic cancer cell lines (Panc-1 and BXPC3) infected with a lentiviral vector expressing CMV promoter-driven luciferase to allow bioluminescence imaging of live animals in real time. Quantifiable photon emission from luciferase signaling in vivo correlated well with actual tumor growth. Bioluminescence imaging of the established pancreatic xenografts was used to direct delivery of radiation to the orthotopic tumors and minimize off-target adverse effects. Growth delay was observed with schedules in the range of 7.5 Gy in five fractions to 10 Gy in four fractions, whereas doses 3 Gy or higher produced toxic adverse effects. In conclusion, we describe a model in which the effects of ionizing radiation, alone or in combination with other therapeutics, in orthotopic xenografts, can be studied.
Collapse
|
26
|
Experimental orthotopic prostate tumor in nude mice: techniques for local cell inoculation and three-dimensional ultrasound monitoring. Urol Oncol 2010; 30:330-8. [PMID: 20452251 DOI: 10.1016/j.urolonc.2010.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Orthotopic prostate cancer models are of great importance for cancer research. Orthotopic models in mice have been described previously. However, these studies lack a detailed methodological description and fail to define standards for local cell inoculation. Herein, we studied the effect of different protocols on tumor growth and report for the first time the use of high resolution ultrasound for monitoring of tumor growth. MATERIALS AND METHODS Orthotopic inoculation of DU 145 MN1 prostate cancer cells was performed in 30 nude mice varying (1) the amount of cells (5 × 10(5) vs. 5 × 10(4)), (2) the number of puncture sites, and (3) the addition of matrigel. Surgical complications such as recoil of cells through the injection canal and rupture of the prostatic capsule were monitored. Animals were tracked by ultrasound imaging after 4, 5, and 6 weeks. Autopsy and histology confirmed local tumor growth. RESULTS A take rate of 27/30 (90%) was observed. Growth of orthotopic prostate tumors was increased after inoculation of a large amount of cells under the capsule of 1 dorsal prostate lobe, but inoculation of small amounts of cells still induced local tumors. Noninvasive ultrasound examination allowed to identify orthotopic tumor formation and to monitor tumor growth in vivo. Addition of matrigel did not accelerate tumor growth. Complications like recoil (6.8%) or rupture of the prostate capsule (1.4%) were rare. CONCLUSIONS Inoculation of DU 145 MN1 cells under the prostate capsule with a defined procedure results in very high take rates. Ultrasound screening is feasible to repetitively monitor tumor growth.
Collapse
|
27
|
Affiliation(s)
- Magnus Essand
- Clinical Immunology Division, Rudbeck Laboratory, Uppsala University, Sweden.
| |
Collapse
|
28
|
Sharma A, Tandon M, Bangari DS, Mittal SK. Adenoviral vector-based strategies for cancer therapy. CURRENT DRUG THERAPY 2009; 4:117-138. [PMID: 20160875 DOI: 10.2174/157488509788185123] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Definitive treatment of cancer has eluded scientists for decades. Current therapeutic modalities like surgery, chemotherapy, radiotherapy and receptor-targeted antibodies have varied degree of success and generally have moderate to severe side effects. Gene therapy is one of the novel and promising approaches for therapeutic intervention of cancer. Viral vectors in general and adenoviral (Ad) vectors in particular are efficient natural gene delivery systems and are one of the obvious choices for cancer gene therapy. Clinical and preclinical findings with a wide variety of approaches like tumor suppressor and suicide gene therapy, oncolysis, immunotherapy, anti-angiogenesis and RNA interference using Ad vectors have been quite promising, but there are still many hurdles to overcome. Shortcomings like increased immunogenicity, prevalence of preexisting anti-Ad immunity in human population and lack of specific targeting limit the clinical usefulness of Ad vectors. In recent years, extensive research efforts have been made to overcome these limitations through a variety of approaches including the use of conditionally-replicating Ad and specific targeting of tumor cells. In this review, we discuss the potential strengths and limitations of Ad vectors for cancer therapy.
Collapse
Affiliation(s)
- Anurag Sharma
- Department of Comparative Pathobiology, and Bindley Bioscience Center, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
29
|
Abstract
Suicide gene therapy with herpes simplex virus thymidine kinase and ganciclovir is notable for producing multi-log cytotoxicity in a unique pattern of delayed cytotoxicity in S-phase. Because hydroxyurea, a ribonucleotide reductase inhibitor that activates mismatch repair, can increase sensitivity to ganciclovir, we evaluated the role of MLH1, an essential mismatch repair protein, in ganciclovir cytotoxicity. Using HCT116TK (HSV-TK-expressing) colon carcinoma cells that express or lack MLH1, cell survival studies demonstrated greater ganciclovir sensitivity in the MLH1 deficient cells, primarily at high concentrations. This could not be explained by differences in ganciclovir metabolism, as the less sensitive MLH1-expresssing cells accumulated more ganciclovir triphosphate and incorporated more of the analog into DNA. SiRNA suppression of MLH1 in U251 glioblastoma or SW480 colon carcinoma cells also enhanced sensitivity to high concentrations of ganciclovir. Studies in a panel of yeast deletion mutants confirmed the results with MLH1, and further suggested a role for homologous recombination repair and several cell cycle checkpoint proteins in ganciclovir cytotoxicity. These data suggest that MLH1 can prevent cytotoxicity with ganciclovir. Targeting mismatch repair-deficient tumors may increase efficacy of this suicide gene therapy approach to cancer treatment.
Collapse
|
30
|
Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter. Cancer Gene Ther 2008; 16:73-82. [PMID: 18772902 DOI: 10.1038/cgt.2008.59] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzyme pro-drug suicide gene therapy has been hindered by inefficient viral delivery and gene transduction. To further explore the potential of this approach, we have developed AdIU1, a prostate-restricted replicative adenovirus (PRRA) armed with the herpes simplex virus thymidine kinase (HSV-TK). In our previous Ad-OC-TK/ACV phase I clinical trial, we demonstrated safety and proof of principle with a tissue-specific promoter-based TK/pro-drug therapy using a replication-defective adenovirus for the treatment of prostate cancer metastases. In this study, we aimed to inhibit the growth of androgen-independent (AI), PSA/PSMA-positive prostate cancer cells by AdIU1. In vitro the viability of an AI- PSA/PSMA-expressing prostate cancer cell line, CWR22rv, was significantly inhibited by treatment with AdIU1 plus GCV (10 microg ml(-1)), compared with AdIU1 treatment alone and also cytotoxicity was observed following treatment with AdIU1 plus GCV only in PSA/PSMA-positive CWR22rv and C4-2 cells, but not in the PSA/PSMA-negative cell line, DU-145. In vivo assessment of AdIU1 plus GCV treatment revealed a stronger therapeutic effect against CWR22rv tumors in nude mice than treatment with AdIU1 alone, AdE4PSESE1a alone or in combination with GCV. Our results demonstrate the therapeutic potential of specific-oncolysis and suicide gene therapy for AI-PSA/PSMA-positive prostate cancer gene therapy.
Collapse
|
31
|
|
32
|
|
33
|
White CL, Menghistu T, Twigger KR, Searle PF, Bhide SA, Vile RG, Melcher AA, Pandha HS, Harrington KJ. Escherichia coli nitroreductase plus CB1954 enhances the effect of radiotherapy in vitro and in vivo. Gene Ther 2007; 15:424-33. [PMID: 18079753 DOI: 10.1038/sj.gt.3303081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Escherichia coli nitroreductase (NTR) converts the prodrug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) into a bifunctional alkylating agent that causes DNA crosslinks. In this study, the ability of NTR to enhance the combined effects of CB1954 and radiation has been tested in vitro and in vivo. Stably transduced ovarian cancer cells (SKOV3-NTR) that are sensitive to CB1954 (IC(50)=0.35 muM) demonstrated enhanced cytotoxicity when treated with CB1954 and single-fraction irradiation. The NTR-CB1954 system mediated a bystander effect in combination with radiation on transfer of conditioned medium from SKOV3-NTR, but not SKOV3, cells to SW480 target cells. The ability of CB1954 to enhance radiation-induced cytotoxicity in SKOV3-NTR (but not SKOV3) cells was also demonstrated by fluorescence-activated cell sorting (FACS) with dual staining for propidium iodide/fluorescein diacetate, 4',6-diamidino-2-phenylindole dichloride staining of apoptotic cells and measurement of double-stranded DNA breaks by FACS and confocal microscopy for gammaH2AX foci. Adenoviral delivery of NTR, under constitutive cytomegalovirus or tissue-specific CTP1 promoters, increased the in vitro cytotoxicity of CB1954 plus radiation in MTT and clonogenic assays. Finally, adenoviral delivery of NTR plus CB1954 enhanced the effect of fractionated radiotherapy (12 Gy in four fractions) in SW480 xenograft tumours in nude mice.
Collapse
Affiliation(s)
- C L White
- Targeted Therapy Laboratory, Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Casarez EV, Dunlap-Brown ME, Conaway MR, Amorino GP. Radiosensitization and modulation of p44/42 mitogen-activated protein kinase by 2-Methoxyestradiol in prostate cancer models. Cancer Res 2007; 67:8316-24. [PMID: 17804747 DOI: 10.1158/0008-5472.can-07-1755] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol (2ME2) is an endogenous estradiol metabolite that inhibits microtubule polymerization, tumor growth, and angiogenesis. Because prostate cancer is often treated with radiotherapy, and 2ME2 has shown efficacy as a single agent against human prostate carcinoma, we evaluated 2ME2 as a potential radiosensitizer in prostate cancer models. A dose-dependent decrease in mitogen-activated protein kinase phosphorylation was observed in human PC3 prostate cancer cells treated with 2ME2 for 18 h. This decrease correlated with in vitro radiosensitization measured by clonogenic assays, and these effects were blocked by the expression of constitutively active MEK. Male nude mice with subcutaneous PC3 xenografts in the hind leg were treated with 2ME2 (75 mg/kg) p.o. for 5 days, and 2 Gy radiation fractions were delivered each day at 4 h after drug treatment. A statistically significant super-additive effect between radiation and 2ME2 was observed in this subcutaneous model, using analysis of within-animal slopes. A PC-3M orthotopic model was also used, with bioluminescence imaging as an end point. PC-3M cells stably expressing the luciferase gene were surgically implanted into the prostates of male nude mice. Mice were given oral doses of 2ME2 (75 mg/kg), with radiation fractions (3 Gy) delivered 4 h later. Mice were then imaged weekly for 4 to 5 weeks with a Xenogen system. A significant super-additive effect was also observed in the orthotopic model. These data show that 2ME2 is an effective radiosensitizing agent against human prostate cancer xenografts, and that the mechanism may involve a decrease in mitogen-activated protein kinase phosphorylation by 2ME2.
Collapse
Affiliation(s)
- Eli V Casarez
- Department of Radiation Oncology, Cancer Center, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
35
|
Barton KN, Freytag SO, Nurushev T, Yoo S, Lu M, Yin FF, Li S, Movsas B, Kim JH, Brown SL. A model for optimizing adenoviral delivery in human cancer gene therapy trials. Hum Gene Ther 2007; 18:562-72. [PMID: 17594241 DOI: 10.1089/hum.2007.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Optimization of adenoviral delivery to the target volume is required for adenovirus-mediated cancer gene therapy to reach its maximal potential. The purpose of these studies was to develop a model of gene expression to improve adenovirus-mediated cancer gene therapy in the clinic. We measured the distribution of gene expression after a single deposit of a replication-competent adenovirus carrying the human sodium iodide symporter (hNIS) reporter gene was delivered to naive canine prostate and to human tumor xenografts. We generated hypothetical treatment plans for two prospective prostate cancer patients, using standard brachytherapy algorithms. In both models, the gene expression distribution from a single adenoviral deposit could be accurately described by a Gaussian function. In the naive canine prostate, a 0.1-ml deposit of 3 x 10(11) viral particles (VP) resulted in a gene expression volume of 1.14 +/- 0.70 cm(3), indicating that a minimum of 40 adenoviral deposits would be required to cover a 40-cm(3) prostate with therapeutic gene expression. On a viral particle basis, the gene expression volume obtained in human tumor xenografts (7 x 10(-12) cm(3)/VP) was twice that (3.5 x 10(-12) cm(3)/VP) measured in the naive canine prostate. Hypothetical treatment plans for two prostates indicated that 26 and 57 0.1-ml adenoviral deposits would be required to cover, respectively, 24- and 49-cm(3) prostates with gene expression. Although our studies focused on prostate, we believe the methodology to model gene expression presented here has much broader application to optimize treatment plans in other solid tumor sites; this assertion should be confirmed experimentally.
Collapse
Affiliation(s)
- Kenneth N Barton
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Siddiqui F, Barton KN, Stricker HJ, Steyn PF, Larue SM, Karvelis KC, Sparks RB, Kim JH, Brown SL, Freytag SO. Design considerations for incorporating sodium iodide symporter reporter gene imaging into prostate cancer gene therapy trials. Hum Gene Ther 2007; 18:312-22. [PMID: 17408358 DOI: 10.1089/hum.2006.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was done to aid in the design of a phase I gene therapy trial in patients with prostate cancer. We determined the dosimetric characteristics of our reporter gene system when coupled with intravenous administration of radioactive sodium pertechnetate (Na(99m) TcO(4)) and determined the feasibility of using human sodium iodide symporter (hNIS) as a reporter gene to study the dynamics of adenoviral transgene expression in a large animal tumor. A replication-competent Ad5-yCD/mutTK(SR39) rep-hNIS adenovirus was injected into the prostate gland of dogs for dosimetry purposes, and into a canine soft tissue sarcoma (STS) for imaging purposes. After resection of the prostate, the amount of (99m)TcO(4)() sequestered in the prostate was determined, the radiation dose absorbed by the prostate and nontarget critical organs was calculated, and hNIS reporter gene expression was imaged in the STS by single-photon emission computed tomography (SPECT). On the basis of the findings from 25 dogs, the amount of (99m)TcO (4)() sequestered in the prostate ranged from 13 to 276 muCi. Using the highest value observed, absorbed radiation dose to critical organs was calculated and found to be below U.S. Food and Drug Administration limits for diagnostic imaging. Also, (99m)TcO (4)() uptake was readily detected by SPECT and found to persist in vivo for at least 4 days. On the basis of our dosimetry calculations, up to five imaging procedures can be safely performed in humans after intraprostatic injection of the Ad5-yCD/mutTK(SR39)rep-hNIS adenovirus and the hNIS reporter gene system can be used to study the dynamics of adenoviral gene therapy vectors in large animal tumors.
Collapse
Affiliation(s)
- Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Freytag SO, Barton KN, Brown SL, Narra V, Zhang Y, Tyson D, Nall C, Lu M, Ajlouni M, Movsas B, Kim JH. Replication-competent adenovirus-mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer. Mol Ther 2007; 15:1600-6. [PMID: 17551507 DOI: 10.1038/sj.mt.6300212] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In preparation for a Phase I trial, we evaluated the efficacy and toxicity of replication-competent adenovirus-mediated suicide gene therapy in combination with radiation in a preclinical model of pancreatic cancer. Human MiaPaCa-2 and PANC-1 pancreatic adenocarcinoma cells were found to be sensitive to the oncolytic effects of the Ad5-yCD/mutTK(SR39)rep-ADP adenovirus and also to the cytotoxic effects of the yeast cytosine deaminase (yCD) and herpes simplex virus thymidine kinase (HSV-1 TK(SR39)) genes in vitro. Combining Ad5-yCD/mutTK(SR39)rep-ADP-mediated suicide gene therapy with radiation significantly increased tumor control beyond that of either modality alone. Injection of Ad5-yCD/mutTK(SR39)rep-ADP in the dog pancreas at doses (10(12) virus particle (vp)) to be used in humans resulted in mild pancreatitis but not peritonitis or hepatotoxicity. Following administration of 9-(4-[(18)F]-fluoro-3-hydroxymethylbutyl)guanine ([(18)F]-FHBG), a positron-emitting substrate of HSV-1 TK, Ad5-yCD/mutTK(SR39)rep-ADP activity could be monitored non-invasively by positron emission tomography (PET). [(18)F]-FHBG uptake was readily detected in the pancreas but not in other major abdominal organs, indicating that little of the injected adenovirus disseminates to collateral tissues. These results demonstrate that Ad5-yCD/mutTK(SR39)rep-ADP-mediated suicide gene therapy has the potential to augment the effectiveness of pancreatic radiotherapy without resulting in excessive toxicity. Hence they provide the scientific basis for an ongoing Phase I trial in pancreatic cancer.
Collapse
Affiliation(s)
- Svend O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Freytag SO, Movsas B, Aref I, Stricker H, Peabody J, Pegg J, Zhang Y, Barton KN, Brown SL, Lu M, Savera A, Kim JH. Phase I Trial of Replication-competent Adenovirus-mediated Suicide Gene Therapy Combined with IMRT for Prostate Cancer. Mol Ther 2007; 15:1016-23. [PMID: 17375076 DOI: 10.1038/mt.sj.6300120] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Replication-competent adenovirus-mediated suicide gene therapy is an investigational cancer treatment in which an oncolytic adenovirus armed with chemo-radiosensitizing genes is used to destroy tumor cells. Previously, we evaluated the toxicity and efficacy of this approach in two clinical trials of prostate cancer using a first-generation adenovirus. Here, we report the toxicity and preliminary efficacy of this approach in combination with intensity-modulated radiotherapy (IMRT) in patients with newly diagnosed prostate cancer using an improved, second-generation adenovirus. The investigational therapy was associated with low toxicity, and there were no dose-limiting toxicities or treatment-related serious adverse events. Relative to a previous trial using a first-generation adenovirus, there was no increase in hematologic, hepatic, gastrointestinal (GI), or genitourinary (GU) toxicities. Post-treatment prostate biopsies yielded provocative preliminary results. When the results of two similar trials were combined, 22% of evaluable patients were positive for adenocarcinoma at their last biopsy, which is better than expected (>or=40%) for this cohort of patients (P=0.038). When the results were categorized by prognostic risk, most of the treatment effect was observed in the intermediate-risk group, with 0 of 12 patients (0%) being positive for cancer at their last biopsy (P<0.01). These results further demonstrate the safety of this investigational approach and raise the possibility that it may have the potential to improve the outcome of conformal radiotherapy in select patient groups.
Collapse
Affiliation(s)
- Svend O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Figueiredo ML, Kao C, Wu L. Advances in preclinical investigation of prostate cancer gene therapy. Mol Ther 2007; 15:1053-64. [PMID: 17457317 PMCID: PMC2826150 DOI: 10.1038/sj.mt.6300181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Treating recurrent prostate cancer poses a great challenge to clinicians. Research efforts in the last decade have shown that adenoviral vector-based gene therapy is a promising approach that could expand the arsenal against prostate cancer. This maturing field is at the stage of being able to translate many preclinical discoveries into clinical practices. At this juncture, it is important to highlight the promising strategies including prostate-targeted gene expression, the use of oncolytic vectors, therapy coupled to reporter gene imaging, and combined treatment modalities. In fact, the early stages of clinical investigation employing combined, multimodal gene therapy focused on loco-regional tumor eradication and showed promising results. Clinicians and scientists should seize the momentum of progress to push forward to improve the therapeutic outcome for the patients.
Collapse
Affiliation(s)
- Marxa L Figueiredo
- Department of Urology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| | - Chinghai Kao
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lily Wu
- Department of Urology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
40
|
Bourbeau D, Lau CJ, Jaime J, Koty Z, Zehntner SP, Lavoie G, Mes-Masson AM, Nalbantoglu J, Massie B. Improvement of Antitumor Activity by Gene Amplification with a Replicating but Nondisseminating Adenovirus. Cancer Res 2007; 67:3387-95. [PMID: 17409449 DOI: 10.1158/0008-5472.can-06-4317] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene therapy is a promising approach for cancer treatment; however, efficacy of current vectors remains insufficient. To improve the success of suicide gene therapy, we constructed a replication-competent adenoviral vector that has its protease gene deleted and expresses bacterial cytosine deaminase fused with bacterial uracil phosphoribosyltransferase (CU). The prodrug, 5-fluorocytosine, is transformed into the highly toxic and tissue-diffusible 5-fluorouracil by CU in infected cells. This vector is incapable of producing infectious particles but is able to undergo a single round of replication, thereby increasing transgene copy number and expression. In the presence of 5-FC, compared with the first-generation vector (AdCU), the replication-competent vector, Ad(dPS)CU-IRES-E1A, was significantly more efficacious for in vitro tumor cell killing and in bystander assays, whereas 25-fold fewer viral particles were required in a three-dimensional spheroid model. For in vivo experiments, in which virus was injected into preestablished intracranial glioma xenografts, followed by 5-FC treatment, mice receiving Ad(dPS)CU-IRES-E1A had significantly smaller tumors at 35 days postinjection as well as significantly longer median survival than mice treated with the replication-deficient, protease-deleted vector [Ad(dPS)CU]. In an immunocompetent syngeneic model, Ad(dPS)CU + 5-FC-treated mice had a median survival of only 23 days, whereas Ad(dPS)CU-IRES-E1A + 5-FC-treated animals had a survival of 57.1% at 365 days. In conclusion, Ad(dPS)CU-IRES-E1A in the presence of 5-FC produces more potent tumoricidal effects than its replication-deficient counterparts.
Collapse
Affiliation(s)
- Denis Bourbeau
- Groupe de Vecteurs de Génomique et Thérapie Génique, Biotechnology Research Institute, National Research Council, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Despite recent advances in early detection and treatment, prostate cancer is still the second leading cause of cancer death in men in the United States, and approximately 27,000 men will die from it this year. Better treatments are needed for aggressive forms of localized disease and hormone-refractory metastatic disease. Recently, several gene therapy strategies have generated provocative results in early-stage clinical trials, raising the possibility that gene therapy may have the potential to affect both localized and metastatic disease. Much work lies ahead. Nevertheless, for the time being, these studies provide hope that gene therapy may someday earn a place in the management of prostate cancer.
Collapse
Affiliation(s)
- Svend O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
42
|
Thompson TC, Rodriguez R. Gene Therapy Prolongs PSA Doubling Time in Prostate Cancer Patients. Mol Ther 2007; 15:442-3. [PMID: 17311030 DOI: 10.1038/sj.mt.6300085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Timothy C Thompson
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA.
| | | |
Collapse
|
43
|
Freytag SO, Stricker H, Peabody J, Pegg J, Paielli D, Movsas B, Barton KN, Brown SL, Lu M, Kim JH. Five-year follow-up of trial of replication-competent adenovirus-mediated suicide gene therapy for treatment of prostate cancer. Mol Ther 2007; 15:636-42. [PMID: 17228316 DOI: 10.1038/sj.mt.6300068] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Replication-competent adenovirus-mediated suicide gene therapy is an investigational cancer treatment that combines the oncolytic actions of human adenoviruses with the cytotoxic effects of chemo-radiosensitizing genes. Previously, we reported the short-term effects of this therapy in men with local recurrence of prostate cancer after definitive radiotherapy. With a median prostate-specific antigen (PSA) follow-up of 5 years, we report here the effect of the gene therapy on prostate-specific antigen doubling time (PSADT), a surrogate end point with significant prognostic power. When considering all evaluable subjects, the PSADT increased following the gene therapy from a mean of 17 to 31 months (median 16 to 22 months) (P=0.014). Assuming that salvage androgen suppression therapy androgen suppression therapy (AST) was uniformly initiated at a PSA of 15 ng/mL, the gene therapy would have delayed the projected onset of salvage therapy by an average of 2 years. The results indicate that replication-competent adenovirus-mediated suicide gene therapy may provide a potential long-term benefit to patients, as shown by a lengthening of the PSADT, and delay in when salvage therapy is indicated. Given the high morbidity associated with AST, we believe this approach could provide an attractive treatment option for selection of patients experiencing PSA relapse following definitive therapy.
Collapse
Affiliation(s)
- Svend O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Idema S, Lamfers ML, van Beusechem VW, Noske DP, Heukelom S, Moeniralm S, Gerritsen WR, Vandertop WP, Dirven CM. AdΔ24 and the p53-expressing variant AdΔ24-p53 achieve potent anti-tumor activity in glioma when combined with radiotherapy. J Gene Med 2007; 9:1046-56. [DOI: 10.1002/jgm.1113] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
45
|
Jiang H, McCormick F, Lang FF, Gomez-Manzano C, Fueyo J. Oncolytic adenoviruses as antiglioma agents. Expert Rev Anticancer Ther 2006; 6:697-708. [PMID: 16759161 DOI: 10.1586/14737140.6.5.697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The treatment for malignant gliomas is suboptimal. Oncolytic adenoviruses hold the promise of being effective agents for the treatment of solid tumors. Importantly, the first oncolytic viral therapy has just been approved for use in combination with chemotherapy for late-stage refractory nasopharyngeal cancer by the Chinese State FDA, following a successful Phase III randomized clinical trial. The concept underlying treatment with oncolytic adenoviruses is based on cancer selectivity by confining viral replication and infectivity to cancer cells. For this purpose, the main strategies used currently to modify the viruses include: functional deletions in essential viral genes; tumor- or tissue-specific promoters used to control the expression of these viral genes; and tropism modification to redirect adenovirus to the cancer cell surface. In the near future, oncolytic adenoviruses need to be optimized to fully realize their potential as critical anticancer tools and, thus, improve the prognosis for patients with malignant gliomas.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Box 316, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
46
|
Figueiredo ML, Sato M, Johnson M, Wu L. Specific targeting of gene therapy to prostate cancer using a two-step transcriptional amplification system. Future Oncol 2006; 2:391-406. [PMID: 16787119 PMCID: PMC3178412 DOI: 10.2217/14796694.2.3.391] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Significant advances in gene therapy have been made as a result of the improvement of gene delivery systems, discovery of new therapeutic genes, better understanding of mechanisms of disease progression, exploration and improvement of tissue-specific gene regulatory sequences, and development of better prodrug/enzyme systems. This review discusses adenoviral-based and prostate-specific cancer gene therapy--emphasizing tissue-specific promoter choices to increase gene therapy safety and specificity--and the development of prostate-targeted vectors, with a focus on the two-step transactivation system for amplifying gene expression, specifically in prostate cancer cells. Several examples will be discussed for the scientific basis and therapeutic applications. In addition, prostate cancer gene therapy clinical trials and future directions in this field will also be described briefly.
Collapse
Affiliation(s)
- Marxa L Figueiredo
- University of California, Department of Urology, David Geffen School of Medicine at UCLA, 675 Charles Young Drive South, LA, CA 90095-1738, USA.
| | | | | | | |
Collapse
|
47
|
Goblirsch M, Zwolak P, Ramnaraine ML, Pan W, Lynch C, Alaei P, Clohisy DR. Novel Cytosine Deaminase Fusion Gene Enhances the Effect of Radiation on Breast Cancer in Bone by Reducing Tumor Burden, Osteolysis, and Skeletal Fracture. Clin Cancer Res 2006; 12:3168-76. [PMID: 16707617 DOI: 10.1158/1078-0432.ccr-05-2729] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Painful breast carcinoma metastases in bone are a common manifestation of malignant disease. Eradication of these tumors can be evasive, and as a result, skeletal morbidity increases with disease progression. EXPERIMENTAL DESIGN The treatment potential of cytosine deaminase (CD) gene therapy combined with radiation treatment was evaluated in vitro and in vivo using a 4T1 murine breast carcinoma model. 4T1 carcinoma cells were transduced with a fusion gene encoding the extracellular and transmembrane domains of the human nerve growth factor receptor and the cytoplasmic portion of the yeast CD gene (NGFR-CD(y)). RESULTS AND CONCLUSIONS CD-expressing tumor cells (4TCD(y)) were highly sensitive to treatment by 5-fluorocytosine prodrug (P < 0.0001). 5-Fluorocytosine treatment of 4TCD(y), but not 4T1 cells, enhanced the effects of radiation in vitro (P < 0.0001). 5-Fluorocytosine prodrug treatment also increased the therapeutic potential of radiation in vivo. Mice with 4TCD(y) intrafemoral tumors showed increased effectiveness of radiation based on improved reductions in tumor size, reductions in tumorigenic osteolysis, and a decrease in skeletal fractures (P < 0.01).
Collapse
Affiliation(s)
- Michael Goblirsch
- Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
MacRae EJ, Giannoudis A, Ryan R, Brown NJ, Hamdy FC, Maitland N, Lewis CE. Gene therapy for prostate cancer: current strategies and new cell-based approaches. Prostate 2006; 66:470-94. [PMID: 16353250 DOI: 10.1002/pros.20388] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Prostate cancer is the most commonly diagnosed cancer in adult males in the Western world. It accounts for one in ten cancer cases and is the second leading cause of cancer death in men, after lung cancer. A number of curative treatments are available for patients with localized prostate cancer such as radical prostatectomy, radiotherapy, or brachytherapy. However, a proportion of these men will develop progressive disease, and some will present de novo with advanced and metastatic prostate cancer, which is amenable to palliation only with androgen-withdrawal therapy. Most of these patients will eventually develop hormone refractory disease which is incurable, and for whom gene therapy, if feasible may develop as an alternative treatment option. In this review we discuss the gene therapy vectors and strategies that are currently in use, new cell-based approaches, discuss their advantages and disadvantages, and review the potential or proven pre-clinical and clinical efficacy in prostate cancer models/patients.
Collapse
Affiliation(s)
- E J MacRae
- Tumour Targeting Group, University of Sheffield Medical School, Beech Hill Road, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Barton KN, Paielli D, Zhang Y, Koul S, Brown SL, Lu M, Seely J, Kim JH, Freytag SO. Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol Ther 2005; 13:347-56. [PMID: 16290236 DOI: 10.1016/j.ymthe.2005.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/27/2005] [Accepted: 10/04/2005] [Indexed: 12/28/2022] Open
Abstract
Replication-competent adenovirus-mediated suicide gene therapy has proven to be safe in humans when delivered intraprostatically. Although signs of efficacy are emerging, it is likely that further improvements will be needed before this technology will have widespread applicability in the clinic. Toward this end, we have developed a second-generation, replication-competent adenovirus (Ad5-yCD/mutTK(SR39)rep-ADP) containing an improved yeast cytosine deaminase (yCD)/mutant(SR39) herpes simplex virus thymidine kinase fusion (yCD/mutTK(SR39)) gene and the adenovirus death protein (ADP) gene. Relative to the first-generation Ad5-CD/TKrep adenovirus, Ad5-yCD/mutTK(SR39)rep-ADP demonstrated greater tumor cell kill in vitro and significantly greater tumor control in preclinical models of human cancer. Quantification of transgene volume following direct injection of fadenovirus into human tumor xenografts and the naïve canine prostate demonstrated that ADP enhanced adenoviral spread in vivo. Toxicology studies were performed to determine whether the improved yCD/mutTK(SR39) fusion and ADP genes increased toxicity. Intraprostatic injection of Ad5-yCD/mutTK(SR39)rep-ADP did not result in significantly increased toxicity relative to the parental Ad5-CD/TKrep adenovirus, the latter of which has proven to be safe in two Phase I prostate cancer clinical trials. Together, these results provide the scientific basis for evaluating the safety and efficacy of the second-generation Ad5-yCD/mutTK(SR39)rep-ADP adenovirus in humans.
Collapse
MESH Headings
- Adenovirus E3 Proteins/administration & dosage
- Adenovirus E3 Proteins/genetics
- Adenovirus E3 Proteins/physiology
- Adenoviruses, Human/genetics
- Animals
- Blotting, Western
- Cell Line, Tumor
- Dogs
- Genes, Transgenic, Suicide/physiology
- Genetic Vectors/genetics
- Genetic Vectors/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Mice, SCID
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Neoplasms, Experimental/virology
- Oncolytic Viruses/genetics
- Oncolytic Viruses/physiology
- Virus Replication/genetics
Collapse
Affiliation(s)
- Kenneth N Barton
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Freytag SO, Kim JH, Brown SL, Barton K, Lu M, Chung M. Gene therapy strategies to improve the effectiveness of cancer radiotherapy. Expert Opin Biol Ther 2005; 4:1757-70. [PMID: 15500404 DOI: 10.1517/14712598.4.11.1757] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Having the ability to alter the genetic makeup of a cancer cell by gene transfer is a potentially powerful strategy for treating human cancer. However, a low efficiency of gene delivery in vivo and poor tumour specificity has prevented the widespread implementation of this technology in the clinic. Despite these formidable obstacles, the first successful application of gene therapy in the treatment of cancer may occur when it is combined with local modalities such as radiation therapy. A small number of gene therapy strategies have been evaluated in clinical trials in combination with external beam radiation therapy. The combined therapy has been well-tolerated and has not exacerbated the side effects of radiation therapy. Gene transfer and tumour cell destruction has been demonstrated in vivo. Although the results await confirmation in larger, prospective Phase III trials, there is suggestive evidence that the combined therapies may be demonstrating better than expected antitumour activity. Our vast knowledge of the molecular defects that drive the cancer process, coupled with our expanding understanding of the genes responsible for tumour cell radioresistance, have spawned the development of rational, targeted gene therapies designed to increase tumour cell radiosensitivity. Here, the results of the clinical trials conducted so far will be reviewed, followed by a description of new approaches under development at present.
Collapse
Affiliation(s)
- Svend O Freytag
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202-3405, USA.
| | | | | | | | | | | |
Collapse
|