1
|
Rahimi V, Tavanai E, Falahzadeh S, Ranjbar AR, Farahani S. Omega-3 fatty acids and health of auditory and vestibular systems: a comprehensive review. Eur J Nutr 2024; 63:1453-1469. [PMID: 38693450 DOI: 10.1007/s00394-024-03369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/04/2024] [Indexed: 05/03/2024]
Abstract
PURPOSE The purpose of this study was to comprehensively review animal and human studies that explore the role of omega-3 PUFAs in maintaining the health of the auditory organ across all life stages. METHODS This narrative review involved searching Scopus, PubMed, Google Scholar, and Cochrane Library databases for relevant articles from December 1980 to July 2023. RESULTS some animal and human studies suggest that both deficiency and excessive intake of long-chain omega-3 PUFAs, particularly docosahexaenoic acid (DHA), can lead to auditory neural conduction impairment and reduced hearing acuity from fetal development to old age (presbycusis). These effects are likely to be dependent on the dosage. Some research indicates that an excessive intake of omega-3, rather than a deficiency, can result in nutritional toxicity and hearing impairments. Animal studies highlight the positive impact of omega-3 supplements with high DHA content in addressing hearing damage, but human research on this subject is limited. Furthermore, certain studies propose that omega-3 PUFAs may prevent or delay age-related hearing loss, with high plasma omega-3 concentration, particularly long-chain omega-3 PUFA, linked to reduced hearing loss. Additionally, consuming fish more than twice a week may be associated with a lower risk of hearing loss in adulthood, with these effects potentially influenced by age and gender. However, the majority of studies have been conducted on animals, and clinical trials are scarce. Research on the influence of omega-3 PUFAs on the peripheral and central vestibular systems remains limited. CONCLUSION This article delves into the impact of omega-3 on the auditory-vestibular system, exploring its influence on neurodevelopment, protection, and treatment. It not only highlights specific research gaps but also offers valuable insights for potential future studies.
Collapse
Affiliation(s)
- Vida Rahimi
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Tavanai
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Falahzadeh
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Department of Audiology, School of Rehabilitation, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Reza Ranjbar
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Farahani
- Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Audiology, Faculty of Rehabilitation Sciences, Tehran University of Medical Sciences, Piche-Shemiran, Enghelab Ave, Tehran, 1148965141, Iran.
| |
Collapse
|
2
|
Suzuki J, Hemmi T, Maekawa M, Watanabe M, Inada H, Ikushima H, Oishi T, Ikeda R, Honkura Y, Kagawa Y, Kawase T, Mano N, Owada Y, Osumi N, Katori Y. Fatty acid binding protein type 7 deficiency preserves auditory function in noise-exposed mice. Sci Rep 2023; 13:21494. [PMID: 38057582 PMCID: PMC10700610 DOI: 10.1038/s41598-023-48702-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Fatty acid-binding protein 7 (FABP7) is vital for uptake and trafficking of fatty acids in the nervous system. To investigate the involvement of FABP7 in noise-induced hearing loss (NIHL) pathogenesis, we used Fabp7 knockout (KO) mice generated via CRISPR/Cas9 in the C57BL/6 background. Initial auditory brainstem response (ABR) measurements were conducted at 9 weeks, followed by noise exposure at 10 weeks. Subsequent ABRs were performed 24 h later, with final measurements at 12 weeks. Inner ears were harvested 24 h after noise exposure for RNA sequencing and metabolic analyses. We found no significant differences in initial ABR measurements, but Fabp7 KO mice showed significantly lower thresholds in the final ABR measurements. Hair cell survival was also enhanced in Fabp7 KO mice. RNA sequencing revealed that genes associated with the electron transport chain were upregulated or less impaired in Fabp7 KO mice. Metabolomic analysis revealed various alterations, including decreased glutamate and aspartate in Fabp7 KO mice. In conclusion, FABP7 deficiency mitigates cochlear damage following noise exposure. This protective effect was supported by the changes in gene expression of the electron transport chain, and in several metabolites, including excitotoxic neurotransmitters. Our study highlights the potential therapeutic significance of targeting FABP7 in NIHL.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Tomotaka Hemmi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Ikushima
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tetsuya Oishi
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Ryoukichi Ikeda
- Department of Otolaryngology, Head and Neck Surgery, Iwate Medical University School of Medicine, 19-1 Odori, Yahaba, Shiwa, 020-8505, Japan
| | - Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
3
|
Long L, Jia Z, Tang X. Serum polyunsaturated fatty acids and hearing threshold shifts in adults in the United States: A cross-sectional study. Front Public Health 2022; 10:939827. [PMID: 36466471 PMCID: PMC9708739 DOI: 10.3389/fpubh.2022.939827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Background Few studies have evaluated the association between polyunsaturated fatty acids (PUFAs) and hearing levels. This study aimed to investigate the association between serum PUFAs and hearing threshold shifts in US adults. Methods We investigated 913 adults from the National Health and Nutrition Examination Survey (NHANES) 2011-2012. Multivariate linear regression analyses were conducted to evaluate associations between PUFA and hearing threshold shifts. Results Overall, 11 serum PUFAs were inversely associated with low-frequency thresholds, especially in men, and were positively related to high-frequency thresholds, particularly in the 40-59 years old cohort. Furthermore, some serum PUFAs were positively associated with both hearing threshold subgroups in women. Conclusion Some PUFAs tend to be beneficial for low-frequency hearing status and detrimental to the high-frequency hearing threshold. The male sex may play a protective role in this association, while the female sex and middle age may be detrimental in the effect of PUFAs on hearing function.
Collapse
Affiliation(s)
- Lili Long
- Department of Otorhinolaryngology, Sichuan University Hospital of Sichuan University, Chengdu, China
| | - Zhenchao Jia
- Department of Prevention and Health Care, Sichuan University Hospital of Sichuan University, Chengdu, China,*Correspondence: Zhenchao Jia
| | - Xinghua Tang
- Department of Otorhinolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China,Xinghua Tang
| |
Collapse
|
4
|
Remize M, Brunel Y, Silva JL, Berthon JY, Filaire E. Microalgae n-3 PUFAs Production and Use in Food and Feed Industries. Mar Drugs 2021; 19:113. [PMID: 33670628 PMCID: PMC7922858 DOI: 10.3390/md19020113] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.
Collapse
Affiliation(s)
- Marine Remize
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Yves Brunel
- GREENSEA, 3 Promenade du Sergent Jean-Louis Navarro, 34140 MÈZE, France; (M.R.); (Y.B.)
| | - Joana L. Silva
- ALLMICROALGAE–Natural Products, Avenida 25 Abril, 2445-413 Pataias, Portugal;
| | | | - Edith Filaire
- GREENTECH, Biopôle Clermont-Limagne, 63360 SAINT BEAUZIRE, France;
- ECREIN Team, UMR 1019 INRA-UcA, UNH (Human Nutrition Unity), University Clermont Auvergne, 63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Nolan SO, Hodges SL, Okoh JT, Binder MS, Lugo JN. Prenatal High-Fat Diet Rescues Communication Deficits in Fmr1 Mutant Mice in a Sex-Specific Manner. Dev Neurosci 2021; 42:94-104. [PMID: 33395685 PMCID: PMC7864857 DOI: 10.1159/000509797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022] Open
Abstract
Using high-throughput analysis methods, the present study sought to determine the impact of prenatal high-fat dietary manipulations on isolation-induced ultrasonic vocalization production in both male and female Fmr1mutants on postnatal day 9. Prior to breeding, male FVB/129 Fmr1 wildtype and female Fmr1 heterozygous breeding pairs were assigned to 1 of 3 diet conditions: standard lab chow, omega-3 fatty acid-enriched chow, and a diet controlling for the fat increase. Prenatal exposure to omega-3 fatty acids improved reductions in the number of calls produced by Fmr1heterozygotes females. Moreover, diminished spectral purity in the female Fmr1homozygous mouse was rescued by exposure to both high-fat diets, although these effects were not seen in the male Fmr1knockout. Prenatal dietary fat manipulation also influenced several other aspects of vocalization production, such as the number of calls produced and their fundamental frequency, aside from effects due to loss of Fmr1.Specifically, in males, regardless of genotype, prenatal exposure to high omega-3s increased the average fundamental frequency of calls. These data support the need for future preclinical and clinical work elucidating the full potential of prenatal high-fat diets as a novel therapeutic alternative forFragile X syndrome.
Collapse
Affiliation(s)
- Suzanne O Nolan
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA
| | - James T Okoh
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Matthew S Binder
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA
| | - Joaquin N Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, Texas, USA,
- Institute of Biomedical Studies, Baylor University, Waco, Texas, USA,
- Department of Biology, Baylor University, Waco, Texas, USA,
| |
Collapse
|
6
|
Perinatal exposure to diets with different n-6:n-3 fatty acid ratios affects olfactory tissue fatty acid composition. Sci Rep 2020; 10:10785. [PMID: 32612195 PMCID: PMC7329853 DOI: 10.1038/s41598-020-67725-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
The olfactory mucosa (OM) and the olfactory bulb (OB) are responsible for the detection and processing of olfactory signals. Like the brain and retina, they contain high levels of n-3 and n-6 polyunsaturated fatty acids (PUFAs), which are essential for the structure and function of neuronal and non-neuronal cells. Since the influence of the maternal diet on olfactory lipid profiles of the offspring has been poorly explored, we examined the effects of feeding mice during the perinatal period with diets containing an adequate linoleic acid level but either deficient in α-linolenic acid (ALA) or supplemented in n-3 long-chain PUFAs on the lipid composition of dams and weaning offspring olfactory tissues. In both the OM and OB, the low n-3 ALA diet led to a marked reduction in n-3 PUFAs with a concomitant increase in n-6 PUFAs, whereas consumption of the high n-3 PUFA diet reduced n-6 PUFAs and increased n-3 PUFAs. Structural analysis showed that the molecular species profiles of the main phospholipid classes of olfactory tissues from weaning pups were markedly affected by the maternal diets. This study demonstrates that the PUFA status of olfactory tissues is sensitive to diet composition from the early stages of development.
Collapse
|
7
|
Honkura Y, Suzuki J, Sakayori N, Inada H, Kawase T, Katori Y, Osumi N. Effects of enriched endogenous omega-3 fatty acids on age-related hearing loss in mice. BMC Res Notes 2019; 12:768. [PMID: 31771637 PMCID: PMC6878677 DOI: 10.1186/s13104-019-4809-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/14/2019] [Indexed: 01/17/2023] Open
Abstract
Objective Dietary intervention is a practical prevention strategy for age-related hearing loss (AHL). Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) may be effective in prevention of AHL due to their anti-inflammatory and tissue-protective functions. Age-related changes in the hearing function of wild-type and Fat-1 transgenic mice derived from the C57BL/6N strain, which can convert omega-6 PUFAs to n-3 PUFAs and consequently produce enriched endogenous n-3 PUFAs, were investigated to test the efficacy of n-3 PUFAs for AHL prevention. Results At 2 months, the baseline auditory brainstem response (ABR) thresholds were the same in Fat-1 and wild-type mice at 8–16 kHz but were significantly higher in Fat-1 mice at 4 and 32 kHz. In contrast, the ABR thresholds of Fat-1 mice were significantly lower at 10 months. Moreover, the ABR thresholds of Fat-1 mice at low-middle frequencies were significantly lower at 13 months (12 kHz). Body weights were significantly reduced in Fat-1 mice at 13 months, but not at 2, 10, and 16–17 months. In conclusion, enriched endogenous n-3 PUFAs produced due to the expression of the Fat-1 transgene partially alleviated AHL in male C57BL/6N mice.
Collapse
Affiliation(s)
- Yohei Honkura
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Jun Suzuki
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.
| | - Nobuyuki Sakayori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, 1 Hikarigaoka, Fukushima, 960-1295, Japan
| | - Hitoshi Inada
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Tetsuaki Kawase
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan.,Laboratory of Rehabilitative Auditory Science, Tohoku University Graduate School of Biomedical Engineering, 1-1 Seiryou-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Neuroscience, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8574, Japan
| |
Collapse
|
8
|
Bianconi S, Santillán ME, Solís MDR, Martini AC, Ponzio MF, Vincenti LM, Schiöth HB, Carlini VP, Stutz G. Effects of dietary omega-3 PUFAs on growth and development: Somatic, neurobiological and reproductive functions in a murine model. J Nutr Biochem 2018; 61:82-90. [PMID: 30189366 DOI: 10.1016/j.jnutbio.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 06/29/2018] [Accepted: 07/18/2018] [Indexed: 12/13/2022]
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are relevant to fetal and infant growth and development. Objective: to assess whether long-term exposure to dietary ω-3 PUFA imbalance alters pre- and/or postnatal pups' development and reproductive function later in life. Mice dams were fed with ω-3 PUFA Control (soybean oil, 7%), Deficient (sunflower oil, 7%) or Excess (blend oil; 4.2% cod-liver+2.8% soybean) diet before conception and throughout gestation-lactation and later on, their pups received the same diet from weaning to adulthood. Offspring somatic, neurobiological and reproductive parameters were evaluated. Excess pups were lighter during the preweaning period and shorter in length from postnatal day (PND) 7 to 49, compared to Control pups (P<.05). On PND14, the percentage of pups with eye opening in Excess group was lower than those from Control and Deficient groups (P<.05). In Excess female offspring, puberty onset (vaginal opening and first estrus) occurred significantly later and the percentage of parthenogenetic oocytes on PND63 was higher than Control and Deficient ones (P<.05). Deficient pups were shorter in length (males: on PND14, 21, 35 and 49; females: on PND14, 21 and 42) compared with Control pups (P<.05). Deficient offspring exhibited higher percentage of bending spermatozoa compared to Control and Excess offspring (P<.05). These results show that either an excessively high or insufficient ω-3 PUFA consumption prior to conception until adulthood seems inadvisable because of the potential risks of short-term adverse effects on growth and development of the progeny or long-lasting effects on their reproductive maturation and function.
Collapse
Affiliation(s)
- Santiago Bianconi
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - María E Santillán
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María Del Rosario Solís
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Ana C Martini
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marina F Ponzio
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Laura M Vincenti
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Valeria P Carlini
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Instituto de Investigaciones en Ciencias de la Salud (INICSA), CONICET and Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina; Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Graciela Stutz
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
9
|
Vulnerability to omega-3 deprivation in a mouse model of NMDA receptor hypofunction. NPJ SCHIZOPHRENIA 2017; 3:12. [PMID: 28560258 PMCID: PMC5441542 DOI: 10.1038/s41537-017-0014-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/10/2017] [Accepted: 02/21/2017] [Indexed: 01/24/2023]
Abstract
Several studies have found decreased levels of ω-3 polyunsaturated fatty acids in the brain and blood of schizophrenia patients. Furthermore, dietary ω-3 supplements may improve schizophrenia symptoms and delay the onset of first-episode psychosis. We used an animal model of NMDA receptor hypofunction, NR1KD mice, to understand whether changes in glutamate neurotransmission could lead to changes in brain and serum fatty acids. We further asked whether dietary manipulations of ω-3, either depletion or supplementation, would affect schizophrenia-relevant behaviors of NR1KD mice. We discovered that NR1KD mice have elevated brain levels of ω-6 fatty acids regardless of their diet. While ω-3 supplementation did not improve any of the NR1KD behavioral abnormalities, ω-3 depletion exacerbated their deficits in executive function. Omega-3 depletion also caused extreme mortality among male mutant mice, with 75% mortality rate by 12 weeks of age. Our studies show that alterations in NMDAR function alter serum and brain lipid composition and make the brain more vulnerable to dietary ω-3 deprivation. Depletion of omega-3 fatty acids in a mouse model of schizophrenia with altered glutamate transmission has a lethal effect in males. Previous studies have suggested that omega-3 supplements may improve the symptoms of schizophrenia. Amy Ramsey and colleagues at the University of Toronto, Canada, show in an established genetic mouse model of the disease that omega-3 dietary supplementation increased brain omega-3 levels, but did not have any beneficial effects on features that mirror symptoms of patients with schizophrenia such as increased locomotor activity or reduced social behavior. Interestingly, omega-3 dietary depletion worsened the cognitive performance and drastically increased the mortality rate of male mutant mice. The mechanisms responsible for these effects remain to be determined, but the findings highlight a potentially serious vulnerability of patients to dietary omega-3 deficits.
Collapse
|
10
|
Albert BB, Vickers MH, Gray C, Reynolds CM, Segovia SA, Derraik JGB, Lewandowski PA, Garg ML, Cameron-Smith D, Hofman PL, Cutfield WS. Oxidized fish oil in rat pregnancy causes high newborn mortality and increases maternal insulin resistance. Am J Physiol Regul Integr Comp Physiol 2016; 311:R497-504. [DOI: 10.1152/ajpregu.00005.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022]
Abstract
Fish oil is commonly taken by pregnant women, and supplements sold at retail are often oxidized. Using a rat model, we aimed to assess the effects of supplementation with oxidized fish oil during pregnancy in mothers and offspring, focusing on newborn viability and maternal insulin sensitivity. Female rats were allocated to a control or high-fat diet and then mated. These rats were subsequently randomized to receive a daily gavage treatment of 1 ml of unoxidized fish oil, a highly oxidized fish oil, or control (water) throughout pregnancy. At birth, the gavage treatment was stopped, but the same maternal diets were fed ad libitum throughout lactation. Supplementation with oxidized fish oil during pregnancy had a marked adverse effect on newborn survival at day 2, leading to much greater odds of mortality than in the control (odds ratio 8.26) and unoxidized fish oil (odds ratio 13.70) groups. In addition, maternal intake of oxidized fish oil during pregnancy led to increased insulin resistance at the time of weaning (3 wks after exposure) compared with control dams (HOMA-IR 2.64 vs. 1.42; P = 0.044). These data show that the consumption of oxidized fish oil is harmful in rat pregnancy, with deleterious effects in both mothers and offspring.
Collapse
Affiliation(s)
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Clint Gray
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | | - Paul A. Lewandowski
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, Victoria, Australia; and
| | - Manohar L. Garg
- Nutraceuticals Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | | | - Paul L. Hofman
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
11
|
Mazahery H, Conlon C, Beck KL, Kruger MC, Stonehouse W, Camargo CA, Meyer BJ, Tsang B, Mugridge O, von Hurst PR. Vitamin D and omega-3 fatty acid supplements in children with autism spectrum disorder: a study protocol for a factorial randomised, double-blind, placebo-controlled trial. Trials 2016; 17:295. [PMID: 27334138 PMCID: PMC4917935 DOI: 10.1186/s13063-016-1428-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/02/2016] [Indexed: 12/18/2022] Open
Abstract
Background There is strong mechanistic evidence to suggest that vitamin D and omega-3 long chain polyunsaturated fatty acids (n-3 LCPUFAs), specifically docosahexaenoic acid (DHA), have the potential to significantly improve the symptoms of autism spectrum disorder (ASD). However, there are no trials that have measured the effect of both vitamin D and n-3 LCPUFA supplementation on autism severity symptoms. The objective of this 2 × 2 factorial trial is to investigate the effect of vitamin D, n-3 LCPUFAs or a combination of both on core symptoms of ASD. Methods/design Children with ASD living in New Zealand (n = 168 children) will be randomised to one of four treatments daily: vitamin D (2000 IU), n-3 LCPUFAs (722 mg DHA), vitamin D (2000 IU) + n-3 LCPUFAs (722 mg DHA) or placebo for 12 months. All researchers, participants and their caregivers will be blinded until the data analysis is completed, and randomisation of the active/placebo capsules and allocation will be fully concealed from all mentioned parties. The primary outcome measures are the change in social-communicative functioning, sensory processing issues and problem behaviours between baseline and 12 months. A secondary outcome measure is the effect on gastrointestinal symptoms. Baseline data will be used to assess and correct basic nutritional deficiencies prior to treatment allocation. For safety measures, serum 25-hydroxyvitamin D 25(OH)D and calcium will be monitored at baseline, 6 and 12 months, and weekly compliance and gastrointestinal symptom diaries will be completed by caregivers throughout the study period. Discussion To our knowledge there are no randomised controlled trials assessing the effects of both vitamin D and DHA supplementation on core symptoms of ASD. If it is shown that either vitamin D, DHA or both are effective, the trial would reveal a non-invasive approach to managing ASD symptoms. Trial registration Australian New Zealand Clinical Trial Registry, ACTRN12615000144516. Registered on 16 February 2015. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1428-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hajar Mazahery
- Institute of Food Science and Technology - School of Food and Nutrition, Massey University, Auckland, New Zealand
| | - Cathryn Conlon
- Institute of Food Science and Technology - School of Food and Nutrition, Massey University, Auckland, New Zealand
| | - Kathryn L Beck
- Institute of Food Science and Technology - School of Food and Nutrition, Massey University, Auckland, New Zealand
| | - Marlena C Kruger
- Institute of Food Science and Technology - School of Food and Nutrition, Massey University, Auckland, New Zealand
| | - Welma Stonehouse
- Commonwealth Scientific Industrial Research Organisation (CSIRO) Food, Nutrition and Bioproducts, Adelaide, SA, Australia
| | - Carlos A Camargo
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara J Meyer
- School of Medicine, University of Wollongong, Illawarra, NSW, 2522, Australia
| | - Bobby Tsang
- North Shore Hospital, Waitemata District Health Board, Auckland, New Zealand
| | - Owen Mugridge
- Institute of Food Science and Technology - School of Food and Nutrition, Massey University, Auckland, New Zealand
| | - Pamela R von Hurst
- Institute of Food Science and Technology - School of Food and Nutrition, Massey University, Auckland, New Zealand.
| |
Collapse
|
12
|
Jougleux JL, Rioux FM, Church MW, Fiset S, Jacques H, Surette ME. Dietary LC-PUFA in iron-deficient anaemic pregnant and lactating guinea pigs induce minor defects in the offsprings' auditory brainstem responses. Nutr Neurosci 2016; 19:447-460. [PMID: 25138699 DOI: 10.1179/1476830514y.0000000140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES We previously demonstrated that a mild pre-natal/early post-natal iron-deficient anaemic (IDA) diet devoid of long-chain polyunsaturated fatty acids (LC-PUFA) affected development, neurophysiology, and cerebral lipid biochemistry of the guinea pigs' progeny. Impacts of dietary LC-PUFA on altered cerebral development resulting from pre-natal IDA are unknown. To address this health issue, impacts of mild gestational IDA in the presence of dietary LC-PUFA on the offsprings' neural maturation were studied in guinea pigs using auditory brainstem responses (ABRs) and assessments of brain fatty acids (FAs). METHODS Female guinea pigs (n = 10/group) were fed an iron sufficient (IS) or IDA diet (146 and 12.7 mg iron/kg, respectively) with physiological amounts of LC-PUFA, during the gestation and lactation periods. From post-natal day (PNd) 9 onwards, the IS + PUFA diet was given to both groups of weaned offspring. Cerebral tissue and offsprings' ABR were collected on PNd24. RESULTS There was no difference in peripheral and brainstem transmission times (BTTs) between IS + PUFA and IDA + PUFA siblings (n = 10/group); the neural synchrony was also similar in both groups. Despite the absence of differences in auditory thresholds, IDA + PUFA siblings demonstrated a sensorineural hearing loss in the extreme range of frequencies (32, 4, and 2 kHz), as well as modified brain FA profiles compared to the IS + PUFA siblings. DISCUSSION The present study reveals that siblings born from dams exposed to a moderate IDA diet including balanced physiological LC-PUFA levels during pregnancy and lactation demonstrate minor impairments of ABR compared to the control siblings, particularly on the auditory acuity, but not on neural synchrony, auditory nerve velocity and BTT.
Collapse
Affiliation(s)
- Jean-Luc Jougleux
- a Département des Sciences des Aliments et de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval , Québec , QC , Canada
| | - France M Rioux
- b Programme de Nutrition, Faculté des Sciences de la Santé , Université d'Ottawa , Ottawa , ON , Canada
| | - Michael W Church
- c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Sylvain Fiset
- d Secteur Administration et Sciences Humaines, Université de Moncton, Campus Edmundston , Edmundston , NB , Canada
| | - Hélène Jacques
- a Département des Sciences des Aliments et de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval , Québec , QC , Canada
| | - Marc E Surette
- e Département de Chimie et Biochimie , Université de Moncton , Moncton , NB , Canada
| |
Collapse
|
13
|
Essential role of docosahexaenoic acid towards development of a smarter brain. Neurochem Int 2015; 89:51-62. [DOI: 10.1016/j.neuint.2015.08.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/18/2015] [Accepted: 08/26/2015] [Indexed: 01/25/2023]
|
14
|
Yin Z, Agellon S, Lavery P, Weiler H. Dietary supplementation with long chain polyunsaturated fatty acids in pregnant guinea pigs has sex-dependent effects on growth and bone outcomes in offspring. Prostaglandins Leukot Essent Fatty Acids 2014; 91:31-8. [PMID: 24928793 DOI: 10.1016/j.plefa.2014.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/04/2014] [Accepted: 05/20/2014] [Indexed: 01/25/2023]
Abstract
Long chain PUFA enhance bone mass in non-pregnant mammals. We examined the effects of arachidonic (AA; 20:4n-6) and docosahexaenoic (DHA; 22:6n-3) acid on bone mass of mothers and neonates. Guinea pig sows (n=15) were fed control, DHA or AA+DHA diets from mating to weaning. Measurements included: osteocalcin (OC), deoxypyridinoline (DPD), areal bone mineral density (aBMD) in sows and neonates; and volumetric density (vBMD) in neonates. Only vertebral aBMD and OC:DPD ratio declined during reproduction and only DHA reduced OC:DPD. Male pup weight was reduced by DHA and female weight elevated by AA+DHA. Whole body and femur aBMD were reduced by DHA and AA+DHA; whereas tibia vBMD was reduced by DHA in males. Female whole body, tibia and vertebrae aBMD plus tibia vBMD were elevated by AA+DHA; and DHA elevated whole body, tibia and vertebrae aBMD. Dietary AA+DHA and DHA elicit sex-dependent effects on neonatal bone, with minimal impact on mothers.
Collapse
Affiliation(s)
- Z Yin
- School of Dietetics and Human Nutrition, McGill University, Macdonald Campus, Ste. Anne-de-Bellevue, Québec H9 X3V9, Canada
| | - S Agellon
- School of Dietetics and Human Nutrition, McGill University, Macdonald Campus, Ste. Anne-de-Bellevue, Québec H9 X3V9, Canada
| | - P Lavery
- School of Dietetics and Human Nutrition, McGill University, Macdonald Campus, Ste. Anne-de-Bellevue, Québec H9 X3V9, Canada
| | - H Weiler
- School of Dietetics and Human Nutrition, McGill University, Macdonald Campus, Ste. Anne-de-Bellevue, Québec H9 X3V9, Canada.
| |
Collapse
|
15
|
Dziorny AC, Orlando MS, Strain JJ, Davidson PW, Myers GJ. Neurophysiologic measures of auditory function in fish consumers: associations with long chain polyunsaturated fatty acids and methylmercury. Neurotoxicology 2013; 38:147-57. [PMID: 23064205 PMCID: PMC3657326 DOI: 10.1016/j.neuro.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Determining if associations exist between child neurodevelopment and environmental exposures, especially low level or background ones, is challenging and dependent upon being able to measure specific and sensitive endpoints. Psychometric or behavioral measures of CNS function have traditionally been used in such studies, but do have some limitations. Auditory neurophysiologic measures examine different nervous system structures and mechanisms, have fewer limitations, can more easily be quantified, and might be helpful additions to testing. To date, their use in human epidemiological studies has been limited. We reviewed the use of auditory brainstem responses (ABR) and otoacoustic emissions (OAE) in studies designed to determine the relationship of exposures to methyl mercury (MeHg) and nutrients from fish consumption with neurological development. We included studies of experimental animals and humans in an effort to better understand the possible benefits and risks of fish consumption. OBJECTIVES We reviewed the literature on the use of ABR and OAE to measure associations with environmental exposures that result from consuming a diet high in fish. We focused specifically on long chain polyunsaturated fatty acids (LCPUFA) and MeHg. METHODS We performed a comprehensive review of relevant studies using web-based search tools and appropriate search terms. RESULTS Gestational exposure to both LCPUFA and MeHg has been reported to influence the developing auditory system. In experimental studies supplemental LCPUFA is reported to prolong ABR latencies and human studies also suggest an association. Experimental studies of acute and gestational MeHg exposure are reported to prolong ABR latencies and impair hair cell function. In humans, MeHg exposure is reported to prolong ABR latencies, but the impact on hair cell function is unknown. CONCLUSION The auditory system can provide objective measures and may be useful in studying exposures to nutrients and toxicants and whether they are associated with children's neurodevelopment.
Collapse
Affiliation(s)
- Adam C. Dziorny
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Mark S. Orlando
- Department of Otolaryngology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J. J. Strain
- Center for Molecular Biosciences, University of Ulster, Coleraine, Northern Ireland, UK
| | - Philip W. Davidson
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Gary J. Myers
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
16
|
Abstract
The effects, on the maternal mammary gland, of diets containing similar lipid percentages but differing in composition of polyunsaturated fatty acids (PUFA) have been assessed in rats during pregnancy and lactation. For this purpose, tuna fish oil (an n-3-PUFA-enriched oil) and corn oil (an n-6-PUFA-enriched oil) were included in diets at ratios such that the caloric inputs were the same as that of the control diet. As expected, the maternal diet affected the tissue composition of dams. Unexpectedly, only the tuna fish oil diet had an effect on pup growth, being associated with the pups being underweight between the ages of 11 and 21 days. The maternal mammary gland of rats fed the tuna fish oil diet displayed two main modifications: the size of cytoplasmic lipid droplets was increased when compared with those in control rats and the mammary epithelium showed an unusual formation of multilayers of cells. These results show that the tuna fish oil diet, during pregnancy and lactation, exerts specific effects on mammary cells and on the formation of lipid droplets. They suggest that this maternal diet affects the functioning of the mammary tissue.
Collapse
|
17
|
Soares JK, Rocha-de-Melo AP, Medeiros MC, Queiroga RC, Bomfim MA, de Souza AF, Nascimento AL, Guedes RC. Conjugated linoleic acid in the maternal diet differentially enhances growth and cortical spreading depression in the rat progeny. Biochim Biophys Acta Gen Subj 2012; 1820:1490-5. [DOI: 10.1016/j.bbagen.2012.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 11/29/2022]
|
18
|
Tuzun F, Kumral A, Ozbal S, Dilek M, Tugyan K, Duman N, Ozkan H. Maternal prenatal omega-3 fatty acid supplementation attenuates hyperoxia-induced apoptosis in the developing rat brain. Int J Dev Neurosci 2012; 30:315-23. [PMID: 22342579 DOI: 10.1016/j.ijdevneu.2012.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 01/22/2012] [Accepted: 01/22/2012] [Indexed: 01/21/2023] Open
Abstract
Supraphysiologic amounts of oxygen negatively influences brain maturation and development. The aim of the present study was to evaluate whether maternal ω-3 long-chain polyunsaturated fatty acid (ω-3 FA) supplementation during pregnancy protects the developing brain against hyperoxic injury. Thirty-six rat pups from six different dams were divided into six groups according to the diet modifications and hyperoxia exposure. The groups were: a control group (standard diet+room air), a hyperoxia group (standard diet+80% O₂ exposure), a hyperoxia+high-dose ω-3 FA-supplemented group, a hyperoxia+low-dose ω-3 FA-supplemented group, a room air+low-dose ω-3 FA-supplemented+group, and a room air+high dose ω-3 FA-supplemented group. The ω-3 FA's were supplemented as a mixture of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from the second day of pregnancy until birth. Rat pups in the hyperoxic groups were exposed to 80% oxygen from birth until postnatal day 5 (P5). At P5, all animals were sacrificed. Neuronal cell death and apoptosis were evaluated by cell count, TUNEL, and active Caspase-3 immunohistochemistry. Histopathological examination showed that maternally ω-3 FA deficient diet and postnatal hyperoxia exposure were associated with significantly lower neuronal counts and significantly higher apoptotic cell death in the selected brain regions. Ω-3 FA treatment significantly diminished apoptosis, in the selected brain regions, in a dose dependent manner. Our results suggest that the maternal ω-3 FA supply may protect the developing brain against hyperoxic injury.
Collapse
Affiliation(s)
- Funda Tuzun
- Department of Neonatology, School of Medicine, Dokuz Eylul University, Turkey
| | | | | | | | | | | | | |
Collapse
|
19
|
Jougleux JL, Rioux FM, Church MW, Fiset S, Surette ME. Mild maternal iron deficiency anemia during pregnancy and lactation in guinea pigs causes abnormal auditory function in the offspring. J Nutr 2011; 141:1390-5. [PMID: 21613451 DOI: 10.3945/jn.110.135715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron deficiency (ID) anemia (IDA) adversely affects different aspects of the nervous system such as myelinogenesis, neurotransmitters synthesis, brain myelin composition, and brain fatty acid and eicosanoid metabolism. Infant neurophysiological outcome in response to maternal IDA is underexplored, especially mild to moderate maternal IDA. Furthermore, most human research has focused on childhood ID rather than prenatal or neonatal ID. Thus, our study evaluated the consequences of mild maternal IDA during pregnancy and lactation on the offsprings' auditory function using the auditory brainstem response (ABR). This technique provides objective measures of auditory acuity, neural transmission times along the peripheral and brainstem portions of the auditory pathway, and postnatal brain maturation. Female guinea pigs (n = 10/group) were fed an iron sufficient diet (ISD) or an iron deficient diet (IDD) (144 and 11.7 mg iron/kg) during their acclimation, gestation, and lactation periods. From postnatal d (PNd) 9 onward, the ISD was given to all weaned offspring. ABR were collected from the offspring on PNd24 using a broad range of stimulus intensities in response to 2, 4, 8, 16, and 32 kHz tone pips. IDA siblings (n = 4), [corrected] compared with the IS siblings (n = 5), had significantly elevated ABR thresholds (hearing loss) in response to all tone pips. These physiological disturbances were primarily due to a sensorineural hearing loss, as revealed by the ABR's latency-intensity curves. These results indicate that mild maternal IDA during gestation and lactation altered the hearing and nervous system development of the young offspring.
Collapse
Affiliation(s)
- Jean-Luc Jougleux
- Département des Sciences des Aliments et de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Québec, QC G1K7P4, Canada
| | | | | | | | | |
Collapse
|
20
|
Davis-Bruno K, Tassinari MS. Essential fatty acid supplementation of DHA and ARA and effects on neurodevelopment across animal species: a review of the literature. ACTA ACUST UNITED AC 2011; 92:240-50. [PMID: 21678548 DOI: 10.1002/bdrb.20311] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/12/2011] [Indexed: 11/06/2022]
Abstract
Docosahexanoic acid (DHA) and arachidonic acid (ARA) are long chain essential fatty acids used as supplements in commercial infant formula. DHA/ARA deficient states are associated with adverse neurological outcomes in animals and humans. Preterm infants are at risk for DHA/ARA deficiency. A few clinical reports on the effects of fatty acid supplementation have shown benefit in preterm, low birth weight, and normal infants in the first year of life, whereas others did not. Studies in animals have reported shortened gestation, fetal growth retardation, reduced infant body mass, and increased fetal mortality with consumption of fatty acids during pregnancy. To understand the data that support fatty acid supplementation in infant formula, a review of the animal model literature was undertaken, to examine the effects of DHA/ARA on neurodevelopment, including the effects on visual acuity. Several points emerged from this review. (1) Animal studies indicate that requirements for DHA/ARA vary depending on developmental age. Alterations of the ratio of DHA/ARA can impact developmental outcome. (2) The available studies suggest that while supplementation of DHA/ARA in an appropriate ratio can increase tissue levels of these fatty acids in the brain and retina, tissues sensitive to depletion of fatty acids, the benefit of routine supplementation remains unclear. Few studies measure functional outcome relative to changes in physiologic pools of DHA/ARA after supplementation. (3) Animal literature does not support a clear long-term benefit of replenishing DHA/ARA tissue levels and administration of these fatty acids at concentrations above those in human milk suggests adverse effects on growth, survival, and neurodevelopment.
Collapse
Affiliation(s)
- Karen Davis-Bruno
- Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA.
| | | |
Collapse
|
21
|
Harper KN, Hibbeln JR, Deckelbaum RJ, Quesenberry CP, Schaefer CA, Brown AS. Maternal serum docosahexaenoic acid and schizophrenia spectrum disorders in adult offspring. Schizophr Res 2011; 128:30-6. [PMID: 21324652 PMCID: PMC3085558 DOI: 10.1016/j.schres.2011.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/10/2011] [Accepted: 01/11/2011] [Indexed: 11/21/2022]
Abstract
It is believed that during mid-to-late gestation, docosahexaenoic acid (DHA), an n-3 fatty acid, plays an important role in fetal and infant brain development, including neurocognitive and neuromotor functions. Deficits in several such functions have been associated with schizophrenia. Though sufficient levels of DHA appear to be important in neurodevelopment, elevated maternal DHA levels have also been associated with abnormal reproductive outcomes in both animal models and humans. Our objective was to assess whether a disturbance in maternal DHA levels, measured prospectively during pregnancy, was associated with risk of schizophrenia and other schizophrenia spectrum disorders (SSD) in adult offspring. In order to test the hypothesis that abnormal levels of DHA are associated with SSD, a case-control study nested within a large, population-based birth cohort, born from 1959 through 1967 and followed up for SSD from 1981 through 1997, was utilized. Maternal levels of both DHA and arachidonic acid (AA), an n-6 fatty acid, were analyzed in archived maternal sera from 57 cases of SSD and 95 matched controls. There was a greater than twofold increased risk of SSD among subjects exposed to maternal serum DHA in the highest tertile (OR=2.38, 95% CI=1.19, 4.76, p=0.01); no such relationship was found between AA and SSD. These findings suggest that elevated maternal DHA is associated with increased risk for the development of SSD in offspring.
Collapse
Affiliation(s)
- Kristin N. Harper
- Robert Wood Johnson Health & Society Scholars Program, Columbia University, 722 W. 168 St., Room 1611, New York, NY 10032, USA
| | - Joseph R. Hibbeln
- Section on Nutritional Neurosciences, LMBB, National Institute on Alcohol Abuse and Alcoholism, NIH, 5625 Fishers Lane, Rm 3N-07, MSC 9410 Bethesda, MD 20892, USA
| | - Richard J. Deckelbaum
- Columbia University College of Physicians and Surgeons and Mailman School of Public Health of Columbia University, 722 West 168 Street, New York, NY, 10032, USA
- Institute of Human Nutrition, 630 West 168 Street, Presbyterian Hospital 15 Floor East, Suite 1512, New York, NY 10032, USA
| | | | | | - Alan S. Brown
- Columbia University College of Physicians and Surgeons and Mailman School of Public Health of Columbia University, 722 West 168 Street, New York, NY, 10032, USA
- New York State Psychiatric Institute, 1051 Riverside Drive, Unit 23, New York, NY 10032, USA
| |
Collapse
|
22
|
Yousofi M, Saberivand A, Becker LA, Karimi I. The effects of Cannabis sativa L. seed (hemp seed) on reproductive and neurobehavioral end points in rats. Dev Psychobiol 2011; 53:402-12. [DOI: 10.1002/dev.20534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 01/14/2011] [Indexed: 11/06/2022]
|
23
|
So EC, Chen YH, Huang CY, Chen JY, Huang BM, Poon PWF. Sound exposure accelerates reflex emergence and development in young rats. Brain Res Bull 2010; 81:391-7. [DOI: 10.1016/j.brainresbull.2009.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 12/13/2009] [Accepted: 12/14/2009] [Indexed: 11/24/2022]
|
24
|
Fedorova I, Alvheim AR, Hussein N, Salem N. Deficit in prepulse inhibition in mice caused by dietary n-3 fatty acid deficiency. Behav Neurosci 2010; 123:1218-25. [PMID: 20001105 DOI: 10.1037/a0017446] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) may be biosynthesized from a precursor alpha-linolenic acid (LNA) or obtained preformed in the diet. Dams were fed four diets with different levels of the various n-3 fatty acids during pregnancy and lactation, and their offspring were weaned to the same diets: "n-3 Deficient," containing (as % total fatty acids) 0.07% of LNA; "Low LNA" (0.4%); "High LNA" (4.8%); and a "DHA + EPA" diet, containing 0.4% of LNA, 2% DHA, and 2% EPA. Sensorimotor gating was measured by prepulse inhibition (PPI) of the acoustic startle response in C57Bl6 mice. The n-3 Deficient and Low LNA diets caused a substantial deficit in PPI compared to the DHA + EPA diet, whereas the High LNA diet induced a less pronounced, but significant reduction of PPI. These are the first data that demonstrate a deficit in sensorimotor gating in rodents caused by an inadequate amount of the n-3 fatty acids in the diet. Our results differentiate the effects of a High LNA diet from one with added EPA and DHA even though the difference in brain DHA content is only 12% between these dietary groups.
Collapse
Affiliation(s)
- Irina Fedorova
- Laboratory of Membrane Biochemistry & Biophysics, National Institutes on Alcohol Abuse & Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
25
|
Muntané G, Janué A, Fernandez N, Odena MA, Oliveira E, Boluda S, Portero-Otin M, Naudí A, Boada J, Pamplona R, Ferrer I. Modification of brain lipids but not phenotype in α-synucleinopathy transgenic mice by long-term dietary n-3 fatty acids. Neurochem Int 2010; 56:318-28. [DOI: 10.1016/j.neuint.2009.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 10/10/2009] [Accepted: 10/31/2009] [Indexed: 01/09/2023]
|
26
|
Excess omega-3 fatty acid consumption by mothers during pregnancy and lactation caused shorter life span and abnormal ABRs in old adult offspring. Neurotoxicol Teratol 2009; 32:171-81. [PMID: 19818397 DOI: 10.1016/j.ntt.2009.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 09/25/2009] [Accepted: 09/29/2009] [Indexed: 11/20/2022]
Abstract
Consuming omega-3 fatty acids (omega-3 FA) during pregnancy and lactation is beneficial to fetal and infant development and might reduce the incidence and severity of preterm births by prolonging pregnancy. Consequently, supplementing maternal diets with large amounts of omega-3 FA is gaining acceptance. However, both over- and under-supplementation with omega-3 FA can harm offspring development. Adverse fetal and neonatal conditions in general can enhance age-related neural degeneration, shorten life span and cause other adult-onset disorders. We hypothesized that maternal over- and under-nutrition with omega-3 FA would shorten the offspring's life span and enhance neural degeneration in old adulthood. To test these hypotheses, female Wistar rats were randomly assigned to one of the three diet conditions starting from day 1 of pregnancy through the entire period of pregnancy and lactation. The three diets were Control omega-3 FA (omega-3/omega-6 ratio approximately 0.14), Excess omega-3 FA (omega-3/omega-6 ratio approximately 14.5) and Deficient omega-3 FA (omega-3/omega-6 ratio approximately 0% ratio). When possible, one male and female offspring from each litter were assessed for life span and sensory/neural degeneration (n=15 litters/group). The Excess offspring had shorter life spans compared to their Control and Deficient cohorts (mean+/-SEM=506+/-24, 601+/-14 and 585+/-21 days, p<or=0.004) when the study terminated on postnatal day 640. The Excess offspring had a higher incidence of presbycusis than the Control and Deficient groups (33.3, 4.3 and 4.5%, p=0.011) and a persistence of other sensory/neurological abnormalities and lower body weights in old adulthood. In conclusion, omega-3 FA over-nutrition or imbalance during pregnancy and lactation had adverse effects on life span and sensory/neurological function in old adulthood. The adverse outcomes in the Excess offspring were likely due to a "nutritional toxicity" during fetal and/or neonatal development that programmed them for life-long health disorders. The health implication is that consuming or administering large amounts of omega-3 FA during pregnancy and lactation seems inadvisable because of adverse effects on the offspring.
Collapse
|
27
|
Jen KLC, Church MW, Wang C, Moghaddam M, Dowhan L, Laja F, Sherman J. Perinatal n-3 fatty acid imbalance affects fatty acid composition in rat offspring. Physiol Behav 2009; 98:17-24. [PMID: 19376145 DOI: 10.1016/j.physbeh.2009.03.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 03/12/2009] [Accepted: 03/31/2009] [Indexed: 11/16/2022]
Abstract
This study was designed to investigate the effects of high and low n-3 FA feeding during perinatal period on the growth and FA profiles in the Wistar rat offspring. Female rats were randomized into three diet groups during pregnancy and lactation (L): Control (CON, ratio of n-3/n-6 approximately 0.14, n=24); n-3 FA deficient (LOW, ratio of n-3/n-6 approximately 0, n=31) and n-3 FA excess (HIGH, ratio of n-3/n-6 approximately 14.0, n=23). Milk samples were obtained on L14. After L24, all offspring were fed the control diet until killed at 23-25 weeks of age. There were no group differences in maternal weight gains or offspring birth weights. After birth, the HIGH offspring weighed the least while CON offspring the most. The FA profiles of the CON and LOW milk resembled CON diet, and the HIGH milk resembled HIGH diet. Body FA profiles of males from all groups were similar to the CON milk profile, but the CON and LOW females resembled the CON milk, while the HIGH females resembled the HIGH milk. All HIGH offspring had increased n-3 levels and n-3/n-6 ratios (males: 0.16+/-0.01; females: 0.23+/-0.06). Thus LOW dams likely had maternal body fat mobilization that compensated for the deficiency in dietary n-3 FA, while a compensatory mechanism was not observed when intake was high. Excess amount of n-3 FA affected female offspring more than males. These data indicate the long-lasting effects of supplementation and supplementing high amounts of n-3 FA during pregnancy and lactation may not be advisable.
Collapse
Affiliation(s)
- K-L Catherine Jen
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, United States.
| | | | | | | | | | | | | |
Collapse
|
28
|
Church MW, Jen KLC, Jackson DA, Adams BR, Hotra JW. Abnormal neurological responses in young adult offspring caused by excess omega-3 fatty acid (fish oil) consumption by the mother during pregnancy and lactation. Neurotoxicol Teratol 2009; 31:26-33. [PMID: 18834936 PMCID: PMC2633713 DOI: 10.1016/j.ntt.2008.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 07/14/2008] [Accepted: 09/07/2008] [Indexed: 11/24/2022]
Abstract
Consuming omega-3 fatty acids (omega-3 FA) during pregnancy and lactation benefits fetal and infant brain development and might reduce the severity of preterm births by prolonging pregnancy. However, diets that are relatively rich in omega-3 FA can adversely affect fetal and infant development and the auditory brainstem response (ABR), a measure of brain development and sensory function. We previously examined the offspring of female rats fed excessive, adequate or deficient amounts of omega-3 FA during pregnancy and lactation. The 24-day-old offspring in the Excess group, compared to the Control group, had postnatal growth retardation and poor hearing acuity and prolonged neural transmission times as evidenced by the ABR. The Deficient group was intermediate. The current study followed these offspring to see if these poor outcomes persisted into young adulthood. Based on prior findings, we hypothesized that the Excess and Deficient offspring would "catch-up" to the Control offspring by young adulthood. Female Wistar rats received one of the three diet conditions from day 1 of pregnancy through lactation. The three diets were the Control omega-3 FA condition (omega-3/omega-6 ratio approximately 0.14), the Excess omega-3 FA condition (omega-3/omega-6 ratio approximately 14.0) and Deficient omega-3 FA condition (omega-3/omega-6 ratio approximately 0% ratio). The Control diet contained 7% soybean oil; whereas the Deficient and Excess omega-3 FA diets contained 7% safflower oil and 7% fish oil, respectively. One male and female offspring per litter were ABR-tested as young adults using tone pip stimuli of 2, 4, 8 and 16 kHz. The postnatal growth retardation and prolonged neural transmission times in the Excess and Deficient pups had dissipated by young adulthood. In contrast, the Excess group had elevated ABR thresholds (hearing loss) at all tone pip frequencies in comparison to the Control and Deficient groups. The Deficient group had worse ABR thresholds than the Control group in response to the 8 kHz tone pips only. The Excess group also had ABR amplitude-intensity profiles suggestive of hyperacusis. These results are consistent with the Barker hypothesis concerning the fetal and neonatal origins of adult diseases. Thus, consuming diets that are excessively rich or deficient in omega-3 FA during pregnancy and lactation seems inadvisable because of risks for long-lasting adverse effects on brain development and sensory function.
Collapse
Affiliation(s)
- M W Church
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
29
|
Hadders-Algra M. Prenatal long-chain polyunsaturated fatty acid status: the importance of a balanced intake of docosahexaenoic acid and arachidonic acid. J Perinat Med 2008; 36:101-9. [PMID: 18211254 DOI: 10.1515/jpm.2008.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review addresses the effect of prenatal long-chain polyunsaturated fatty acid (LCPUFA) status on neurodevelopmental outcome. It focuses on the major LPCUFA doxosahexaenoic acid (DHA; 22:6omega3) and arachidonic acid (AA; 20:4omega6). Due to enzymatic competition high DHA intake results in lower tissue levels of AA. LCPUFA accumulation in the brain starts early and increases during the third trimester. Initially brain AA-accretion exceeds DHA-accretion; after term age DHA-accretion surpasses AA-accretion. Animal studies indicated that early omega3-depletion results in poorer developmental outcome. They also showed that early omega3-supplementation had no effect on cognitive outcome, promotes visual development and impairs auditory and motor development. Only limited human data are available. Correlational studies suggest that neonatal AA status shows a positive relation with early neurodevelopmental outcome and that neonatal DHA status also might be correlated with improved outcome beyond infancy. Results of human intervention studies are equivocal: most studies were unable to demonstrate a positive effect of prenatal omega3-supplementation. It is concluded that only limited evidence exists to support the notion that prenatal omega3-supplementation favours developmental outcome. Caution is warranted for an unbalanced high DHA intake during the first two trimesters of pregnancy, i.e., DHA without additional AA supplementation.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- Department of Paediatrics - Developmental Neurology, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
30
|
Excess and deficient omega-3 fatty acid during pregnancy and lactation cause impaired neural transmission in rat pups. Neurotoxicol Teratol 2008; 30:107-17. [PMID: 18243652 DOI: 10.1016/j.ntt.2007.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/28/2007] [Accepted: 12/21/2007] [Indexed: 11/22/2022]
Abstract
Omega-3 fatty acids (omega-3 FA) consumption during pregnancy and lactation is beneficial to fetal and infant growth and may reduce the severity of preterm births. Thus, scientists and clinicians are recommending increasingly higher omega-3 FA doses for pregnant women and nursing babies for advancing the health of preterm, low birth weight, and normal babies. In contrast, some studies report that over-supplementation with omega-3 FA can have adverse effects on fetal and infant development by causing a form of nutritional toxicity. Our goal was to assess the effects of omega-3 FA excess and deficiency during pregnancy and lactation on the offspring's neural transmission as evidenced by their auditory brainstem responses (ABR). Female Wistar rats were given one of three diets from day 1 of pregnancy through lactation. The three diets were the Control omega-3 FA condition (omega-3/omega-6 ratio approximately 0.14), the Deficient omega-3 FA condition (omega-3/omega-6 ratio approximately 0%) and the Excess omega-3 FA condition (omega-3/omega-6 ratio approximately 14.0). The Control diet contained 7% soybean oil, whereas the Deficient diet contained 7% safflower oil and the Excess diet contained 7% fish oil. The offspring were ABR-tested on postnatal day 24. The rat pups in the Excess group had prolonged ABR latencies in comparison to the Control group, indicating slowed neural transmission times. The pups in the Excess group also showed postnatal growth restriction. The Deficient group showed adverse effects that were milder than those seen in the Excess group. Milk fatty acid profiles reflected the fatty acid profiles of the maternal diets. In conclusion, excess or deficient amounts of omega-3 FA during pregnancy and lactation adversely affected the offspring's neural transmission times and postnatal thriving. Consuming either large or inadequate amounts of omega-3 FA during pregnancy and lactation seems inadvisable because of the potential for adverse effects on infant development.
Collapse
|
31
|
Haubner L, Sullivan J, Ashmeade T, Saste M, Wiener D, Carver J. The effects of maternal dietary docosahexaenoic acid intake on rat pup myelin and the auditory startle response. Dev Neurosci 2007; 29:460-7. [PMID: 17684314 DOI: 10.1159/000107047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/12/2007] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED We investigated the effects of maternal docosahexanoic acid (DHA) supplementation on pups' auditory startle responses and the composition of brain myelin. METHODS Timed-pregnant rats were fed throughout pregnancy and lactation diets that contained 0, 0.3, 0.7 or 3% of total fatty acids as DHA. Milk was collected from culled pups' stomachs on postnatal day (PND) 3, latency of the auditory startle reflex was measured on PND 15, and pups were killed and brains collected on PND 24. RESULTS Higher levels of DHA in maternal diet were reflected in milk and in pups' myelin. The latency of the auditory startle response was significantly longer in offspring of dams fed higher levels of DHA. There was a positive correlation between the myelin content of DHA and the latency of the startle response (p = 0.044), and a negative correlation between the myelin content of DHA and the myelin content of cholesterol (p = 0.005). CONCLUSION High levels of maternal DHA intake alter the lipid composition of rat pup myelin, and are associated with longer latencies of the auditory startle response--a myelin-dependent electrophysiologic response.
Collapse
Affiliation(s)
- Laura Haubner
- Department of Pediatrics, University of South Florida College of Medicine, Tampa, Fla, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Bassaganya-Riera J, Guri AJ, Noble AM, Reynolds KA, King J, Wood CM, Ashby M, Rai D, Hontecillas R. Arachidonic acid-and docosahexaenoic acid-enriched formulas modulate antigen-specific T cell responses to influenza virus in neonatal piglets. Am J Clin Nutr 2007; 85:824-36. [PMID: 17344506 DOI: 10.1093/ajcn/85.3.824] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Whereas the immunomodulatory effects of feeding either arachidonic acid (AA) or docosahexaenoic acid (DHA) separately have been previously investigated, little is known about the immunomodulatory efficacy of AA or DHA when they are fed in combination as infant formula ingredients. OBJECTIVE The objective of this study was to investigate the ability of AA- and DHA(AA/DHA)-enriched infant formula to modulate immune responses in the neonate in response to an inactivated influenza virus vaccine. DESIGN Neonatal piglets (n = 48) were weaned on day 2 of age and distributed into 16 blocks of 3 littermate piglets each. Within each block, piglets were randomly assigned to a control formula, AA/DHA-enriched formula (0.63% AA and 0.34% DHA), or sow milk for 30 d. On day 9, 8 blocks of piglets were immunized with an inactivated influenza virus vaccine. On days 0, 9, 16, 23, and 30 after weaning, we measured influenza virus-specific T cell proliferation and phenotype of T subsets in peripheral blood. A delayed-type hypersensitivity reaction test was administered on day 28. Cytokine messenger RNA expression was determined by quantitative real time reverse transcriptase-polymerase chain reaction on day 30. RESULTS The influenza virus-specific CD4(+) and CD8(+) T cell ex vivo lymphoproliferative responses were significantly lower on day 23 after immunization in piglets receiving dietary AA/DHA supplementation and sow milk than in those receiving the unsupplemented control formula. The immunomodulatory effects of AA/DHA-enriched formulas were consistent with up-regulation of interleukin 10 in peripheral blood mononuclear cells. CONCLUSION Overall, it appears that the AA/DHA-enriched formula modulated antigen-specific T cell responses in part through an interleukin 10-dependent mechanism.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology & Molecular Nutrition Laboratory, Department of Human Nutrition Foods and Exercise, Virginia Tech University, Blacksburg, VA 24060, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Church MW, Jen KLC, Stafferton T, Hotra JW, Adams BR. Reduced auditory acuity in rat pups from excess and deficient omega-3 fatty acid consumption by the mother. Neurotoxicol Teratol 2007; 29:203-10. [PMID: 17174530 PMCID: PMC2562721 DOI: 10.1016/j.ntt.2006.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/13/2006] [Accepted: 10/24/2006] [Indexed: 11/17/2022]
Abstract
Consumption of the nutrients omega-3 fatty acids (omega-3 FA) during pregnancy and lactation is considered beneficial to fetal and infant development. It may also reduce the incidence and severity of preterm births by prolonging gestational length. However several recent human and animal studies have reported that over-supplementation with omega-3 FA, especially in the form of fish oil, can have adverse effects on fetal and infant development and the auditory brainstem response (ABR). Our goal was to assess further the effects of omega-3 FA excess and deficiency during pregnancy and lactation on the offspring's auditory acuity as evidenced by their ABR thresholds. Female Wistar rats were given diets that were either deficient, adequate (control) or excess in omega-3 FA from day 1 of pregnancy through lactation. The offspring were ABR-tested at the postnatal age of 24 days. The rat pups in the Excess treatment condition had significantly elevated (worse) ABR thresholds, postnatal growth restriction, and a trend for increased postnatal mortality in comparison to the Control group. The Deficient group was intermediate. In conclusion, excess or deficient amounts of omega-3 FA during pregnancy and lactation in the laboratory rat adversely affected the offspring's auditory acuity. Postnatal thriving was also adversely affected. Consuming or administering large or inadequate amounts of omega-3 FA during pregnancy and lactation seems inadvisable because of the potential for adverse effects on infant development.
Collapse
Affiliation(s)
- Michael W Church
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
34
|
Bourre JM. Dietary omega-3 fatty acids for women. Biomed Pharmacother 2007; 61:105-12. [PMID: 17254747 DOI: 10.1016/j.biopha.2006.09.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 09/28/2006] [Indexed: 10/23/2022] Open
Abstract
This review details the specific needs of women for omega-3 fatty acids, including alpha linoleic acid (ALA) and the very long chain fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Omega-3 fatty acid (dietary or in capsules) ensures that a woman's adipose tissue contains a reserve of these fatty acids for the developing fetus and the breast-fed newborn infant. This ensures the optimal cerebral and cognitive development of the infant. The presence of large quantities of EPA and DHA in the diet slightly lengthens pregnancy, and improves its quality. Human milk contains both ALA and DHA, unlike that of other mammals. Conditions such as diabetes can alter the fatty acid profile of mother's milk, while certain diets, like those of vegetarians, vegans, or even macrobiotic diets, can have the same effect, if they do not include seafood. ALA, DHA and EPA, are important for preventing ischemic cardiovascular disease in women of all ages. Omega-3 fatty acids can help to prevent the development of certain cancers, particularly those of the breast and colon, and possibly of the uterus and the skin, and are likely to reduce the risk of postpartum depression, manic-depressive psychosis, dementias (Alzheimer's disease and others), hypertension, toxemia, diabetes and, to a certain extend, age-related macular degeneration. Omega-3 fatty acids could play a positive role in the prevention of menstrual syndrome and postmenopausal hot flushes. The normal western diet contains little ALA (less than 50% of the RDA). The only adequate sources are rapeseed oil (canola), walnuts and so-called "omega-3" eggs (similar to wild-type or Cretan eggs). The amounts of EPA and DHA in the diet vary greatly from person to person. The only good sources are fish and seafood, together with "omega-3" eggs.
Collapse
Affiliation(s)
- Jean-Marie Bourre
- INSERM U 705, CNRS UMR 7157, Universités Paris 7 et 5, Hôpital Fernand Widal, 200 rue du Faubourg Saint Denis, 75745 Paris cedex 10, France.
| |
Collapse
|
35
|
van Meeteren ME, Baron W, Beermann C, Dijkstra CD, van Tol EAF. Polyunsaturated fatty acid supplementation stimulates differentiation of oligodendroglia cells. Dev Neurosci 2006; 28:196-208. [PMID: 16679766 DOI: 10.1159/000091917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 07/08/2005] [Indexed: 11/19/2022] Open
Abstract
Dietary polyunsaturated fatty acids (PUFAs) have been postulated as alternative supportive treatment for multiple sclerosis, since they may promote myelin repair. We set out to study the effect of supplementation with n-3 and n-6 PUFAs on OLN-93 oligodendroglia and rat primary oligodendrocyte differentiation in vitro. It appeared that OLN-93 cells actively incorporate and metabolise the supplemented PUFAs in their cell membrane. The effect of PUFAs on OLN-93 differentiation was further assessed by morphological and Western blot evaluation of markers of oligodendroglia differentiation: 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), zonula occludens-1 (ZO-1) and myelin-associated glycoprotein (MAG). Supplementation of the OLN-93 cells with n-3 and n-6 PUFAs increased the degree of differentiation determined by morphological analysis. Moreover, CNP protein expression was significantly increased by gamma-linolenic acid (GLA, 18:3n-6) supplementation. In accordance with the OLN-93 results, studies with rat primary oligodendrocytes, a more advanced model of cell differentiation, showed GLA supplementation to promote oligodendrocyte differentiation. Following GLA supplementation, increased numbers of proteolipid protein (PLP)-positive oligodendrocytes and increased myelin sheet formation was observed during differentiation of primary oligodendrocytes. Moreover, increased CNP, and enhanced PLP and myelin basic protein expression were found after GLA administration. These studies provide support for the dietary supplementation of specific PUFAs to support oligodendrocyte differentiation and function.
Collapse
Affiliation(s)
- M E van Meeteren
- Biomedical Research Department, Numico Research B.V., Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Abstract
Omega-3 fatty acids are dietary essentials, and are critical to brain development and function. Increasing evidence suggests that a relative lack of omega-3 may contribute to many psychiatric and neurodevelopmental disorders. This review focuses on the possible role of omega-3 in attention-deficit/hyperactivity disorder (ADHD) and related childhood developmental disorders, evaluating the existing evidence from both research and clinical perspectives. Theory and experimental evidence support a role for omega-3 in ADHD, dyslexia, developmental coordination disorder (DCD) and autism. Results from controlled treatment trials are mixed, but the few studies in this area have involved different populations and treatment formulations. Dietary supplementation with fish oils (providing EPA and DHA) appears to alleviate ADHD-related symptoms in at least some children, and one study of DCD children also found benefits for academic achievement. Larger trials are now needed to confirm these findings, and to establish the specificity and durability of any treatment effects as well as optimal formulations and dosages. Omega-3 is not supported by current evidence as a primary treatment for ADHD or related conditions, but further research in this area is clearly warranted. Given their relative safety and general health benefits, omega-3 fatty acids offer a promising complementary approach to standard treatments.
Collapse
|
37
|
Rioux FM, Lindmark G, Hernell O. Does inadequate maternal iron or DHA status have a negative impact on an infant's functional outcomes? Acta Paediatr 2006; 95:137-44. [PMID: 16449018 DOI: 10.1080/08035250500281814] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
UNLABELLED Marginal intake of iron and omega-3 long-chain fatty acids (DHA) is prevalent among pregnant women. It is not clear to what extent poor iron or DHA status during pregnancy impacts on an infant's functional outcomes. A few studies suggest that inadequate maternal iron or DHA status may be associated with suboptimal functional outcomes in infants. In addition, there is a lack of prospective studies using randomized, double-blind design or experimental studies with appropriate animal models. Although both nutrients are involved in early brain development and their metabolism is interrelated, no study has examined the interaction between iron and omega-3 fatty acids during pregnancy. CONCLUSION Long-term studies on large cohorts of pregnant women and their infants are needed to determine whether inadequate iron or DHA status during pregnancy is detrimental to infant neurodevelopment.
Collapse
Affiliation(s)
- France M Rioux
- Ecole des sciences des aliments, de nutrition et d'études familiales, Université de Moncton, New Brunswick, Canada.
| | | | | |
Collapse
|
38
|
Bourre JM. [The role of nutritional factors on the structure and function of the brain: an update on dietary requirements]. Rev Neurol (Paris) 2005; 160:767-92. [PMID: 15454864 DOI: 10.1016/s0035-3787(04)71032-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The brain is an organ elaborated and functioning from substances present in the diet. Dietary regulation of blood glucose level (via ingestion of food with a low glycemic index ensuring a low insulin level) improves the quality and duration of intellectual performance, if only because at rest the adult brain consumes 50 p. 100 of dietary carbohydrates, 80 p. 100 of them for energy purposes. The nature of the amino acid composition of dietary proteins contributes to good cerebral function; tryptophan plays a special role. Many indispensable amino acids present in dietary proteins help to elaborate neurotransmitters and neuromodulators. Omega-3 fatty acids provided the first coherent experimental demonstration of the effect of dietary nutrients on the structure and function of the brain. First it was shown that the differentiation and functioning of cultured brain cells requires omega-3 fatty acids. It was then demonstrated that alpha-linolenic acid (ALA) deficiency alters the course of brain development, perturbs the composition and physicochemical properties of brain cell membranes, neurones, oligodendrocytes, and astrocytes (ALA). This leads to physicochemical modifications, induces biochemical and physiological perturbations, and results in neurosensory and behavioral upset. Consequently, the nature of polyunsaturated fatty acids (in particular omega-3) present in formula milks for infants (premature and term) conditions the visual and cerebral abilities, including intellectual abilities. Moreover, dietary omega-3 fatty acids are certainly involved in the prevention of some aspects of cardiovascular disease (including at the level of cerebral vascularization), and in some neuropsychiatric disorders, particularly depression, as well as in dementia, notably Alzheimer's disease. Their deficiency can prevent the satisfactory renewal of membranes and thus accelerate cerebral aging. Iron is necessary to ensure oxygenation, to produce energy in the cerebral parenchyma, and for the synthesis of neurotransmitters. The iodine provided by the thyroid hormone ensures the energy metabolism of the cerebral cells. The absence of iodine during pregnancy induces severe cerebral dysfunction, leading to cretinism. Manganese, copper, and zinc participate in enzymatic mechanisms that protect against free radicals, toxic derivatives of oxygen. The use of glucose by nervous tissue implies the presence of vitamin B1. Vitamin B9 preserves memory during aging, and with vitamin B12 delays the onset of signs of dementia, provided it is administered in a precise clinical window, at the onset of the first symptoms. Vitamins B6 and B12, among others, are directly involved in the synthesis of neurotransmitters. Nerve endings contain the highest concentrations of vitamin C in the human body. Among various vitamin E components, only alpha-tocopherol is involved in nervous membranes. The objective of this update is to give an overview of the effects of dietary nutrients on the structure and certain functions of the brain.
Collapse
Affiliation(s)
- J-M Bourre
- Unité de recherches en Neuro-Pharmaco-Nutrition, INSERM U26, Hôpital Fernand Widal, Paris.
| |
Collapse
|
39
|
Auestad N, Stockard-Sullivan J, Innis SM, Korsak R, Edmond J. Auditory brainstem evoked response in juvenile rats fed rat milk formulas with high docosahexaenoic acid. Nutr Neurosci 2004; 6:335-41. [PMID: 14744037 DOI: 10.1080/10284150310001624183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
UNLABELLED Previous studies found that juvenile offspring of rats fed high docosahexaenoic acid (DHA; 22:6n-3) diets through gestation and lactation had longer auditory brainstem-evoked response (ABR) accompanied by higher 22:6n-3 and lower arachidonic acid (ARA; 20:4n-6) in brain. In the present study, ABR was assessed in juvenile rats fed high-DHA diets only postnatally. METHODS Rat pups were fed rat milk formulas with varying amounts of DHA and ARA to 19 days of age followed by diets with the corresponding fatty acids. The high-DHA group was fed 2.3% of fatty acids as DHA, the DHA + ARA group was fed DHA and ARA at 0.6 and 0.4% of fatty acids, levels similar to those in some infant formulas, and the unsupplemented group was fed no DHA or ARA. ABR and fatty acid and monoamine levels in brain were measured on postnatal days 26-28. Statistical analyses were measured by ANOVA. RESULTS ARA and DHA levels in brain increased with supplementation. ABR was shorter in the high-DHA group than the DHA + ARA group and not different from the unsupplemented or dam-reared suckling group. Norepinephrine levels in the inferior colliculus were lower in the high-DHA group than the DHA + ARA group and higher in all formula groups compared to the dam-reared group. CONCLUSION In contrast to the longer ABR in juvenile offspring of rats fed high-DHA through gestation and lactation, ABR was shorter in juvenile rats fed high-DHA diets only after birth than rats fed ARA + DHA. Further studies are needed to understand the relationship between dietary DHA, norepinephrine, and auditory system development over a range of DHA intakes and discrete periods of development.
Collapse
Affiliation(s)
- Nancy Auestad
- 625 Cleveland Avenue, Ross Products Division, Abbott Laboratories, Columbus, OH 43215, USA.
| | | | | | | | | |
Collapse
|
40
|
Salvati S, Natali F, Attorri L, Raggi C, Di Biase A, Sanchez M. Stimulation of myelin proteolipid protein gene expression by eicosapentaenoic acid in C6 glioma cells. Neurochem Int 2004; 44:331-8. [PMID: 14643750 DOI: 10.1016/s0197-0186(03)00172-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this study, the role of exogenous fatty acids in the regulation of proteolipid protein (PLP) gene expression was investigated using the following model culture system: C6 glioma cells expressing the green-fluorescent protein (eGFP) driven by different segments of PLP promoter. Eicosapentanoic acid (EPA; 20:5 n-3), but not arachidonic acid (AA; 20:4 n-6), induced a significant increase in medium fluorescence intensity (MFI) determined by fluorescence-activated cell sorting (FACS). The induction of PLP promoter was time-dependent showing maximal activity between 24 and 48 h after EPA exposure. PLP promoter activation was dependent on fatty acid concentration, with maximum activation at 200 microM. Northern blot analysis confirmed the fluorescence data in C6 cells incubated with EPA. Furthermore, this treatment increased the adenylyl cyclase-cyclic AMP (cAMP) levels and the mitogen-activated protein kinase (MAPK) activation in C6 cells. PLP promoter activity was inhibited by pre-treatment with H89 (protein kinase A (PKA) inhibitor), but not with PD98059 (MAPK inhibitor), suggesting that EPA stimulates the expression of PLP via cAMP-mediated pathways.
Collapse
Affiliation(s)
- Serafina Salvati
- Department of Metabolism & Pathological Biochemistry, Istituto Superiore di Sanità, V le Regina Elena, Roma 299-00161, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Stockard-Sullivan JE, Korsak RA, Webber DS, Edmond J. Mild carbon monoxide exposure and auditory function in the developing rat. J Neurosci Res 2003; 74:644-54. [PMID: 14635216 DOI: 10.1002/jnr.10808] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have examined the influence of chronic mild exposure to carbon monoxide (CO) on cognitive (learning) and auditory function in the developing rat. We have demonstrated that the auditory pathway is compromised at exposures less than 50 ppm, whereas learning was not influenced at 100 ppm. Artificially reared rat pups were exposed to CO during the brain growth spurt and onset of myelination. Spatial learning was assessed using the Morris Water Maze and three tests of auditory function: (1) auditory brainstem conduction times; (2) the amplitude of the eighth nerve's action potential; and (3) otoacoustic emissions carried out on rat pups (age 22- 24 days). The pups were gastrostomy-reared on a rat milk substitute and chronically exposed to CO at discrete concentrations in the range of 12-100 ppm from 6 days of age to post-weaning at 21-23 days of age. We found no difference in auditory brainstem conduction times at all CO concentrations in comparison to non-exposed controls. There was a difference in otoacoustic emissions for test and controls at CO concentrations of 50 ppm but not at lower concentrations. There was a consistent attenuation of the amplitude of the eighth nerve's action potential, even at the lowest CO exposure examined. The attenuation of the amplitude of the action potential of the eighth nerve at 50 ppm carbon monoxide exposure did not completely recover by 73 days of age. We conclude that prolonged mild exposure to carbon monoxide during development causes measurable functional changes at the level of the eighth cranial nerve.
Collapse
Affiliation(s)
- Janet E Stockard-Sullivan
- Mental Retardation Research Center, The David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|