1
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
2
|
Frlan R. An Evolutionary Conservation and Druggability Analysis of Enzymes Belonging to the Bacterial Shikimate Pathway. Antibiotics (Basel) 2022; 11:antibiotics11050675. [PMID: 35625318 PMCID: PMC9137983 DOI: 10.3390/antibiotics11050675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Enzymes belonging to the shikimate pathway have long been considered promising targets for antibacterial drugs because they have no counterpart in mammals and are essential for bacterial growth and virulence. However, despite decades of research, there are currently no clinically relevant antibacterial drugs targeting any of these enzymes, and there are legitimate concerns about whether they are sufficiently druggable, i.e., whether they can be adequately modulated by small and potent drug-like molecules. In the present work, in silico analyses combining evolutionary conservation and druggability are performed to determine whether these enzymes are candidates for broad-spectrum antibacterial therapy. The results presented here indicate that the substrate-binding sites of most enzymes in this pathway are suitable drug targets because of their reasonable conservation and druggability scores. An exception was the substrate-binding site of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, which was found to be undruggable because of its high content of charged residues and extremely high overall polarity. Although the presented study was designed from the perspective of broad-spectrum antibacterial drug development, this workflow can be readily applied to any antimicrobial target analysis, whether narrow- or broad-spectrum. Moreover, this research also contributes to a deeper understanding of these enzymes and provides valuable insights into their properties.
Collapse
Affiliation(s)
- Rok Frlan
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Ai W, Peng Z, Wang F, Zhang Y, Xie S, Liang W, Hua L, Wang X, Chen H, Wu B. A Marker-Free Bordetella bronchiseptica aroA/ bscN Double Deleted Mutant Confers Protection Against Lethal Challenge. Vaccines (Basel) 2019; 7:vaccines7040176. [PMID: 31690029 PMCID: PMC6963861 DOI: 10.3390/vaccines7040176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Bordetella bronchiseptica is a leading cause of swine respiratory disorders which depict a great threat to well-flourished porcine industry. Vaccination remains an effective way for the prevention of B. bronchiseptica infections, as live B. bronchiseptica vaccines possess many advantages compared to inactivated vaccines and/or sub-unit vaccines, however, their safety is not up to the mark. In present study, we constructed marker-free aroA/bscN double deleted B. bronchiseptica QH09 through two-step homologous recombination strategy. Our data showed that QH09 attenuated virulence to mice compared with the parent aroA deleted B. bronchiseptica QH0814. We also found that QH09 meets the vaccine safety standards, upon challenge in piglets, did not cause any visible clinical signs or lesions on organs. Finally, we demonstrated that vaccination of QH09 activated the systemic as well as the mucosal immunity in pigs and provided protection against lethal bacterial challenge. These findings suggest that the aroA/bscN double deleted B. bronchiseptica QH09 may be an effective vaccine candidate, with safety assurance of animals against B. bronchiseptica infections.
Collapse
Affiliation(s)
- Weicheng Ai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Fei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Sisi Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Animal Husbandry and Veterinary Institute, Hubei Academy of Agricultural Science, Wuhan 430070, China.
| | - Lin Hua
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Müştak İB, Yardımcı H. Construction and in vitro characterisation of aroA defective (aroAΔ) mutant Salmonella Infantis. Arch Microbiol 2019; 201:1277-1284. [PMID: 31240343 DOI: 10.1007/s00203-019-01694-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/24/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
Poultry vaccine programs are important for control of Salmonella infections. Although there are vaccines for Salmonella Enteritidis, Salmonella Typhimurium and Salmonella Typhi, there are no vaccines for Salmonella Infantis which has an increased rate in the world. In this study, it was aimed to generate aroA gene deleted mutant bacteria for the constitution of S. Infantis vaccine prototype and the in vitro characterisation of this bacterium. S. Infantis auxotrophic mutant which has a block at any step of chorismate pathway has been constituted for the first time in the world and it was determined that this bacterium gets susceptibility against some antibiotics and antimicrobial substances. It was also observed that the adhesion and invasion rate of mutant strain tenfold decreased in comparison with the field strain in cell culture assay. It is understood from the in vitro evaluation of this mutant strain that it can be used as a vaccine candidate in further vaccine development studies.
Collapse
Affiliation(s)
- İnci Başak Müştak
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, 06110, Ankara, Turkey.
| | - Hakan Yardımcı
- Department of Microbiology, Faculty of Veterinary Medicine, Ankara University, Şehit Ömer Halisdemir Bulv. Dışkapı, 06110, Ankara, Turkey
| |
Collapse
|
5
|
Yevsa T, Ebensen T, Fuchs B, Zygmunt B, Libanova R, Gross R, Schulze K, Guzmán CA. Development and characterization of attenuated metabolic mutants of Bordetella bronchiseptica for applications in vaccinology. Environ Microbiol 2012; 15:64-76. [PMID: 22676396 DOI: 10.1111/j.1462-2920.2012.02779.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bordetella bronchiseptica is an important pathogen causing a number of veterinary respiratory syndromes in agriculturally important and food-producing confinement-reared animals, resulting in great economic losses annually amounting to billions of euros worldwide. Currently available live vaccines are incompletely satisfactory in terms of efficacy and safety. An efficient vaccine for livestock animals would allow reducing the application of antibiotics, thereby preventing the massive release of pharmaceuticals into the environment. Here, we describe two new potential vaccine strains based on the BB7865 strain. Two independent attenuating mutations were incorporated by homologous recombination in order to make negligible the risk of recombination and subsequent reversion to the virulent phenotype. The mutations are critical for bacterial metabolism, resistance to oxidative stress, intracellular survival and in vivo persistence. The resulting double mutants BB7865 risA aroA and BB7865 risA dapE were characterized as promising vaccine candidates, which are able to confer protection against colonization of the lower respiratory tract after sublethal challenge with the wild-type strain.
Collapse
Affiliation(s)
- Tetyana Yevsa
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Sukumar N, Sloan GP, Conover MS, Love CF, Mattoo S, Kock ND, Deora R. Cross-species protection mediated by a Bordetella bronchiseptica strain lacking antigenic homologs present in acellular pertussis vaccines. Infect Immun 2010; 78:2008-16. [PMID: 20176797 PMCID: PMC2863494 DOI: 10.1128/iai.01142-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/06/2009] [Accepted: 12/15/2009] [Indexed: 12/31/2022] Open
Abstract
The Bordetella species are Gram-negative bacterial pathogens that are characterized by long-term colonization of the mammalian respiratory tract and are causative agents of respiratory diseases in humans and animals. Despite widespread and efficient vaccination, there has been a world-wide resurgence of pertussis, which remains the leading cause of vaccine-preventable death in developed countries. It has been proposed that current acellular vaccines (Pa) composed of only a few bacterial proteins may be less efficacious because of vaccine-induced antigenic shifts and adaptations. To gain insight into the development of a newer generation of vaccines, we constructed a Bordetella bronchiseptica strain (LPaV) that does not express the antigenic homologs included in any of the Pa vaccines currently in use. This strain also lacks adenylate cyclase toxin, an essential virulence factor, and BipA, a surface protein. While LPaV colonized the mouse nose as efficiently as the wild-type strain, it was highly deficient in colonization of the lower respiratory tract and was attenuated in induction of inflammation and injury to the lungs. Strikingly, to our surprise, we found that in an intranasal murine challenge model, LPaV elicited cross-species protection against both B. bronchiseptica and Bordetella pertussis. Our data suggest the presence of immunogenic protective components other than those included in the pertussis vaccine. Combined with the whole-genome sequences of many Bordetella spp. that are available, the results of this study should serve as a platform for strategic development of the next generation of acellular pertussis vaccines.
Collapse
Affiliation(s)
- Neelima Sukumar
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Gina Parise Sloan
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Matt S. Conover
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Cheraton F. Love
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Seema Mattoo
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Nancy D. Kock
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| | - Rajendar Deora
- Department of Microbiology and Immunology, Program in Molecular Genetics, Department of Pathology/Comparative Medicine, Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, North Carolina 27157, Howard Hughes Medical Institute and Department of Pharmacology, University of California, San Diego School of Medicine, San Diego, California
| |
Collapse
|
7
|
Kim T, Toan NT, Seo J, Jung B, Lee J, Lee B. Bordetella bronchiseptica aroA mutant as a live vaccine vehicle for heterologous porcine circovirus type 2 major capsid protein expression. Vet Microbiol 2009; 138:318-24. [DOI: 10.1016/j.vetmic.2009.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/07/2009] [Accepted: 04/14/2009] [Indexed: 11/28/2022]
|
8
|
Development of non-antibiotic-resistant, chromosomally based, constitutive and inducible expression systems for aroA-attenuated Salmonella enterica Serovar Typhimurium. Infect Immun 2009; 77:1817-26. [PMID: 19223478 DOI: 10.1128/iai.01301-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Live-vaccine delivery systems expressing two model antigens from Mycoplasma hyopneumoniae, F2(P97) (Adh) and NrdF, were constructed using Salmonella enterica serovar Typhimurium aroA (STM-1), and immunogenicity in mice was evaluated. Recombinant plasmid-based expression (PBE) and chromosomally based expression (CBE) systems were constructed. The PBE system was formed by cloning both antigen genes into pJLA507 to create an operon downstream of temperature-inducible promoters. Constitutive CBE was achieved using a promoter-trapping technique whereby the promoterless operon was stably integrated into the chromosome of STM-1, and the expression of antigens was assessed. The chromosomal position of the operon was mapped in four clones. Inducible CBE was obtained by using the in vivo-induced sspA promoter and recombining the expression construct into aroD. Dual expression of the antigens was detected in all systems, with PBE producing much larger quantities of both antigens. The stability of antigen expression after in vivo passage was 100% for all CBE strains recovered. PBE and CBE strains were selected for comparison in a vaccination trial. The vaccine strains were delivered orally into mice, and significant systemic immunoglobulin M (IgM) and IgG responses against both antigens were detected among all CBE groups. No significant immune response was detected using PBE strains. Expression of recombinant antigens in S. enterica serovar Typhimurium aroA from chromosomally located strong promoters without the use of antibiotic resistance markers is a reliable and effective method of inducing a significant immune response.
Collapse
|
9
|
Sukumar N, Love CF, Conover MS, Kock ND, Dubey P, Deora R. Active and passive immunizations with Bordetella colonization factor A protect mice against respiratory challenge with Bordetella bronchiseptica. Infect Immun 2009; 77:885-95. [PMID: 19064638 PMCID: PMC2632038 DOI: 10.1128/iai.01076-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/27/2008] [Accepted: 11/26/2008] [Indexed: 01/08/2023] Open
Abstract
Bordetella colonization factor A (BcfA) is an outer membrane immunogenic protein, which is critical for efficient colonization of the murine respiratory tract. These properties of BcfA prompted us to examine its utility in inducing a protective immune response against Bordetella bronchiseptica in a mouse model of intranasal infection. Mice vaccinated with BcfA demonstrated reduced pathology in the lungs and harbored lower bacterial burdens in the respiratory tract. Immunization with BcfA led to the generation of BcfA-specific antibodies in both the sera and lungs, and passive immunization led to the reduction of B. bronchiseptica in the tracheas and lungs. These results suggest that protection after immunization with BcfA is mediated in part by antibodies against BcfA. To further investigate the mechanism of BcfA-induced immune clearance, we examined the role of neutrophils and macrophages. Our results demonstrate that neutrophils are critical for anti-BcfA antibody-mediated clearance and that opsonization with anti-BcfA serum enhances phagocytosis of B. bronchiseptica by murine macrophages. We show that immunization with BcfA results in the production of gamma interferon and subclasses of immunoglobulin G antibodies that are consistent with the induction of a Th1-type immune response. In combination, our findings suggest that the mechanism of BcfA-mediated immunity involves humoral and cellular responses. Expression of BcfA is conserved among multiple clinical isolates of B. bronchiseptica. Our results demonstrate the striking protective efficacy of BcfA-mediated immunization, thereby highlighting its utility as a potential vaccine candidate. These results also provide a model for the development of cell-free vaccines against B. bronchiseptica.
Collapse
Affiliation(s)
- Neelima Sukumar
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Medical Center Blvd., Gray 5086, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
10
|
Funke T, Healy-Fried ML, Han H, Alberg DG, Bartlett PA, Schönbrunn E. Differential inhibition of class I and class II 5-enolpyruvylshikimate-3-phosphate synthases by tetrahedral reaction intermediate analogues. Biochemistry 2007; 46:13344-51. [PMID: 17958399 DOI: 10.1021/bi701095u] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP synthase or EPSPS) is best known as the target of the herbicide glyphosate. EPSPS is also considered an attractive target for the development of novel antibiotics since the pathogenicity of many microorganisms depends on the functionality of the shikimate pathway. Here, we have investigated the inhibitory potency of stable fluorinated or phosphonate-based analogues of the tetrahedral reaction intermediate (TI) in a parallel study utilizing class I (glyphosate-sensitive) and class II (glyphosate-tolerant) EPSPS. The (R)-difluoromethyl and (R)-phosphonate analogues of the TI are the most potent inhibitors of EPSPS described to date. However, we found that class II EPSPS are up to 400 times less sensitive to inhibition by these TI analogues. X-ray crystallographic data revealed that the conformational changes of active site residues observed upon inhibitor binding to the representative class I EPSPS from Escherichia coli do not occur in the prototypical class II enzyme from Agrobacterium sp. strain CP4. It appears that because the active sites of class II EPSPS do not possess the flexibility to accommodate these TI analogues, the analogues themselves undergo conformational changes, resulting in less favorable inhibitory properties. Since pathogenic microorganisms such as Staphylococcus aureus utilize class II EPSPS, we conclude that the rational design of novel EPSPS inhibitors with potential as broad-spectrum antibiotics should be based on the active site structures of class II EPSP synthases.
Collapse
Affiliation(s)
- Todd Funke
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | |
Collapse
|
11
|
Mann P, Goebel E, Barbarich J, Pilione M, Kennett M, Harvill E. Use of a genetically defined double mutant strain of Bordetella bronchiseptica lacking adenylate cyclase and type III secretion as a live vaccine. Infect Immun 2007; 75:3665-72. [PMID: 17452472 PMCID: PMC1932943 DOI: 10.1128/iai.01648-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/30/2006] [Accepted: 03/30/2007] [Indexed: 12/31/2022] Open
Abstract
While most vaccines consisting of killed bacteria induce high serum antibody titers, they do not always confer protection as effective as that induced by infection, particularly against mucosal pathogens. Bordetella bronchiseptica is a gram-negative respiratory pathogen that is endemic in many nonhuman mammalian populations and causes substantial disease in a variety of animals. At least 14 different live attenuated vaccines against this pathogen are available for use in a variety of livestock and companion animals. However, there are few published data on the makeup or efficacy of these vaccines. Here we report the use of a genetically engineered double mutant of B. bronchiseptica, which lacks adenylate cyclase and type III secretion, as a vaccine candidate. This strain is safe at high doses, even for highly immunocompromised animals, and induces immune responses that are protective against highly divergent B. bronchiseptica strains, preventing colonization in the lower respiratory tract and decreasing the bacterial burden in the upper respiratory tract. This novel B. bronchiseptica vaccine candidate induces strong local immunity while eliminating damage caused by the two predominant cytotoxic mechanisms.
Collapse
Affiliation(s)
- Paul Mann
- Department of Veterinary and Biomedical Sciences, Penn State University, 115 Henning Building, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
12
|
Tuanyok A, Tom M, Dunbar J, Woods DE. Genome-wide expression analysis of Burkholderia pseudomallei infection in a hamster model of acute melioidosis. Infect Immun 2006; 74:5465-76. [PMID: 16988221 PMCID: PMC1594879 DOI: 10.1128/iai.00737-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis and represents a potential bioterrorism threat. In the current studies we have examined gene expression in B. pseudomallei in an animal model of acute melioidosis using whole-genome microarrays. Gene expression profiles were generated by comparing transcriptional levels of B. pseudomallei-expressed genes in infected hamster organs including liver, lung, and spleen following intraperitoneal and intranasal routes of infection to those from bacteria grown in vitro. Differentially expressed genes were similar in infected livers irrespective of the route of infection. Reduced expression of a number of housekeeping genes suggested a lower bacterial growth rate during infection. Energy production during growth in vivo involved specific biochemical pathways such as isomerization of 3-phosphoglycerate, catabolism of d-glucosamine and inositol, and biosynthesis of particular amino acids. In addition, the induction of genes known to be involved in oxidative phosphorylation including ubiquinol oxidase, ferredoxin oxidoreductase, and formate dehydrogenase enzymes suggested the use of alternative pathways for energy production, while the expression of genes coding for ATP-synthase and NADH-dehydrogenase enzymes was reduced. Our studies have identified differentially expressed genes which include potential virulence genes such as those for a putative phospholipase C and a putative two-component regulatory system, and they have also provided a better understanding of bacterial metabolism in response to the host environment during acute melioidosis.
Collapse
Affiliation(s)
- Apichai Tuanyok
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, University of Calgary Health Sciences Centre, 3330 Hospital Drive, NW, Calgary, Alberta, Canada T2N 4N1
| | | | | | | |
Collapse
|
13
|
Dixon S, Ziebart KT, He Z, Jeddeloh M, Yoo CL, Wang X, Lehman A, Lam KS, Toney MD, Kurth MJ. Aminodeoxychorismate Synthase Inhibitors from One-Bead One-Compound Combinatorial Libraries: “Staged” Inhibitor Design. J Med Chem 2006; 49:7413-26. [PMID: 17149871 DOI: 10.1021/jm0609869] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
4-Amino-4-deoxychorismate synthase (ADCS) catalyzes the first step in the conversion of chorismate into p-aminobenzoate, which is incorporated into folic acid. We aim to discover compounds that inhibit ADCS and serve as leads for a new class of antimicrobial compounds. This report presents (1) synthesis of a mass-tag encoded library based on a "staged" design, (2) massively parallel fluorescence-based on-bead screening, (3) rapid structural identification of hits, and (4) full kinetic analysis of ADCS. All inhibitors are competitive against chorismate and Mg(2+). The most potent ADCS inhibitor identified has a K(i) of 360 microM. We show that the combinatorial diversity elements add substantial binding affinity by interacting with residues outside of but proximal to the active site. The methods presented here constitute a paradigm for inhibitor discovery through active site targeting, enabled by rapid library synthesis, facile massively parallel screening, and straightforward hit identification.
Collapse
Affiliation(s)
- Seth Dixon
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Borges JC, Pereira JH, Vasconcelos IB, dos Santos GC, Olivieri JR, Ramos CHI, Palma MS, Basso LA, Santos DS, de Azevedo WF. Phosphate closes the solution structure of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) from Mycobacterium tuberculosis. Arch Biochem Biophys 2006; 452:156-64. [PMID: 16876105 DOI: 10.1016/j.abb.2006.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/24/2006] [Accepted: 05/12/2006] [Indexed: 11/30/2022]
Abstract
The 5-enolpyruvylshikimate-3-phosphate synthase catalyses the sixth step of the shikimate pathway that is responsible for synthesizing aromatic compounds and is absent in mammals, which makes it a potential target for drugs development against microbial diseases. Here, we report the phosphate binding effects at the structure of the 5-enolpyruvylshikimate-3-phosphate synthase from Mycobacterium tuberculosis. This enzyme is formed by two similar domains that close on each other induced by ligand binding, showing the occurrence of a large conformation change. We have monitored the phosphate binding effects using analytical ultracentrifugation, small angle X-ray scattering and, circular dichroism techniques. The low resolution results showed that the enzyme in the presence of phosphate clearly presented a more compact structure. Thermal-induced unfolding experiments followed by circular dichroism suggested that phosphate rigidified the enzyme. Summarizing, these data suggested that the phosphate itself is able to induce conformational change resulting in the closure movement in the M. tuberculosis 5-enolpyruvylshikimate-3-phosphate synthase.
Collapse
Affiliation(s)
- Júlio C Borges
- Departamento de Física, UNESP, São José do Rio Preto, SP 15054-000, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Buzzola FR, Barbagelata MS, Caccuri RL, Sordelli DO. Attenuation and persistence of and ability to induce protective immunity to a Staphylococcus aureus aroA mutant in mice. Infect Immun 2006; 74:3498-506. [PMID: 16714581 PMCID: PMC1479249 DOI: 10.1128/iai.01507-05] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is the most important etiological agent of bovine mastitis, a disease that causes significant economic losses to the dairy industry. Several vaccines to prevent the disease have been tested, with limited success. The aim of this study was to obtain a suitable attenuated aro mutant of S. aureus by transposon mutagenesis and to demonstrate its efficacy as a live vaccine to induce protective immunity in a murine model of intramammary infection. To do this, we transformed S. aureus RN6390 with plasmid pTV1ts carrying Tn917. After screening of 3,493 erythromycin-resistant colonies, one mutant incapable of growing on plates lacking phenylalanine, tryptophan, and tyrosine was isolated and characterized. Molecular characterization of the mutant showed that the affected gene was aroA and that the insertion occurred 756 bp downstream of the aroA start codon. Complementation of the aroA mutant with a plasmid carrying aroA recovered the wild-type phenotype. The mutant exhibited a 50% lethal dose (1 x 10(6) CFU/mouse) higher than that of the parental strain (4.3 x 10(4) CFU/mouse). The aroA mutant showed decreased ability to persist in the lungs, spleens, and mammary glands of mice. Intramammary immunization with the aroA mutant stimulated both Th1 and Th2 responses in the mammary gland, as ascertained by reverse transcription-PCR, and induced significant protection from challenge with either the parental wild-type or a heterologous strain isolated from a cow with mastitis.
Collapse
Affiliation(s)
- Fernanda R Buzzola
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 p12, C1121ABG Buenos Aires, Argentina
| | | | | | | |
Collapse
|
16
|
Priestman MA, Healy ML, Becker A, Alberg DG, Bartlett PA, Lushington GH, Schönbrunn E. Interaction of Phosphonate Analogues of the Tetrahedral Reaction Intermediate with 5-Enolpyruvylshikimate-3-phosphate Synthase in Atomic Detail†,‡. Biochemistry 2005; 44:3241-8. [PMID: 15736934 DOI: 10.1021/bi048198d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway and is the target of the broad-spectrum herbicide glyphosate. Since the functionality of the shikimate pathway is vital not only for plants but also for microorganisms, EPSPS is considered a prospective target for the development of novel antibiotics. We have kinetically analyzed and determined the crystal structures of Escherichia coli EPSPS inhibited by (R)- and (S)-configured phosphonate analogues of the tetrahedral reaction intermediate. Both diastereomers are competitive inhibitors with respect to the substrates of the EPSPS reaction, shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP). Remarkably, the (S)-phosphonate (K(iS3P) = 750 nM), whose configuration corresponds to that of the genuine tetrahedral intermediate, is a much weaker inhibitor than the (R)-phosphonate analogue (K(iS3P) = 16 nM). The crystal structures of EPSPS liganded with the (S)- and (R)-phosphonates, at 1.5 and 1.9 A resolution, respectively, revealed that binding of the (R)-phosphonate induces conformational changes of the strictly conserved residues Arg124 and Glu341 within the active site. This appears to give rise to substantial structural alterations in the amino-terminal globular domain of the enzyme. By contrast, binding of the (S)-phosphonate renders the enzyme structure unchanged. Thus, EPSPS may facilitate the tight binding of structurally diverse ligands through conformational flexibility. Molecular docking calculations did not explain why the (R)-phosphonate is the better inhibitor. Therefore, we propose that the structural events during the open-closed transition of EPSPS are altered as a result of inhibitor action.
Collapse
Affiliation(s)
- Melanie A Priestman
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Priestman MA, Funke T, Singh IM, Crupper SS, Schönbrunn E. 5-Enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate. FEBS Lett 2005; 579:728-32. [PMID: 15670836 DOI: 10.1016/j.febslet.2004.12.057] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 12/17/2004] [Accepted: 12/17/2004] [Indexed: 11/18/2022]
Abstract
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway, and is the target of the broad-spectrum herbicide glyphosate. Kinetic analysis of the cloned EPSPS from Staphylococcus aureus revealed that this enzyme exerts a high tolerance to glyphosate, while maintaining a high affinity for its substrate phosphoenolpyruvate. Enzymatic activity is markedly influenced by monovalent cations such as potassium or ammonium, which is due to an increase in catalytic turnover. However, insensitivity to glyphosate appears to be independent from the presence of cations. Therefore, we propose that the Staphylococcus aureus EPSPS should be classified as a class II EPSPS. This research illustrates a critical mechanism of glyphosate resistance naturally occurring in certain pathogenic bacteria.
Collapse
Affiliation(s)
- Melanie A Priestman
- Department of Medicinal Chemistry, University of Kansas, 4040a Malott Hall, Lawrence, KS 66049, USA
| | | | | | | | | |
Collapse
|