1
|
Tachezy J, Makki A, Hrdý I. The hydrogenosomes of Trichomonas vaginalis. J Eukaryot Microbiol 2022; 69:e12922. [PMID: 35567536 DOI: 10.1111/jeu.12922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This review is dedicated to the 50th anniversary of the discovery of hydrogenosomes by Miklós Müller and Donald Lindmark, which we will celebrate the following year. It was a long journey from the first observation of enigmatic rows of granules in trichomonads at the end of the 19th century to their first biochemical characterization in 1973. The key experiments by Müller and Lindmark revealed that the isolated granules contain hydrogen-producing hydrogenase, similar to some anaerobic bacteria-a discovery that gave birth to the field of hydrogenosomes. It is also important to acknowledge the parallel work of the team of Apolena Čerkasovová, Jiří Čerkasov, and Jaroslav Kulda, who demonstrated that these granules, similar to mitochondria, produce ATP. However, the evolutionary origin of hydrogenosomes remained enigmatic until the turn of the millennium, when it was finally accepted that hydrogenosomes and mitochondria evolved from a common ancestor. After a historical introduction, the review provides an overview of hydrogenosome biogenesis, hydrogenosomal protein import, and the relationship between the peculiar structure of membrane translocases and its low inner membrane potential due to the lack of respiratory complexes. Next, it summarizes the current state of knowledge on energy metabolism, the oxygen defense system, and iron/sulfur cluster assembly.
Collapse
Affiliation(s)
- Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
2
|
Galindo LJ, Torruella G, Moreira D, Timpano H, Paskerova G, Smirnov A, Nassonova E, López-García P. Evolutionary Genomics of Metchnikovella incurvata (Metchnikovellidae): An Early Branching Microsporidium. Genome Biol Evol 2018; 10:2736-2748. [PMID: 30239727 PMCID: PMC6190962 DOI: 10.1093/gbe/evy205] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
Metchnikovellids are highly specialized hyperparasites, which infect and reproduce inside gregarines (Apicomplexa) inhabiting marine invertebrates. Their phylogenetic affiliation was under constant discussion until recently, when analysis of the first near-complete metchnikovellid genome, that of Amphiamblys sp., placed it in a basal position with respect to most Microsporidia. Microsporidia are a highly diversified lineage of extremely reduced parasites related to Rozellida (Rozellosporidia = Rozellomycota = Cryptomycota) within the Holomycota clade of Opisthokonta. By sequencing DNA from a single-isolated infected gregarine cell we obtained an almost complete genome of a second metchnikovellid species, and the first one of a taxonomically described and well-documented species, Metchnikovella incurvata. Our phylogenomic analyses show that, despite being considerably divergent from each other, M. incurvata forms a monophyletic group with Amphiamplys sp., and confirm that metchnikovellids are one of the deep branches of Microsporidia. Comparative genomic analysis demonstrates that, like most Microsporidia, metchnikovellids lack mitochondrial genes involved in energy transduction and are thus incapable of synthesizing their own ATP via mitochondrial oxidative phosphorylation. They also lack the horizontally acquired ATP transporters widespread in most Microsporidia. We hypothesize that a family of mitochondrial carrier proteins evolved to transport ATP from the host into the metchnikovellid cell. We observe the progressive reduction of genes involved in DNA repair pathways along the evolutionary path of Microsporidia, which might explain, at least partly, the extremely high evolutionary rate of the most derived species. Our data also suggest that genome reduction and acquisition of novel genes co-occurred during the adaptation of Microsporidia to their hosts.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Guifré Torruella
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Hélène Timpano
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Gita Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Elena Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia.,Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
3
|
Freibert SA, Goldberg AV, Hacker C, Molik S, Dean P, Williams TA, Nakjang S, Long S, Sendra K, Bill E, Heinz E, Hirt RP, Lucocq JM, Embley TM, Lill R. Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat Commun 2017; 8:13932. [PMID: 28051091 PMCID: PMC5216125 DOI: 10.1038/ncomms13932] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/14/2016] [Indexed: 12/22/2022] Open
Abstract
Microsporidians are obligate intracellular parasites that have minimized their genome content and sub-cellular structures by reductive evolution. Here, we demonstrate that cristae-deficient mitochondria (mitosomes) of Trachipleistophora hominis are the functional site of iron–sulfur cluster (ISC) assembly, which we suggest is the essential task of these organelles. Cell fractionation, fluorescence imaging and immunoelectron microscopy demonstrate that mitosomes contain a complete pathway for [2Fe–2S] cluster biosynthesis that we biochemically reconstituted using purified mitosomal ISC proteins. The T. hominis cytosolic iron–sulfur protein assembly (CIA) pathway includes the essential Cfd1–Nbp35 scaffold complex that assembles a [4Fe–4S] cluster as shown by spectroscopic methods in vitro. Phylogenetic analyses reveal that the ISC and CIA pathways are predominantly bacterial, but their cytosolic and nuclear target Fe/S proteins are mainly archaeal. This mixed evolutionary history of Fe/S-related proteins and pathways, and their strong conservation among highly reduced parasites, provides compelling evidence for the ancient chimeric ancestry of eukaryotes.
The functions of the highly reduced mitochondria (mitosomes) of microsporidians are not well-characterized. Here, the authors show that the Trachipleistophora hominis mitosome is the site of iron–sulfur cluster assembly and that its retention is likely linked to its role in cytosolic and nuclear iron–sulfur protein maturation.
Collapse
Affiliation(s)
- Sven-A Freibert
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany
| | - Alina V Goldberg
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Christian Hacker
- School of Medicine, University of St Andrews, St. Andrews KY16 9TF, UK.,Bioimaging Centre, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Sabine Molik
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany
| | - Paul Dean
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Tom A Williams
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Sirintra Nakjang
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Shaojun Long
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Kacper Sendra
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Eckhard Bill
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Eva Heinz
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Robert P Hirt
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - John M Lucocq
- School of Medicine, University of St Andrews, St. Andrews KY16 9TF, UK
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität, Robert-Koch-Strasse 6, Marburg 35032, Germany.,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, Marburg 35043, Germany
| |
Collapse
|
4
|
McInerney J, Pisani D, O'Connell MJ. The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140323. [PMID: 26323755 DOI: 10.1098/rstb.2014.0323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The literature is replete with manuscripts describing the origin of eukaryotic cells. Most of the models for eukaryogenesis are either autogenous (sometimes called slow-drip), or symbiogenic (sometimes called big-bang). In this article, we use large and diverse suites of 'Omics' and other data to make the inference that autogeneous hypotheses are a very poor fit to the data and the origin of eukaryotic cells occurred in a single symbiosis.
Collapse
Affiliation(s)
- James McInerney
- Department of Biology, National University of Ireland Maynooth, Co. Kildare, Republic of Ireland Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Davide Pisani
- School of Biological Sciences and School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TG, UK
| | - Mary J O'Connell
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Republic of Ireland
| |
Collapse
|
5
|
Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. ADVANCES IN PARASITOLOGY 2013; 83:1-92. [PMID: 23876871 DOI: 10.1016/b978-0-12-407705-8.00001-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections.
Collapse
|
6
|
Emelyanov VV, Goldberg AV. Fermentation enzymes of Giardia intestinalis, pyruvate:ferredoxin oxidoreductase and hydrogenase, do not localize to its mitosomes. Microbiology (Reading) 2011; 157:1602-1611. [DOI: 10.1099/mic.0.044784-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
It is becoming increasingly clear that the so-called remnant organelles of microaerophilic unicellular eukaryotes, hydrogenosomes and mitosomes, are significantly reduced versions of mitochondria. They normally lack most of the classic mitochondrial attributes, such as an electron transport chain and a genome. While hydrogenosomes generate energy by substrate-level phosphorylation along a hydrogen-producing fermentation pathway, involving iron–sulfur-cluster-containing enzymes pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, whether mitosomes participate in ATP synthesis is currently unknown. Both enzymes were recently described in the mitosome-bearing diplomonad Giardia intestinalis, also shown to produce molecular hydrogen. As published data show that giardial PFO is a membrane-associated enzyme, it could be suspected that PFO and hydrogenase operate in the mitosome, in which case the latter would by definition be a hydrogenosome. Using antibodies against recombinant enzymes of G. intestinalis, it was shown by Western blot analysis of subcellular fractions and by confocal immunofluorescence microscopy of whole cells that neither PFO nor hydrogenase localize to the mitosome, but are mostly found in the cytosol. The giardial mitosome is known to play a role in iron–sulfur cluster assembly and to contain chaperones Cpn60 and mtHsp70, which assist, in particular, in protein import. In mitochondria, transmembrane potential is essential for this complex process. Using MitoTracker Red and organelle-specific antibodies, transmembrane potential could be detected in the Trichomonas vaginalis hydrogenosome, but not in the G. intestinalis mitosome. These results provide further evidence that the Giardia mitosome is one of the most highly reduced mitochondrial homologues.
Collapse
Affiliation(s)
- Victor V. Emelyanov
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alina V. Goldberg
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
7
|
Hjort K, Goldberg AV, Tsaousis AD, Hirt RP, Embley TM. Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2010; 365:713-27. [PMID: 20124340 DOI: 10.1098/rstb.2009.0224] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
All extant eukaryotes are now considered to possess mitochondria in one form or another. Many parasites or anaerobic protists have highly reduced versions of mitochondria, which have generally lost their genome and the capacity to generate ATP through oxidative phosphorylation. These organelles have been called hydrogenosomes, when they make hydrogen, or remnant mitochondria or mitosomes when their functions were cryptic. More recently, organelles with features blurring the distinction between mitochondria, hydrogenosomes and mitosomes have been identified. These organelles have retained a mitochondrial genome and include the mitochondrial-like organelle of Blastocystis and the hydrogenosome of the anaerobic ciliate Nyctotherus. Studying eukaryotic diversity from the perspective of their mitochondrial variants has yielded important insights into eukaryote molecular cell biology and evolution. These investigations are contributing to understanding the essential functions of mitochondria, defined in the broadest sense, and the limits to which reductive evolution can proceed while maintaining a viable organelle.
Collapse
Affiliation(s)
- Karin Hjort
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | |
Collapse
|
8
|
Emelyanov VV. Mitochondrial Porin VDAC 1 Seems to Be Functional in Rickettsial Cells. Ann N Y Acad Sci 2009; 1166:38-48. [DOI: 10.1111/j.1749-6632.2009.04513.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
VAN DER GIEZEN MARK. Hydrogenosomes and Mitosomes: Conservation and Evolution of Functions. J Eukaryot Microbiol 2009; 56:221-31. [DOI: 10.1111/j.1550-7408.2009.00407.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 2008; 452:624-8. [PMID: 18311129 DOI: 10.1038/nature06606] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 12/21/2007] [Indexed: 01/27/2023]
Abstract
Microsporidia are highly specialized obligate intracellular parasites of other eukaryotes (including humans) that show extreme reduction at the molecular, cellular and biochemical level. Although microsporidia have long been considered as early branching eukaryotes that lack mitochondria, they have recently been shown to contain a tiny mitochondrial remnant called a mitosome. The function of the mitosome is unknown, because microsporidians lack the genes for canonical mitochondrial functions, such as aerobic respiration and haem biosynthesis. However, microsporidial genomes encode several components of the mitochondrial iron-sulphur (Fe-S) cluster assembly machinery. Here we provide experimental insights into the metabolic function and localization of these proteins. We cloned, functionally characterized and localized homologues of several central mitochondrial Fe-S cluster assembly components for the microsporidians Encephalitozoon cuniculi and Trachipleistophora hominis. Several microsporidial proteins can functionally replace their yeast counterparts in Fe-S protein biogenesis. In E. cuniculi, the iron (frataxin) and sulphur (cysteine desulphurase, Nfs1) donors and the scaffold protein (Isu1) co-localize with mitochondrial Hsp70 to the mitosome, consistent with it being the functional site for Fe-S cluster biosynthesis. In T. hominis, mitochondrial Hsp70 and the essential sulphur donor (Nfs1) are still in the mitosome, but surprisingly the main pools of Isu1 and frataxin are cytosolic, creating a conundrum of how these key components of Fe-S cluster biosynthesis coordinate their function. Together, our studies identify the essential biosynthetic process of Fe-S protein assembly as a key function of microsporidian mitosomes.
Collapse
Affiliation(s)
- Alina V Goldberg
- Institute for Cell and Molecular Biosciences, The Catherine Cookson Building, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Embley TM. Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 2006; 361:1055-67. [PMID: 16754614 PMCID: PMC1578728 DOI: 10.1098/rstb.2006.1844] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Classical ideas for early eukaryotic evolution often posited a period of anaerobic evolution producing a nucleated phagocytic cell to engulf the mitochondrial endosymbiont, whose presence allowed the host to colonize emerging aerobic environments. This idea was given credence by the existence of contemporary anaerobic eukaryotes that were thought to primitively lack mitochondria, thus providing examples of the type of host cell needed. However, the groups key to this hypothesis have now been shown to contain previously overlooked mitochondrial homologues called hydrogenosomes or mitosomes; organelles that share common ancestry with mitochondria but which do not carry out aerobic respiration. Mapping these data on the unfolding eukaryotic tree reveals that secondary adaptation to anaerobic habitats is a reoccurring theme among eukaryotes. The apparent ubiquity of mitochondrial homologues bears testament to the importance of the mitochondrial endosymbiosis, perhaps as a founding event, in eukaryotic evolution. Comparative study of different mitochondrial homologues is needed to determine their fundamental importance for contemporary eukaryotic cells.
Collapse
Affiliation(s)
- T Martin Embley
- The Devonshire Building, University of Newcastle upon Tyne, Division of Biology, NE1 7RU, UK.
| |
Collapse
|
13
|
Dolezal P, Smíd O, Rada P, Zubácová Z, Bursać D, Suták R, Nebesárová J, Lithgow T, Tachezy J. Giardia mitosomes and trichomonad hydrogenosomes share a common mode of protein targeting. Proc Natl Acad Sci U S A 2005; 102:10924-9. [PMID: 16040811 PMCID: PMC1182405 DOI: 10.1073/pnas.0500349102] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are archetypal organelles of endosymbiotic origin in eukaryotic cells. Some unicellular eukaryotes (protists) were considered to be primarily amitochondrial organisms that diverged from the eukaryotic lineage before the acquisition of the premitochondrial endosymbiont, but their amitochondrial status was recently challenged by the discovery of mitochondria-like double membrane-bound organelles called mitosomes. Here, we report that proteins targeted into mitosomes of Giardia intestinalis have targeting signals necessary and sufficient to be recognized by the mitosomal protein import machinery. Expression of these mitosomal proteins in Trichomonas vaginalis results in targeting to hydrogenosomes, a hydrogen-producing form of mitochondria. We identify, in Giardia and Trichomonas, proteins related to the component of the translocase in the inner membrane from mitochondria and the processing peptidase. A shared mode of protein targeting supports the hypothesis that mitosomes, hydrogenosomes, and mitochondria represent different forms of the same fundamental organelle having evolved under distinct selection pressures.
Collapse
Affiliation(s)
- Pavel Dolezal
- Department of Parasitology, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Regoes A, Zourmpanou D, León-Avila G, van der Giezen M, Tovar J, Hehl AB. Protein import, replication, and inheritance of a vestigial mitochondrion. J Biol Chem 2005; 280:30557-63. [PMID: 15985435 DOI: 10.1074/jbc.m500787200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial remnant organelles (mitosomes) that exist in a range of "amitochondrial" eukaryotic organisms represent ideal models for the study of mitochondrial evolution and for the establishment of the minimal set of proteins required for the biogenesis of an endosymbiosis-derived organelle. Giardia intestinalis, often described as the earliest branching eukaryote, contains double membrane-bounded structures involved in iron-sulfur cluster biosynthesis, an essential function of mitochondria. Here we present evidence that Giardia mitosomes also harbor Cpn60, mtHsp70, and ferredoxin and that despite their advanced state of reductive evolution they have retained vestiges of presequence-dependent and -independent protein import pathways akin to those that operate in mammalian mitochondria. Although import of IscU and ferredoxin is still reliant on their amino-terminal presequences, targeting of Giardia Cpn60, IscS, or mtHsp70 into mitosomes no longer requires cleavable presequences, a derived feature from their mitochondrial homologues. In addition, we found that division and segregation of a single centrally positioned mitosome tightly associated with the microtubular cytoskeleton is coordinated with the cell cycle, whereas peripherally located mitosomes are inherited into daughter cells stochastically.
Collapse
Affiliation(s)
- Attila Regoes
- Institute of Parasitology, University of Zürich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous and evolutionary ancient prosthetic groups that are required to sustain fundamental life processes. Owing to their remarkable structural plasticity and versatile chemical/electronic features [Fe-S] clusters participate in electron transfer, substrate binding/activation, iron/sulfur storage, regulation of gene expression, and enzyme activity. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Three different types of [Fe-S] cluster biosynthetic systems have been discovered, and all of them are mechanistically unified by the requirement for a cysteine desulfurase and the participation of an [Fe-S] cluster scaffolding protein. Important mechanistic questions related to [Fe-S] cluster biosynthesis involve the molecular details of how [Fe-S] clusters are assembled on scaffold proteins, how [Fe-S] clusters are transferred from scaffolds to target proteins, how various accessory proteins participate in [Fe-S] protein maturation, and how the biosynthetic process is regulated.
Collapse
Affiliation(s)
- Deborah C Johnson
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
16
|
van der Giezen M, Tovar J, Clark CG. Mitochondrion‐Derived Organelles in Protists and Fungi. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:175-225. [PMID: 16157181 DOI: 10.1016/s0074-7696(05)44005-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The mitochondrion is generally considered to be a defining feature of eukaryotic cells, yet most anaerobic eukaryotes lack this organelle. Many of these were previously thought to derive from eukaryotes that diverged prior to acquisition of the organelle through endosymbiosis. It is now known that all extant eukaryotes are descended from an ancestor that had a mitochondrion and that in anaerobic eukaryotes the organelle has been modified into either hydrogenosomes, which continue to generate energy for the host cell, or mitosomes, which do not. These organelles have each arisen independently several times. Recent evidence suggests a shared derived characteristic that may be responsible for the retention of the organelles in the absence of the better-known mitochondrial functions--iron-sulfur cluster assembly. This review explores the events leading to this new understanding of mitochondrion-derived organelles in amitochondriate eukaryotes, the current state of our knowledge, and future areas for investigation.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
| | | | | |
Collapse
|
17
|
Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Müller M, Tachezy J. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 2004; 101:10368-73. [PMID: 15226492 PMCID: PMC478578 DOI: 10.1073/pnas.0401319101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria are the site of assembly of FeS centers of mitochondrial and cytosolic FeS proteins. Various microaerophilic or anaerobic unicellular eukaryotes lack typical mitochondria ("amitochondriate" protists). In some of these organisms, a metabolically different organelle, the hydrogenosome, is found, which is thought to derive from the same proteobacterial ancestor as mitochondria. Here, we show that hydrogenosomes of Trichomonas vaginalis, a human genitourinary parasite, contain a key enzyme of FeS center biosynthesis, cysteine desulfurase (TviscS-2), which is phylogenetically related to its mitochondrial homologs. Hydrogenosomes catalyze the enzymatic assembly and insertion of FeS centers into apoproteins, as shown by the reconstruction of the apoform of [2Fe-2S]ferredoxin and the incorporation of 35S from labeled cysteine. Our results indicate that the biosynthesis of FeS proteins is performed by a homologous system in mitochondriate and amitochondriate eukaryotes and that this process is inherited from the proteobacterial ancestor of mitochondria.
Collapse
Affiliation(s)
- Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu M, Sun LV, Vamathevan J, Riegler M, Deboy R, Brownlie JC, McGraw EA, Martin W, Esser C, Ahmadinejad N, Wiegand C, Madupu R, Beanan MJ, Brinkac LM, Daugherty SC, Durkin AS, Kolonay JF, Nelson WC, Mohamoud Y, Lee P, Berry K, Young MB, Utterback T, Weidman J, Nierman WC, Paulsen IT, Nelson KE, Tettelin H, O'Neill SL, Eisen JA. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2004; 2:E69. [PMID: 15024419 PMCID: PMC368164 DOI: 10.1371/journal.pbio.0020069] [Citation(s) in RCA: 606] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 01/06/2004] [Indexed: 12/17/2022] Open
Abstract
The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections. The genome sequence of Wolbachia provides insights into the origins of mitochondria, as well as the ecology and evolution of endosymbiosis
Collapse
Affiliation(s)
- Martin Wu
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Ling V Sun
- 2Department of Epidemiology and Public Health, Yale University School of MedicineNew Haven, ConnecticutUnited States of America
| | - Jessica Vamathevan
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Markus Riegler
- 3Department of Zoology and Entomology, School of Life SciencesThe University of Queensland, St Lucia, QueenslandAustralia
| | - Robert Deboy
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Jeremy C Brownlie
- 3Department of Zoology and Entomology, School of Life SciencesThe University of Queensland, St Lucia, QueenslandAustralia
| | - Elizabeth A McGraw
- 3Department of Zoology and Entomology, School of Life SciencesThe University of Queensland, St Lucia, QueenslandAustralia
| | - William Martin
- 4Institut für Botanik III, Heinrich-Heine UniversitätDüsseldorfGermany
| | - Christian Esser
- 4Institut für Botanik III, Heinrich-Heine UniversitätDüsseldorfGermany
| | - Nahal Ahmadinejad
- 4Institut für Botanik III, Heinrich-Heine UniversitätDüsseldorfGermany
| | - Christian Wiegand
- 4Institut für Botanik III, Heinrich-Heine UniversitätDüsseldorfGermany
| | - Ramana Madupu
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Maureen J Beanan
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Lauren M Brinkac
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Sean C Daugherty
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - A. Scott Durkin
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - James F Kolonay
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - William C Nelson
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Yasmin Mohamoud
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Perris Lee
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Kristi Berry
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - M. Brook Young
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Teresa Utterback
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Janice Weidman
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - William C Nierman
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Ian T Paulsen
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Karen E Nelson
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Hervé Tettelin
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| | - Scott L O'Neill
- 2Department of Epidemiology and Public Health, Yale University School of MedicineNew Haven, ConnecticutUnited States of America
- 3Department of Zoology and Entomology, School of Life SciencesThe University of Queensland, St Lucia, QueenslandAustralia
| | - Jonathan A Eisen
- 1The Institute for Genomic Research, RockvilleMarylandUnited States of America
| |
Collapse
|
19
|
van der Giezen M, Cox S, Tovar J. The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 2004; 4:7. [PMID: 15040816 PMCID: PMC373444 DOI: 10.1186/1471-2148-4-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 02/20/2004] [Indexed: 11/10/2022] Open
Abstract
Background Iron-sulfur (FeS) proteins are present in all living organisms and play important roles in electron transport and metalloenzyme catalysis. The maturation of FeS proteins in eukaryotes is an essential function of mitochondria, but little is known about this process in amitochondriate eukaryotes. Here we report on the identification and analysis of two genes encoding critical FeS cluster (Isc) biosynthetic proteins from the amitochondriate human pathogen Entamoeba histolytica. Results E. histolytica IscU and IscS were found to contain all features considered essential for their biological activity, including amino acid residues involved in substrate and/or co-factor binding. The IscU protein differs significantly from other eukaryotic homologs and resembles the long type isoforms encountered in some bacteria. Phylogenetic analyses of E. histolytica IscS and IscU showed a close relationship with homologs from Helicobacter pylori and Campylobacter jejuni, to the exclusion of mitochondrial isoforms. Conclusions The bacterial-type FeS cluster assembly genes of E. histolytica suggest their lateral acquisition from epsilon proteobacteria. This is a clear example of horizontal gene transfer (HGT) from eubacteria to unicellular eukaryotic organisms, a phenomenon known to contribute significantly to the evolution of eukaryotic genomes.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Siân Cox
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jorge Tovar
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
20
|
Emelyanov VV. Common evolutionary origin of mitochondrial and rickettsial respiratory chains. Arch Biochem Biophys 2004; 420:130-41. [PMID: 14622983 DOI: 10.1016/j.abb.2003.09.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comprehensive phylogenetic analysis of the subunits of respiratory chain was carried out using a variety of mitochondrial and bacterial sequences including those from all unfinished alpha-proteobacterial genomes known to date. Maximum likelihood, neighbor-joining, and maximum parsimony consensus trees, based on four proton-translocating complexes, placed mitochondria as a sister group to the order Rickettsiales of obligate endosymbiotic bacteria to the exclusion of free-living alpha-proteobacteria. Thus, phylogenetic relationship of most eukaryotic respiratory enzymes conforms to canonical pattern of mitochondrial ancestry, prior established in analyses of ribosomal RNAs, which are encoded by residual mitochondrial genomes. These data suggest that mitochondria may have derived from a reduced intracellular bacterium and that respiration may be the only evolutionary novelty brought into eukaryotes by mitochondrial endosymbiont.
Collapse
Affiliation(s)
- Victor V Emelyanov
- Department of General Microbiology, Gamaleya Institute of Epidemiology and Microbiology, Gamaleya Street 18, Moscow 123098, Russia.
| |
Collapse
|