1
|
Madesh S, McGill J, Jaworski DC, Ferm J, Liu H, Fitzwater S, Hove P, Ferm D, Nair A, Knox CA, Alizadeh K, Thackrah A, Ganta RR. Long-Term Protective Immunity against Ehrlichia chaffeensis Infection Induced by a Genetically Modified Live Vaccine. Vaccines (Basel) 2024; 12:903. [PMID: 39204029 PMCID: PMC11360114 DOI: 10.3390/vaccines12080903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Human monocytic ehrlichiosis, an emerging tick-borne disease, is caused by Ehrlichia chaffeensis. Infections with the pathogen are also common in the canine host. Our previous studies demonstrated that functional disruption within the E. chaffeensis phage head-to-tail connector protein gene results in bacterial attenuation, creating a modified live attenuated vaccine (MLAV). The MLAV confers protective immunity against intravenous and tick transmission challenges one month following vaccination. In this study, we evaluated the duration of MLAV protection. Dogs vaccinated with the MLAV were challenged with wild-type E. chaffeensis via intravenous infection at 4-, 8-, and 12-months post-vaccination. Immunized dogs rapidly cleared the wild-type pathogen infection and tested positive for bacteremia less frequently than unvaccinated controls. While immune responses varied among dogs, vaccinees consistently mounted IgG and CD4+ T-cell responses specific to E. chaffeensis throughout the assessment period. Our findings demonstrate that MLAV-mediated immune protection persists for at least one year against wild-type bacterial infection, marking a major advancement in combating this serious tick-borne disease. The data presented here serve as the foundation for further studies, elucidating the molecular mechanisms underlying virulence and vaccine development and aiding in preventing the diseases caused by E. chaffeensis and other tick-borne rickettsial pathogens.
Collapse
Affiliation(s)
- Swetha Madesh
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jodi McGill
- Department of Veterinary Microbiology & Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Jonathan Ferm
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Huitao Liu
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Shawna Fitzwater
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Paidashe Hove
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Dominica Ferm
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Arathy Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Cheyenne A. Knox
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Kimia Alizadeh
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Ashley Thackrah
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.M.); (D.C.J.); (J.F.); (H.L.); (S.F.); (P.H.); (D.F.); (A.N.); (C.A.K.); (K.A.); (A.T.)
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Green RS, Izac JR, Naimi WA, O'Bier N, Breitschwerdt EB, Marconi RT, Carlyon JA. Ehrlichia chaffeensis EplA Interaction With Host Cell Protein Disulfide Isomerase Promotes Infection. Front Cell Infect Microbiol 2020; 10:500. [PMID: 33072622 PMCID: PMC7538545 DOI: 10.3389/fcimb.2020.00500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium that invades monocytes to cause the emerging and potentially severe disease, monocytic ehrlichiosis. Ehrlichial invasion of host cells, a process that is essential for the bacterium's survival and pathogenesis, is incompletely understood. In this study, we identified ECH_0377, henceforth designated as EplA (E. chaffeensis PDI ligand A) as an E. chaffeensis adhesin that interacts with host cell protein disulfide isomerase (PDI) to mediate bacterial entry into host cells. EplA is an outer membrane protein that E. chaffeensis expresses during growth in THP-1 monocytic cells. Canine sera confirmed to be positive for exposure to Ehrlichia spp. recognized recombinant EplA, indicating that it is expressed during infection in vivo. EplA antiserum inhibited the bacterium's ability to infect monocytic cells. The EplA-PDI interaction was confirmed via co-immunoprecipitation. Treating host cell surfaces with antibodies that inhibit PDI and/or thioredoxin-1 thiol reductase activity impaired E. chaffeensis infection. Chemical reduction of host cell surfaces, but not bacterial surfaces with tris(2-carboxyethyl)phosphine (TCEP) restored ehrlichial infectivity in the presence of the PDI-neutralizing antibody. Antisera specific for EplA C-terminal residues 95-104 (EplA95−104) or outer membrane protein A amino acids 53-68 (OmpA53−68) reduced E. chaffeensis infection of THP-1 cells. Notably, TCEP rescued ehrlichial infectivity of bacteria that had been treated with anti-EplA95−104, but not anti-EcOmpA53−68. These results demonstrate that EplA contributes to E. chaffeensis infection of monocytic cells by engaging PDI and exploiting the enzyme's reduction of host cell surface disulfide bonds in an EplA C-terminus-dependent manner and identify EplA95−104 and EcOmpA53−68 as novel ehrlichial receptor binding domains.
Collapse
Affiliation(s)
- Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Jerilyn R Izac
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Waheeda A Naimi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Nathaniel O'Bier
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Edward B Breitschwerdt
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, United States
| |
Collapse
|
3
|
Wu H, Gao S, Fu M, Sakurai T, Terakawa S. Fucoidan inhibits Ca2+ responses induced by a wide spectrum of agonists for G‑protein‑coupled receptors. Mol Med Rep 2017; 17:1428-1436. [PMID: 29138822 PMCID: PMC5780082 DOI: 10.3892/mmr.2017.8035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 11/06/2017] [Indexed: 01/03/2023] Open
Abstract
Fucoidan, a sulfated polysaccharide extracted from brown seaweed, has been used in traditional Chinese herbal medicine to treat thyroid tumors for many years. Although a number of its cellular effects have been investigated, the role of fucoidan in molecular signaling, particularly in Ca2+ signaling, remains largely unknown. In the present study, the effects of fucoidan on Ca2+ responses in HeLa cells, human umbilical vein endothelial cells and astrocytes were investigated using a wide range of receptor agonists. Fucoidan inhibited the increase in intracellular free calcium concentration that was induced by histamine, ATP, compound 48/80 and acetylcholine. The responses induced by the same agonists in the absence of extracellular Ca2+ were also markedly suppressed by fucoidan. Reverse transcription-polymerase chain reaction demonstrated that 0.5 and 1.0 mg/ml fucoidan treatment for 3 h decreased histamine receptor 1 expression in HeLa cells. Similarly, the expressions of purinergic receptor P2Y, G-protein coupled (P2YR)1, P2YR2 and P2YR11 were significantly downregulated within cells pretreated with 1.0 mg/ml fucoidan for 3 h, and 0.5 mg/ml fucoidan significantly inhibited P2YR1 and P2YR11 expression. The results demonstrated that fucoidan may exert a wide spectrum of inhibitory effects on Ca2+ responses and that fucoidan may inhibit a number of different G-protein coupled receptors associated with Ca2+ dynamics.
Collapse
Affiliation(s)
- Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Shuibo Gao
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, Zhengzhou, Henan 450002, P.R. China
| | - Min Fu
- The Research Institute of The McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Takashi Sakurai
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431‑3192, Japan
| | - Susumu Terakawa
- Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka 431‑3192, Japan
| |
Collapse
|
4
|
Dunphy PS, Luo T, McBride JW. Ehrlichia moonlighting effectors and interkingdom interactions with the mononuclear phagocyte. Microbes Infect 2013; 15:1005-16. [PMID: 24141087 PMCID: PMC3886233 DOI: 10.1016/j.micinf.2013.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023]
Abstract
Ehrlichia chaffeensis is an obligately intracellular gram negative bacterium with a small genome that thrives in mammalian mononuclear phagocytes by exploiting eukaryotic processes. Herein, we discuss the latest findings on moonlighting tandem repeat protein effectors and their secretion mechanisms, and novel molecular interkingdom interactions that provide insight into the intracellular pathobiology of ehrlichiae.
Collapse
Affiliation(s)
- Paige Selvy Dunphy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Tian Luo
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
5
|
New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2011; 2012:967852. [PMID: 21912565 PMCID: PMC3170826 DOI: 10.1155/2012/967852] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 06/17/2011] [Indexed: 02/01/2023]
Abstract
Human rickettsial diseases comprise a variety of clinical entities caused by microorganisms belonging to the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. These microorganisms are characterized by a strictly intracellular location which has, for long, impaired their detailed study. In this paper, the critical steps taken by these microorganisms to play their pathogenic roles are discussed in detail on the basis of recent advances in our understanding of molecular Rickettsia-host interactions, preferential target cells, virulence mechanisms, three-dimensional structures of bacteria effector proteins, upstream signalling pathways and signal transduction systems, and modulation of gene expression. The roles of innate and adaptive immune responses are discussed, and potential new targets for therapies to block host-pathogen interactions and pathogen virulence mechanisms are considered.
Collapse
|
6
|
Molecular and cellular pathobiology of Ehrlichia infection: targets for new therapeutics and immunomodulation strategies. Expert Rev Mol Med 2011; 13:e3. [PMID: 21276277 DOI: 10.1017/s1462399410001730] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ehrlichia are small obligately intracellular bacteria in the order Rickettsiales that are transmitted by ticks and associated with emerging life-threatening human zoonoses. Vaccines are not available for human ehrlichiosis, and therapeutic options are limited to a single antibiotic class. New technologies for exploring host-pathogen interactions have yielded recent advances in understanding the molecular interactions between Ehrlichia and the eukaryotic host cell and identified new targets for therapeutic and vaccine development, including those that target pathogen virulence mechanisms or disrupt the processes associated with ehrlichial effector proteins. Animal models have also provided insight into immunopathological mechanisms that contribute significantly to understanding severe disease manifestations, which should lead to the development of immunomodulatory approaches for treating patients nearing or experiencing severe disease states. In this review, we discuss the recent advances in our understanding of molecular and cellular pathobiology and the immunobiology of Ehrlichia infection. We identify new molecular host-pathogen interactions that can be targets of new therapeutics, and discuss prospects for treating the immunological dysregulation during acute infection that leads to life-threatening complications.
Collapse
|
7
|
Molecular Pathology of Rickettsial Lung Infections. MOLECULAR PATHOLOGY LIBRARY 2008. [PMCID: PMC7147442 DOI: 10.1007/978-0-387-72430-0_38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rickettsial infections of humans comprise a diverse group of infections caused by pathogens that are obligate intracellular bacteria with a genetic relationship, including the genera Rickettsia, Orientia, Ehrlichia, and Anaplasma. The host cells of these pathogens largely belie the systemic clinical manifestations, because Rickettsia and Orientia infect endothelial cells, and Ehrlichia and Anaplasma infect circulating leukocytes (monocytes and neutrophils, respectively). Thus, the predominant manifestations (fever, headache, myalgia, with or without rash) do not usually focus attention on the respiratory system; however, the underlying pathogenesis of these infections involves degrees of vascular compromise either by direct injury and inflammation or by the action of vasoactive proinflammatory molecules such as cytokines, chemokines, and prostaglandins. Given that the lung possesses the largest vascular bed in the human body, it is not surprising that pulmonary involvement is periodically identified and, when severely affected, is considered a potentially life-threatening complication.1,2
Collapse
|
8
|
Abstract
Ehrlichia chaffeensis, an obligately intracellular bacterium, resides within a cytoplasmic vacuole in macrophages, establishes persistent infection in natural hosts such as white-tailed deer and canids, and is transmitted transstadially and during feeding by ticks, particularly Amblyomma americanum. Ehrlichial cell walls contain glycoproteins and a family of divergent 28 kDa proteins, but no peptidoglycan or lipopolysaccharide. The dense-cored ultrastructural form preferentially expresses certain glycoproteins, including a multiple repeat unit-containing adhesin. Ehrlichiae attach to L-selectin and E-selectin, inhibit phagolysosomal fusion, apoptosis, and JAK/STAT activation, and downregulate IL-12, IL-15, IL-18, TLR2 and 3, and CD14. Mouse models implicate overproduction of TNF-alpha by antigen-specific CD8 T lymphocytes in pathogenesis and strong type 1 CD4 and CD8 T lymphocyte responses, synergistic activities of IFN-gamma and TNF-alpha, and IgG2a antibodies in immunity. Human monocytotropic ehrlichiosis (HME) manifests as a flu-like illness that progresses in severity to resemble toxic shock-like syndrome, with meningoencephalitis or adult respiratory distress syndrome in some patients, and requires hospitalization in half. In immunocompromised patients, HME acts as an overwhelming opportunistic infection. In one family physician's practice, active surveillance for three years revealed an incidence of 1000 cases per million population. Diagnosis employs serology or polymerase chain reaction, which are not utilized sufficiently to establish the true impact of this emerging virus-like illness.
Collapse
Affiliation(s)
- D H Walker
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| |
Collapse
|
9
|
Doyle CK, Nethery KA, Popov VL, McBride JW. Differentially expressed and secreted major immunoreactive protein orthologs of Ehrlichia canis and E. chaffeensis elicit early antibody responses to epitopes on glycosylated tandem repeats. Infect Immun 2006; 74:711-20. [PMID: 16369028 PMCID: PMC1346619 DOI: 10.1128/iai.74.1.711-720.2006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ehrlichia canis major immunoreactive proteins of 36 and 19 kDa elicit the earliest detectable antibody responses during the acute phase of canine monocytic ehrlichiosis. Genes encoding the major immunoreactive 36-kDa protein of E. canis and the corresponding ortholog of E. chaffeensis (47 kDa) were identified and the proteins characterized. The molecular masses of the strongly immunoreactive recombinant proteins were larger than predicted (26.7 and 32.9 kDa, respectively) but were consistent with those of the corresponding native proteins (36 and 47 kDa). Similar to other reported ehrlichial immunoreactive glycoproteins, carbohydrate was detected on the recombinant expressed proteins, indicating that they were glycoproteins. Both glycoproteins (gp36 and gp47) have carboxy-terminal serine/threonine-rich tandem repeat regions containing repeats that vary in number (4 to 16 repeats) and amino acid sequence among different isolates of each species. E. canis gp36 was recognized by early acute-phase antibodies (day 14), and species-specific antibody epitopes were mapped to C-terminal nonhomologous repeat units of gp36 and gp47. Periodate treatment of recombinant gp36 reduced the antibody reactivity, and nonglycosylated synthetic peptide repeat units from E. canis gp36 and E. chaffeensis gp47 were substantially less immunoreactive than corresponding recombinant peptides, demonstrating that glycans are important epitope determinants that are structurally conserved on the recombinant proteins expressed in Escherichia coli. E. canis gp36 and E. chaffeensis gp47 were differentially expressed only on the surface of dense-cored ehrlichiae and detected in the Ehrlichia-free supernatants, indicating that these proteins are released extracellularly during infection.
Collapse
Affiliation(s)
- C Kuyler Doyle
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
10
|
Pégorier S, Stengel D, Durand H, Croset M, Ninio E. Oxidized phospholipid: POVPC binds to platelet-activating-factor receptor on human macrophages. Implications in atherosclerosis. Atherosclerosis 2005; 188:433-43. [PMID: 16386258 DOI: 10.1016/j.atherosclerosis.2005.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 10/25/2005] [Accepted: 11/07/2005] [Indexed: 11/30/2022]
Abstract
Atherosclerosis as a chronic inflammatory disease resulting from the imbalance of the pro- and anti-inflammatory factors in the vessel wall. PAF and PAF-like oxidized phospholipids generated upon LDL oxidation in the intima of the arteries may interact with infiltrated monocytes/macrophages and lead to the alteration of gene expression patterns accompanied by an impaired production of chemokines, interleukins and proteolytic and lipolytic enzymes. The aim of this study was to evaluate the binding capacity of the major component of PAF-like oxidized phospholipids, namely the 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine (POVPC) to PAF-receptor (PAF-R) on the surface of human monocytes/macrophages and to further characterize the gene expression induced by such binding. We show that, POVPC binds to cultured human macrophages via PAF-R and transduces the signals leading to the intracellular Ca(2+) fluxes and modifies the transcription levels of numerous pro-inflammatory and pro-atherogenic genes. Although a some similarity of the gene expression patterns was observed when macrophages were activated with POVPC versus PAF, we observed that only POVPC treatment induced a several-fold activation of IL-8 gene. In turn, only PAF activated PAF-R, matrix metalloproteinase-13 and 15-lipoxygenase mRNA accumulation. Thus, we suggest, that POVPC signals in mature macrophages only in part through the PAF-R, a part of its effects may involve other receptors.
Collapse
Affiliation(s)
- Sophie Pégorier
- INSERM U525, Université Pierre et Marie Curie (UPMC-Paris 6), Faculté de Médecine Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|