1
|
Han L, Xu J, Gu Y, Feng R, Liu S, Lu Q, Lv S, Zhang Y, Yan F. Teichoic acid biosynthesis enhances conjugation efficiency in Streptomyces: A key to unlocking DNA delivery into industrially relevant strains. Int J Biol Macromol 2025; 307:142248. [PMID: 40113003 DOI: 10.1016/j.ijbiomac.2025.142248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/24/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
Genetic manipulation in bacteria, particularly in industrially relevant Streptomyces strains, is often hindered by low DNA transfer efficiency. This study investigates the role of cell envelope components, particularly teichoic acid (TA), in enhancing conjugation efficiency. Using CRISPR-Cpf1 system, we systematically disrupted 26 cell envelope-related genes in Streptomyces coelicolor A3(2), revealing that TA biosynthesis significantly influences DNA uptake. Deletion of SCO1526 (phosphatidylinositol mannoside acyltransferase) and SCO4847 (d-alanyl-d-alanine carboxypeptidase) markedly increased conjugation efficiency, while heterologous expression of TA biosynthetic genes in industrial strains S. hygroscopicus, S. avermitilis and S. venezuelae resulted in a 1300-fold, 4.9-fold and 4.9-fold enhancement, respectively. Strain-specific differences in TA impact probably linked to variations in cell wall structure and TA synthesis capacity. These findings highlight the critical role of TA in bacterial conjugation and offer a robust strategy for improving genetic manipulation in industrially important Streptomyces strains. This work advances our understanding of bacterial genetic tractability and provides a foundation for harnessing the biosynthetic potential of traditionally hard-to-manipulate bacteria.
Collapse
Affiliation(s)
- Liyuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Jiaxin Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Yuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ruiying Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shuo Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Qiujie Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shuzhe Lv
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
2
|
Christensen PM, Martin J, Uppuluri A, Joyce LR, Wei Y, Guan Z, Morcos F, Palmer KL. Lipid discovery enabled by sequence statistics and machine learning. eLife 2024; 13:RP94929. [PMID: 39656516 PMCID: PMC11630815 DOI: 10.7554/elife.94929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.
Collapse
Affiliation(s)
- Priya M Christensen
- Department of Biological Sciences, University of Texas at DallasRichardsonUnited States
| | - Jonathan Martin
- Department of Biological Sciences, University of Texas at DallasRichardsonUnited States
| | - Aparna Uppuluri
- Department of Biological Sciences, University of Texas at DallasRichardsonUnited States
| | - Luke R Joyce
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Yahan Wei
- School of Podiatric Medicine, University of Texas Rio Grande ValleyHarlingenUnited States
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical CenterDurhamUnited States
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at DallasRichardsonUnited States
- Department of Bioengineering, University of Texas at DallasRichardsonUnited States
- Center for Systems Biology, University of Texas at DallasRichardsonUnited States
| | - Kelli L Palmer
- Department of Biological Sciences, University of Texas at DallasRichardsonUnited States
| |
Collapse
|
3
|
Kumaresan V, Kamaraj Y, Subramaniyan S, Punamalai G. Understanding the Dynamics of Human Defensin Antimicrobial Peptides: Pathogen Resistance and Commensal Induction. Appl Biochem Biotechnol 2024; 196:6993-7024. [PMID: 38478321 DOI: 10.1007/s12010-024-04893-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 11/21/2024]
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are petite molecules with inherent microbicidal properties that are synthesized by the host's innate immune response. These peptides serve as an initial barrier against pathogenic microorganisms, effectively eliminating them. Human defensin (HD) AMPs represent a prominent group of peptides involved in the innate immune response of humans. These peptides are primarily produced by neutrophils and epithelial cells, serving as a crucial defense mechanism against invading pathogens. The extensive research conducted has focused on the broad spectrum of antimicrobial activities and multifaceted immunomodulatory functions exhibited by human defensin AMPs. During the process of co-evolution between hosts and bacterial pathogens, bacteria have developed the ability to recognize and develop an adaptive response to AMPs to counterattack their bactericidal activity by different antibiotic-resistant mechanisms. However, numerous non-pathogenic commensal bacteria elicit the upregulation of defensins as a means to surmount the resistance mechanisms implemented by pathogens. The precise mechanism underlying the induction of HD by commensal organisms remains to be fully understood. This review summarizes the most recent research on the expression of human defensin by pathogens and discusses the various defense mechanisms used by pathogens to counter host AMP production. We also mention recent developments in the commensal induction of defensin AMPs. A better knowledge of the pathogens' defensin AMP resistance mechanisms and commensals' induction of AMP expression may shed light on the creation of fresh antibacterial tactics to get rid of bacterial infection.
Collapse
Affiliation(s)
- Veenayohini Kumaresan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - Yoganathan Kamaraj
- Biofuel Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Satheeshkumar Subramaniyan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India
| | - Ganesh Punamalai
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, Tamilnadu, 608002, India.
| |
Collapse
|
4
|
John CM, Otala SA, Jarvis GA. Cyclization increases bactericidal activity of arginine-rich cationic cell-penetrating peptide for Neisseria gonorrhoeae. Microbiol Spectr 2024; 12:e0099724. [PMID: 39105587 PMCID: PMC11370255 DOI: 10.1128/spectrum.00997-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
We previously reported that a linear cationic 12-amino acid cell-penetrating peptide (CPP) was bactericidal for Neisseria gonorrhoeae. In this study, our objectives were to determine the effect of cyclization of the linear CPP on its antibacterial activity for N. gonorrhoeae and cytotoxicity for human cells. We compared the bactericidal effect of 4-hour treatment with the linear CPP to that of CPPs cyclized by a thioether or a disulfide bond on human challenge and multi-drug resistant (MDR) strains of N. gonorrhoeae grown in cell culture media with 10% fetal bovine serum (FBS). The effect of lipooligosaccharide (LOS) sialylation on bactericidal activity was analyzed. We determined the ability of the CPPs to treat human cells infected in vitro with N. gonorrhoeae, to reduce the inflammatory response of human monocytic cells to gonococci, to kill strains of three commensal Neisseria species, and to inhibit gonococcal biofilms. The cyclized CPPs killed 100% of gonococci from all strains at 100 µM and >90% at 20 µM and were more potent than the linear form. The thioether-linked but not the disulfide-linked CPP was less cytotoxic for human cervical cells compared to the linear CPP. LOS sialylation had minimal effect on bactericidal activity. In treating infected human cells, the thioether-linked CPP at 20 µM killed >60% of extra- and intracellular bacteria and reduced TNF-α expression by THP-1 cells. The potency of the CPPs for the pathogenic and the commensal Neisseria was similar. The thioether-linked CPP partially eradicated gonococcal biofilms. Future studies will focus on determining efficacy in the female mouse model of gonorrhea.IMPORTANCENeisseria gonorrhoeae remains a major cause of sexually transmitted infections with 82 million cases worldwide in 2020, and 710,151 confirmed cases in the US in 2021, up 25% from 2017. N. gonorrhoeae can infect multiple tissues including the urethra, cervix, rectum, pharynx, and conjunctiva. The most serious sequelae are suffered by infected women as gonococci ascend to the upper reproductive tract and cause pelvic inflammatory disease, chronic pelvic pain, and infertility in 10%-20% of women. Control of gonococcal infection is widely recognized as increasingly challenging due to the lack of any vaccine. N. gonorrhoeae has quickly developed resistance to all but one class of antibiotics and the emergence of multidrug-resistant strains could result in untreatable infections. As such, gonorrhea is classified by the Center for Disease Control (CDC) as an urgent public health threat. The research presented herein on new therapeutics for gonorrhea has identified a cyclic cell-penetrating peptide (CPP) as a potent molecule targeting N. gonorrhoeae.
Collapse
Affiliation(s)
- Constance M. John
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| | | | - Gary A. Jarvis
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
- Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
5
|
Christensen PM, Martin J, Uppuluri A, Joyce LR, Wei Y, Guan Z, Morcos F, Palmer KL. Lipid discovery enabled by sequence statistics and machine learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562061. [PMID: 37873101 PMCID: PMC10592805 DOI: 10.1101/2023.10.12.562061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococ-cal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus , diglucosyl-diacylglycerol (Glc 2 -DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.
Collapse
|
6
|
Arias-Rojas A, Arifah AQ, Angelidou G, Alshaar B, Schombel U, Forest E, Frahm D, Brinkmann V, Paczia N, Beisel CL, Gisch N, Iatsenko I. MprF-mediated immune evasion is necessary for Lactiplantibacillus plantarum resilience in the Drosophila gut during inflammation. PLoS Pathog 2024; 20:e1012462. [PMID: 39159259 PMCID: PMC11361745 DOI: 10.1371/journal.ppat.1012462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/29/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple peptide resistance factor (MprF) confers resistance to cationic antimicrobial peptides (AMPs) in several pathogens, thereby enabling evasion of the host immune response. The role of MprF in commensals remains, however, uncharacterized. To close this knowledge gap, we used a common gut commensal of animals, Lactiplantibacillus plantarum, and its natural host, the fruit fly Drosophila melanogaster, as an experimental model to investigate the role of MprF in commensal-host interactions. The L. plantarum ΔmprF mutant that we generated exhibited deficiency in the synthesis of lysyl-phosphatidylglycerol (Lys-PG), resulting in increased negative cell surface charge and increased susceptibility to AMPs. Susceptibility to AMPs had no effect on ΔmprF mutant's ability to colonize guts of uninfected flies. However, we observed significantly reduced abundance of the ΔmprF mutant after infection-induced inflammation in the guts of wild-type flies but not of flies lacking AMPs. Additionally, we found that the ΔmprF mutant compared to wild-type L. plantarum induces a stronger intestinal immune response in flies due to the increased release of immunostimulatory peptidoglycan fragments, indicating an important role of MprF in promoting host tolerance to commensals. Our further analysis suggests that MprF-mediated lipoteichoic acid modifications are involved in host immunomodulation. Overall, our results demonstrate that MprF, besides its well-characterized role in pathogen immune evasion and virulence, is also an important commensal resilience factor.
Collapse
Affiliation(s)
- Aranzazu Arias-Rojas
- Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Adini Q. Arifah
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Georgia Angelidou
- Core facility for metabolomics and small molecules mass spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Belal Alshaar
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Ursula Schombel
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Emma Forest
- Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Berlin, Germany
- CNRS, Aix-Marseille Univ, LISM UMR7255, IMM FR3479, Marseille, France
- Aix Marseille Université, INSERM, SSA, MCT, Marseille, France
| | - Dagmar Frahm
- Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nicole Paczia
- Core facility for metabolomics and small molecules mass spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Igor Iatsenko
- Research group Genetics of host-microbe interactions, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
7
|
Enninful GN, Kuppusamy R, Tiburu EK, Kumar N, Willcox MDP. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J Pept Sci 2024; 30:e3560. [PMID: 38262069 DOI: 10.1002/psc.3560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
The rise of antimicrobial resistance and multi-drug resistant pathogens has necessitated explorations for novel antibiotic agents as the discovery of conventional antibiotics is becoming economically less viable and technically more challenging for biopharma. Antimicrobial peptides (AMPs) have emerged as a promising alternative because of their particular mode of action, broad spectrum and difficulty that microbes have in becoming resistant to them. The AMPs bacitracin, gramicidin, polymyxins and daptomycin are currently used clinically. However, their susceptibility to proteolytic degradation, toxicity profile, and complexities in large-scale manufacture have hindered their development. To improve their proteolytic stability, methods such as integrating non-canonical amino acids (ncAAs) into their peptide sequence have been adopted, which also improves their potency and spectrum of action. The benefits of ncAA incorporation have been made possible by solid-phase peptide synthesis. However, this method is not always suitable for commercial production of AMPs because of poor yield, scale-up difficulties, and its non-'green' nature. Bioincorporation of ncAA as a method of integration is an emerging field geared towards tackling the challenges of solid-phase synthesis as a green, cheaper, and scalable alternative for commercialisation of AMPs. This review focusses on the bioincorporation of ncAAs; some challenges associated with the methods are outlined, and notes are given on how to overcome these challenges. The review focusses particularly on addressing two key challenges: AMP cytotoxicity towards microbial cell factories and the uptake of ncAAs that are unfavourable to them. Overcoming these challenges will draw us closer to a greater yield and an environmentally friendly and sustainable approach to make AMPs more druggable.
Collapse
Affiliation(s)
| | - Rajesh Kuppusamy
- University of New South Wales, Kensington, New South Wales, Australia
| | | | - Naresh Kumar
- University of New South Wales, Kensington, New South Wales, Australia
| | - Mark D P Willcox
- University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
8
|
Shiraishi T, Matsuzaki C, Chiou TY, Kumeta H, Kawada M, Yamamoto K, Takahashi T, Yokota SI. Lipoteichoic acid composed of poly-glycerolphosphate containing l-lysine and involved in immunoglobulin A-inducing activity in Apilactobacillus genus. Int J Biol Macromol 2024; 271:132540. [PMID: 38782319 DOI: 10.1016/j.ijbiomac.2024.132540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/20/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Lipoteichoic acid (LTA) in the gram-positive bacterial cell wall acts as an immunomodulatory factor in host cells. The chemical structures vary among bacterial species and strains, and may be related to biological activities. In our previous work, much higher immunoglobulin A (IgA)-inducing activity was observed in cells of the Apilactobacillus genus (Apilactobacillus kosoi 10HT, Apilactobacillus apinorum JCM 30765T, and Apilactobacillus kunkeei JCM 16173T) than other lactic acid bacteria, and their LTA was responsible for the activity. In the present study, we elucidated the chemical structures of LTA from these Apilactobacillus strains to explore the structure-function relationship of the IgA-inducing activity. The 1H-nuclear magnetic resonance spectra suggested that their LTA structures were similar. All have a poly-glycerolphosphate main chain, which comprised 12 to 20 average number of the repeating units, with partial substitutions of glucose(α1-, glucosyl(α1-2)glucose(α1- (α-linked-kojibiose), and l-lysine at the C-2 hydroxy group of the glycerol residue. l-Lysine is a substituent never seen before in LTA, and is a probable characteristic of the Apilactobacillus genus. Removal of l-lysine residue from LTA by mild alkaline treatment decreased IgA induction in murine Peyer's patch experiments. The novel l-lysine residue in Apilactobacillus LTA plays a crucial role in the remarkably high IgA-inducing activity.
Collapse
Affiliation(s)
- Tsukasa Shiraishi
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan.
| | - Chiaki Matsuzaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Tai-Ying Chiou
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, Kitami, Hokkaido 090-8507, Japan
| | - Hiroyuki Kumeta
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Manami Kawada
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, Wakayama, Wakayama 640-8510, Japan
| | - Tomoya Takahashi
- ARSOA Research & Development Center, Arsoa Keioh Group Corporation, Hokuto, Yamanashi 408-8522, Japan
| | - Shin-Ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556, Japan
| |
Collapse
|
9
|
Zbylicki BR, Murphy CE, Petsche JA, Müh U, Dobrila HA, Ho TD, Daum MN, Pannullo AG, Weiss DS, Ellermeier CD. Identification of Clostridioides difficile mutants with increased daptomycin resistance. J Bacteriol 2024; 206:e0036823. [PMID: 38376203 PMCID: PMC10955854 DOI: 10.1128/jb.00368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic used to treat infections caused by some Gram-positive bacteria. Daptomycin disrupts synthesis of the peptidoglycan (PG) cell wall by inserting into the cytoplasmic membrane and binding multiple forms of the undecaprenyl carrier lipid required for PG synthesis. Membrane insertion requires phosphatidylglycerol, so studies of daptomycin can provide insight into assembly and maintenance of the cytoplasmic membrane. Here, we studied the effects of daptomycin on Clostridioides difficile, the leading cause of healthcare-associated diarrhea. We observed that growth of C. difficile strain R20291 in the presence of sub-MIC levels of daptomycin resulted in a chaining phenotype, minicell formation, and lysis-phenotypes broadly consistent with perturbation of membranes and PG synthesis. We also selected for and characterized eight mutants with elevated daptomycin resistance. The mutations in these mutants were mapped to four genes: cdsA (cdr20291_2041), ftsH2 (cdr20291_3396), esrR (cdr20291_1187), and draS (cdr20291_2456). Of these four genes, only draS has been characterized previously. Follow-up studies indicate these mutations confer daptomycin resistance by two general mechanisms: reducing the amount of phosphatidylglycerol in the cytoplasmic membrane (cdsA) or altering the regulation of membrane processes (ftsH2, esrR, and draS). Thus, the mutants described here provide insights into phospholipid synthesis and identify signal transduction systems involved in cell envelope biogenesis and stress response in C. difficile. IMPORTANCE C. difficile is the leading cause of healthcare-associated diarrhea and is a threat to public health due to the risk of recurrent infections. Understanding biosynthesis of the atypical cell envelope of C. difficile may provide insight into novel drug targets to selectively inhibit C. difficile. Here, we identified mutations that increased daptomycin resistance and allowed us to better understand phospholipid synthesis, cell envelope biogenesis, and stress response in C. difficile.
Collapse
Affiliation(s)
- Brianne R. Zbylicki
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Claire E. Murphy
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Jennifer A. Petsche
- Interdisciplinary Graduate Program in Molecular Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ute Müh
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Horia A. Dobrila
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Theresa D. Ho
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Mikaela N. Daum
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Anthony G. Pannullo
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - David S. Weiss
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
| | - Craig D. Ellermeier
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, USA
- Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Li W, Liang H, He W, Gao X, Wu Z, Hu T, Lin X, Wang M, Zhong Y, Zhang H, Ge L, Jin X, Xiao L, Zou Y. Genomic and functional diversity of cultivated Bifidobacterium from human gut microbiota. Heliyon 2024; 10:e27270. [PMID: 38463766 PMCID: PMC10923715 DOI: 10.1016/j.heliyon.2024.e27270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
The genus Bifidobacterium widely exists in human gut and has been increasingly used as the adjuvant probiotics for the prevention and treatment of diseases. However, the functional differences of Bifidobacterium genomes from different regions of the world remain unclear. We here describe an extensive study on the genomic characteristics and function annotations of 1512 genomes (clustered to 849 non-redundant genomes) of Bifidobacterium cultured from human gut. The distribution of some carbohydrate-active enzymes varied among different Bifidobacterium species and continents. More than 36% of the genomes of B. pseudocatenulatum harbored biosynthetic gene clusters of lanthipeptide-class-iv. 99.76% of the cultivated genomes of Bifidobacterium harbored genes of bile salt hydrolase. Most genomes of B. adolescentis, and all genomes of B. dentium harbored genes involved in gamma-aminobutyric acid synthesis. B. longum subsp. infantis were characterized harboring most genes related to human milk oligosaccharide utilization. Significant differences between the distribution of antibiotic resistance genes among different species and continents revealed the importance to use antibiotics precisely in the clinical treatment. Phages infecting Bifidobacterium and horizontal gene transfers occurring in genomes of Bifidobacterium were dependent on species and region sources, and might help Bifidobacterium adapt to the environment. In addition, the distribution of Bifidobacterium in human gut was found varied from different regions of the world. This study represents a comprehensive view of characteristics and functions of genomes of cultivated Bifidobacterium from human gut, and enables clinical advances in the future.
Collapse
Affiliation(s)
- Wenxi Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- BGI Research, Shenzhen, 518083, China
| | | | - Wenxin He
- BGI Research, Shenzhen, 518083, China
| | | | - Zhinan Wu
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xiaoqian Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- BGI Research, Shenzhen, 518083, China
| | - Mengmeng Wang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyi Zhong
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Haifeng Zhang
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Lan Ge
- BGI Research, Shenzhen, 518083, China
- BGI Precision Nutrition (Shenzhen) Technology Co., Ltd, Shenzhen, China
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Liang Xiao
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- BGI Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China
| | - Yuanqiang Zou
- BGI Research, Shenzhen, 518083, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Universitetsparken 13, 2100, Copenhagen, Denmark
- BGI Research, Qingdao, 266555, China
- Shenzhen Engineering Laboratory of Detection and Intervention of human intestinal microbiome, BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
11
|
Luitel B, Johnson AJ, Bulmer MS. Subterranean termites raise the alarm when their anti-fungal weapon falters. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 111:1. [PMID: 38150102 DOI: 10.1007/s00114-023-01887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023]
Abstract
Termicin is an anti-fungal defensin that is disseminated from termite salivary glands. The peptide appears to be critical for the elimination with mutual grooming (allogrooming) of pathogenic spores (conidia) that have attached to the insect cuticle. There has been a recent selective sweep for an advantageous variant of this peptide in the subterranean termite Reticulitermes flavipes. We tested the anti-mycotic activity of a recombinant termicin corresponding with this variant against the conidia of different Metarhizium fungal isolates from soil close to foraging R. flavipes workers. Termicin was most effective against isolates that had previously been shown to elicit a relatively weak alarm response, as indicated by brief bouts of rapid longitudinal oscillatory movement (LOM). These isolates that elicited weak alarm were also the deadliest apparently because the survival of termites exposed to the fungus depends on a strong social immune response (LOMs and allogrooming). The selective pressure for a single termicin variant may have been driven by the most dangerous isolates that elicit a weak behavioral response. The correlation between termicin anti-fungal activity and LOM suggests that pathogen-associated molecular patterns that affect termite recognition of conidial contamination and the onset of elevated allogrooming also affect the vulnerability of conidia to the disruption of their cell membranes by termicin.
Collapse
Affiliation(s)
- Bhawana Luitel
- Department of Biological Sciences, Towson University, 4101 Science Complex, 8000 York Rd, Towson, MD, 21252, USA
| | - Ajijola J Johnson
- Department of Biological Sciences, Towson University, 4101 Science Complex, 8000 York Rd, Towson, MD, 21252, USA
| | - Mark S Bulmer
- Department of Biological Sciences, Towson University, 4101 Science Complex, 8000 York Rd, Towson, MD, 21252, USA.
| |
Collapse
|
12
|
Bril’kov MS, Stenbakk V, Jakubec M, Vasskog T, Kristoffersen T, Cavanagh JP, Ericson JU, Isaksson J, Flaten GE. Bacterial extracellular vesicles: towards realistic models for bacterial membranes in molecular interaction studies by surface plasmon resonance. Front Mol Biosci 2023; 10:1277963. [PMID: 38152113 PMCID: PMC10751319 DOI: 10.3389/fmolb.2023.1277963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
One way to mitigate the ongoing antimicrobial resistance crisis is to discover and develop new classes of antibiotics. As all antibiotics at some point need to either cross or just interact with the bacterial membrane, there is a need for representative models of bacterial membranes and efficient methods to characterize the interactions with novel molecules -both to generate new knowledge and to screen compound libraries. Since the bacterial cell envelope is a complex assembly of lipids, lipopolysaccharides, membrane proteins and other components, constructing relevant synthetic liposome-based models of the membrane is both difficult and expensive. We here propose to let the bacteria do the hard work for us. Bacterial extracellular vesicles (bEVs) are naturally secreted by Gram-negative and Gram-positive bacteria, playing a role in communication between bacteria, as virulence factors, molecular transport or being a part of the antimicrobial resistance mechanism. bEVs consist of the bacterial outer membrane and thus inherit many components and properties of the native outer cell envelope. In this work, we have isolated and characterized bEVs from one Escherichia coli mutant and three clinical strains of the ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The bEVs were shown to be representative models for the bacterial membrane in terms of lipid composition with speciesstrain specific variations. The bEVs were further used to probe the interactions between bEV and antimicrobial peptides (AMPs) as model compounds by Surface Plasmon Resonance (SPR) and provide proof-of-principle that bEVs can be used as an easily accessible and highly realistic model for the bacterial surface in interaction studies. This further enables direct monitoring of the effect induced by antibiotics, or the response to host-pathogen interactions.
Collapse
Affiliation(s)
- Maxim S. Bril’kov
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Victoria Stenbakk
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Martin Jakubec
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Terje Vasskog
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tone Kristoffersen
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Johanna U. Ericson
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
13
|
Zamudio-Chávez L, Suesca E, López GD, Carazzone C, Manrique-Moreno M, Leidy C. Staphylococcus aureus Modulates Carotenoid and Phospholipid Content in Response to Oxygen-Restricted Growth Conditions, Triggering Changes in Membrane Biophysical Properties. Int J Mol Sci 2023; 24:14906. [PMID: 37834354 PMCID: PMC10573160 DOI: 10.3390/ijms241914906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
Staphylococcus aureus membranes contain carotenoids formed during the biosynthesis of staphyloxanthin. These carotenoids are considered virulence factors due to their activity as scavengers of reactive oxygen species and as inhibitors of antimicrobial peptides. Here, we show that the growth of S. aureus under oxygen-restricting conditions downregulates carotenoid biosynthesis and modifies phospholipid content in biofilms and planktonic cells analyzed using LC-MS. At oxygen-restrictive levels, the staphyloxanthin precursor 4,4-diapophytofluene accumulates, indicating that the dehydrogenation reaction catalyzed by 4,4'-diapophytoene desaturases (CrtN) is inhibited. An increase in lysyl-phosphatidylglycerol is observed under oxygen-restrictive conditions in planktonic cells, and high levels of cardiolipin are detected in biofilms compared to planktonic cells. Under oxygen-restriction conditions, the biophysical parameters of S. aureus membranes show an increase in lipid headgroup spacing, as measured with Laurdan GP, and decreased bilayer core order, as measured with DPH anisotropy. An increase in the liquid-crystalline to gel phase melting temperature, as measured with FTIR, is also observed. S. aureus membranes are therefore less condensed under oxygen-restriction conditions at 37 °C. However, the lack of carotenoids leads to a highly ordered gel phase at low temperatures, around 15 °C. Carotenoids are therefore likely to be low in S. aureus found in tissues with low oxygen levels, such as abscesses, leading to altered membrane biophysical properties.
Collapse
Affiliation(s)
- Laura Zamudio-Chávez
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Elizabeth Suesca
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| | - Gerson-Dirceu López
- PhysCheMath Research Group, Chemistry Department, Universidad de América, Bogotá 111211, Colombia;
| | - Chiara Carazzone
- Laboratory of Advanced Analytical Techniques in Natural Products (LATNAP), Chemistry Department, Universidad de los Andes, Bogotá 111211, Colombia;
| | - Marcela Manrique-Moreno
- Chemistry Institute, Faculty of Exact and Natural Sciences, University of Antioquia, Medellin 050010, Colombia;
| | - Chad Leidy
- Biophysics Group, Physics Department, Universidad de los Andes, Bogotá 111211, Colombia; (L.Z.-C.); (E.S.)
| |
Collapse
|
14
|
Liu D, Jiang L, Chen J, Chen Z, Yuan C, Lin D, Huang M. Monomer and Oligomer Transition of Zinc Phthalocyanine Is Key for Photobleaching in Photodynamic Therapy. Molecules 2023; 28:4639. [PMID: 37375194 PMCID: PMC10305241 DOI: 10.3390/molecules28124639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Photodynamic therapy (PDT) is recognized as a powerful method to inactivate cells. However, the photosensitizer (PS), a key component of PDT, has suffered from undesired photobleaching. Photobleaching reduces reactive oxygen species (ROS) yields, leading to the compromise of and even the loss of the photodynamic effect of the PS. Therefore, much effort has been devoted to minimizing photobleaching in order to ensure that there is no loss of photodynamic efficacy. Here, we report that a type of PS aggregate showed neither photobleaching nor photodynamic action. Upon direct contact with bacteria, the PS aggregate was found to fall apart into PS monomers and thus possessed photodynamic inactivation against bacteria. Interestingly, the disassembly of the bound PS aggregate in the presence of bacteria was intensified by illumination, generating more PS monomers and leading to an enhanced antibacterial photodynamic effect. This demonstrated that on a bacterial surface, the PS aggregate photo-inactivated bacteria via PS monomer during irradiation, where the photodynamic efficiency was retained without photobleaching. Further mechanistic studies showed that PS monomers disrupted bacterial membranes and affected the expression of genes related to cell wall synthesis, bacterial membrane integrity, and oxidative stress. The results obtained here are applicable to other types of PSs in PDT.
Collapse
Affiliation(s)
- Dafeng Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Jincan Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Cai Yuan
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
15
|
HexSDF Is Required for Synthesis of a Novel Glycolipid That Mediates Daptomycin and Bacitracin Resistance in C. difficile. mBio 2023; 14:e0339722. [PMID: 36786594 PMCID: PMC10128005 DOI: 10.1128/mbio.03397-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Clostridioides difficile is a Gram-positive opportunistic pathogen responsible for 250,000 hospital-associated infections, 12,000 hospital-associated deaths, and $1 billion in medical costs in the United States each year. There has been recent interest in using a daptomycin analog, surotomycin, to treat C. difficile infections. Daptomycin interacts with phosphatidylglycerol and lipid II to disrupt the membrane and halt peptidoglycan synthesis. C. difficile has an unusual lipid membrane composition, as it has no phosphatidylserine or phosphatidylethanolamine, and ~50% of its membrane is composed of glycolipids, including the unique C. difficile lipid aminohexosyl-hexosyldiradylglycerol (HNHDRG). We identified a two-component system (TCS), HexRK, that is required for C. difficile resistance to daptomycin. Using transcriptome sequencing (RNA-seq), we found that HexRK regulates expression of hexSDF, a three-gene operon of unknown function. Based on bioinformatic predictions, hexS encodes a monogalactosyldiacylglycerol synthase, hexD encodes a polysaccharide deacetylase, and hexF encodes an MprF-like flippase. Deletion of hexRK leads to a 4-fold decrease in daptomycin MIC, and that deletion of hexSDF leads to an 8- to 16-fold decrease in daptomycin MIC. The ΔhexSDF mutant is also 4-fold less resistant to bacitracin but no other cell wall-active antibiotics. Our data indicate that in the absence of HexSDF, the phospholipid membrane composition is altered. In wild-type (WT) C. difficile, the unique glycolipid HNHDRG makes up ~17% of the lipids in the membrane. However, in a ΔhexSDF mutant, HNHDRG is completely absent. While it is unclear how HNHDRG contributes to daptomycin resistance, the requirement for bacitracin resistance suggests it has a general role in cell membrane biogenesis. IMPORTANCE Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. Little is understood about C. difficile membrane lipids, but a unique glycolipid, HNHDRG, has been previously identified in C. difficile and, currently, has not been identified in other organisms. Here, we show that HexSDF and HexRK are required for synthesis of HNHDRG and that production of HNHDRG impacts resistance to daptomycin and bacitracin.
Collapse
|
16
|
Liu D, Xi Y, Yu S, Yang K, Zhang F, Yang Y, Wang T, He S, Zhu Y, Fan Z, Du J. A polypeptide coating for preventing biofilm on implants by inhibiting antibiotic resistance genes. Biomaterials 2023; 293:121957. [PMID: 36549042 DOI: 10.1016/j.biomaterials.2022.121957] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/12/2022] [Accepted: 12/11/2022] [Indexed: 12/14/2022]
Abstract
Aging population has been boosting the need for orthopedic implants. However, biofilm has been a major obstacle for orthopedic implants due to its insensitivity to antibiotics and tendency to drive antimicrobial resistance. Herein, an antibacterial polypeptide coating with excellent in vivo adhesive capacity was prepared to prevent implants from forming biofilms and inducing acquired antibiotic resistance. A peptide-based copolymer, poly[phenylalanine10-stat-lysine12]-block-3,4-dihydroxy-l-phenylalanine [Poly(Phe10-stat-Lys12)-DOPA] was modularly designed, where poly(Phe10-stat-Lys12) is antibacterial polypeptide with high antibacterial activity, and DOPA provides strong adhesion in both wet and dry microenvironments. Meanwhile, compared to traditional "graft-onto" methods, this antibacterial coating can be facilely achieved by immersing Titanium substrates into antibacterial polypeptide solution for 5 min at room temperature. The poly(Phe10-stat-Lys12)-DOPA polymer showed good antibacterial activity with minimum inhibitory concentrations against S. aureus and E. coli of 32 and 400 μg/mL, respectively. Compared to obvious antimicrobial resistance of S. aureus after continuous treatment with vancomycin, this antibacterial coating doesn't drive antimicrobial resistance upon long-term utilization. Transcriptome sequencing and qPCR tests further confirmed that the antibacterial coating was able to inhibit the expression of multiple peptide resistance factor (mprF) and lipoteichoic acid modification D-alanylation genes (dltB and dltC) that can increase the net positive charge of bacterial cell wall to induce the resistance to cationic antimicrobial peptides. In vivo experiments confirmed that this poly(Phe10-stat-Lys12)-DOPA coating can both effectively prevent biofilm formation through surface contact sterilization and avoid local and systemic infections. Overall, we proposed a facile method for preparing antibacterial orthopedic implants with longer indwelling time and without inducing antimicrobial resistance by coating a polypeptide-based polymer on the implants.
Collapse
Affiliation(s)
- Danqing Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Yuejing Xi
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Shunzhi Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Kexin Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Fan Zhang
- Department of Oral Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yuying Yang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Tianlong Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Shisheng He
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yunqing Zhu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Zhen Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| |
Collapse
|
17
|
Maritan E, Gallo M, Srutkova D, Jelinkova A, Benada O, Kofronova O, Silva-Soares NF, Hudcovic T, Gifford I, Barrick JE, Schwarzer M, Martino ME. Gut microbe Lactiplantibacillus plantarum undergoes different evolutionary trajectories between insects and mammals. BMC Biol 2022; 20:290. [PMID: 36575413 PMCID: PMC9795633 DOI: 10.1186/s12915-022-01477-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such as Drosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns. RESULTS We employ experimental evolution to track the pace of the evolution of a common gut commensal, Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that in Drosophila, the nutritional environment dictates microbial evolution, while the host benefits L. plantarum growth only over short ecological timescales. By contrast, in a mammalian animal model, L. plantarum evolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host's environment strongly differed from the low variation observed in the host's nutritional environment alone. CONCLUSIONS Our results demonstrate that L. plantarum evolution diverges between insects and mammals. While the symbiosis between Drosophila and L. plantarum is mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Marialaura Gallo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Anna Jelinkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Kofronova
- Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nuno F Silva-Soares
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic
| | - Isaac Gifford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Novy Hradek, Czech Republic.
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy.
| |
Collapse
|
18
|
He P, Zhang J, Zhou Y, Hou S, Tao X, Wang A, Yang Z, Bai Z, Wu X. Genomic characteristics of a notable emerging serotype O10:K4 of Vibrio parahaemolyticus from food-borne cluster events in Guangzhou, China. J Infect 2022; 85:702-769. [PMID: 36152735 DOI: 10.1016/j.jinf.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Peng He
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China
| | - Jing Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China
| | - Yong Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China
| | - Shuiping Hou
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China
| | - Xia Tao
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China
| | - Anna Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China
| | - Zhijun Bai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China
| | - Xinwei Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, Guangdong province, China.
| |
Collapse
|
19
|
Grob G, Hemmerle M, Yakobov N, Mahmoudi N, Fischer F, Senger B, Becker HD. tRNA-dependent addition of amino acids to cell wall and membrane components. Biochimie 2022; 203:93-105. [DOI: 10.1016/j.biochi.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
20
|
Dysregulation of Cell Envelope Homeostasis in Staphylococcus aureus Exposed to Solvated Lignin. Appl Environ Microbiol 2022; 88:e0054822. [PMID: 35852361 PMCID: PMC9361832 DOI: 10.1128/aem.00548-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lignin is an aromatic plant cell wall polymer that facilitates water transport through the vasculature of plants and is generated in large quantities as an inexpensive by-product of pulp and paper manufacturing and biorefineries. Although lignin's ability to reduce bacterial growth has been reported previously, its hydrophobicity complicates the ability to examine its biological effects on living cells in aqueous growth media. We recently described the ability to solvate lignin in Good's buffers with neutral pH, a breakthrough that allowed examination of lignin's antimicrobial effects against the human pathogen Staphylococcus aureus. These analyses showed that lignin damages the S. aureus cell membrane, causes increased cell clustering, and inhibits growth synergistically with tunicamycin, a teichoic acid synthesis inhibitor. In the present study, we examined the physiological and transcriptomic responses of S. aureus to lignin. Intriguingly, lignin restored the susceptibility of genetically resistant S. aureus isolates to penicillin and oxacillin, decreased intracellular pH, impaired normal cell division, and rendered cells more resistant to detergent-induced lysis. Additionally, transcriptome sequencing (RNA-Seq) differential expression (DE) analysis of lignin-treated cultures revealed significant gene expression changes (P < 0.05 with 5% false discovery rate [FDR]) related to the cell envelope, cell wall physiology, fatty acid metabolism, and stress resistance. Moreover, a pattern of concurrent up- and downregulation of genes within biochemical pathways involved in transmembrane transport and cell wall physiology was observed, which likely reflects an attempt to tolerate or compensate for lignin-induced damage. Together, these results represent the first comprehensive analysis of lignin's antibacterial activity against S. aureus. IMPORTANCE S. aureus is a leading cause of skin and soft tissue infections. The ability of S. aureus to acquire genetic resistance to antibiotics further compounds its ability to cause life-threatening infections. While the historical response to antibiotic resistance has been to develop new antibiotics, bacterial pathogens are notorious for rapidly acquiring genetic resistance mechanisms. As such, the development of adjuvants represents a viable way of extending the life span of current antibiotics to which pathogens may already be resistant. Here, we describe the phenotypic and transcriptomic response of S. aureus to treatment with lignin. Our results demonstrate that lignin extracted from sugarcane and sorghum bagasse restores S. aureus susceptibility to β-lactams, providing a premise for repurposing these antibiotics in treatment of resistant S. aureus strains, possibly in the form of topical lignin/β-lactam formulations.
Collapse
|
21
|
Perry WJ, Grunenwald CM, Van de Plas R, Witten JC, Martin DR, Apte SS, Cassat JE, Pettersson GB, Caprioli RM, Skaar EP, Spraggins JM. Visualizing Staphylococcus aureus pathogenic membrane modification within the host infection environment by multimodal imaging mass spectrometry. Cell Chem Biol 2022; 29:1209-1217.e4. [PMID: 35654040 PMCID: PMC9308753 DOI: 10.1016/j.chembiol.2022.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/10/2021] [Accepted: 05/11/2022] [Indexed: 11/30/2022]
Abstract
Bacterial pathogens have evolved virulence factors to colonize, replicate, and disseminate within the vertebrate host. Although there is an expanding body of literature describing how bacterial pathogens regulate their virulence repertoire in response to environmental signals, it is challenging to directly visualize virulence response within the host tissue microenvironment. Multimodal imaging approaches enable visualization of host-pathogen molecular interactions. Here we demonstrate multimodal integration of high spatial resolution imaging mass spectrometry and microscopy to visualize Staphylococcus aureus envelope modifications within infected murine and human tissues. Data-driven image fusion of fluorescent bacterial reporters and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance imaging mass spectrometry uncovered S. aureus lysyl-phosphatidylglycerol lipids, localizing to select bacterial communities within infected tissue. Absence of lysyl-phosphatidylglycerols is associated with decreased pathogenicity during vertebrate colonization as these lipids provide protection against the innate immune system. The presence of distinct staphylococcal lysyl-phosphatidylglycerol distributions within murine and human infections suggests a heterogeneous, spatially oriented microbial response to host defenses.
Collapse
Affiliation(s)
- William J Perry
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN 37232, USA
| | - Caroline M Grunenwald
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Raf Van de Plas
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA; Delft Center for Systems and Control, Delft University of Technology - TU Delft, Delft, the Netherlands; Department of Biochemistry, Vanderbilt University, Nashville, TN 37212, USA
| | - James C Witten
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Heart and Vascular Institute, Cleveland, OH 44195, USA
| | - Daniel R Martin
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - James E Cassat
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gösta B Pettersson
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic Heart and Vascular Institute, Cleveland, OH 44195, USA
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37212, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA; Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Eric P Skaar
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | - Jeffrey M Spraggins
- Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37212, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN 37212, USA; Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
22
|
Wang Z, Li Q, Li J, Shang L, Li J, Chou S, Lyu Y, Shan A. pH-Responsive Antimicrobial Peptide with Selective Killing Activity for Bacterial Abscess Therapy. J Med Chem 2022; 65:5355-5373. [PMID: 35294199 DOI: 10.1021/acs.jmedchem.1c01485] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The unusual acidic pH of the abscess milieu is an adverse factor that decreases the therapeutic efficacy of traditional antibiotics. Moreover, avoiding both the undesired killing of commensal bacteria and the development of drug resistance remains difficult during abscess therapy. Hence, we synthesized a series of pH-responsive antimicrobial peptides equipped with efficient bacterial killing activity at pH 6.5 and inactivity at pH 7.4. Among the peptides, F5 exhibited outstanding pH-responsive antimicrobial activity and low toxicity. Fluorescence spectroscopy and electron microscopy illustrated that F5 killed bacteria via a membrane-disruptive mechanism at acidic pH values. Mouse cutaneous abscesses revealed that F5 was equipped with excellent therapeutic ability to reduce the bacterial load and cytokines without causing skin toxicity. In summary, this study reveals a strategy for selectively killing bacteria under the pathologic conditions of abscess sites while avoiding the elimination of commensal bacteria under normal physiological pH levels.
Collapse
Affiliation(s)
- Zhihua Wang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Qiuke Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Jinze Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Lu Shang
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Jiawei Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Shuli Chou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Yinfeng Lyu
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030 P. R. China
| |
Collapse
|
23
|
Park JY, Seo H, Kang CS, Shin TS, Kim JW, Park JM, Kim JG, Kim YK. Dysbiotic change in gastric microbiome and its functional implication in gastric carcinogenesis. Sci Rep 2022; 12:4285. [PMID: 35277583 PMCID: PMC8917121 DOI: 10.1038/s41598-022-08288-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Although there is a growing interest in the role of gastric microbiome on the development of gastric cancer, the exact mechanism is largely unknown. We aimed to investigate the changes of gastric microbiome during gastric carcinogenesis, and to predict the functional potentials of the microbiome involved in the cancer development. The gastric microbiome was analyzed using gastric juice samples from 88 prospectively enrolled patients, who were classified into gastritis, gastric adenoma, or early/advanced gastric cancer group. Differences in microbial diversity and composition were analyzed with 16S rRNA gene profiling, using next-generation sequencing method. Metagenomic biomarkers were selected using logistic regression models, based on relative abundances at genus level. We used Tax4Fun to predict possible functional pathways of gastric microbiome involved in the carcinogenesis. The microbial diversity continuously decreased in its sequential process of gastric carcinogenesis, from gastritis to gastric cancer. The microbial composition was significantly different among the four groups of each disease status, as well as between the cancer group and non-cancer group. Gastritis group was differently enriched with genera Akkermansia and Lachnospiraceae NK4A136 Group, whereas the cancer group was enriched with Lactobacillus and Veillonella. Predictive analysis of the functional capacity of the microbiome suggested enrichment or depletion of several functional pathways related to carcinogenesis in the cancer group. There are significant changes in the diversity and composition of gastric microbiome during the gastric carcinogenesis process. Gastric cancer was characterized with microbial dysbiosis, along with functional changes potentially favoring carcinogenesis.
Collapse
Affiliation(s)
- Jae Yong Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea
| | - Hochan Seo
- MD Healthcare R&D Institute, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Chil-Sung Kang
- MD Healthcare R&D Institute, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Tae-Seop Shin
- MD Healthcare R&D Institute, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea
| | - Jong Won Kim
- Department of Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Joong-Min Park
- Department of Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jae Gyu Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, 102 Heukseok-ro, Dongjak-gu, Seoul, 06973, Republic of Korea.
| | - Yoon-Keun Kim
- MD Healthcare R&D Institute, World Cup Buk-ro 56-gil, Mapo-gu, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Vidal Amaral JR, Jucá Ramos RT, Almeida Araújo F, Bentes Kato R, Figueira Aburjaile F, de Castro Soares S, Góes-Neto A, Matiuzzi da Costa M, Azevedo V, Brenig B, Soares de Oliveira S, Soares Rosado A. Bacteriocin Producing Streptococcus agalactiae Strains Isolated from Bovine Mastitis in Brazil. Microorganisms 2022; 10:microorganisms10030588. [PMID: 35336163 PMCID: PMC8953382 DOI: 10.3390/microorganisms10030588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance is one of the biggest health challenges of our time. We are now facing a post-antibiotic era in which microbial infections, currently treatable, could become fatal. In this scenario, antimicrobial peptides such as bacteriocins represent an alternative solution to traditional antibiotics because they are produced by many organisms and can inhibit bacteria, fungi, and/or viruses. Herein, we assessed the antimicrobial activity and biotechnological potential of 54 Streptococcus agalactiae strains isolated from bovine mastitis. Deferred plate antagonism assays revealed an inhibition spectrum focused on species of the genus Streptococcus—namely, S. pyogenes, S. agalactiae, S. porcinus, and S. uberis. Three genomes were successfully sequenced, allowing for their taxonomic confirmation via a multilocus sequence analysis (MLSA). Virulence potential and antibiotic resistance assessments showed that strain LGMAI_St_08 is slightly more pathogenic than the others. Moreover, the mreA gene was identified in the three strains. This gene is associated with resistance against erythromycin, azithromycin, and spiramycin. Assessments for secondary metabolites and antimicrobial peptides detected the bacteriocin zoocin A. Finally, comparative genomics evidenced high similarity among the genomes, with more significant similarity between the LGMAI_St_11 and LGMAI_St_14 strains. Thus, the current study shows promising antimicrobial and biotechnological potential for the Streptococcus agalactiae strains.
Collapse
Affiliation(s)
- João Ricardo Vidal Amaral
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | | | - Fabrício Almeida Araújo
- Socio-Environmental and Water Resources Institute, Universidade Federal Rural da Amazônia, Belém 66077-830, PA, Brazil
| | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Flávia Figueira Aburjaile
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Siomar de Castro Soares
- Institute of Biological and Natural Sciences, Universidade Federal do Triângulo Mineiro, Uberaba 38025-180, MG, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Mateus Matiuzzi da Costa
- Department of Biological Sciences, Universidade Federal do Vale do São Francisco, Petrolina 56304-917, PE, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Selma Soares de Oliveira
- Institute of Microbiology, Universidade Federal do Rio de Janeiro, Cidade Universitária, Rio de Janeiro 21941-902, RJ, Brazil
| | - Alexandre Soares Rosado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| |
Collapse
|
25
|
de Carvalho CCCR, Taglialegna A, Rosato AE. Impact of PrsA on membrane lipid composition during daptomycin-resistance-mediated β-lactam sensitization in clinical MRSA strains. J Antimicrob Chemother 2021; 77:135-147. [PMID: 34618036 PMCID: PMC8730685 DOI: 10.1093/jac/dkab356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/28/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The cyclic anionic lipopeptide daptomycin is used in the treatment of severe infections caused by Gram-positive pathogens, including MRSA. Daptomycin resistance, although rare, often results in treatment failure. Paradoxically, in MRSA, daptomycin resistance is usually accompanied by a concomitant decrease in β-lactam resistance in what is known as the 'see-saw effect'. This resensitization is extensively used for the treatment of MRSA infections, by combining daptomycin and a β-lactam antibiotic, such as oxacillin. OBJECTIVES We aimed: (i) to investigate the combined effects of daptomycin and oxacillin on the lipid composition of the cellular membrane of both daptomycin-resistant and -susceptible MRSA strains; and (ii) to assess the involvement of the post-translocational protein PrsA, which plays an important role in oxacillin resistance in MRSA, in membrane lipid composition and remodelling during daptomycin resistance/β-lactam sensitization. RESULTS The combination of microbiological and biochemical studies, with fluorescence microscopy using lipid probes, showed that the lipid composition and surface charge of the daptomycin-resistant cells exposed to daptomycin/oxacillin were dependent on antibiotic concentration and directly associated with PrsA, which influenced cardiolipin remodelling/relocation. CONCLUSIONS Our findings show that PrsA, in addition to its post-transcriptional role in the maturation of PBP 2a, is a key mediator of cell membrane remodelling connected to the see-saw effect and may have a key role in the resensitization of daptomycin-resistant strains to β-lactams, such as oxacillin.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Agustina Taglialegna
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
| | - Adriana E Rosato
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, USA
- Department of Pathology and Molecular Microbiology Diagnostics-Research, Riverside University Health System, 26520 Cactus Avenue, Moreno Valley, CA 92555, USA
- University of California, Riverside, CA, USA
| |
Collapse
|
26
|
Abitayeva GK, Urazova MS, Abilkhadirov AS, Sarmurzina ZS, Shaikhin SM. Characterization of a new bacteriocin-like inhibitory peptide produced by Lactobacillus sakei B-RKM 0559. Biotechnol Lett 2021; 43:2243-2257. [PMID: 34652635 DOI: 10.1007/s10529-021-03193-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/02/2021] [Indexed: 10/20/2022]
Abstract
The biopreservation strategy allows extending the shelf life and food safety through the use of indigenous or controlled microbiota and their antimicrobial compounds. The aim of this work was to characterize an inhibitory substance with bacteriocin-like activity (Sak-59) produced by the potentially probiotic L. sakei strain from artisanal traditional Kazakh horse meat product Kazy. The maximum production of Sak-59 occurred at the stationary phase of the L. sakei growth. Sak-59 showed inhibitory activity against gram-positive meat spoilage bacteria strains of Listeria monocytogenes, Staphylococcus aureus, and pathogenic gram-negative bacteria strains of Serratia marcescens and Escherichia coli, but not against the tested Lactobacilli strains. Sak-59 activity, as measured by diffusion assay in agar wells, was completely suppressed after treatment with proteolytic enzymes and remained stable after treatment with α-amylase and lipase, indicating that Sak-59 is a peptide and most likely not glycosylated or lipidated. It was concluded that Sak-59 is a potential new bacteriocin with a characteristic activity spectrum, which can be useful in the food and feed industries.
Collapse
Affiliation(s)
- Gulyaim K Abitayeva
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Maira S Urazova
- Laboratory of Biotechnology, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., Nur-Sultan, 010000, Republic of Kazakhstan
| | - Arman S Abilkhadirov
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Zinigul S Sarmurzina
- Laboratory of Microbiology, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan
| | - Serik M Shaikhin
- Laboratory of Genetics and Biochemistry of Microorganisms, Republican Collection of Microorganisms of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, 13/1 Valikhanov Str., 010000, Nur-Sultan, Republic of Kazakhstan.
| |
Collapse
|
27
|
Rocha-Roa C, Orjuela JD, Leidy C, Cossio P, Aponte-Santamaría C. Cardiolipin prevents pore formation in phosphatidylglycerol bacterial membrane models. FEBS Lett 2021; 595:2701-2714. [PMID: 34633077 DOI: 10.1002/1873-3468.14206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Several antimicrobial peptides, including magainin and the human cathelicidin LL-37, act by forming pores in bacterial membranes. Bacteria such as Staphylococcus aureus modify their membrane's cardiolipin composition to resist such types of perturbations that compromise their membrane stability. Here, we used molecular dynamic simulations to quantify the role of cardiolipin on the formation of pores in simple bacterial-like membrane models composed of phosphatidylglycerol and cardiolipin mixtures. Cardiolipin modified the structure and ordering of the lipid bilayer, making it less susceptible to mechanical changes. Accordingly, the free-energy barrier for the formation of a transmembrane pore and its kinetic instability augmented by increasing the cardiolipin concentration. This is attributed to the unfavorable positioning of cardiolipin near the formed pore, due to its small polar head and bulky hydrophobic body. Overall, our study demonstrates how cardiolipin prevents membrane-pore formation and this constitutes a plausible mechanism used by bacteria to act against stress perturbations and, thereby, gain resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Cristian Rocha-Roa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Juan David Orjuela
- Max Planck Tandem Group in Computational Biophysics, Universidad de los Andes, Bogotá, Colombia
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Chad Leidy
- Biophysics Group, Department of Physics, Universidad de los Andes, Bogotá, Colombia
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | |
Collapse
|
28
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
29
|
Kretschmer D, Breitmeyer R, Gekeler C, Lebtig M, Schlatterer K, Nega M, Stahl M, Stapels D, Rooijakkers S, Peschel A. Staphylococcus aureus Depends on Eap Proteins for Preventing Degradation of Its Phenol-Soluble Modulin Toxins by Neutrophil Serine Proteases. Front Immunol 2021; 12:701093. [PMID: 34552584 PMCID: PMC8451722 DOI: 10.3389/fimmu.2021.701093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophil granulocytes act as a first line of defense against pathogenic staphylococci. However, Staphylococcus aureus has a remarkable capacity to survive neutrophil killing, which distinguishes it from the less-pathogenic Staphylococcus epidermidis. Both species release phenol-soluble modulin (PSM) toxins, which activate the neutrophil formyl-peptide receptor 2 (FPR2) to promote neutrophil influx and phagocytosis, and which disrupt neutrophils or their phagosomal membranes at high concentrations. We show here that the neutrophil serine proteases (NSPs) neutrophil elastase, cathepsin G and proteinase 3, which are released into the extracellular space or the phagosome upon neutrophil FPR2 stimulation, effectively degrade PSMs thereby preventing their capacity to activate and destroy neutrophils. Notably, S. aureus, but not S. epidermidis, secretes potent NSP-inhibitory proteins, Eap, EapH1, EapH2, which prevented the degradation of PSMs by NSPs. Accordingly, a S. aureus mutant lacking all three NSP inhibitory proteins was less effective in activating and destroying neutrophils and it survived less well in the presence of neutrophils than the parental strain. We show that Eap proteins promote pathology via PSM-mediated FPR2 activation since murine intraperitoneal infection with the S. aureus parental but not with the NSP inhibitors mutant strain, led to a significantly higher bacterial load in the peritoneum and kidneys of mFpr2-/- compared to wild-type mice. These data demonstrate that NSPs can very effectively detoxify some of the most potent staphylococcal toxins and that the prominent human pathogen S. aureus has developed efficient inhibitors to preserve PSM functions. Preventing PSM degradation during infection represents an important survival strategy to ensure FPR2 activation.
Collapse
Affiliation(s)
- Dorothee Kretschmer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Ricarda Breitmeyer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Cordula Gekeler
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Marco Lebtig
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Katja Schlatterer
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Mulugeta Nega
- Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany.,Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mark Stahl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Daphne Stapels
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Suzan Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Andreas Peschel
- Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany.,Cluster of Excellence EXC2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|
30
|
Phospholipid translocation captured in a bifunctional membrane protein MprF. Nat Commun 2021; 12:2927. [PMID: 34006869 PMCID: PMC8131360 DOI: 10.1038/s41467-021-23248-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/16/2021] [Indexed: 01/07/2023] Open
Abstract
As a large family of membrane proteins crucial for bacterial physiology and virulence, the Multiple Peptide Resistance Factors (MprFs) utilize two separate domains to synthesize and translocate aminoacyl phospholipids to the outer leaflets of bacterial membranes. The function of MprFs enables Staphylococcus aureus and other pathogenic bacteria to acquire resistance to daptomycin and cationic antimicrobial peptides. Here we present cryo-electron microscopy structures of MprF homodimer from Rhizobium tropici (RtMprF) at two different states in complex with lysyl-phosphatidylglycerol (LysPG). RtMprF contains a membrane-embedded lipid-flippase domain with two deep cavities opening toward the inner and outer leaflets of the membrane respectively. Intriguingly, a hook-shaped LysPG molecule is trapped inside the inner cavity with its head group bent toward the outer cavity which hosts a second phospholipid-binding site. Moreover, RtMprF exhibits multiple conformational states with the synthase domain adopting distinct positions relative to the flippase domain. Our results provide a detailed framework for understanding the mechanisms of MprF-mediated modification and translocation of phospholipids.
Collapse
|
31
|
Proteomic Adaptation of Clostridioides difficile to Treatment with the Antimicrobial Peptide Nisin. Cells 2021; 10:cells10020372. [PMID: 33670309 PMCID: PMC7918085 DOI: 10.3390/cells10020372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is the leading cause of antibiotic-associated diarrhea but can also result in more serious, life-threatening conditions. The incidence of C. difficile infections in hospitals is increasing, both in frequency and severity, and antibiotic-resistant C. difficile strains are advancing. Against this background antimicrobial peptides (AMPs) are an interesting alternative to classic antibiotics. Information on the effects of AMPs on C. difficile will not only enhance the knowledge for possible biomedical application but may also provide insights into mechanisms of C. difficile to adapt or counteract AMPs. This study applies state-of-the-art mass spectrometry methods to quantitatively investigate the proteomic response of C. difficile 630∆erm to sublethal concentrations of the AMP nisin allowing to follow the cellular stress adaptation in a time-resolved manner. The results do not only point at a heavy reorganization of the cellular envelope but also resulted in pronounced changes in central cellular processes such as carbohydrate metabolism. Further, the number of flagella per cell was increased during the adaptation process. The potential involvement of flagella in nisin adaptation was supported by a more resistant phenotype exhibited by a non-motile but hyper-flagellated mutant.
Collapse
|
32
|
Simcock PW, Bublitz M, Cipcigan F, Ryadnov MG, Crain J, Stansfeld PJ, Sansom MSP. Membrane Binding of Antimicrobial Peptides Is Modulated by Lipid Charge Modification. J Chem Theory Comput 2021; 17:1218-1228. [PMID: 33395285 DOI: 10.1021/acs.jctc.0c01025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide interactions with lipid bilayers play a key role in a range of biological processes and depend on electrostatic interactions between charged amino acids and lipid headgroups. Antimicrobial peptides (AMPs) initiate the killing of bacteria by binding to and destabilizing their membranes. The multiple peptide resistance factor (MprF) provides a defense mechanism for bacteria against a broad range of AMPs. MprF reduces the negative charge of bacterial membranes through enzymatic conversion of the anionic lipid phosphatidyl glycerol (PG) to either zwitterionic alanyl-phosphatidyl glycerol (Ala-PG) or cationic lysyl-phosphatidyl glycerol (Lys-PG). The resulting change in the membrane charge is suggested to reduce the binding of AMPs to membranes, thus impeding downstream AMP activity. Using coarse-grained molecular dynamics to investigate the effects of these modified lipids on AMP binding to model membranes, we show that AMPs have substantially reduced affinity for model membranes containing Ala-PG or Lys-PG. More than 5000 simulations in total are used to define the relationship between lipid bilayer composition, peptide sequence (using five different membrane-active peptides), and peptide binding to membranes. The degree of interaction of a peptide with a membrane correlates with the membrane surface charge density. Free energy profile (potential of mean force) calculations reveal that the lipid modifications due to MprF alter the energy barrier to peptide helix penetration of the bilayer. These results will offer a guide to the design of novel peptides, which addresses the issue of resistance via MprF-mediated membrane modification.
Collapse
Affiliation(s)
- Patrick W Simcock
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| | | | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Jason Crain
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- IBM Research UK, Hartree Centre, Daresbury WA4 4AD, U.K
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
33
|
Novel Functions and Signaling Specificity for the GraS Sensor Kinase of Staphylococcus aureus in Response to Acidic pH. J Bacteriol 2020; 202:JB.00219-20. [PMID: 32868405 DOI: 10.1128/jb.00219-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/26/2020] [Indexed: 01/30/2023] Open
Abstract
Although the GraS sensor kinase of Staphylococcus aureus is known for the sensing of and resistance to cationic antimicrobial peptides (CAMPs), we recently established that it also signals in response to acidic pH, which is encountered on human skin concurrently with CAMPs, antimicrobial unsaturated free fatty acids (uFFA), and calcium. We therefore evaluated how these environmental signals would affect GraS function and resistance to antimicrobial uFFA. Growth at pH 5.5 promoted increased resistance of S. aureus USA300 to linoleic and arachidonic acids but not palmitoleic or sapienic acid. However, enhanced resistance to these C16:1 uFFA was achieved by supplementing acidic medium with 0.5 mM calcium or subinhibitory CAMPs. Enhanced resistance to uFFA at acidic pH was dependent on GraS and GraS-dependent expression of the lysyl-phosphatidylglycerol synthase enzyme MprF, through a mechanism that did not require the lysyl-transferase function of MprF. In addition to enhanced resistance to antimicrobial uFFA, acidic pH also promoted increased production of secreted proteases in a GraS-dependent manner. During growth at pH 5.5, downstream phenotypes of signaling through GraS, including resistance to uFFA, MprF-dependent addition of positive charge to the cell surface, and increased production of secreted proteases, all occurred independently of acidic amino acids in the extracytoplasmic sensor loop of GraS that were previously found to be required for sensing of CAMPs. Cumulatively, our data indicate that signaling through GraS at acidic pH occurs through a mechanism that is distinct from that described for CAMPs, leading to increased resistance to antimicrobial uFFA and production of secreted proteases.IMPORTANCE Staphylococcus aureus asymptomatically colonizes 30% of humans but is also a leading cause of infectious morbidity and mortality. Since infections are typically initiated by the same strain associated with asymptomatic colonization of the nose or skin, it is important to understand how the microbe can endure exposure to harsh conditions that successfully restrict the growth of other bacteria, including a combination of acidic pH, antimicrobial peptides, and antimicrobial fatty acids. The significance of our research is in showing that acidic pH combined with antimicrobial peptide or environmental calcium can signal through a single membrane sensor protein to promote traits that may aid in survival, including modification of cell surface properties, increased resistance to antimicrobial fatty acids, and enhanced production of secreted proteases.
Collapse
|
34
|
Assoni L, Milani B, Carvalho MR, Nepomuceno LN, Waz NT, Guerra MES, Converso TR, Darrieux M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front Microbiol 2020; 11:593215. [PMID: 33193264 PMCID: PMC7609970 DOI: 10.3389/fmicb.2020.593215] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
With the alarming increase of infections caused by pathogenic multidrug-resistant bacteria over the last decades, antimicrobial peptides (AMPs) have been investigated as a potential treatment for those infections, directly through their lytic effect or indirectly, due to their ability to modulate the immune system. There are still concerns regarding the use of such molecules in the treatment of infections, such as cell toxicity and host factors that lead to peptide inhibition. To overcome these limitations, different approaches like peptide modification to reduce toxicity and peptide combinations to improve therapeutic efficacy are being tested. Human defense peptides consist of an important part of the innate immune system, against a myriad of potential aggressors, which have in turn developed different ways to overcome the AMPs microbicidal activities. Since the antimicrobial activity of AMPs vary between Gram-positive and Gram-negative species, so do the bacterial resistance arsenal. This review discusses the mechanisms exploited by Gram-positive bacteria to circumvent killing by antimicrobial peptides. Specifically, the most clinically relevant genera, Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Gram-positive bacilli, have been explored.
Collapse
Affiliation(s)
- Lucas Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Barbara Milani
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marianna Ribeiro Carvalho
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucas Natanael Nepomuceno
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Natalha Tedeschi Waz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
35
|
Thitiananpakorn K, Aiba Y, Tan XE, Watanabe S, Kiga K, Sato'o Y, Boonsiri T, Li FY, Sasahara T, Taki Y, Azam AH, Zhang Y, Cui L. Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA). Sci Rep 2020; 10:16107. [PMID: 32999359 PMCID: PMC7527455 DOI: 10.1038/s41598-020-73108-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
We first reported a phenomenon of cross-resistance to vancomycin (VCM) and daptomycin (DAP) in methicillin-resistant Staphylococcus aureus (MRSA) in 2006, but mechanisms underlying the cross-resistance remain incompletely understood. Here, we present a follow-up study aimed to investigate genetic determinants associated with the cross-resistance. Using 12 sets of paired DAP susceptible (DAPS) and DAP non-susceptible (DAPR) MRSA isolates from 12 patients who had DAP therapy, we (i) assessed susceptibility to DAP and VCM, (ii) compared whole-genome sequences, (iii) identified mutations associated with cross-resistance to DAP and VCM, and (iv) investigated the impact of altered gene expression and metabolic pathway relevant to the cross-resistance. We found that all 12 DAPR strains exhibiting cross-resistance to DAP and VCM carried mutations in mprF, while one DAPR strain with reduced susceptibility to only DAP carried a lacF mutation. On the other hand, among the 32 vancomycin-intermediate S. aureus (VISA) strains isolated from patients treated with VCM, five out of the 18 strains showing cross-resistance to DAP and VCM carried a mprF mutation, while 14 strains resistant to only VCM had no mprF mutation. Moreover, substitution of mprF in a DAPS strain with mutated mprF resulted in cross-resistance and vice versa. The elevated lysyl-phosphatidylglycerol (L-PG) production, increased positive bacterial surface charges and activated cell wall (CW) synthetic pathways were commonly found in both clinical isolates and laboratory-developed mutants that carry mprF mutations. We conclude that mprF mutation is responsible for the cross-resistance of MRSA to DAP and VCM, and treatment with DAP is more likely to select for mprF-mediated cross-resistance than is with VCM.
Collapse
Affiliation(s)
- Kanate Thitiananpakorn
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yoshifumi Aiba
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Xin-Ee Tan
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Shinya Watanabe
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Kotaro Kiga
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yusuke Sato'o
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Tanit Boonsiri
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Feng-Yu Li
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Teppei Sasahara
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yusuke Taki
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Aa Haeruman Azam
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yuancheng Zhang
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, Faculty of Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
| |
Collapse
|
36
|
Rodríguez-Rojas A, Nath A, El Shazely B, Santi G, Kim JJ, Weise C, Kuropka B, Rolff J. Antimicrobial Peptide Induced-Stress Renders Staphylococcus aureus Susceptible to Toxic Nucleoside Analogs. Front Immunol 2020; 11:1686. [PMID: 33133056 PMCID: PMC7550632 DOI: 10.3389/fimmu.2020.01686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Cationic antimicrobial peptides (AMPs) are active immune effectors of multicellular organisms and are also considered as new antimicrobial drug candidates. One of the problems encountered when developing AMPs as drugs is the difficulty of reaching sufficient killing concentrations under physiological conditions. Here, using pexiganan, a cationic peptide derived from a host defense peptide of the African clawed frog and the first AMP developed into an antibacterial drug, we studied whether sub-lethal effects of AMPs can be harnessed to devise treatment combinations. We studied the pexiganan stress response of Staphylococcus aureus at sub-lethal concentrations using quantitative proteomics. Several proteins involved in nucleotide metabolism were elevated, suggesting a metabolic demand. We then show that Staphylococcus aureus is highly susceptible to antimetabolite nucleoside analogs when exposed to pexiganan, even at sub-inhibitory concentrations. These findings could be used to enhance pexiganan potency while decreasing the risk of resistance emergence, and our findings can likely be extended to other antimicrobial peptides.
Collapse
Affiliation(s)
| | - Arpita Nath
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Baydaa El Shazely
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Greta Santi
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Joshua Jay Kim
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jens Rolff
- Institut für Biologie, Evolutionary Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
37
|
Karatzas KAG, Lemmens-den Toom NA, Tassou CC, van Leeuwen W, van Belkum A. Molecular characterization of piezotolerant and stress-resistant mutants of Staphylococcus aureus. J Appl Microbiol 2020; 130:901-912. [PMID: 32871628 DOI: 10.1111/jam.14832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
AIMS In the previous work, following a pressure treatment with wild-type Staphylococcus aureus, we obtained piezotolerant isolates showing altered phenotypic characteristics. This work focuses on understanding the genetic background of their altered phenotype. METHODS AND RESULTS AK23, a representative piezotolerant isolate was subjected to DNA microarrays, corroborated by PCR product sequencing and revealed 10-gene deletion. All other piezotolerant isolates possessed the mutation encompassing the region from SAR0665 to SAR0674 genes (9351 bp) which was most likely the result of recombination between two homologous loci (ATTGCGGGTG) present in both genes. RNA microarray transcriptomic analysis showed that due to partial deletion of the low-affinity phosphate transporter pitA, the high-affinity PhoU-PstABCS operon was upregulated in AK23 which could be the reason for piezotolerance. Furthermore, AK23 showed low levels of the virulence gene regulator rnaIII resulting in the downregulation of several agr system genes explaining the impaired virulence characteristics of the mutant. CONCLUSIONS Naturally occurring mutations can result in piezotolerance which can be of a concern for high hydrostatic pressure-treated foods. SIGNIFICANCE AND IMPACT OF THE STUDY A locus has been identified in piezotolerant S. aureus mutants providing insight into possible mechanisms associated with phenotypic characteristics of S. aureus. Further work should study each individual gene of the locus.
Collapse
Affiliation(s)
- K A G Karatzas
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - N A Lemmens-den Toom
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, GD Rotterdam, The Netherlands
| | - C C Tassou
- Hellenic Agricultural Organisation 'DEMETER', Institute of Technology of Agricultural Products, Attikis, Greece
| | - W van Leeuwen
- Leiden Centre for Applied Bioscience, University of Applied Science Leiden, Leiden, The Netherlands
| | - A van Belkum
- BioMérieux, Open Innovation & Partnerships, La Balme Les Grottes, France
| |
Collapse
|
38
|
Araújo CL, Blanco I, Souza L, Tiwari S, Pereira LC, Ghosh P, Azevedo V, Silva A, Folador A. In silico functional prediction of hypothetical proteins from the core genome of Corynebacterium pseudotuberculosis biovar ovis. PeerJ 2020; 8:e9643. [PMID: 32913672 PMCID: PMC7456259 DOI: 10.7717/peerj.9643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/10/2020] [Indexed: 12/30/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a pathogen of veterinary relevance diseases, being divided into two biovars: equi and ovis; causing ulcerative lymphangitis and caseous lymphadenitis, respectively. The isolation and sequencing of C. pseudotuberculosis biovar ovis strains in the Northern and Northeastern regions of Brazil exhibited the emergence of this pathogen, which causes economic losses to small ruminant producers, and condemnation of carcasses and skins of animals. Through the pan-genomic approach, it is possible to determine and analyze genes that are shared by all strains of a species—the core genome. However, many of these genes do not have any predicted function, being characterized as hypothetical proteins (HP). In this study, we considered 32 C. pseudotuberculosis biovar ovis genomes for the pan-genomic analysis, where were identified 172 HP present in a core genome composed by 1255 genes. We are able to functionally annotate 80 sequences previously characterized as HP through the identification of structural features as conserved domains and families. Furthermore, we analyzed the physicochemical properties, subcellular localization and molecular function. Additionally, through RNA-seq data, we investigated the differential gene expression of the annotated HP. Genes inserted in pathogenicity islands had their virulence potential evaluated. Also, we have analyzed the existence of functional associations for their products based on protein–protein interaction networks, and perform the structural prediction of three targets. Due to the integration of different strategies, this study can underlie deeper in vitro researches in the characterization of these HP and the search for new solutions for combat this pathogen.
Collapse
Affiliation(s)
- Carlos Leonardo Araújo
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Iago Blanco
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luciana Souza
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Sandeep Tiwari
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lino César Pereira
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Adriana Folador
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
39
|
Human Defensins: A Novel Approach in the Fight against Skin Colonizing Staphylococcus a ureus. Antibiotics (Basel) 2020; 9:antibiotics9040198. [PMID: 32326312 PMCID: PMC7235756 DOI: 10.3390/antibiotics9040198] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a microorganism capable of causing numerous diseases of the human skin. The incidence of S. aureus skin infections reflects the conflict between the host skin′s immune defenses and the S. aureus’ virulence elements. Antimicrobial peptides (AMPs) are small protein molecules involved in numerous biological activities, playing a very important role in the innate immunity. They constitute the defense of the host′s skin, which prevents harmful microorganisms from entering the epithelial barrier, including S. aureus. However, S. aureus uses ambiguous mechanisms against host defenses by promoting colonization and skin infections. Our review aims to provide a reference collection on host-pathogen interactions in skin disorders, including S. aureus infections and its resistance to methicillin (MRSA). In addition to these, we discuss the involvement of defensins and other innate immunity mediators (i.e., toll receptors, interleukin-1, and interleukin-17), involved in the defense of the host against the skin disorders caused by S. aureus, and then focus on the evasion mechanisms developed by the pathogenic microorganism under analysis. This review provides the “state of the art” on molecular mechanisms underlying S. aureus skin infection and the pharmacological potential of AMPs as a new therapeutic strategy, in order to define alternative directions in the fight against cutaneous disease.
Collapse
|
40
|
Wang SC, Davejan P, Hendargo KJ, Javadi-Razaz I, Chou A, Yee DC, Ghazi F, Lam KJK, Conn AM, Madrigal A, Medrano-Soto A, Saier MH. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183277. [PMID: 32205149 DOI: 10.1016/j.bbamem.2020.183277] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/14/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
The Major Facilitator Superfamily (MFS) is currently the largest characterized superfamily of transmembrane secondary transport proteins. Its diverse members are found in essentially all organisms in the biosphere and function by uniport, symport, and/or antiport mechanisms. In 1993 we first named and described the MFS which then consisted of 5 previously known families that had not been known to be related, and by 2012 we had identified a total of 74 families, classified phylogenetically within the MFS, all of which included only transport proteins. This superfamily has since expanded to 89 families, all included under TC# 2.A.1, and a few transporter families outside of TC# 2.A.1 were identified as members of the MFS. In this study, we assign nine previously unclassified protein families in the Transporter Classification Database (TCDB; http://www.tcdb.org) to the MFS based on multiple criteria and bioinformatic methodologies. In addition, we find integral membrane domains distantly related to partial or full-length MFS permeases in Lysyl tRNA Synthases (TC# 9.B.111), Lysylphosphatidyl Glycerol Synthases (TC# 4.H.1), and cytochrome b561 transmembrane electron carriers (TC# 5.B.2). Sequence alignments, overlap of hydropathy plots, compatibility of repeat units, similarity of complexity profiles of transmembrane segments, shared protein domains and 3D structural similarities between transport proteins were analyzed to assist in inferring homology. The MFS now includes 105 families.
Collapse
Affiliation(s)
- Steven C Wang
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Pauldeen Davejan
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Kevin J Hendargo
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Ida Javadi-Razaz
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Amy Chou
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Daniel C Yee
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Faezeh Ghazi
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Katie Jing Kay Lam
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Adam M Conn
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Assael Madrigal
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Arturo Medrano-Soto
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America
| | - Milton H Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, United States of America.
| |
Collapse
|
41
|
Mechanisms of bactericidal action and resistance of polymyxins for Gram-positive bacteria. Appl Microbiol Biotechnol 2020; 104:3771-3780. [PMID: 32157424 DOI: 10.1007/s00253-020-10525-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Polymyxins are cationic antimicrobial peptides used as the last-line therapy to treat multidrug-resistant Gram-negative bacterial infections. The bactericidal activity of polymyxins against Gram-negative bacteria relies on the electrostatic interaction between the positively charged polymyxins and the negatively charged lipid A of lipopolysaccharide (LPS). Given that Gram-positive bacteria lack an LPS-containing outer membrane, it is generally acknowledged that polymyxins are less active against Gram-positive bacteria. However, Gram-positive bacteria produce negatively charged teichoic acids, which may act as the target of polymyxins. More and more studies suggest that polymyxins have potential as a treatment for Gram-positive bacterial infection. This mini-review discusses recent advances in the mechanism of the antibacterial activity and resistance of polymyxins in Gram-positive bacteria.Key Points• Teichoic acids play a key role in the action of polymyxins on Gram-positive bacteria.• Polymyxin kills Gram-positive bacteria by disrupting cell surface and oxidative damage.• Modification of teichoic acids and phospholipids contributes to polymyxin resistance in Gram-positive bacteria.• Polymyxins have potential as a treatment for Gram-positive bacterial infection.
Collapse
|
42
|
van Hensbergen VP, Wu Y, van Sorge NM, Touqui L. Type IIA Secreted Phospholipase A2 in Host Defense against Bacterial Infections. Trends Immunol 2020; 41:313-326. [PMID: 32151494 DOI: 10.1016/j.it.2020.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
The enzyme type IIA secreted phospholipase A2 (sPLA2-IIA) is crucial for mammalian innate host defense against bacterial pathogens. Most studies have investigated the role of sPLA2-IIA in systemic bacterial infections, identifying molecular pathways of bacterial resistance against sPLA2-IIA-mediated killing, and providing insight into sPLA2-IIA mechanisms of action. Sensitization of (antibiotic-resistant) bacteria to sPLA2-IIA action by blocking bacterial resistance or by applying sPLA2-IIA to treat bacterial infections might represent a therapeutic option in the future. Because sPLA2-IIA is highly expressed at mucosal barriers, we also discuss how sPLA2-IIA is likely to be an important driver of microbiome composition; we anticipate that future research in this area may bring new insights into the role of sPLA2-IIA in health and disease.
Collapse
Affiliation(s)
- Vincent P van Hensbergen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yongzheng Wu
- Unité de Biologie Cellulaire de l'infection Microbienne, CNRS UMR3691, Institut Pasteur, Paris, France
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Lhousseine Touqui
- Mucoviscidose et Bronchopathies Chroniques, département Santé Globale; Pasteur Institute, Paris, France.
| |
Collapse
|
43
|
Baindara P, Ghosh AK, Mandal SM. Coevolution of Resistance Against Antimicrobial Peptides. Microb Drug Resist 2020; 26:880-899. [PMID: 32119634 DOI: 10.1089/mdr.2019.0291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are produced by all forms of life, ranging from eukaryotes to prokaryotes, and they are a crucial component of innate immunity, involved in clearing infection by inhibiting pathogen colonization. In the recent past, AMPs received high attention due to the increase of extensive antibiotic resistance by these pathogens. AMPs exhibit a diverse spectrum of activity against bacteria, fungi, parasites, and various types of cancer. AMPs are active against various bacterial pathogens that cause disease in animals and plants. However, because of the coevolution of host and pathogen interaction, bacteria have developed the mechanisms to sense and exhibit an adaptive response against AMPs. These resistance mechanisms are playing an important role in bacterial virulence within the host. Here, we have discussed the different resistance mechanisms used by gram-positive and gram-negative bacteria to sense and combat AMP actions. Understanding the mechanism of AMP resistance may provide directions toward the development of novel therapeutic strategies to control multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Piyush Baindara
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ananta K Ghosh
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Santi M Mandal
- Department of Biotechnology, Central Research Facility, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
44
|
Gray DA, Wenzel M. More Than a Pore: A Current Perspective on the In Vivo Mode of Action of the Lipopeptide Antibiotic Daptomycin. Antibiotics (Basel) 2020; 9:E17. [PMID: 31947747 PMCID: PMC7168178 DOI: 10.3390/antibiotics9010017] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic, which was discovered in 1987 and entered the market in 2003. To date, it serves as last resort antibiotic to treat complicated skin infections, bacteremia, and right-sided endocarditis caused by Gram-positive pathogens, most prominently methicillin-resistant Staphylococcus aureus. Daptomycin was the last representative of a novel antibiotic class that was introduced to the clinic. It is also one of the few membrane-active compounds that can be applied systemically. While membrane-active antibiotics have long been limited to topical applications and were generally excluded from systemic drug development, they promise slower resistance development than many classical drugs that target single proteins. The success of daptomycin together with the emergence of more and more multi-resistant superbugs attracted renewed interest in this compound class. Studying daptomycin as a pioneering systemic membrane-active compound might help to pave the way for future membrane-targeting antibiotics. However, more than 30 years after its discovery, the exact mechanism of action of daptomycin is still debated. In particular, there is a prominent discrepancy between in vivo and in vitro studies. In this review, we discuss the current knowledge on the mechanism of daptomycin against Gram-positive bacteria and try to offer explanations for these conflicting observations.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Michaela Wenzel
- Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
45
|
Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci 2019; 25:e3210. [DOI: 10.1002/psc.3210] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Milad Abdi
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|
46
|
Mankoci S, Ewing J, Dalai P, Sahai N, Barton HA, Joy A. Bacterial Membrane Selective Antimicrobial Peptide-Mimetic Polyurethanes: Structure–Property Correlations and Mechanisms of Action. Biomacromolecules 2019; 20:4096-4106. [DOI: 10.1021/acs.biomac.9b00939] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Martínez-García S, Chávez-Cabrera C, Quintana ET, Marsch-Moreno R, Ibáñez-Hernández MA, Zenteno JC, Cruz-Aguilar M, Velázquez-Guadarrama N, Betanzos-Cabrera G, Rodríguez-Martínez S, Cancino-Diaz ME, Cancino-Diaz JC. Differential Expression of the apsXRS System by Antimicrobial Peptide LL-37 in Commensal and Clinical Staphylococcus epidermidis Isolates. Indian J Microbiol 2019; 59:295-303. [PMID: 31388206 DOI: 10.1007/s12088-019-00800-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/20/2019] [Indexed: 01/05/2023] Open
Abstract
The three-component apsXRS system senses and responds to cationic antimicrobial peptides (CAMPs), which induces the expression of the dlt operon and the genes mprF and vrafG, modifying the surface net charge in Staphylococcus epidermidis, resulting in the repulsion of CAMPs. The apsXRS system has been only studied in the S. epidermidis 1457 strain, and there are no studies of prevalence and level of expression of apsXRS in commensal and clinical isolates. From 60 isolates, those selected from commensal healthy skin (n = 20), commensal healthy conjunctive (n = 10), and clinical ocular infection (n = 30) presented the apsX, apsR, and apsS genes in their genomes. Constitutive expression of apsX, apsR, and apsS genes was determined by RT-qPCR in all isolates. It was found that expression of apsX, apsR, and apsS was 3.3-5.9-fold higher in commensal isolates stimulated with LL-37 (15 µg/mL) than in clinical isolates. Similarly, expression of the dlt operon and the genes mprF, and vraFG was 8-10-fold higher in commensal isolates than in clinical. However, LL-37 did not increase the addition of lysine in the phospholipids of the cytoplasmic membrane in any of the isolates. Mutations in the apsS loop region, apsR, and their promoter sequence were not found. These results demonstrated that apsXRS system is essential in all isolates for its constitutive expression; however, LL-37 caused an increase of apsXRS expression in commensal isolates, suggesting that S. epidermidis isolates do not respond in the same way to the presence of LL-37.
Collapse
Affiliation(s)
- Sergio Martínez-García
- 1Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Cipriano Chávez-Cabrera
- 1Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Erika T Quintana
- 1Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Miguel A Ibáñez-Hernández
- 3Department of Biochemistry, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan Carlos Zenteno
- 4Research Unit, Instituto de Oftalmología Conde de Valenciana, Mexico City, Mexico
| | - Marisa Cruz-Aguilar
- 4Research Unit, Instituto de Oftalmología Conde de Valenciana, Mexico City, Mexico
| | | | - Gabriel Betanzos-Cabrera
- 6Área Académica de Nutrición and Toxicología Clínica, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo Mexico
| | - Sandra Rodríguez-Martínez
- 7Department of Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mario E Cancino-Diaz
- 7Department of Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan C Cancino-Diaz
- 1Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
48
|
The pH-dependence of lipid-mediated antimicrobial peptide resistance in a model staphylococcal plasma membrane: A two-for-one mechanism of epithelial defence circumvention. Eur J Pharm Sci 2019; 128:43-53. [DOI: 10.1016/j.ejps.2018.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/21/2018] [Accepted: 11/18/2018] [Indexed: 11/18/2022]
|
49
|
Poger D, Pöyry S, Mark AE. Could Cardiolipin Protect Membranes against the Action of Certain Antimicrobial Peptides? Aurein 1.2, a Case Study. ACS OMEGA 2018; 3:16453-16464. [PMID: 30613806 PMCID: PMC6312644 DOI: 10.1021/acsomega.8b02710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
The activity of a host of antimicrobial peptides has been examined against a range of lipid bilayers mimicking bacterial and eukaryotic membranes. Despite this, the molecular mechanisms and the nature of the physicochemical properties underlying the peptide-lipid interactions that lead to membrane disruption are yet to be fully elucidated. In this study, the interaction of the short antimicrobial peptide aurein 1.2 was examined in the presence of an anionic cardiolipin-containing lipid bilayer using molecular dynamics simulations. Aurein 1.2 is known to interact strongly with anionic lipid membranes. In the simulations, the binding of aurein 1.2 was associated with buckling of the lipid bilayer, the degree of which varied with the peptide concentration. The simulations suggest that the intrinsic properties of cardiolipin, especially the fact that it promotes negative membrane curvature, may help protect membranes against the action of peptides such as aurein 1.2 by counteracting the tendency of the peptide to induce positive curvature in target membranes.
Collapse
Affiliation(s)
- David Poger
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Sanja Pöyry
- Department
of Physics, Tampere University of Technology, POB 692, F1-33720 Tampere, Finland
| | - Alan E. Mark
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
50
|
Kang KM, Park JH, Kim SH, Yang SJ. Potential role of host defense antimicrobial peptide resistance in increased virulence of health care-associated MRSA strains of sequence type (ST) 5 versus livestock-associated and community-associated MRSA strains of ST72. Comp Immunol Microbiol Infect Dis 2018; 62:13-18. [PMID: 30711040 DOI: 10.1016/j.cimid.2018.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 11/19/2022]
Abstract
The most significant community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) in Korea is sequence type (ST) 72 with staphylococcal cassette chromosome mec (SCCmec) type IV (ST72-MRSA-IV). Although the impact of CA-MRSA on the clinical outcomes versus healthcare-associated (HA)-MRSA remains unclear, it has recently been revealed that ST5 HA-MRSA-II is associated with higher mortality compared with ST72 CA-MRSA-IV, suggesting higher virulence in ST5 HA-MRSA-II strains. In this investigation, human-/animal-originated ST72-MRSA-IV strains were examined for virulence phenotypes and compared with those of ST5-MRSA-II strains, the established HA-MRSA in Korea. Overall, ST5 HA-MRSA-II strains demonstrated higher levels of resistance to host defense-cationic antimicrobial peptides of human (LL-37), bovine (BMAP-28), and bacterial (polymyxin B) origins versus ST72-MRSA-IV strains via enhanced surface positive charge. Hemolysis profiles, gelatinase activity, and staphylococcal superantigen gene profiles were not different between ST72 CA-MRSA and ST5 HA-MRSA strains. However, ST5 HA-MRSA strains were able to downregulate initial cytokine response in murine macrophages.
Collapse
Affiliation(s)
- Kyoung-Mi Kang
- School of Bioresources and Bioscience, Chung-Ang University, Anseong, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - So Hyun Kim
- Asian Pacific Foundation for Infectious Disease (APFID), Seoul, Republic of Korea; Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, Anseong, Republic of Korea.
| |
Collapse
|