1
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
2
|
Morina IY, Mikhrina AL, Mikhailova EV, Vataev SI, Hismatullina ZR, Romanova IV. Analysis of the Hypothalamic Orexinergic System in Rats with Different Forms of Genetically Determined Epilepsy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Morina IY, Romanova IV. Orexin-Immunopositive Structures in the Thalamic Reticular Nucleus. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
The evolutionarily conserved miRNA-137 targets the neuropeptide hypocretin/orexin and modulates the wake to sleep ratio. Proc Natl Acad Sci U S A 2022; 119:e2112225119. [PMID: 35452310 PMCID: PMC9169915 DOI: 10.1073/pnas.2112225119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The hypocretin (Hcrt, also known as orexin) neuropeptides regulate sleep and wake stability, and disturbances of Hcrt can lead to sleep disorders. MicroRNAs (miRNAs) are short noncoding RNAs that fine-tune protein expression levels, and miRNA-based therapeutics are emerging. We report a functional interaction between miRNA (miR-137) and Hcrt. We demonstrate that intracellular miR-137 levels in Hcrt neurons regulate Hcrt expression with downstream effects on wakefulness. Specifically, lowering of miR-137 levels increased wakefulness in mice. We further show that the miR-137:Hcrt interaction is conserved across mice and humans, that miR-137 also regulates sleep–wake balance in zebrafish, and that the MIR137 locus is genetically associated with sleep duration in humans. Together, our findings reveal an evolutionarily conserved sleep–wake regulatory role of miR-137. Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep–wake regulation.
Collapse
|
5
|
Sánchez-García A, Cabral-Pacheco GA, Zomosa-Signoret VC, Ortiz-López R, Camacho A, Tabera-Tarello PM, Garnica-López JA, Vidaltamayo R. Modular organization of a hypocretin gene minimal promoter. Mol Med Rep 2017; 17:2263-2270. [PMID: 29207107 PMCID: PMC5783473 DOI: 10.3892/mmr.2017.8142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/17/2017] [Indexed: 12/02/2022] Open
Abstract
Orexins or hypocretins are neurotransmitters produced by a small population of neurons in the lateral hypothalamus. This family of peptides modulates sleep-wake cycle, arousal and feeding behaviors; however, the mechanisms regulating their expression remain to be fully elucidated. There is an interest in defining the key molecular elements in orexin regulation, as these may serve to identify targets for generating novel therapies for sleep disorders, obesity and addiction. Our previous studies showed that the expression of orexin was decreased in mice carrying null-mutations of the transcription factor early B-cell factor 2 (ebf2) and that the promoter region of the prepro-orexin (Hcrt) gene contained two putative ebf-binding sites, termed olf-1 sites. In the present study, a minimal promoter region of the murine Hcrt gene was identified, which was able to drive the expression of a luciferase reporter gene in the human 293 cell line. Deletion of the olf1-site proximal to the transcription start site of the Hcrt gene increased reporter gene expression, whereas deletion of the distal olf1-like site decreased its expression. The lentiviral transduction of murine transcription factor ebf2 cDNA into 293 cells increased the gene expression driven by this minimal Hcrt-gene promoter and an electrophoretic mobility shift assays demonstrated that the distal olf1-like sequence was a binding site for ebf2.
Collapse
Affiliation(s)
- Adriana Sánchez-García
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Griselda A Cabral-Pacheco
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Viviana C Zomosa-Signoret
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Rocío Ortiz-López
- Genomics Unit, Center for Research and Development in Health Sciences, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Alberto Camacho
- Department of Biochemistry and Molecular Medicine, School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, NL 64460, Mexico
| | - Paulo M Tabera-Tarello
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| | - José A Garnica-López
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| | - Román Vidaltamayo
- Department of Basic Science, School of Health Sciences, Universidad de Monterrey, San Pedro Garzia, NL 66238, Mexico
| |
Collapse
|
6
|
Abstract
The hypocretin (also known as orexin) system reacts to environmental changes in the internal milieu (pH, glucose, and various hormones) and the external environment (activity, fasting, and sleep deprivation) and regulates various physiological functions. Several feedback mechanisms, such as those listed above, have been reported to regulate the hypocretin system even at the transcriptional level. In addition, some transcription factors, such as forkhead box A2; nuclear receptor subfamily 6, group A, member 1; and early B-cell factor 2, were determined to be regulators of the preprohypocretin gene. However, little is known concerning the specific components that react to environmental changes and the determinants of spatial expression of the hypocretin gene within the lateral hypothalamus. This review focuses on the recent findings of transcription factors that regulate preprohypocretin transcription in addition to discussing the future prospects for transcriptional regulation of the hypocretin gene.
Collapse
Affiliation(s)
- Susumu Tanaka
- Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
7
|
Abstract
Sleep disturbances occur in up to 60% of patients with chronic hepatitis C (CHC) and is often interrelated with comorbid psychiatric disorders. Moreover, neuropsychiatric complications of interferon-alpha during CHC treatment can manifest as sleep problems. Newly diagnosed sleep disturbance occurs in up to 60% and 30% of untreated CHC patients and patients undergoing interferon-alpha therapy, respectively. However, the presentation of insomnia in patients with CHC is influenced by significant psychiatric comorbidity, such as depression, and medical conditions, such as anemia and hypothyroidism. Therefore, prompt recognition using screening tools and exclusion of comorbid conditions contributing sleep pathology can enhance treatment outcomes. Owing to the paucity of studies, treatment recommendations for sleep disorders in CHC patients are derived from recommendations from general sleep disorder treatment guidelines. Further research is needed to elucidate the efficacy of pharmacological and nonpharmacological treatments of sleep disorders in CHC patients.
Collapse
|
8
|
D'Souza CA, Chopra V, Varhol R, Xie YY, Bohacec S, Zhao Y, Lee LLC, Bilenky M, Portales-Casamar E, He A, Wasserman WW, Goldowitz D, Marra MA, Holt RA, Simpson EM, Jones SJM. Identification of a set of genes showing regionally enriched expression in the mouse brain. BMC Neurosci 2008; 9:66. [PMID: 18625066 PMCID: PMC2483290 DOI: 10.1186/1471-2202-9-66] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Accepted: 07/14/2008] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. RESULTS We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. CONCLUSION Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.
Collapse
Affiliation(s)
- Cletus A D'Souza
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Vikramjit Chopra
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Richard Varhol
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Yuan-Yun Xie
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Slavita Bohacec
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Yongjun Zhao
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Lisa LC Lee
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Mikhail Bilenky
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Elodie Portales-Casamar
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - An He
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Marco A Marra
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| | - Robert A Holt
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, 950 West 28th Ave., Vancouver, BC, V5Z 4H4, Canada
| | - Steven JM Jones
- Genome Sciences Centre, British Columbia Cancer Agency, 570 West 7th Ave – Suite 100, Vancouver, BC, V5Z 4E6, Canada
| |
Collapse
|
9
|
Bentivoglio M, Kristensson K. Neural–immune interactions in disorders of sleep-wakefulness organization. Trends Neurosci 2007; 30:645-52. [DOI: 10.1016/j.tins.2007.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 09/21/2007] [Accepted: 09/26/2007] [Indexed: 11/30/2022]
|
10
|
Tanaka S, Honda Y, Honda M. Identification of differentially expressed genes in blood cells of narcolepsy patients. Sleep 2007; 30:974-9. [PMID: 17702266 PMCID: PMC1978392 DOI: 10.1093/sleep/30.8.974] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVE A close association between the human leukocyte antigen (HLA)-DRB1*1501/DQB1*0602 and abnormalities in some inflammatory cytokines have been demonstrated in narcolepsy. Specific alterations in the immune system have been suggested to occur in this disorder. We attempted to identify alterations in gene expression underlying the abnormalities in the blood cells of narcoleptic patients. DESIGNS Total RNA from 12 narcolepsy-cataplexy patients and from 12 age- and sex-matched healthy controls were pooled. The pooled samples were initially screened for candidate genes for narcolepsy by differential display analysis using annealing control primers (ACP). The second screening of the samples was carried out by semiquantitative PCR using gene-specific primers. Finally, the expression levels of the candidate genes were further confirmed by quantitative real-time PCR using a new set of samples (20 narcolepsy-cataplexy patients and 20 healthy controls). RESULTS The second screening revealed differential expression of 4 candidate genes. Among them, MX2 was confirmed as a significantly down-regulated gene in the white blood cells of narcoleptic patients by quantitative real-time PCR. CONCLUSION We found the MX2 gene to be significantly less expressed in comparison with normal subjects in the white blood cells of narcoleptic patients. This gene is relevant to the immune system. Although differential display analysis using ACP technology has a limitation in that it does not help in determining the functional mechanism underlying sleep/wakefulness dysregulation, it is useful for identifying novel genetic factors related to narcolepsy, such as HLA molecules. Further studies are required to explore the functional relationship between the MX2 gene and narcolepsy pathophysiology.
Collapse
Affiliation(s)
- Susumu Tanaka
- The Sleep Disorders Project, Department of Sleep Disorders Research, Tokyo Institute of Psychiatry, Setagaya-ku, Tokyo, Japan.
| | | | | |
Collapse
|
11
|
Faraco JH, Appelbaum L, Marin W, Gaus SE, Mourrain P, Mignot E. Regulation of hypocretin (orexin) expression in embryonic zebrafish. J Biol Chem 2006; 281:29753-61. [PMID: 16867991 DOI: 10.1074/jbc.m605811200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypocretins/orexins are neuropeptides involved in the regulation of sleep and energy balance in mammals. Conservation of gene sequence, hypothalamic localization of cell bodies, and projection patterns in adult zebrafish suggest that the architecture and function of the hypocretin system are conserved in fish. We report on the complete genomic structure of the zebrafish and Tetraodon hypocretin genes and the complete predicted hypocretin protein sequences from five teleosts. Using whole mount in situ hybridization, we have traced the development of hypocretin cells in zebrafish from onset of expression at 22 h post-fertilization through the first week of development. Promoter elements of similar size from zebrafish and Tetraodon were capable of driving efficient and specific expression of enhanced green fluorescent protein in developing zebrafish embryos, thus defining a minimal promoter region able to accurately mimic the native hypocretin pattern. This enhanced green fluorescent protein expression also revealed a complex pattern of projections within the hypothalamus, to the midbrain, and to the spinal cord. To further analyze the promoter, a series of deletion and substitution constructs were injected into embryos, and resulting promoter activity was monitored in the first week of development. A critical region of 250 base pairs was identified containing a core 13-base pair element essential for hypocretin expression.
Collapse
Affiliation(s)
- Juliette H Faraco
- Stanford University Center for Narcolepsy, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
12
|
Shen HM, Nakamura A, Sugimoto J, Sakumoto N, Oda T, Jinno Y, Okazaki Y. Tissue specificity of methylation and expression of human genes coding for neuropeptides and their receptors, and of a human endogenous retrovirus K family. J Hum Genet 2006; 51:440-450. [PMID: 16544050 DOI: 10.1007/s10038-006-0382-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/23/2006] [Indexed: 02/03/2023]
Abstract
The purpose of the present study was to understand the tissue specificity of DNA methylation and the relationship between methylation and expression of genes with essential roles in neurodevelopment and brain function. We chose dopamine receptor genes (DRD1 and DRD2), NCAM, and COMT as examples of genes with CpG islands around the promoter region, and serotonin receptor genes (HTR2A and HTR3A), HCRT, and DRD3 as genes without CpG islands. Methylation states were investigated in fetal brain, fetal liver, placenta, and in adult peripheral leukocytes from three individuals by Southern blot and bisulfite-modified DNA sequencing. A repetitive sequence, human endogenous retrovirus (HERV)-K was also examined. All genes examined were almost completely unmethylated in brains. The genes with CpG islands were unmethylated regardless of their expression state. In contrast, genes without CpG islands showed various methylation patterns, which did not necessarily reflect the transcriptional activity of the genes. Most HERV-K loci were methylated, but some loci showed relatively low methylation in the placenta and liver. Interestingly, we found inter-individual differences in methylation levels in HTR2A and HCRT in the placenta and in some loci of HERV-K in the placenta and liver. The sample with the lowest methylation levels in the two unique genes showed higher methylation of HERV-K loci than the other samples. These results provide detailed information about the methylation states of the genes analyzed and evidence for inter-individual variations in methylation in both unique and repetitive sequences.
Collapse
Affiliation(s)
- Hong-Mei Shen
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
| | - Akifumi Nakamura
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
- Department of Neuropsychiatry, Ryukyu University School of Medicine, Okinawa, Japan
| | - Jun Sugimoto
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
| | - Noboru Sakumoto
- Department of Neuropsychiatry, Ryukyu University School of Medicine, Okinawa, Japan
| | - Takaya Oda
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan
| | - Yoshihiro Jinno
- Department of Molecular Biology, Ryukyu University School of Medicine, 207 Nishihara, Okinawa 903-0215, Japan.
| | - Yuji Okazaki
- Department of Neuropsychiatry, Mie University School of Medicine, Mie, Japan
| |
Collapse
|
13
|
Wieczorek S, Dahmen N, Kasten M, Epplen JT, Gencik M. A rare form of narcolepsy (HLA-DR2-) shows possible association with (functionally relevant) alpha-interferon gene polymorphisms. Psychiatr Genet 2004; 14:47-51. [PMID: 15091316 DOI: 10.1097/00041444-200403000-00008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Narcolepsy is a neuropsychiatric disease caused by complex disturbance of sleep regulation. The main symptoms comprise daytime sleepiness and cataplexy. Although the aetiology remains unclear so far, narcolepsy is genetically characterized by strong linkage to the human leukocyte antigen complex as more than 90% of the patients are typed HLA-DR2+. Recently, it has become apparent that the orexin (hypocretin) neurotransmitter system plays a key role in the pathogenesis of the disease. Canine narcolepsy is caused by mutations in the orexin receptor 2 gene, and narcoleptic patients show specifically decreased cerebrospinal fluid orexin levels. Decreased promotor activity of the prepro-orexin gene is caused by binding of alpha-interferon in vitro. To investigate the possible role of IFNA gene polymorphisms in the pathogenesis of narcolepsy, we have genotyped two single nucleotide polymorphisms in IFNA genes as well as a neighbouring microsatellite. No association was evident in the prevalent DR2+ group. Yet, the IFNA10 single nucleotide polymorphisms and the IFNA microsatellite are associated with the DR2- patient group. Thus, the pathogenetic role of interferons needs to be defined in DR2- narcolepsy.
Collapse
Affiliation(s)
- S Wieczorek
- Department of Human Genetics, Ruhr-University Bochum, Germany.
| | | | | | | | | |
Collapse
|
14
|
Bohnet SG, Traynor TR, Majde JA, Kacsoh B, Krueger JM. Mice deficient in the interferon type I receptor have reduced REM sleep and altered hypothalamic hypocretin, prolactin and 2′,5′-oligoadenylate synthetase expression. Brain Res 2004; 1027:117-25. [PMID: 15494163 DOI: 10.1016/j.brainres.2004.08.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
We report that mice with a targeted null mutation in the interferon type I receptor (IFN-RI), which cannot respond to such IFNs as IFNalpha and IFNbeta, have a 30% reduction in time spent in spontaneous rapid eye movement sleep (REMS) as a consequence of a reduced number of REMS episodes. Time spent in nonrapid eye movement sleep (NREMS) was essentially unaltered in IFN-RI knockouts (KOs) compared to 129 SvEv controls. Body temperature and locomotor activity were similar in both strains of mice. Hypothalamic expression of mRNAs for molecules previously linked to sleep-wake regulation and an IFN-inducible antiviral gene, 2',5'-oligoadenylate synthetase 1a (OAS), were determined by real-time reverse-transcriptase polymerase chain reaction (RT2-PCR). The level of hypocretin A mRNA was elevated in IFN-RI KO mice compared to 129 SvEv mice, while prolactin mRNA and OAS mRNA levels were suppressed. Vasoactive intestinal peptide (VIP) and corticotropin-releasing hormone (CRH) mRNA levels were unchanged relative to controls. Serum prolactin levels were similar in both strains. Results are consistent with the hypothesis that increased hypocretin and reduced prolactin in the hypothalamus of IFN-RI KO mice are responsible for their reduced REMS. In addition, the reduced OAS expression may result in modulation of prolactin receptor signaling and thus contribute to suppression of REMS.
Collapse
Affiliation(s)
- S G Bohnet
- Department of VCAPP College of Veterinary Medicine Washington State University PO Box 646520 Pullman, WA 99164-6520, USA
| | | | | | | | | |
Collapse
|
15
|
Bryant PA, Trinder J, Curtis N. Sick and tired: Does sleep have a vital role in the immune system? Nat Rev Immunol 2004; 4:457-67. [PMID: 15173834 DOI: 10.1038/nri1369] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Penelope A Bryant
- University Department of Paediatrics, Murdoch Childrens Research Institute, and Department of General Medicine, Paediatric Infectious Diseases Unit, Royal Children's Hospital, Flemington Road, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
16
|
OGAWA Y, KANBAYASHI T, YANO T, SAWAISHI Y, SAITO Y, SHIMIZU T. Cerebrospinal fluid-orexin decreases during intraventricular alpha-interferon therapy of the patients with subacute sclerosing panencephalitis. Sleep Biol Rhythms 2003. [DOI: 10.1046/j.1446-9235.2003.00026.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Kukkonen JP, Holmqvist T, Ammoun S, Akerman KEO. Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol 2002; 283:C1567-91. [PMID: 12419707 DOI: 10.1152/ajpcell.00055.2002] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Orexin A and orexin B are hypothalamic peptides that act on their targets via two G protein-coupled receptors (OX1 and OX2 receptors). In the central nervous system, the cell bodies producing orexins are localized in a narrow region within the lateral hypothalamus and project mainly to regions involved in feeding, sleep, and autonomic functions. Via putative pre- and postsynaptic effects, orexins increase synaptic activity in these regions. In isolated neurons and cells expressing recombinant receptors orexins cause Ca2+ elevation, which is mainly dependent on influx. The activity of orexinergic cells appears to be controlled by feeding- and sleep-related signals via a variety of neurotransmitters/hormones from the brain and other tissues. Orexins and orexin receptors are also found outside the central nervous system, particularly in organs involved in feeding and energy metabolism, e.g., gastrointestinal tract, pancreas, and adrenal gland. In the present review we focus on the physiological properties of the cells that secrete or respond to orexins.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Laboratory of Cell Physiology, Department of Neuroscience, Division of Physiology, Uppsala University, Biomedical Center, SE-75123 Uppsala, Sweden.
| | | | | | | |
Collapse
|
18
|
Abstract
Orexin-A and -B are two peptides derived by proteolytic cleavage from a 130-amino acid precursor, prepro-orexin, which were recently isolated from the rat hypothalamus. Orexin-A is fully conserved across mammalian species, whilst rat and human orexin-B differ by two amino acids. These peptides bind to two Gq-coupled receptors, termed orexin-1 and orexin-2. The receptors are 64% homologous and highly conserved across species. Orexin-A is equipotent at orexin-1 and orexin-2 receptors, whilst orexin-B displays moderate (approximately 10 fold) selectivity for orexin-2 receptors. The distribution and pharmacology of the orexin peptides and their receptors indicate that they play a role in various regulatory systems including energy homeostasis and the regulation of feeding, the evidence for which is reviewed here.
Collapse
Affiliation(s)
- Darren Smart
- Neurology CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | | | |
Collapse
|
19
|
Abstract
Orexin-A and orexin-B are two peptides derived by proteolytic cleavage from a 130 amino acid precursor prepro-orexin, which recently were isolated from the rat hypothalamus. Orexin-A is fully conserved across mammalian species, whilst rat and human orexin-B differ by 2 amino acids. These peptides bind to two G(q)-coupled receptors, termed OX(1) and OX(2). The receptors are 64% homologous and highly conserved across species. Orexin-A is equipotent at OX(1) and OX(2), whilst orexin-B displays moderate ( approximately 10-fold) selectivity for OX(2). Prepro-orexin is found in the hypothalamus and, to a markedly lesser extent, the testes, adrenals, and myenteric plexus. However, orexin-A and orexin-B are found throughout the CNS, due to extrahypothalamic projections, as well as in the adrenals and small intestine. OX(1) is expressed mainly in the hypothalamus and locus coeruleus, as well as other brain regions and the spinal cord. OX(2) is expressed in the hypothalamus, cortex, spinal cord, and a few discrete brain nuclei. Both receptors are also expressed in the gut. The orexins modulate feeding behaviour and energy homeostasis, as well as associated drinking behaviours, and also regulate the sleep-wake cycle. Moreover, disruption of prepro-peptide expression or mutations in the gene encoding OX(2) result in a narcoleptic phenotye in various animal models, whilst several clinical studies have linked disruption of the orexin system to narcolepsy in humans. The orexins also have cardiovascular and neuroendocrine effects. This review further details the pharmacology and localisation of these peptides and summarises the evidence for their role in the physiology outlined above.
Collapse
Affiliation(s)
- Darren Smart
- Neurology CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, CM19 5AW, Essex, UK.
| | | |
Collapse
|
20
|
Hinze-Selch D, Pollmächer T. In vitro cytokine secretion in individuals with schizophrenia: results, confounding factors, and implications for further research. Brain Behav Immun 2001; 15:282-318. [PMID: 11782101 DOI: 10.1006/brbi.2001.0645] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present paper reviews the results of all publications on in vitro cytokine secretion in patients with schizophrenia, as published by March 2001. The authors supply easy to read tables with respect to the individual cytokines and soluble cytokine receptors investigated, the in vitro methodology used, characterization of the patient samples, and the results on cytokine secretion as stated in these studies. Inconsistent results, e.g., regarding in vitro secretion of IL-2 with 11/18 studies finding decreased secretion, 5/18 finding no change, and 2/18 finding increases, cannot systematically be correlated with any methodological procedures nor any diagnostic subtypes, per se. However, factors such as medication and cigarette smoking are likely to play a role. The authors suggest that more hypothesis-driven research, together with more carefully designed studies, as well as better communication between basic or animal researchers and clinicians might help to answer the question of whether there are meaningful peripheral changes in the immune system related to schizophrenia.
Collapse
Affiliation(s)
- D Hinze-Selch
- Department of Psychiatry and Psychotherapy, Christian-Albrechts University, Niemannsweg 147, D-24105 Kiel, Germany
| | | |
Collapse
|
21
|
Affiliation(s)
- T S Kilduff
- Molecular Neurobiology Laboratory, SRI International-PDD, Menlo Park, California 94025, USA.
| |
Collapse
|