1
|
Pisera AO, Yu Y, Williams RL, Liu CC. Ultra-efficient Integration of Gene Libraries onto Yeast Cytosolic Plasmids. ACS Synth Biol 2025; 14:1002-1008. [PMID: 40127237 DOI: 10.1021/acssynbio.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Efficient methods for diversifying genes of interest (GOIs) are essential in protein engineering. For example, OrthoRep, a yeast-based orthogonal DNA replication system that achieves the rapid in vivo diversification of GOIs encoded on a cytosolic plasmid (p1), has been successfully used to drive numerous protein engineering campaigns. However, OrthoRep-based GOI evolution has almost always started from single GOI sequences, limiting the number of locations on a fitness landscape from where evolutionary search begins. Here, we present a simple approach for the high-efficiency integration of GOI libraries onto OrthoRep. By leveraging integrases, we demonstrate recombination of donor DNA onto the cytosolic p1 plasmid at exceptionally high transformation efficiencies, even surpassing the transformation efficiency of standard circular plasmids and linearized plasmid fragments into yeast. We demonstrate our method's utility through the straightforward construction of mock nanobody libraries encoded on OrthoRep, from which rare binders were reliably enriched. Overall, integrase-assisted manipulation of yeast cytosolic plasmids should enhance the versatility of OrthoRep in continuous evolution experiments and support the routine construction of large GOI libraries in yeast, in general.
Collapse
Affiliation(s)
- Alexander Olek Pisera
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Center for Synthetic Biology, University of California, Irvine, California 92617, United States
| | - Yutong Yu
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Center for Synthetic Biology, University of California, Irvine, California 92617, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
| | - Rory L Williams
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Center for Synthetic Biology, University of California, Irvine, California 92617, United States
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, California 92617, United States
- Center for Synthetic Biology, University of California, Irvine, California 92617, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92617, United States
- Department of Chemistry, University of California, Irvine, California 92617, United States
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92617, United States
| |
Collapse
|
2
|
Pisera A, Yu Y, Williams RL, Liu CC. Ultra-Efficient Integration of Gene Libraries onto Yeast Cytosolic Plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626108. [PMID: 39651169 PMCID: PMC11623697 DOI: 10.1101/2024.11.29.626108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Efficient methods for diversifying genes of interest (GOIs) are essential in protein engineering. For example, OrthoRep, a yeast-based orthogonal DNA replication system that achieves the rapid in vivo diversification of GOIs encoded on a cytosolic plasmid (p1), has been successfully used to drive numerous protein engineering campaigns. However, OrthoRep-based GOI evolution has almost always started from single GOI sequences, limiting the number of locations on a fitness landscape from where evolutionary search begins. Here, we present a simple approach for the high-efficiency integration of GOI libraries onto OrthoRep. By leveraging integrases, we demonstrate recombination of donor DNA onto the cytosolic p1 plasmid at exceptionally high transformation efficiencies, even surpassing the transformation efficiency of standard circular plasmids into yeast. We demonstrate our method's utility through the straightforward construction of mock nanobody libraries encoded on OrthoRep, from which rare binders were reliably enriched. Overall, integrase-assisted manipulation of yeast cytosolic plasmids should enhance the versatility of OrthoRep in continuous evolution experiments and support the routine construction of large GOI libraries in yeast in general.
Collapse
|
3
|
Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Appl Microbiol Biotechnol 2019; 103:5463-5482. [DOI: 10.1007/s00253-019-09901-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022]
|
4
|
Jusiak B, Jagtap K, Gaidukov L, Duportet X, Bandara K, Chu J, Zhang L, Weiss R, Lu TK. Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-Specific Integrase System in Mammalian Cells. ACS Synth Biol 2019; 8:16-24. [PMID: 30609349 DOI: 10.1021/acssynbio.8b00089] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phage-derived integrases can catalyze irreversible, site-specific integration of transgenic payloads into a chromosomal locus, resulting in mammalian cells that stably express transgenes or circuits of interest. Previous studies have demonstrated high-efficiency integration by the Bxb1 integrase in mammalian cells. Here, we show that a point mutation (Bxb1-GA) in Bxb1 target sites significantly increases Bxb1-mediated integration efficiency at the Rosa26 locus in Chinese hamster ovary cells, resulting in the highest integration efficiency reported with a site-specific integrase in mammalian cells. Bxb1-GA point mutant sites do not cross-react with Bxb1 wild-type sites, enabling their use in applications that require orthogonal pairs of target sites. In comparison, we test the efficiency and orthogonality of ϕC31 and Wβ integrases, and show that Wβ has an integration efficiency between those of Bxb1-GA and wild-type Bxb1. Our data present a toolbox of integrases for inserting payloads such as gene circuits or therapeutic transgenes into mammalian cell lines.
Collapse
Affiliation(s)
- Barbara Jusiak
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kalpana Jagtap
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Leonid Gaidukov
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xavier Duportet
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kalpanie Bandara
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810, United States
| | - Jianlin Chu
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810, United States
| | - Lin Zhang
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts 01810, United States
| | - Ron Weiss
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy K. Lu
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Lei X, Wang L, Zhao G, Ding X. Site-specificity of serine integrase demonstrated by the attB sequence preference of ɸBT1 integrase. FEBS Lett 2018. [PMID: 29512855 DOI: 10.1002/1873-3468.13023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serine integrases mediate site-specific recombination and are extensively applied in genetic engineering and synthetic biology. However, which regions of the attachment sites determine site-specificity and how these regions function in recombination remain elusive. Here, we explored the sequence features of attB attachment sites recognized by ɸBT1 integrase, a representative serine integrase. A 34-bp DNA motif is found that displays distinct base-specific preference for every position. Further investigation of mutations at different positions within the attB sequence shows different recombination efficiencies and binding affinities. We found four conserved regions within the attB motif that coincide with the results of recombination assays, and mutations in the attB sequence that hamper recombination almost all cause reduced binding affinity.
Collapse
Affiliation(s)
- Xiaolai Lei
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lu Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China.,CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ectopic Expression of O Antigen in Bordetella pertussis by a Novel Genomic Integration System. mSphere 2018; 3:mSphere00417-17. [PMID: 29404410 PMCID: PMC5784241 DOI: 10.1128/msphere.00417-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 11/20/2022] Open
Abstract
Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis, which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis. The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella. We describe a novel genome integration system that enables the introduction of DNA fragments as large as 50 kbp into the chromosomes of recipient bacteria. This system, named BPI, comprises a bacterial artificial chromosome vector and phage-derived gene integration machinery. We introduced the wbm locus of Bordetella bronchiseptica, which is required for O antigen biosynthesis, into the chromosome of B. pertussis, which intrinsically lacks O antigen, using the BPI system. After the introduction of the wbm locus, B. pertussis presented an additional substance in the lipooligosaccharide fraction that was specifically recognized by the anti-B. bronchiseptica antibody but not the anti-B. pertussis antibody, indicating that B. pertussis expressed O antigen corresponding to that of B. bronchiseptica. O antigen-expressing B. pertussis was less sensitive to the bactericidal effects of serum and polymyxin B than the isogenic parental strain. In addition, an in vivo competitive infection assay showed that O antigen-expressing B. pertussis dominantly colonized the mouse respiratory tract over the parental strain. These results indicate that the BPI system provides a means to alter the phenotypes of bacteria by introducing large exogenous DNA fragments. IMPORTANCE Some bacterial phenotypes emerge through the cooperative functions of a number of genes residing within a large genetic locus. To transfer the phenotype of one bacterium to another, a means to introduce the large genetic locus into the recipient bacterium is needed. Therefore, we developed a novel system by combining the advantages of a bacterial artificial chromosome vector and phage-derived gene integration machinery. In this study, we succeeded for the first time in introducing a gene locus involved in O antigen biosynthesis of Bordetella bronchiseptica into the chromosome of B. pertussis, which intrinsically lacks O antigen, and using this system we analyzed phenotypic alterations in the resultant mutant strain of B. pertussis. The present results demonstrate that this system successfully accomplished the above-described purpose. We consider this system to be applicable to a number of bacteria other than Bordetella.
Collapse
|
7
|
Abstract
A synthetic approach to biology is a promising technique for various applications. Recent advancements have demonstrated the feasibility of constructing synthetic two-input logic gates in Escherichia coli cells with long-term memory based on DNA inversion induced by recombinases. Moreover, recent evidences indicate that DNA inversion mediated by genome editing tools is possible. Powerful genome editing technologies, such as CRISPR-Cas9 systems, have great potential to be exploited to implement large-scale recombinase-based circuits. What remains unclear is how to construct arbitrary Boolean functions based on these emerging technologies. In this paper, we lay the theoretical foundation formalizing the connection between recombinase-based genetic circuits and Boolean functions. It enables systematic construction of any given Boolean function using recombinase-based logic gates. We further develop a methodology leveraging existing electronic design automation (EDA) tools to automate the synthesis of complex recombinase-based genetic circuits with respect to area and delay optimization. In silico experimental results demonstrate the applicability of our proposed methods as a useful tool for recombinase-based genetic circuit synthesis and optimization.
Collapse
|
8
|
Tomimatsu K, Kokura K, Nishida T, Yoshimura Y, Kazuki Y, Narita M, Oshimura M, Ohbayashi T. Multiple expression cassette exchange via TP901-1, R4, and Bxb1 integrase systems on a mouse artificial chromosome. FEBS Open Bio 2017; 7:306-317. [PMID: 28286726 PMCID: PMC5337897 DOI: 10.1002/2211-5463.12169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 01/21/2023] Open
Abstract
The site-specific excision of a target DNA sequence for genetic knockout or lineage tracing is a powerful tool for investigating biological systems. Currently, site-specific recombinases (SSRs), such as Cre or Flp recombination target cassettes, have been successfully excised or inverted by a single SSR to regulate transgene expression. However, the use of a single SSR might restrict the complex control of gene expression. This study investigated the potential for expanding the multiple regulation of transgenes using three different integrase systems (TP901-1, R4, and Bxb1). We designed three excision cassettes that expressed luciferase, where the luciferase expression could be exchanged to a fluorescent protein by site-specific recombination. Individual cassettes that could be regulated independently by a different integrase were connected in tandem and inserted into a mouse artificial chromosome (MAC) vector in Chinese hamster ovary cells. The transient expression of an integrase caused the targeted luciferase activity to be lost and fluorescence was activated. Additionally, the integrase system enabled the specific excision of targeted DNA sequences without cross-reaction with the other recombination targets. These results suggest that the combined use of these integrase systems in a defined locus on a MAC vector permits the multiple regulation of transgene expression and might contribute to genomic or cell engineering.
Collapse
Affiliation(s)
- Kosuke Tomimatsu
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Kenji Kokura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Division of Human Genome ScienceDepartment of Molecular and Cellular BiologySchool of Life SciencesFaculty of MedicineTottori UniversityYonagoJapan
| | - Tadashi Nishida
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
| | - Yuki Yoshimura
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
- Central Institute for Experimental AnimalsKawasakiJapan
| | - Yasuhiro Kazuki
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeUK
| | - Mitsuo Oshimura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
- Department of Biomedical ScienceInstitute of Regenerative Medicine and BiofunctionGraduate School of Medical SciencesTottori UniversityYonagoJapan
| | - Tetsuya Ohbayashi
- Research Center for Bioscience and TechnologyTottori UniversityYonagoJapan
| |
Collapse
|
9
|
Abstract
When constructing transgenic cell lines via plasmid DNA integration, precise targeting to a desired genomic location is advantageous. It is also often advantageous to remove the bacterial backbone, since bacterial elements can lead to the epigenetic silencing of neighboring DNA. The least cumbersome method to remove the plasmid backbone is recombinase-mediated cassette exchange (RMCE). RMCE is accomplished by arranging recombinase sites in the genome and in a donor plasmid such that a recombinase can both integrate the donor plasmid and excise its bacterial backbone. When a single recombinase is used for RMCE, recombination between undesired pairings of the sites can lead to a significant number of unwanted cell lines. To reduce the frequency with which these side products occur, several variants of RMCE that increase desired outcomes have been developed. Nevertheless, an important feature lacking from these improved RMCE methods is that none have fully utilized the recombinases that have been demonstrated to be the most robust and stringent at performing genomic integration in plants and animals, i.e., the phiC31 and Bxb1 phage integrases. To address this need, we have developed an RMCE protocol using these two serine integrases that we call dual integrase cassette exchange (DICE). Our DICE system provides a means to achieve high-precision DNA integration at a desired location and is especially well suited for repeated recombination into the same locus. In this chapter, we provide our most current protocols for using DICE in feeder-free human-induced pluripotent stem cells .
Collapse
Affiliation(s)
- Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA
| | - Mital S Bhakta
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Alway Building, M316, Stanford, CA, 94305-5120, USA.
| |
Collapse
|
10
|
Wang X, Tang B, Ye Y, Mao Y, Lei X, Zhao G, Ding X. Bxb1 integrase serves as a highly efficient DNA recombinase in rapid metabolite pathway assembly. Acta Biochim Biophys Sin (Shanghai) 2017; 49:44-50. [PMID: 27864282 DOI: 10.1093/abbs/gmw115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/24/2016] [Indexed: 11/13/2022] Open
Abstract
Phage-encoded serine integrases are widely used in genetic engineering. They also have the potential to serve as efficient DNA assemblers, demonstrated by the method of site-specific recombination-based tandem assembly (SSRTA) that can combine biological parts into devices, pathways, and systems. Here, four serine integrases, ϕBT1, TG1, ϕRv1, and Bxb1, were investigated to ascertain their in vitro DNA assembly activities. Bxb1 integrase displayed the highest efficiency to obtain final products. Thus, we conclude that Bxb1 integrase is an excellent choice for DNA assembly in vitro Using this enzyme and its recognition sites, BioBrick standards were designed that are compatible with the SSRTA method for module addition. A rapid and efficient procedure was developed for the assembly of a multigene metabolic pathway in one step, directly from non-cutting plasmids containing the gene fragments. This technique is easy and convenient, and would be of interest to the synthetic biology community.
Collapse
Affiliation(s)
- Xianwei Wang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Biao Tang
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Institute of Quality and Standard for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yu Ye
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Yayi Mao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaolai Lei
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guoping Zhao
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xiaoming Ding
- Collaborative Innovation Center for Genetics and Development, State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
11
|
Bowyer J, Zhao J, Subsoontorn P, Wong W, Rosser S, Bates D. Mechanistic Modeling of a Rewritable Recombinase Addressable Data Module. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2016; 10:1161-1170. [PMID: 27244749 DOI: 10.1109/tbcas.2016.2526668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Many of the most important applications predicted to arise from Synthetic Biology will require engineered cellular memory with the capability to store data in a rewritable and reversible manner upon induction by transient stimuli. DNA recombination provides an ideal platform for cellular data storage and has allowed the development of a rewritable recombinase addressable data (RAD) module, capable of efficient data storage within a chromosome. Here, we develop the first detailed mechanistic model of DNA recombination, and validate it against a new set of in vitro data on recombination efficiencies across a range of different concentrations of integrase and gp3. Investigation of in vivo recombination dynamics using our model reveals the importance of fully accounting for all mechanistic features of DNA recombination in order to accurately predict the effect of different switching strategies on RAD module performance, and highlights its usefulness as a design tool for building future synthetic circuitry.
Collapse
|
12
|
Ahmadi M, Mahboudi F, Akbari Eidgahi MR, Nasr R, Nematpour F, Ahmadi S, Ebadat S, Aghaeepoor M, Davami F. Evaluating the efficiency of phiC31 integrase-mediated monoclonal antibody expression in CHO cells. Biotechnol Prog 2016; 32:1570-1576. [PMID: 27604579 DOI: 10.1002/btpr.2362] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/19/2016] [Indexed: 01/02/2023]
Abstract
Traditional methods to generate CHO cell lines rely on random integration(s) of the gene of interest and result in unpredictable and unstable protein expression. In comparison, site-specific recombination methods increase the recombinant protein expression by inserting transgene at a locus with specific expression features. PhiC31 serine integrase, catalyze unidirectional integration that occurs at higher frequency in comparison with the reversible integration carried out by recombinases such as Cre. In this study, using different ratios of phiC31 serine integrase, we evaluated the phiC31 mediated gene integration for expression of a humanized IgG1 antibody (mAb0014) in CHO-S cells. Light chain (LC) and heavy chain (HC) genes were expressed in one operon under EF1α promoter and linked by internal ribosome entry site (IRES) element. The clonal selection was carried out by limiting dilution. Targeted integration approach increased recombinant protein yield and stability in cell pools. The productivity of targeted cell pools was about 4 mg/L and about 40 µg/L in the control cell pool. The number of integrated transgenes was about 19 fold higher than the control cells pools. Our results confirmed that the phiC31 integrase leads to mAb expression in more than 90% of colonies. The productivity of the PhiC31 integrated cell pools was stable for three months in the absence of selection as compared with conventional transfection methods. Hence, utilizing PhiC31 integrase can increase protein titer and decrease the required time for protein expression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1570-1576, 2016.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Medical Biotechnology Dept., Semnan University of Medical Sciences, Semnan, Iran.,Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Reza Nasr
- Medical Biotechnology Dept., Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saeedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Aghaeepoor
- Medical Biotechnology Dept., Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
13
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
14
|
Roquet N, Soleimany AP, Ferris AC, Aaronson S, Lu TK. Synthetic recombinase-based state machines in living cells. Science 2016; 353:aad8559. [PMID: 27463678 DOI: 10.1126/science.aad8559] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 06/02/2016] [Indexed: 12/18/2022]
Abstract
State machines underlie the sophisticated functionality behind human-made and natural computing systems that perform order-dependent information processing. We developed a recombinase-based framework for building state machines in living cells by leveraging chemically controlled DNA excision and inversion operations to encode states in DNA sequences. This strategy enables convenient readout of states (by sequencing and/or polymerase chain reaction) as well as complex regulation of gene expression. We validated our framework by engineering state machines in Escherichia coli that used one, two, or three chemical inputs to control up to 16 DNA states. These state machines were capable of recording the temporal order of all inputs and performing multi-input, multi-output control of gene expression. We also developed a computational tool for the automated design of gene regulation programs using recombinase-based state machines. Our scalable framework should enable new strategies for recording and studying how combinational and temporal events regulate complex cell functions and for programming sophisticated cell behaviors.
Collapse
Affiliation(s)
- Nathaniel Roquet
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biophysics Program, Harvard University, Boston, MA 02115, USA
| | - Ava P Soleimany
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa C Ferris
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biochemistry Program, Wellesley College, Wellesley, MA 02481, USA
| | - Scott Aaronson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Biophysics Program, Harvard University, Boston, MA 02115, USA. Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Miura T, Nishizawa A, Nishizawa T, Asayama M, Shirai M. Actinophage R4 integrase-based site-specific chromosomal integration of non-replicative closed circular DNA. J Basic Microbiol 2016; 56:635-44. [PMID: 26870903 DOI: 10.1002/jobm.201500658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/27/2016] [Indexed: 11/07/2022]
Abstract
The actinophage R4 integrase (Sre)-based molecular genetic engineering system was developed for the chromosomal integration of multiple genes in Escherichia coli. A cloned DNA fragment containing two attP sites, green fluorescent protein (gfp) as a first transgene, and an antibiotic resistance gene as a selection marker was self-ligated to generate non-replicative closed circular DNA (nrccDNA) for integration. nrccDNA was introduced into attB-inserted E. coli cells harboring the plasmid expressing Sre by electroporation. The expressed Sre catalyzed site-specific integration between one of the two attP sites on nrccDNA and the attB site on the E. coli chromosome. The integration frequency was affected by the chromosomal location of the target site. A second nrccDNA containing two attB sites, lacZα encoding the alpha fragment of β-galactosidase as a transgene, and another antibiotic resistance gene was integrated into the residual attP site on the gfp-integrated E. coli chromosome via one of the two attB sites according to reiterating site-specific recombination. The integrants clearly exhibited β-galactosidase activity and green fluorescence, suggesting the simultaneous expression of multiple recombinant proteins in E. coli. The results of the present study showed that a step-by-step integration procedure using nrccDNA achieved the chromosomal integration of multiple genes.
Collapse
Affiliation(s)
- Takamasa Miura
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Akito Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Munehiko Asayama
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| | - Makoto Shirai
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Department of Bioresource Science, Ibaraki University College of Agriculture, Ibaraki, Japan
| |
Collapse
|
16
|
Xu Z, Brown WRA. Comparison and optimization of ten phage encoded serine integrases for genome engineering in Saccharomyces cerevisiae. BMC Biotechnol 2016; 16:13. [PMID: 26860416 PMCID: PMC4748531 DOI: 10.1186/s12896-016-0241-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/19/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phage-encoded serine integrases, such as ϕC31 integrase, are widely used for genome engineering but have not been optimized for use in Saccharomyces cerevisiae although this organism is a widely used organism in biotechnology. RESULTS The activities of derivatives of fourteen serine integrases that either possess or lack a nuclear localization signal were compared using a standardized recombinase mediated cassette exchange reaction. The relative activities of these integrases in S. cerevisiae and in mammalian cells suggested that the major determinant of the activity of an integrase is the enzyme itself and not the cell in which it is working. We used an inducible promoter to show that six integrases were toxic as judged by their effects upon the proliferative ability of transformed yeast. We show that in general the active phage-encoded serine integrases were an order of magnitude more efficient in promoting genome integration reactions than a simple homologous recombination. CONCLUSIONS The results of our study allow us to identify the integrases of the phage ϕBT1, TP901 ~ nls, R4, Bxb1, MR11, A118, ϕK38, ϕC31 ~ nls, Wβ and SPBC ~ nls as active in S. cerevisiae and indicate that vertebrate cells are more restricted than yeast in terms of which integrases are active.
Collapse
Affiliation(s)
- Zhengyao Xu
- School of Life Sciences, Queens Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK.
| | - William R A Brown
- School of Life Sciences, Queens Medical Centre, Nottingham University, Nottingham, NG7 2UH, UK.
| |
Collapse
|
17
|
Srivastava V, Thomson J. Gene stacking by recombinases. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:471-82. [PMID: 26332944 PMCID: PMC11389045 DOI: 10.1111/pbi.12459] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 05/09/2023]
Abstract
Efficient methods of stacking genes into plant genomes are needed to expedite transfer of multigenic traits to crop varieties of diverse ecosystems. Over two decades of research has identified several DNA recombinases that carryout efficient cis and trans recombination between the recombination sites artificially introduced into the plant chromosome. The specificity and efficiency of recombinases make them extremely attractive for genome engineering. In plant biotechnology, recombinases have mostly been used for removing selectable marker genes and have rarely been extended to more complex applications. The reversibility of recombination, a property of the tyrosine family of recombinases, does not lend itself to gene stacking approaches that involve rounds of transformation for integrating genes into the engineered sites. However, recent developments in the field of recombinases have overcome these challenges and paved the way for gene stacking. Some of the key advancements include the application of unidirectional recombination systems, modification of recombination sites and transgene site modifications to allow repeated site-specific integrations into the selected site. Gene stacking is relevant to agriculturally important crops, many of which are difficult to transform; therefore, development of high-efficiency gene stacking systems will be important for its application on agronomically important crops, and their elite varieties. Recombinases, by virtue of their specificity and efficiency in plant cells, emerge as powerful tools for a variety of applications including gene stacking.
Collapse
Affiliation(s)
- Vibha Srivastava
- Department of Crop, Soil & Environmental Science, University of Arkansas, Fayetteville, AR, USA
| | | |
Collapse
|
18
|
Sekan AS, Isayenkov SV, Blume YB. Development of marker-free transformants by site-specific recombinases. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715060080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Bosch P, Forcato DO, Alustiza FE, Alessio AP, Fili AE, Olmos Nicotra MF, Liaudat AC, Rodríguez N, Talluri TR, Kues WA. Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals. Cell Mol Life Sci 2015; 72:1907-29. [PMID: 25636347 PMCID: PMC11114025 DOI: 10.1007/s00018-015-1842-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/14/2023]
Abstract
Transgenic farm animals are attractive alternative mammalian models to rodents for the study of developmental, genetic, reproductive and disease-related biological questions, as well for the production of recombinant proteins, or the assessment of xenotransplants for human patients. Until recently, the ability to generate transgenic farm animals relied on methods of passive transgenesis. In recent years, significant improvements have been made to introduce and apply active techniques of transgenesis and genetic engineering in these species. These new approaches dramatically enhance the ease and speed with which livestock species can be genetically modified, and allow to performing precise genetic modifications. This paper provides a synopsis of enzyme-mediated genetic engineering in livestock species covering the early attempts employing naturally occurring DNA-modifying proteins to recent approaches working with tailored enzymatic systems.
Collapse
Affiliation(s)
- Pablo Bosch
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Diego O. Forcato
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Fabrisio E. Alustiza
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Ana P. Alessio
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Alejandro E. Fili
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - María F. Olmos Nicotra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Ana C. Liaudat
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Nancy Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fco-Qcas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba Republic of Argentina
| | - Thirumala R. Talluri
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Biotechnology, 31535 Neustadt, Germany
| | - Wilfried A. Kues
- Friedrich-Loeffler-Institute, Institute of Farm Animal Genetics, Biotechnology, 31535 Neustadt, Germany
| |
Collapse
|
20
|
Butler R, Hornigold D, Huang L, Huntington C, London T, Dillon J, Tigue NJ, Rossi A, Naylor J, Wilkinson T. Use of the site-specific retargeting jump-in platform cell line to support biologic drug discovery. ACTA ACUST UNITED AC 2014; 20:528-35. [PMID: 25534831 DOI: 10.1177/1087057114562715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biologics represent a fast-growing class of therapeutics in the pharmaceutical sector. Discovery of therapeutic antibodies and characterization of peptides can necessitate high expression of the target gene requiring the generation of clonal stably transfected cell lines. Traditional challenges of stable cell line transfection include gene silencing and cell-to-cell variability. Our inability to control these can present challenges in lead isolation. Recent progress in site-specific targeting of transgene to specific genomic loci has transformed the ability to generate stably transfected mammalian cell lines. In this article, we describe how the use of the Jump-In platform (Life Technologies, Carlsbad, CA) has been applied to drug discovery projects. It can easily and rapidly generate homogeneous high-expressing cell pools with a high degree of reproducibility. Their use in cell-based screening to identify specific binders, identify binding to relevant species variants, or detect functionally relevant therapeutic antibodies is central in driving drug discovery.
Collapse
Affiliation(s)
- Robin Butler
- MedImmune, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - David Hornigold
- MedImmune, Cardiovascular and Metabolic Disease, Cambridge, UK
| | - Ling Huang
- MedImmune, Antibody Discovery and Protein Engineering, Cambridge, UK
| | | | - Tim London
- MedImmune, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Janette Dillon
- MedImmune, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Natalie J Tigue
- MedImmune, Antibody Discovery and Protein Engineering, Cambridge, UK
| | | | | | - Trevor Wilkinson
- MedImmune, Antibody Discovery and Protein Engineering, Cambridge, UK
| |
Collapse
|
21
|
Duportet X, Wroblewska L, Guye P, Li Y, Eyquem J, Rieders J, Rimchala T, Batt G, Weiss R. A platform for rapid prototyping of synthetic gene networks in mammalian cells. Nucleic Acids Res 2014; 42:13440-51. [PMID: 25378321 PMCID: PMC4245948 DOI: 10.1093/nar/gku1082] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines.
Collapse
Affiliation(s)
- Xavier Duportet
- INRIA Paris-Rocquencourt, Rocquencourt, France Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA Cellectis Therapeutics, Paris, France
| | - Liliana Wroblewska
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick Guye
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yinqing Li
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Justin Eyquem
- Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, Paris, France
| | - Julianne Rieders
- INRIA Paris-Rocquencourt, Rocquencourt, France Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, Paris, France
| | - Tharathorn Rimchala
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ron Weiss
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
22
|
Abstract
In recent years, application of serine integrases for genomic engineering has increased in popularity. The factor-independence and unidirectionality of these large serine recombinases makes them well suited for reactions such as site-directed vector integration and cassette exchange in a wide variety of organisms. In order to generate information that might be useful for altering the specificity of serine integrases and to improve their efficiency, we tested a hybridization strategy that has been successful with several small serine recombinases. We created chimeras derived from three characterized members of the serine integrase family, phiC31, phiBT1, and TG1 integrases, by joining their amino- and carboxy-terminal portions. We found that several phiBT1-phiC31 (BC) and phiC31-TG1 (CT) hybrid integrases are active in E. coli. BC chimeras function on native att-sites and on att-sites that are hybrids between those of the two donor enzymes, while CT chimeras only act on the latter att-sites. A BC hybrid, BC{−1}, was also active in human HeLa cells. Our work is the first to demonstrate chimeric serine integrase activity. This analysis sheds light on integrase structure and function, and establishes a potentially tractable means to probe the specificity of the thousands of putative large serine recombinases that have been revealed by bioinformatics studies.
Collapse
Affiliation(s)
- Alfonso P Farruggio
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5120, USA
| | - Michele P Calos
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305-5120, USA
| |
Collapse
|
23
|
Grandchamp N, Altémir D, Philippe S, Ursulet S, Pilet H, Serre MC, Lenain A, Serguera C, Mallet J, Sarkis C. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage. PLoS One 2014; 9:e99649. [PMID: 24956106 PMCID: PMC4067480 DOI: 10.1371/journal.pone.0099649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022] Open
Abstract
Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.
Collapse
Affiliation(s)
- Nicolas Grandchamp
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Dorothée Altémir
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
| | - Stéphanie Philippe
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Suzanna Ursulet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Héloïse Pilet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Marie-Claude Serre
- Laboratoire de Virologie Moléculaire et Structurale, Gif-sur-Yvette, France
| | - Aude Lenain
- Commissariat à l'Energie Atomique, Laboratoire de Radiobiologie et Oncologie, Fontenay-aux-Roses, France
| | - Che Serguera
- Molecular Imaging Research Center - Modélisation des biothérapies, Fontenay-aux-Roses, France
| | - Jacques Mallet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Chamsy Sarkis
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- * E-mail:
| |
Collapse
|
24
|
Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. J Mol Biol 2014; 426:2703-16. [PMID: 24857859 PMCID: PMC4111918 DOI: 10.1016/j.jmb.2014.05.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. Phage integrases are site-specific recombinases that mediate controlled and precise DNA integration and excision. The serine integrases, such as ϕC31 integrase, can be used for efficient recombination in heterologous hosts as they use short recombination substrates, they are directional and they do not require host factors. Both serine and tyrosine integrases, such as λ integrase, are versatile tools for DNA cloning and assembly in vivo and in vitro. Controlled expression of orthologous serine integrases and their cognate recombination directionality factors can be used to generate living biocomputers. Serine integrases are increasingly being exploited for synthetic biology applications.
Collapse
Affiliation(s)
- Paul C M Fogg
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean Colloms
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh EH9 3JR, UK
| | - Marshall Stark
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
25
|
Miura T, Nishizawa A, Nishizawa T, Asayama M, Takahashi H, Shirai M. Construction of a stepwise gene integration system by transient expression of actinophage R4 integrase in cyanobacterium Synechocystis sp. PCC 6803. Mol Genet Genomics 2014; 289:615-23. [DOI: 10.1007/s00438-014-0838-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/26/2014] [Indexed: 02/04/2023]
|
26
|
Keary R, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A. Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. BACTERIOPHAGE 2014; 4:e28451. [PMID: 25105056 PMCID: PMC4124061 DOI: 10.4161/bact.28451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023]
Abstract
This study describes the genome of temperate Siphoviridae phage DW2, which is routinely propagated on Staphylococcus aureus DPC5246. The 41941 bp genome revealed an open reading frame (ORF1) which has a high level of homology with members of the resolvase subfamily of site-specific serine recombinase, involved in chromosomal integration and excision. In contrast, the majority of staphylococcal phages reported to date encode tyrosine recombinases. Two putative genes encoded by phage DW2 (ORF15 and ORF24) were highly homologous to the NWMN0273 and NWMN0280 genes encoding virulence factors carried on the genome of ϕNM4, a prophage in the genome of S. aureus Newman. Phage DW2 also encodes proteins highly homologous to two well-characterized Staphylococcus aureus pathogenicity island derepressors encoded by the staphylococcal helper phage 80α indicating that it may similarly act as a helper phage for mobility of pathogenicity islands in S. aureus. This study also focused on the enzybiotic potential of phage DW2. The structure of the putative endolysin and tail hydrolase were investigated and used as the basis for a cloning strategy to create recombinant peptidoglycan hydrolyzing proteins. After overexpression in E. coli, four of these proteins (LysDW2, THDW2, CHAPE1-153, and CHAPE1-163) were demonstrated to have hydrolytic activity against peptidoglycan of S. aureus and thus represent novel candidates for exploitation as enzybiotics.
Collapse
Affiliation(s)
- Ruth Keary
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork Ireland
| | - Olivia McAuliffe
- Biotechnology Department; Teagasc; Moorepark Food Research Centre; Fermoy, Co. Cork Ireland
| | - R Paul Ross
- Biotechnology Department; Teagasc; Moorepark Food Research Centre; Fermoy, Co. Cork Ireland
| | - Colin Hill
- Alimentary Pharmacobiotic Centre; University College Cork; Cork, Ireland
| | - Jim O'Mahony
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork Ireland
| | - Aidan Coffey
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork Ireland
| |
Collapse
|
27
|
Xu Z, Thomas L, Davies B, Chalmers R, Smith M, Brown W. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol 2013; 13:87. [PMID: 24139482 PMCID: PMC4015280 DOI: 10.1186/1472-6750-13-87] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/09/2013] [Indexed: 11/18/2022] Open
Abstract
Background Phage-encoded serine integrases, such as φC31 integrase, are widely used for genome engineering. Fifteen such integrases have been described but their utility for genome engineering has not been compared in uniform assays. Results We have compared fifteen serine integrases for their utility for DNA manipulations in mammalian cells after first demonstrating that all were functional in E. coli. Chromosomal recombination reporters were used to show that seven integrases were active on chromosomally integrated DNA in human fibroblasts and mouse embryonic stem cells. Five of the remaining eight enzymes were active on extra-chromosomal substrates thereby demonstrating that the ability to mediate extra-chromosomal recombination is no guide to ability to mediate site-specific recombination on integrated DNA. All the integrases that were active on integrated DNA also promoted DNA integration reactions that were not mediated through conservative site-specific recombination or damaged the recombination sites but the extent of these aberrant reactions varied over at least an order of magnitude. Bxb1 integrase yielded approximately two-fold more recombinants and displayed about two fold less damage to the recombination sites than the next best recombinase; φC31 integrase. Conclusions We conclude that the Bxb1 and φC31 integrases are the reagents of choice for genome engineering in vertebrate cells and that DNA damage repair is a major limitation upon the utility of this class of site-specific recombinase.
Collapse
Affiliation(s)
| | | | | | | | | | - William Brown
- Queens Medical Centre, School of Life Sciences, Nottingham University, Nottingham NG7 2UH, UK.
| |
Collapse
|
28
|
Van Duyne GD, Rutherford K. Large serine recombinase domain structure and attachment site binding. Crit Rev Biochem Mol Biol 2013; 48:476-91. [PMID: 23980849 DOI: 10.3109/10409238.2013.831807] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Large serine recombinases (LSRs) catalyze the movement of DNA elements into and out of bacterial chromosomes using site-specific recombination between short DNA "attachment sites". The LSRs that function as bacteriophage integrases carry out integration between attachment sites in the phage (attP) and in the host (attB). This process is highly directional; the reverse excision reaction between the product attL and attR sites does not occur in the absence of a phage-encoded recombination directionality factor, nor does recombination typically occur between other pairings of attachment sites. Although the mechanics of strand exchange are reasonably well understood through studies of the closely related resolvase and invertase serine recombinases, many of the fundamental aspects of the LSR reactions have until recently remained poorly understood on a structural level. In this review, we discuss the results of several years worth of biochemical and molecular genetic studies of LSRs in light of recently described structural models of LSR-DNA complexes. The focus is understanding LSR domain structure, how LSRs bind to the attP and attB attachment sites, and the differences between attP-binding and attB-binding modes. The simplicity, site-selectivity and strong directionality of the LSRs has led to their use as important tools in a number of genetic engineering applications in a wide variety of organisms. Given the important potential role of LSR enzymes in genetic engineering and gene therapy, understanding the structure and DNA-binding properties of LSRs is of fundamental importance for those seeking to enhance or alter specificity and functionality in these systems.
Collapse
Affiliation(s)
- Gregory D Van Duyne
- Department of Biochemistry & Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia , USA
| | | |
Collapse
|
29
|
Genome engineering in actinomycetes using site-specific recombinases. Appl Microbiol Biotechnol 2013; 97:4701-12. [PMID: 23584280 DOI: 10.1007/s00253-013-4866-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 11/27/2022]
Abstract
The rational modification of the actinomycetes genomes has a variety of applications in research, medicine, and biotechnology. The use of site-specific recombinases allows generation of multiple mutations, large DNA deletions, integrations, and inversions and may lead to significant progress in all of these fields. Despite their huge potential, site-specific recombinase-based technologies have primarily been used for simple marker removal from a chromosome. In this review, we summarise the site-specific recombination approaches for genome engineering in various actinomycetes.
Collapse
|
30
|
González-Prieto C, Agúndez L, Linden RM, Llosa M. HUH site-specific recombinases for targeted modification of the human genome. Trends Biotechnol 2013; 31:305-12. [PMID: 23545167 DOI: 10.1016/j.tibtech.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 11/16/2022]
Abstract
Site-specific recombinases (SSRs) have been crucial in the development of mammalian transgenesis. For gene therapy purposes, this approach remains challenging, because, for example, SSR delivery is largely unresolved and SSR DNA substrates must pre-exist in target cells. In this review, we discuss the potential of His-hydrophobic-His (HUH) recombinases to overcome some of the limitations of conventional SSRs. Members of the HUH protein family cleave single-stranded (ss)DNA, but can mediate site-specific integration with the aid of the host replication machinery. Adeno-associated virus (AAV) Rep remains the only known example to support site-specific integration in human cells, and AAV is an excellent gene delivery vector that can be targeted to specific cells and organelles. Bacterial protein TrwC catalyzes integration into human sequences and can be delivered to human cells covalently linked to DNA, offering attractive new features for targeted genome modification.
Collapse
Affiliation(s)
- Coral González-Prieto
- Departamento de Biología Molecular (Universidad de Cantabria) and IBBTEC (UC, CSIC, SODERCAN), Santander, Spain
| | | | | | | |
Collapse
|
31
|
|
32
|
TG1 integrase-based system for site-specific gene integration into bacterial genomes. Appl Microbiol Biotechnol 2012; 97:4039-48. [DOI: 10.1007/s00253-012-4491-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/30/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
|
33
|
Karow M, Chavez CL, Farruggio AP, Geisinger JM, Keravala A, Jung WE, Lan F, Wu JC, Chen-Tsai Y, Calos MP. Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA. Stem Cells 2012; 29:1696-704. [PMID: 21898697 DOI: 10.1002/stem.730] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized the stem cell field. iPSCs are most often produced by using retroviruses. However, the resulting cells may be ill-suited for clinical applications. Many alternative strategies to make iPSCs have been developed, but the nonintegrating strategies tend to be inefficient, while the integrating strategies involve random integration. Here, we report a facile strategy to create murine iPSCs that uses plasmid DNA and single transfection with sequence-specific recombinases. PhiC31 integrase was used to insert the reprogramming cassette into the genome, producing iPSCs. Cre recombinase was then used for excision of the reprogramming genes. The iPSCs were demonstrated to be pluripotent by in vitro and in vivo criteria, both before and after excision of the reprogramming cassette. This strategy is comparable with retroviral approaches in efficiency, but is nonhazardous for the user, simple to perform, and results in nonrandom integration of a reprogramming cassette that can be readily deleted. We demonstrated the efficiency of this reprogramming and excision strategy in two accessible cell types, fibroblasts and adipose stem cells. This simple strategy produces pluripotent stem cells that have the potential to be used in a clinical setting.
Collapse
Affiliation(s)
- Marisa Karow
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Baltz RH. Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). ACTA ACUST UNITED AC 2012; 39:661-72. [DOI: 10.1007/s10295-011-1069-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022]
Abstract
Abstract
ϕC31, ϕBT1, R4, and TG1 are temperate bacteriophages with broad host specificity for species of the genus Streptomyces. They form lysogens by integrating site-specifically into diverse attB sites located within individual structural genes that map to the conserved core region of streptomycete linear chromosomes. The target genes containing the ϕC31, ϕBT1, R4, and TG1 attB sites encode a pirin-like protein, an integral membrane protein, an acyl-CoA synthetase, and an aminotransferase, respectively. These genes are highly conserved within the genus Streptomyces, and somewhat conserved within other actinomycetes. In each case, integration is mediated by a large serine recombinase that catalyzes unidirectional recombination between the bacteriophage attP and chromosomal attB sites. The unidirectional nature of the integration mechanism has been exploited in genetic engineering to produce stable recombinants of streptomycetes, other actinomycetes, eucaryotes, and archaea. The ϕC31 attachment/integration (Att/Int) system has been the most widely used, and it has been coupled with the ϕBT1 Att/Int system to facilitate combinatorial biosynthesis of novel lipopeptide antibiotics in Streptomyces fradiae.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting 6438 North Olney Street 46220 Indianapolis IN USA
| |
Collapse
|
35
|
Abstract
The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized.
Collapse
Affiliation(s)
- Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| |
Collapse
|
36
|
Abstract
Multisite Gateway technology is a DNA cloning method based on in vitro site-specific recombination that is becoming increasingly popular because it allows quick and highly efficient assembly of multiple DNA fragments into a vector backbone. In the conventional Gateway Multisite strategy, cloning of multiple DNA fragments requires recombination of multiple entry clones with a single destination vector. The -limitation of this approach is that as the number of entry clones increases, the efficiency of the assembly reactions decreases due to difficulty in successfully recognizing multiple pairs of matched att signals simultaneously. To address this problem, we have devised methods to generate modular expression clones, modular entry clones, and modular destination vectors. These allow many DNA fragments to be -assembled stepwise into complex expression clones. We describe here how to construct these intermediate clones and vectors, and how to use these modules to construct expression clones comprising ten or more DNA -segments. These principles can be applied to make multicomponent DNAs for many applications.
Collapse
Affiliation(s)
- Takefumi Sone
- Division of Gene Therapy, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | | |
Collapse
|
37
|
Farkašovská J, Godány A. Analysis of the Site-Specific Integration System of the Streptomyces aureofaciens Phage μ1/6. Curr Microbiol 2011; 64:226-33. [DOI: 10.1007/s00284-011-0054-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
|
38
|
Preliminary study on the DNA-binding properties of phage ΦC31 integrase. Gene 2011; 484:47-51. [DOI: 10.1016/j.gene.2011.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 05/23/2011] [Indexed: 11/22/2022]
|
39
|
Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol 2011; 92:227-39. [DOI: 10.1007/s00253-011-3519-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
|
40
|
Karow M, Calos MP. The therapeutic potential of ΦC31 integrase as a gene therapy system. Expert Opin Biol Ther 2011; 11:1287-96. [PMID: 21736536 DOI: 10.1517/14712598.2011.601293] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The φC31 integrase system is a phage-derived system that offers the ability to integrate plasmid DNA into the chromosomes at a subset of endogenous preferred locations associated with robust gene expression. Recent progress highlights the unique advantages of this system for in vivo gene therapy and for use in stem cells. AREAS COVERED The φC31 integrase system has been under development for ten years and has been demonstrated to be effective for integration of plasmids in a variety of tissues and organs for gene therapy in animal systems, as well as in isolated human cells. We focus on work with the φC31 integrase system during the past 12-18 months. This work has centered on a series of papers involving in vivo delivery of the integrase system to the liver and a variety of studies demonstrating the utility of the integrase system in stem cells. EXPERT OPINION We conclude that the φC31 integrase system has significant potential for liver gene therapy, if effective DNA delivery methods for large mammals become available. The φC31 integrase system displays an outstanding fit for use in pluripotent stem cells, and this area is expected to be the subject of intense development.
Collapse
Affiliation(s)
- Marisa Karow
- Stanford University School of Medicine, Department of Genetics, Stanford, CA 94305-5120, USA
| | | |
Collapse
|
41
|
Successive and targeted DNA integrations in the Drosophila genome by Bxb1 and phiC31 integrases. Genetics 2011; 189:391-5. [PMID: 21652525 DOI: 10.1534/genetics.111.129247] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At present ϕC31 is the only phage integrase system available for directionally regulated site-specific DNA integration in the Drosophila genome. Here we report that mycobacteriophage Bxb1 integrase also mediates targeted DNA integration in Drosophila with high specificity and efficiency. By alternately using Bxb1 and ϕC31, we were able to carry out multiple rounds of successive and targeted DNA integrations in our genomic engineering founder lines for the purpose of generating complex knock-in alleles.
Collapse
|
42
|
Brown WR, Lee NC, Xu Z, Smith MC. Serine recombinases as tools for genome engineering. Methods 2011; 53:372-9. [DOI: 10.1016/j.ymeth.2010.12.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 01/14/2023] Open
|
43
|
Sinn PL, Anthony RM, McCray PB. Genetic therapies for cystic fibrosis lung disease. Hum Mol Genet 2011; 20:R79-86. [PMID: 21422098 DOI: 10.1093/hmg/ddr104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The aim of gene therapy for cystic fibrosis (CF) lung disease is to efficiently and safely express the CF transmembrane conductance regulator (CFTR) in the appropriate pulmonary cell types. Although CF patients experience multi-organ disease, the chronic bacterial lung infections and associated inflammation are the primary cause of shortened life expectancy. Gene transfer-based therapeutic approaches are feasible, in part, because the airway epithelium is directly accessible by aerosol delivery or instillation. Improvements in standard delivery vectors and the development of novel vectors, as well as emerging technologies and new animal models, are propelling exciting new research forward. Here, we review recent developments that are advancing this field of investigation.
Collapse
Affiliation(s)
- Patrick L Sinn
- Program in Gene Therapy, Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
44
|
Wang Y, Yau YY, Perkins-Balding D, Thomson JG. Recombinase technology: applications and possibilities. PLANT CELL REPORTS 2011; 30:267-85. [PMID: 20972794 PMCID: PMC3036822 DOI: 10.1007/s00299-010-0938-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 05/02/2023]
Abstract
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087-2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| | - Yuan-Yeu Yau
- Department of Plant and Microbial Biology, Plant Gene Expression Center, USDA-ARS, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710 USA
| | | | - James G. Thomson
- Crop Improvement and Utilization Unit, USDA-ARS WRRC, 800 Buchanan St., Albany, CA 94710 USA
| |
Collapse
|
45
|
A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS One 2011; 6:e17267. [PMID: 21390305 PMCID: PMC3044732 DOI: 10.1371/journal.pone.0017267] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/24/2011] [Indexed: 11/19/2022] Open
Abstract
The production of cells capable of expressing gene(s) of interest is important for a variety of applications in biomedicine and biotechnology, including gene therapy and animal transgenesis. The ability to insert transgenes at a precise location in the genome, using site-specific recombinases such as Cre, FLP, and ΦC31, has major benefits for the efficiency of transgenesis. Recent work on integrases from ΦC31, R4, TP901-1 and Bxb1 phages demonstrated that these recombinases catalyze site-specific recombination in mammalian cells. In the present study, we examined the activities of integrases on site-specific recombination and gene expression in mammalian cells. We designed a human artificial chromosome (HAC) vector containing five recombination sites (ΦC31 attP, R4 attP, TP901-1 attP, Bxb1 attP and FRT; multi-integrase HAC vector) and de novo mammalian codon-optimized integrases. The multi-integrase HAC vector has several functions, including gene integration in a precise locus and avoiding genomic position effects; therefore, it was used as a platform to investigate integrase activities. Integrases carried out site-specific recombination at frequencies ranging from 39.3-96.8%. Additionally, we observed homogenous gene expression in 77.3-87.5% of colonies obtained using the multi-integrase HAC vector. This vector is also transferable to another cell line, and is capable of accepting genes of interest in this environment. These data suggest that integrases have high DNA recombination efficiencies in mammalian cells. The multi-integrase HAC vector enables us to produce transgene-expressing cells efficiently and create platform cell lines for gene expression.
Collapse
|
46
|
Miura T, Hosaka Y, Yan-Zhuo Y, Nishizawa T, Asayama M, Takahashi H, Shirai M. In vivo and in vitro characterization of site-specific recombination of actinophage R4 integrase. J GEN APPL MICROBIOL 2011; 57:45-57. [DOI: 10.2323/jgam.57.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
47
|
Hirano N, Muroi T, Kihara Y, Kobayashi R, Takahashi H, Haruki M. Site-specific recombination system based on actinophage TG1 integrase for gene integration into bacterial genomes. Appl Microbiol Biotechnol 2010; 89:1877-84. [PMID: 21085947 DOI: 10.1007/s00253-010-3003-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/01/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Phage integrases are enzymes that catalyze unidirectional site-specific recombination between the attachment sites of phage and host bacteria, attP and attB, respectively. We recently developed an in vivo intra-molecular site-specific recombination system based on actinophage TG1 serine-type integrase that efficiently acts between attP and attB on a single plasmid DNA in heterologous Escherichia coli cells. Here, we developed an in vivo inter-molecular site-specific recombination system that efficiently acted between the att site on exogenous non-replicative plasmid DNA and the corresponding att site on endogenous plasmid or genomic DNA in E. coli cells, and the recombination efficiencies increased by a factor of ~10(1-3) in cells expressing TG1 integrase over those without. Moreover, integration of attB-containing incoming plasmid DNA into attP-inserted E. coli genome was more efficient than that of the reverse substrate configuration. Together with our previous result that purified TG1 integrase functions efficiently without auxiliary host factors in vitro, these in vivo results indicate that TG1 integrase may be able to introduce attB-containing circular DNAs efficiently into attP-inserted genomes of many bacterial species in a site-specific and unidirectional manner. This system thus may be beneficial to genome engineering for a wide variety of bacterial species.
Collapse
Affiliation(s)
- Nobutaka Hirano
- Department of Chemical Biology & Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Oh-McGinnis R, Jones MJ, Lefebvre L. Applications of the site-specific recombinase Cre to the study of genomic imprinting. Brief Funct Genomics 2010; 9:281-93. [PMID: 20601421 DOI: 10.1093/bfgp/elq017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of gene targeting approaches has had a tremendous impact on the functional analysis of the mouse genome. A specific application of this technique has been the adaptation of the bacteriophage P1 Cre/loxP site-specific recombinase system which allows for the precise recombination between two loxP sites, resulting in deletion or inversion of the intervening sequences. Because of the efficiency of this system, it can be applied to conditional deletions of relatively short coding sequences or regulatory elements but also to more extensive chromosomal rearrangement strategies. Both mechanistic and functional studies of genomic imprinting have benefited from the development of the Cre/loxP technology. Since imprinted genes within large chromosomal regions are regulated by the action of cis-acting sequences known as imprinting centers, chromosomal engineering approaches are particularly well suited to the elucidation of long-range mechanisms controlling the imprinting of autosomal genes. Here we review the applications of the Cre/loxP technology to the study of genomic imprinting, highlight important insights gained from these studies and discuss future directions in the field.
Collapse
Affiliation(s)
- Rosemary Oh-McGinnis
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | |
Collapse
|
49
|
Liu Y, Thyagarajan B, Lakshmipathy U, Xue H, Lieu P, Fontes A, MacArthur CC, Scheyhing K, Rao MS, Chesnut JD. Generation of Platform Human Embryonic Stem Cell Lines That Allow Efficient Targeting at a Predetermined Genomic Location. Stem Cells Dev 2009; 18:1459-72. [DOI: 10.1089/scd.2009.0047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ying Liu
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Bhaskar Thyagarajan
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Uma Lakshmipathy
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Haipeng Xue
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Pauline Lieu
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Andrew Fontes
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Chad C. MacArthur
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Kelly Scheyhing
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Mahendra S. Rao
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| | - Jonathan D. Chesnut
- Primary and Stem Cell Systems, Life Technologies Corporation, Carlsbad, California
| |
Collapse
|
50
|
Lieu PT, Machleidt T, Thyagarajan B, Fontes A, Frey E, Fuerstenau-Sharp M, Thompson DV, Swamilingiah GM, Derebail SS, Piper D, Chesnut JD. Generation of Site-Specific Retargeting Platform Cell Lines for Drug Discovery Using phiC31 and R4 Integrases. ACTA ACUST UNITED AC 2009; 14:1207-15. [DOI: 10.1177/1087057109348941] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
One of the challenges in developing cell lines for high-throughput screening in drug discovery is the labor- and time-intensive process required to create stable clonal cell lines that express specific reporters or drug targets. The authors report here the generation of a site-specific retargeting platform in 3 different cell lines: adherent HEK293, suspension CHO-S, and a human embryonic cell line (BGO1V). These platform cell lines were generated by using a combination of 2 site-specific integrases to develop a system that allows one to efficiently target a gene of interest to a specific locus and generates rapid production of homogeneous cell pools that stably express the gene of interest. The phiC31 integrase was used to create a platform line by placing a target site for the R4 integrase into a pseudo attP site, and then the R4 integrase was used to place a gene of interest into specific R4 target site. The authors demonstrate the successful and rapid retargeting of a G-protein-coupled receptor (cholecystokinin receptor A, CCKAR), an ion channel (the transient receptor potential cation channel, subfamily M, member 8, TRPM8), and a GFP-c-Jun(1-79) fusion protein into the specific loci in these cell lines and show that these retargeted cell lines exhibit functional and pharmacological responses consistent with those reported in the literature.
Collapse
|