1
|
Tsai M, Sun J, Alexandre C, Shapiro M, Franchet A, Li Y, Gould AP, Vincent JP, Stockinger B, Diny NL. Drosophila AHR limits tumor growth and stem cell proliferation in the intestine. Wellcome Open Res 2025; 10:38. [PMID: 40212817 PMCID: PMC11982807 DOI: 10.12688/wellcomeopenres.23515.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
Background The aryl hydrocarbon receptor (AHR) plays important roles in intestinal homeostasis, limiting tumour growth and promoting differentiation in the intestinal epithelium. Spineless, the Drosophila homolog of AHR, has only been studied in the context of development but not in the adult intestine. Methods The role of Spineless in the Drosophila midgut was studied by overexpression or inactivation of Spineless in infection and tumour models and RNA sequencing of sorted midgut progenitor cells. Results We show that spineless is upregulated in the adult intestinal epithelium after infection with Pseudomonas entomophila ( P. e.). Spineless inactivation increased stem cell proliferation following infection-induced injury. Spineless overexpression limited intestinal stem cell proliferation and reduced survival after infection. In two tumour models, using either Notch RNAi or constitutively active Yorkie, Spineless suppressed tumour growth and doubled the lifespan of tumour-bearing flies. At the transcriptional level it reversed the gene expression changes induced in Yorkie tumours, counteracting cell proliferation and altered metabolism. Conclusions These findings demonstrate a new role for Spineless in the adult Drosophila midgut and highlight the evolutionarily conserved functions of AHR/Spineless in the control of proliferation and differentiation of the intestinal epithelium.
Collapse
Affiliation(s)
- Minghua Tsai
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Jiawei Sun
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | | | | | | | - Ying Li
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | - Alex P. Gould
- The Francis Crick Institute, London, England, NW1 1AT, UK
| | | | | | - Nicola Laura Diny
- The Francis Crick Institute, London, England, NW1 1AT, UK
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, North Rhine-Westphalia, 53127, Germany
| |
Collapse
|
2
|
Hrubý J, Dvořák Z. Binding of ligands to the aryl hydrocarbon receptor: An overview of methods. Toxicol Lett 2025; 404:37-46. [PMID: 39832617 DOI: 10.1016/j.toxlet.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor, which plays numerous and pivotal roles in human physiology and pathophysiology. Therefore, pharmacotherapeutic targeting of the AhR is a highly pertinent issue. The identification of new AhR ligands and the characterization of the interactions between the AhR ligands and AhR protein requires appropriate methodology. In spite the AhR is monomeric intracellular soluble receptor, the full-length human AhR protein has not been crystallized so far, and its isolation in a form applicable in the binding assays is highly challenging. Recent advances, including crystallization of AhR fragments, recombinant protein technologies, and cryogenic electron microscopy, allowed for exploitation of diverse experimental techniques for studying interactions between ligands and the AhR. In the current paper, we review existing AhR ligand binding assays, including their description, applicability and limitations.
Collapse
Affiliation(s)
- Jiří Hrubý
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc 783 71, Czech Republic.
| |
Collapse
|
3
|
Zhou Y, Xu R, Gao Z, Miao J, Pan L. Insights into mechanism of DNA damage and repair-apoptosis in digestive gland of female scallop Chlamys farreri under benzo[a]pyrene exposure during reproductive stage. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109738. [PMID: 37661044 DOI: 10.1016/j.cbpc.2023.109738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
As one of the most carcinogenic persistent organic pollutants (POPs), benzo[a]pyrene (B [a]P) brings high toxicity to marine bivalves. Digestive gland is the most important metabolism-related organ of aquatic animals. This study conducted the digestive gland transcriptome of Chlamys farreri under B[a]P treatment at reproductive stages. And the reproductive-stage dependence metabolism-DNA repair-apoptosis process of scallops under 0, 0.04, 0.4 and 4 μg/L B[a]P was studied by qRT-PCR. The results demonstrated that the detoxification metabolism was disturbed after ovulation except for CYP3A4. In antioxidant system, antioxidant enzyme CAT and GPX, and GGT1 (one of the non-enzymatic antioxidants synthesis gene) continuously served the function of antioxidant defense. Three types of DNA repair were activated under B[a]P stress, however, DNA strand breaks were still serious. B[a]P exposure weakened death receptor pathway as well as enhanced mitochondrial pathway, surprisingly suppressing apoptosis in scallops. In addition, ten indicators were screened by Spearman correlation analysis. This study will provide sound theoretical basis for bivalve toxicology and contribute to the biomonitoring of marine POPs pollution.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
4
|
Tumova S, Dolezel D, Jindra M. Conserved and Unique Roles of bHLH-PAS Transcription Factors in Insects - From Clock to Hormone Reception. J Mol Biol 2023; 436:168332. [PMID: 39491146 DOI: 10.1016/j.jmb.2023.168332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
A dozen bHLH-PAS transcription factors have evolved since the dawn of the animal kingdom; nine of them have mutual orthologs between arthropods and vertebrates. These proteins are master regulators in a range of developmental processes from organogenesis, nervous system formation and functioning, to cell fate decisions defining identity of limbs or photoreceptors for color vision. Among the functionally best conserved are bHLH-PAS proteins acting in the animal circadian clock. On the other side of the spectrum are fundamental physiological mechanisms such as those underlying xenobiotic detoxification, oxygen homeostasis, and metabolic adaptation to hypoxia, infection or tumor progression. Predictably, malfunctioning of bHLH-PAS regulators leads to pathologies. Performance of the individual bHLH-PAS proteins is modulated at multiple levels including dimerization and other protein-protein interactions, proteasomal degradation, and by binding low-molecular weight ligands. Despite the vast evolutionary gap dividing arthropods and vertebrates, and the differences in their anatomy, many functions of orthologous bHLH-PAS proteins are remarkably similar, including at the molecular level. Our phylogenetic analysis shows that one bHLH-PAS protein type has been lost during vertebrate evolution. This protein has a unique function as a receptor of the sesquiterpenoid juvenile hormones of insects and crustaceans. Although some other bHLH-PAS proteins are regulated by binding small molecules, the juvenile hormone receptor presents an unprecedented case, since all other non-peptide animal hormones activate members of the nuclear receptor family. The purpose of this review is to compare and highlight parallels and differences in functioning of bHLH-PAS proteins between insects and vertebrates.
Collapse
Affiliation(s)
- Sarka Tumova
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Marek Jindra
- Institute of Entomology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic.
| |
Collapse
|
5
|
Bhalla D, van Noort V. Molecular Evolution of Aryl Hydrocarbon Receptor Signaling Pathway Genes. J Mol Evol 2023; 91:628-646. [PMID: 37392220 DOI: 10.1007/s00239-023-10124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
The Aryl hydrocarbon receptor is an ancient transcriptional factor originally discovered as a sensor of dioxin. In addition to its function as a receptor of environmental toxicants, it plays an important role in development. Although a significant amount of research has been carried out to understand the AHR signal transduction pathway and its involvement in species' susceptibility to environmental toxicants, none of them to date has comprehensively studied its evolutionary origins. Studying the evolutionary origins of molecules can inform ancestral relationships of genes. The vertebrate genome has been shaped by two rounds of whole-genome duplications (WGD) at the base of vertebrate evolution approximately 600 million years ago, followed by lineage-specific gene losses, which often complicate the assignment of orthology. It is crucial to understand the evolutionary origins of this transcription factor and its partners, to distinguish orthologs from ancient non-orthologous homologs. In this study, we have investigated the evolutionary origins of proteins involved in the AHR pathway. Our results provide evidence of gene loss and duplications, crucial for understanding the functional connectivity of humans and model species. Multiple studies have shown that 2R-ohnologs (genes and proteins that have survived from the 2R-WGD) are enriched in signaling components relevant to developmental disorders and cancer. Our findings provide a link between the AHR pathway's evolutionary trajectory and its potential mechanistic involvement in pathogenesis.
Collapse
Affiliation(s)
- Diksha Bhalla
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium.
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Fuchsman P, Fetters K, O'Connor A. Target Lipid Model and Empirical Organic Carbon Partition Coefficients Predict Sediment Toxicity of Polychlorinated Biphenyls to Benthic Invertebrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1134-1151. [PMID: 36808761 DOI: 10.1002/etc.5588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Quantifying causal exposure-response relationships for polychlorinated biphenyl (PCB) toxicity to benthic invertebrates can be an important component of contaminated sediment assessments, informing cleanup decisions and natural resource injury determinations. Building on prior analyses, we demonstrate that the target lipid model accurately predicts aquatic toxicity of PCBs to invertebrates, providing a means to account for effects of PCB mixture composition on the toxicity of bioavailable PCBs. We also incorporate updated data on PCB partitioning between particles and interstitial water in field-collected sediments, to better account for effects of PCB mixture composition on PCB bioavailability. To validate the resulting model, we compare its predictions with sediment toxicity data from spiked sediment toxicity tests and a variety of recent case studies from sites where PCBs are the primary sediment contaminant. The updated model should provide a useful tool for both screening-level and in-depth risk analyses for PCBs in sediment, and it should aid in diagnosing potential contributing factors at sites where sediment toxicity and benthic community impairment are observed. Environ Toxicol Chem 2023;42:1134-1151. © 2023 SETAC.
Collapse
|
7
|
D'Addabbo P, Frezza D, Sulentic CE. Evolutive emergence and divergence of an Ig regulatory node: An environmental sensor getting cues from the aryl hydrocarbon receptor? Front Immunol 2023; 14:996119. [PMID: 36817426 PMCID: PMC9936319 DOI: 10.3389/fimmu.2023.996119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
One gene, the immunoglobulin heavy chain (IgH) gene, is responsible for the expression of all the different antibody isotypes. Transcriptional regulation of the IgH gene is complex and involves several regulatory elements including a large element at the 3' end of the IgH gene locus (3'RR). Animal models have demonstrated an essential role of the 3'RR in the ability of B cells to express high affinity antibodies and to express different antibody classes. Additionally, environmental chemicals such as aryl hydrocarbon receptor (AhR) ligands modulate mouse 3'RR activity that mirrors the effects of these chemicals on antibody production and immunocompetence in mouse models. Although first discovered as a mediator of the toxicity induced by the high affinity ligand 2,3,7,8-tetracholordibenzo-p-dioxin (dioxin), understanding of the AhR has expanded to a physiological role in preserving homeostasis and maintaining immunocompetence. We posit that the AhR also plays a role in human antibody production and that the 3'RR is not only an IgH regulatory node but also an environmental sensor receiving signals through intrinsic and extrinsic pathways, including the AhR. This review will 1) highlight the emerging role of the AhR as a key transducer between environmental signals and altered immune function; 2) examine the current state of knowledge regarding IgH gene regulation and the role of the AhR in modulation of Ig production; 3) describe the evolution of the IgH gene that resulted in species and population differences; and 4) explore the evidence supporting the environmental sensing capacity of the 3'RR and the AhR as a transducer of these cues. This review will also underscore the need for studies focused on human models due to the premise that understanding genetic differences in the human population and the signaling pathways that converge at the 3'RR will provide valuable insight into individual sensitivities to environmental factors and antibody-mediated disease conditions, including emerging infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Pietro D'Addabbo
- Department of Biology, University of Bari “Aldo Moro”, Bari, Italy
| | - Domenico Frezza
- Department of Biology E. Calef, University of Rome Tor Vergata, Rome, Italy
| | - Courtney E.W. Sulentic
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
8
|
Dai S, Qu L, Li J, Zhang Y, Jiang L, Wei H, Guo M, Chen X, Chen Y. Structural insight into the ligand binding mechanism of aryl hydrocarbon receptor. Nat Commun 2022; 13:6234. [PMID: 36266304 PMCID: PMC9585082 DOI: 10.1038/s41467-022-33858-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/04/2022] [Indexed: 12/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR), a member of the basic helix-loop-helix (bHLH) Per-Arnt-Sim (PAS) family of transcription factors, plays important roles in regulating xenobiotic metabolism, cellular differentiation, stem cell maintenance, as well as immunity. More recently, AHR has gained significant interest as a drug target for the development of novel cancer immunotherapy drugs. Detailed understanding of AHR-ligand binding has been hampered for decades by the lack of a three-dimensional structure of the AHR PAS-B domain. Here, we present multiple crystal structures of the Drosophila AHR PAS-B domain, including its apo, ligand-bound, and AHR nuclear translocator (ARNT) PAS-B-bound forms. Together with biochemical and cellular assays, our data reveal structural features of the AHR PAS-B domain, provide insights into the mechanism of AHR ligand binding, and provide the structural basis for the future development of AHR-targeted therapeutics.
Collapse
Affiliation(s)
- Shuyan Dai
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Lingzhi Qu
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Jun Li
- grid.461579.8Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001 China
| | - Ye Zhang
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Longying Jiang
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Hudie Wei
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Ming Guo
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Xiaojuan Chen
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yongheng Chen
- grid.216417.70000 0001 0379 7164Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| |
Collapse
|
9
|
Larigot L, Bui LC, de Bouvier M, Pierre O, Pinon G, Fiocca J, Ozeir M, Tourette C, Ottolenghi C, Imbeaud S, Pontoizeau C, Blaise BJ, Chevallier A, Tomkiewicz C, Legrand B, Elena-Herrmann B, Néri C, Brinkmann V, Nioche P, Barouki R, Ventura N, Dairou J, Coumoul X. Identification of Modulators of the C. elegans Aryl Hydrocarbon Receptor and Characterization of Transcriptomic and Metabolic AhR-1 Profiles. Antioxidants (Basel) 2022; 11:antiox11051030. [PMID: 35624894 PMCID: PMC9137885 DOI: 10.3390/antiox11051030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/18/2022] [Indexed: 02/02/2023] Open
Abstract
The Aryl hydrocarbon Receptor (AhR) is a xenobiotic sensor in vertebrates, regulating the metabolism of its own ligands. However, no ligand has been identified to date for any AhR in invertebrates. In C. elegans, the AhR ortholog, AHR-1, displays physiological functions. Therefore, we compared the transcriptomic and metabolic profiles of worms expressing AHR-1 or not and investigated the putative panel of chemical AHR-1 modulators. The metabolomic profiling indicated a role for AHR-1 in amino acids, carbohydrates, and fatty acids metabolism. The transcriptional profiling in neurons expressing AHR-1, identified 95 down-regulated genes and 76 up-regulated genes associated with neuronal and metabolic functions in the nervous system. A gene reporter system allowed us to identify several AHR-1 modulators including bacterial, dietary, or environmental compounds. These results shed new light on the biological functions of AHR-1 in C. elegans and perspectives on the evolution of the AhR functions across species.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- CNRS UMR 8601, Metabolism, Pharmacochemistry and Neurochemistry, Université Paris Cité, 75006 Paris, France
| | - Linh-Chi Bui
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Unité de biologie fonctionnelle et adaptative, UMR 8251, CNRS, Université Paris Cité, 75013 Paris, France
| | - Marine de Bouvier
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Ophélie Pierre
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Laboratoire Interactions Epithéliums-Neurones (LIEN), Université de Brest, EA4685, 29200 Brest, France
| | - Grégory Pinon
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Justine Fiocca
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Mohammad Ozeir
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Cendrine Tourette
- Centre Paul Broca, INSERM U894 Neuronal Cell Biology & Pathology & EA Université Paris Cité, 75014 Paris, France;
| | - Chris Ottolenghi
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 75015 Paris, France;
| | - Sandrine Imbeaud
- Gif/Orsay DNA MicroArray Platform, 91190 Gif sur Yvette, France;
| | - Clément Pontoizeau
- AP-HP, Hôpital Necker-Enfants Malades, Service de Biochimie Métabolique, 75015 Paris, France;
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
| | - Benjamin J. Blaise
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
| | - Aline Chevallier
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Céline Tomkiewicz
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Béatrice Legrand
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
| | - Bénédicte Elena-Herrmann
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs, Univ. Lyon, CNRS, UCBL, ENS Lyon, 69100 Villeurbanne, France; (B.J.B.); (B.E.-H.)
- Institute for Advanced Biosciences, Univ. Grenoble Alpes, CNRS, INSERM, 38000 Grenoble, France
| | - Christian Néri
- CNRS UMR 8256, Inserm ERL U1164, Sorbonne Université, 75005 Paris, France;
| | - Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (N.V.)
- Leibniz Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Pierre Nioche
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Structural and Molecular Analysis Platform, Biomedtech Facilities, Université Paris Cité, 75006 Paris, France
| | - Robert Barouki
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Assistance Publique-Hôpitaux de Paris, Hôpital Necker, 75015 Paris, France
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (N.V.)
- Leibniz Institute for Environmental Medicine (IUF), Auf’m Hennekamp 50, 40225 Düsseldorf, Germany
| | - Julien Dairou
- CNRS UMR 8601, Metabolism, Pharmacochemistry and Neurochemistry, Université Paris Cité, 75006 Paris, France
- Correspondence: (J.D.); (X.C.); Tel.: +33-1-42-86-91-21 (J.D.); +33-1-42-86-33-59 (X.C.)
| | - Xavier Coumoul
- INSERM UMR-S1124, T3S, Toxicologie Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Université Paris Cité, 75006 Paris, France; (L.L.); (L.-C.B.); (M.d.B.); (O.P.); (G.P.); (J.F.); (M.O.); (C.O.); (A.C.); (C.T.); (B.L.); (P.N.); (R.B.)
- Correspondence: (J.D.); (X.C.); Tel.: +33-1-42-86-91-21 (J.D.); +33-1-42-86-33-59 (X.C.)
| |
Collapse
|
10
|
Brinkmann V, Romeo M, Larigot L, Hemmers A, Tschage L, Kleinjohann J, Schiavi A, Steinwachs S, Esser C, Menzel R, Giani Tagliabue S, Bonati L, Cox F, Ale-Agha N, Jakobs P, Altschmied J, Haendeler J, Coumoul X, Ventura N. Aryl Hydrocarbon Receptor-Dependent and -Independent Pathways Mediate Curcumin Anti-Aging Effects. Antioxidants (Basel) 2022; 11:613. [PMID: 35453298 PMCID: PMC9024831 DOI: 10.3390/antiox11040613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose activity can be modulated by polyphenols, such as curcumin. AhR and curcumin have evolutionarily conserved effects on aging. Here, we investigated whether and how the AhR mediates the anti-aging effects of curcumin across species. Using a combination of in vivo, in vitro, and in silico analyses, we demonstrated that curcumin has AhR-dependent or -independent effects in a context-specific manner. We found that in Caenorhabditis elegans, AhR mediates curcumin-induced lifespan extension, most likely through a ligand-independent inhibitory mechanism related to its antioxidant activity. Curcumin also showed AhR-independent anti-aging activities, such as protection against aggregation-prone proteins and oxidative stress in C. elegans and promotion of the migratory capacity of human primary endothelial cells. These AhR-independent effects are largely mediated by the Nrf2/SKN-1 pathway.
Collapse
Affiliation(s)
- Vanessa Brinkmann
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Margherita Romeo
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lucie Larigot
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Anne Hemmers
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Lisa Tschage
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Jennifer Kleinjohann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Alfonso Schiavi
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Swantje Steinwachs
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Charlotte Esser
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Ralph Menzel
- Institute of Biology, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany;
| | - Sara Giani Tagliabue
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Laura Bonati
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (S.G.T.); (L.B.)
| | - Fiona Cox
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- Institute of Clinical Pharmacology and Pharmacology, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Philipp Jakobs
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Joachim Altschmied
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| | - Judith Haendeler
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
| | - Xavier Coumoul
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 Rue des Saints-Pères, F-75006 Paris, France; (L.L.); (X.C.)
| | - Natascia Ventura
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr 5, 40225 Düsseldorf, Germany; (V.B.); (M.R.); (A.S.); (F.C.); (N.A.-A.); (P.J.); (J.A.); (J.H.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, 40225 Düsseldorf, Germany; (A.H.); (L.T.); (J.K.); (S.S.); (C.E.)
| |
Collapse
|
11
|
Zhang W, Xie HQ, Li Y, Zhou M, Zhou Z, Wang R, Hahn ME, Zhao B. The aryl hydrocarbon receptor: A predominant mediator for the toxicity of emerging dioxin-like compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128084. [PMID: 34952507 PMCID: PMC9039345 DOI: 10.1016/j.jhazmat.2021.128084] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 06/01/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a member of the basic helix-loop-helix/Per-ARNT-Sim (bHLH-PAS) family of transcription factors and has broad biological functions. Early after the identification of the AHR, most studies focused on its roles in regulating the expression of drug-metabolizing enzymes and mediating the toxicity of dioxins and dioxin-like compounds (DLCs). Currently, more diverse functions of AHR have been identified, indicating that AHR is not just a dioxin receptor. Dioxins and DLCs occur ubiquitously and have diverse health/ecological risks. Additional research is required to identify both shared and compound-specific mechanisms, especially for emerging DLCs such as polyhalogenated carbazoles (PHCZs), polychlorinated diphenyl sulfides (PCDPSs), and others, of which only a few investigations have been performed at present. Many of the toxic effects of emerging DLCs were observed to be predominantly mediated by the AHR because of their structural similarity as dioxins, and the in vitro TCDD-relative potencies of certain emerging DLC congeners are comparable to or even greater than the WHO-TEFs of OctaCDD, OctaCDF, and most coplanar PCBs. Due to the close relationship between AHR biology and environmental science, this review begins by providing novel insights into AHR signaling (canonical and non-canonical), AHR's biochemical properties (AHR structure, AHR-ligand interaction, AHR-DNA binding), and the variations during AHR transactivation. Then, AHR ligand classification and the corresponding mechanisms are discussed, especially the shared and compound-specific, AHR-mediated effects and mechanisms of emerging DLCs. Accordingly, a series of in vivo and in vitro toxicity evaluation methods based on the AHR signaling pathway are reviewed. In light of current advances, future research on traditional and emerging DLCs will enhance our understanding of their mechanisms, toxicity, potency, and ecological impacts.
Collapse
Affiliation(s)
- Wanglong Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunping Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxi Zhou
- Biology Centre of the Czech Academy of Sciences v.v.i, Institute of Plant Molecular Biology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Zhiguang Zhou
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, China
| | - Renjun Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong 273165, China
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA 02543, USA; Boston University Superfund Research Program, Boston University, Boston, MA 02118, USA
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Gao Z, Yao L, Pan L. Gene expression and functional analysis of different heat shock protein (HSPs) in Ruditapes philippinarum under BaP stress. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109194. [PMID: 34619354 DOI: 10.1016/j.cbpc.2021.109194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/02/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Heat shock proteins (HSPs) are a class of highly conserved proteins which can protect cells against various types of stress. However, little information on the mechanism involved in the organic contaminants stress response of HSPs is available, especially in marine invertebrates. The present study was conducted to evaluate the responses of HSPs in clams (Ruditapes philippinarum) under Benzo[a] pyrene (BaP) exposure. The clams were exposed to BaP (concentrations: 0, 0.1, 1, 10 μg/L) for 15 days. 6 HSPs mRNA were classified, and the results of tissue distribution indicated that 4 HSPs gene expressed most in the digestive glands. The transcription level of 6 HSPs (HSP22-1, HSP22-2, HSP40A, HSP60, HSP70, HSP90) genes and the aryl hydrocarbon receptor signaling pathway-related genes, and detoxification system-related enzymes activities were analyzed at 0, 1, 3, 6, 10 and 15 days. The activities of phase II detoxification metabolic enzymes and signaling pathway related genes in clams were severely affected by BaP stress and presented significant difference. Our result suggested that HSPs were produced in the presence of BaP and participated in the process of detoxification metabolism to a certain extent. Additionally, the transcription of HSP40A gene may be used as a potential biomarker of BaP exposure due to its evident concentration- and time-dependent expression pattern. Overall, the study investigated the classification of HSPs in R. philippinarum, provided information about the expression profiles of various HSPs after BaP exposure and broadened the understanding mechanism of HSPs in detoxification defense system under PAHs stress in mollusks.
Collapse
Affiliation(s)
- Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Linlin Yao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
13
|
Han H, Safe S, Jayaraman A, Chapkin RS. Diet-Host-Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annu Rev Nutr 2021; 41:455-478. [PMID: 34633858 PMCID: PMC8667662 DOI: 10.1146/annurev-nutr-043020-090050] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated basic-helix-loop-helix transcription factor that binds structurally diverse ligands and senses cues from environmental toxicants and physiologically relevant dietary/microbiota-derived ligands. The AhR is an ancient conserved protein and is widely expressed across different tissues in vertebrates and invertebrates. AhR signaling mediates a wide range of cellular functions in a ligand-, cell type-, species-, and context-specific manner. Dysregulation of AhR signaling is linked to many developmental defects and chronic diseases. In this review, we discuss the emerging role of AhR signaling in mediating bidirectional host-microbiome interactions. We also consider evidence showing the potential for the dietary/microbial enhancement ofhealth-promoting AhR ligands to improve clinical pathway management in the context of inflammatory bowel diseases and colon tumorigenesis.
Collapse
Affiliation(s)
- Huajun Han
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Stephen Safe
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843, USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases and Department of Nutrition, Texas A&M University, College Station, Texas 77843, USA;
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
14
|
Genome-wide identification and characterization of basic helix-loop-helix genes in nine molluscs. Gene 2021; 785:145604. [PMID: 33766707 DOI: 10.1016/j.gene.2021.145604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 11/23/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factors form a large superfamily that plays an important role in numerous physiological processes, including development and response to environmental stresses. In this study, the distribution of bHLH genes in nine molluscs was systematically investigated (including five bivalves, three gastropods and one cephalopod). Finally, 53-85 bHLH genes were identified from each genome and classified into corresponding families by using phylogenetic analysis. The results of gene structure and conserved motif analysis illustrated the hereditary conservation of bHLH transcription factors during evolution but showed low similarity in group C. Through transcription profile analysis of C. gigas and T. granosa, we found a important role of bHLH genes in responding to multiple external challenges and development; meanwhile, they also exhibited tissue-specific expression. Interestingly, we were also surprised to find different bHLH genes from the same group generally possess similar patterns expression that tends to simultaneously present high or lower expression of multiple challenges and different tissues in this study. In summary, this study lays the foundation for further investigation of the biological functions and evolution of molluscan bHLH genes.
Collapse
|
15
|
Shankar P, Dasgupta S, Hahn ME, Tanguay RL. A Review of the Functional Roles of the Zebrafish Aryl Hydrocarbon Receptors. Toxicol Sci 2020; 178:215-238. [PMID: 32976604 PMCID: PMC7706399 DOI: 10.1093/toxsci/kfaa143] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the last 2 decades, the zebrafish (Danio rerio) has emerged as a stellar model for unraveling molecular signaling events mediated by the aryl hydrocarbon receptor (AHR), an important ligand-activated receptor found in all eumetazoan animals. Zebrafish have 3 AHRs-AHR1a, AHR1b, and AHR2, and studies have demonstrated the diversity of both the endogenous and toxicological functions of the zebrafish AHRs. In this contemporary review, we first highlight the evolution of the zebrafish ahr genes, and the characteristics of the receptors including developmental and adult expression, their endogenous and inducible roles, and the predicted ligands from homology modeling studies. We then review the toxicity of a broad spectrum of AHR ligands across multiple life stages (early stage, and adult), discuss their transcriptomic and epigenetic mechanisms of action, and report on any known interactions between the AHRs and other signaling pathways. Through this article, we summarize the promising research that furthers our understanding of the complex AHR pathway through the extensive use of zebrafish as a model, coupled with a large array of molecular techniques. As much of the research has focused on the functions of AHR2 during development and the mechanism of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) toxicity, we illustrate the need to address the considerable knowledge gap in our understanding of both the mechanistic roles of AHR1a and AHR1b, and the diverse modes of toxicity of the various AHR ligands.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Subham Dasgupta
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| | - Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
16
|
Zhou Y, Zhao Y, Xu R, Pan L. Study on the AhR signaling pathway and phase II detoxification metabolic enzymes isoforms in scallop Chlamys farreri exposed to single and mixtures of PAHs. ENVIRONMENTAL RESEARCH 2020; 190:109980. [PMID: 32800894 DOI: 10.1016/j.envres.2020.109980] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the detoxification metabolism responses in scallop Chlamys farreri exposed to phenanthrene (PHE), chrysene (CHR), benzo[a]pyrene (B[a]P) and PHE + CHR + B[a]P for 15 days under laboratory conditions. The mRNA expression levels of AhR signaling pathway (AhR, HSP90, XAP2 and ARNT), detoxification system (phase I: CYP1A1 and CYP1B1; phase II: SULTs, UGT and GSTs) and ATP-binding cassette transporters (phase 0: ABCB1 and phase III: ABCC1, ABCG2) in digestive glands of scallops exposed to PHE (0.7, 2.1 μg/L), CHR (0.7, 2.1 μg/L), B[a]P (0.7, 2.1 μg/L), and PHE + CHR + B[a]P (0.7 + 0.7 +0.7, 2.1 + 2.1 + 2.1 μg/L) were detected. In present study, key genes (AhR, HSP90, XAP2 and ARNT) of the AhR signaling pathway can be significantly induced by pollutants, suggesting that the AhR/ARNT signaling pathway plays a role directly or indirectly. AhR, HSP90 and ARNT reached the maximum value on day 6, which can be preliminarily understood as the synchronization of their functions. Besides, the results also indicated that different genes had specific response to different pollution exposure. CYP1B1, GST-2, GST-omega and GST-microsomal could be potional indexes to PHE, ARNT, GST-sigma 2 and GST-3 were sensitive to CHR exposure, HSP90, GST-theta and ABCG2 were considered as potional indexes to BaP while CYP1A1 and UGT were possible to be indexes for monitoring the mix exposure of these three PAHs. These findings in C. farreri suggested that phase II detoxification metabolic enzymes isoforms played an essential role in detoxification mechanisms and mRNA expression levels of specific SULTs, UGTs and GSTs were potentially to be ideal indexes in PAHs pollution research. In summary, this study provides more valuable information for the risk assessments of different rings of PAHs.
Collapse
Affiliation(s)
- Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yanan Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
17
|
Dos Reis IMM, Siebert MN, Zacchi FL, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Melo CMRD, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gigas (Thunberg, 1789) elicited by pyrene and fluorene: Molecular, biochemical and histological approach - Part II. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105565. [PMID: 32682195 DOI: 10.1016/j.aquatox.2020.105565] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Pyrene (PYR) and fluorene (FLU) are among the sixteen priority Polycyclic Aromatic Hydrocarbons (PAH) of the United States Environmental Protection Agency and are both frequently detected in contaminated sites. Due to the importance of bivalve mollusks in biomonitoring programs and the scarce information on the biotransformation system in these organisms, the aim of this study was to investigate the effect of PYR and FLU at the transcriptional level and the enzymatic activities of some biotransformation systems in the Pacific oyster Crassostrea gigas, and to evaluate the histological effects in their soft tissues. Oysters C. gigas were exposed for 24 h and 96 h to PYR (0.25 and 0.5 μM) and FLU (0.6 and 1.2 μM). After exposure, transcript levels of cytochrome P450 coding genes (CYP1-like, CYP2-like, CYP2AU2, CYP356A1, CYP17α-like), glutathione S tranferase genes (omega GSTO-like and microsomal, MGST-like) and sulfotransferase gene (SULT-like), and the activity of ethoxyresorufin O-deethylase (EROD), Glutathione S-transferase (GST) and microssomal GST (MGST) were evaluated in gills. Histologic changes were also evaluated after the exposure period. PYR and FLU bioconcentrated in oyster soft tissues. The half-life time of PYR in water was lower than fluorene, which is in accordance to the higher lipophilicity and bioconcentration of the former. EROD activity was below the limit of detection in all oysters exposed for 96 h to PYR and FLU. The reproductive stage of the oysters exposed to PYR was post-spawn. Exposure to PYR caused tubular atrophy in digestive diverticula, but had no effect on transcript levels of biotransformation genes. However, the organisms exposed for 96 h to PYR 0.5 μM showed higher MGST activity, suggesting a protective role against oxidative stress in gills of oysters under higher levels of PYR in the tissues. Increased number of mucous cells in mantle were observed in oysters exposed to the higher FLU concentration, suggesting a defense mechanisms. Oysters exposed for 24 h to FLU 1.2 μM were in the ripe stage of gonadal development and showed higher transcript levels of CYP2AU2, GSTO-like and SULT-like genes, suggesting a role in the FLU biotransformation. In addition, after 96 h of exposure to FLU there was a significant increase of mucous cells in the mantle of oysters but no effect was observed on the EROD, total GST and MGST activities. These results suggest that PAH have different effects on transcript levels of biotransformation genes and enzyme activities, however these differences could also be related to the reproductive stage.
Collapse
Affiliation(s)
- Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Cláudio Manoel Rodrigues de Melo
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
18
|
Solé M, Freitas R, Viñas L, Rivera-Ingraham GA. Biomarker considerations in monitoring petrogenic pollution using the mussel Mytilus galloprovincialis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31854-31862. [PMID: 32504435 DOI: 10.1007/s11356-020-09427-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Mussels are worldwide bioindicators in pollution monitoring since they fulfil the requirements for being good sentinels. However, some methodological concerns arise in the use of particular biomarkers, particularly those displaying low enzymatic rates and/or limited responsiveness to chemicals and biological-related variability. In the present study, the suitability of oxidative stress and detoxification parameters when using mussels as sentinels of polycyclic aromatic hydrocarbon (PAH) pollution is addressed. Present results show that the S9 subcellular fraction of the digestive gland in mussels is an adequate and convenient matrix where to measure most pollution-related biomarkers. Furthermore, this work constitutes the first evidence of the potential suitability of using particular carboxylesterase (CE) activities in determining PAHs exposure in mussels. This fact could imply the replacement of more controversial cytochrome P450 components (phase I oxidation), which are only measurable in microsomal fractions, by CEs (measured in S9 fractions) as good alternatives for phase I reactions in PAH-exposed mussels. Some methodological considerations, such as the need of including commercial purified proteins in biomarker determinations for quality assurance, are evaluated.
Collapse
Affiliation(s)
- Montserrat Solé
- Institute of Marine Sciences (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia Viñas
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390, Vigo, Spain
| | - Georgina A Rivera-Ingraham
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile
| |
Collapse
|
19
|
Guerreiro ADS, Monteiro JS, Medeiros ID, Sandrini JZ. First evidence of transcriptional modulation by chlorothalonil in mussels Perna perna. CHEMOSPHERE 2020; 255:126947. [PMID: 32388261 DOI: 10.1016/j.chemosphere.2020.126947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Gills are considered a key player in organism defenses against environmental pollutants. Since it is the major site of uptake of waterborne chemicals, the modulation of important cellular defenses is expected in this tissue. Chlorothalonil, a fungicide presented in herbicides and antifouling paints, might be responsible for toxicity in marine biota. In this context, mussels were exposed to 0.1 μgL-1 and 10 μgL-1 of chlorothalonil for 24 h and 96 h. Genes from biotransformation and antioxidant defense pathways were investigated. Overall, we report, for the first time, an increase in the transcripts of the AhR-like, SULT1A1-like, CYP1A2-like, GSTO-like, MGST-like and SOD-like genes in the gills of the brown mussel Perna perna. This up-regulation was observed mostly after 96 h of exposure to chlorothalonil. Those results reinforce the important role of gills in xenobiotic metabolism and suggest the involvement of the mentioned genes in the detoxification of the compound. Throughout biotransformation and antioxidant defenses pathway, mussels exposed to chlorothalonil are activating mechanisms of defense against this contaminant.
Collapse
Affiliation(s)
- Amanda da Silveira Guerreiro
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, ICB, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil.
| | - Jhonatas Sirino Monteiro
- Programa de Pós-Graduação em Bioinformática. Instituto de Química, Departamento de Bioquímica. Universidade de São Paulo - USP, 05508-000, São Paulo, SP, Brazil
| | - Igor Dias Medeiros
- Instituto do Mar, IMar, Universidade Federal de São Paulo - UNIFESP, Campus Baixada Santista, 11070-100, Santos, SP, Brazil
| | - Juliana Zomer Sandrini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, ICB, Universidade Federal do Rio Grande - FURG, 96203-900, Rio Grande, RS, Brazil
| |
Collapse
|
20
|
Jeong CB, Lee BY, Choi BS, Kim MS, Park JC, Kim DH, Wang M, Park HG, Lee JS. The genome of the harpacticoid copepod Tigriopus japonicus: Potential for its use in marine molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 222:105462. [PMID: 32169740 DOI: 10.1016/j.aquatox.2020.105462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
The copepod Tigriopus japonicus has been widely used as an experimental species in the field of ecotoxicology. We have sequenced and assembled the whole genome of T. japonicus with comparative analysis of gene families that represent detoxification phases in two additional public genomes of Tigriopus spp., namely, T. californicus and T. kingsejongensis. The total length of the T. japonicus assembled genome was 196.6 Mb with an N50 value of 10.65 Mb and consisted of 339 scaffolds and 25,143 annotated genes. The detoxification gene families encoding cytochrome P450s (CYP450s), glutathione S-transferases (GSTs), and ATP-binding cassette (ABC) proteins in Tigriopus spp. have shown species-dependent diversity in several gene sets, suggesting that these genes have undergone a species-specific expansion to increase their fitness to different marine habitats and environmental pressures. Our study will provide a better understanding of the detoxification system in Tigriopus spp. and will contribute to various areas of research, including ecotoxicology.
Collapse
Affiliation(s)
- Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, South Korea
| | - Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Wang H, Pan L, Zhang X, Ji R, Si L, Cao Y. The molecular mechanism of AhR-ARNT-XREs signaling pathway in the detoxification response induced by polycyclic aromatic hydrocarbons (PAHs) in clam Ruditapes philippinarum. ENVIRONMENTAL RESEARCH 2020; 183:109165. [PMID: 32032812 DOI: 10.1016/j.envres.2020.109165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/09/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
The aryl hydrocarbon receptor (AhR) has been known primarily for its role in the regulation of several drug and xenobiotic metabolizing enzymes to mitigate environmental stresses. In this study, we interfere the expression of AhR gene to investigate the mechanism of AhR signaling pathway in the detoxification and antioxidation defense system that induced by Polycyclic Aromatic Hydrocarbons (PAHs) exposure by RNA interference (RNAi). The gene expressions of aryl hydrocarbon receptor nuclear translocator (ARNT), heat shock protein 90 (Hsp90) were evaluated after being exposed to benzo(a)pyrene (BaP) (4 μg/L) for 5 days and the positive correlations between AhR, ARNT, HSP90 indirectly indicating that AhR may have the ability to bind to ligands such as PAHs in Ruditapes philippinarum (R. philippinarum). Besides, the activities of detoxification enzymes were determined to investigate the role of AhR signaling pathway played in the metabolic detoxification. What's more, the gene expressions of protein kinase C (PKC) signaling pathway, mitogen-activated protein kinase (MAPKs) signaling pathway, NF-E2-related factor 2 (Nrf2) signaling pathway and antioxidant defense system indicated that AhR may regulate the Nrf2-Keap1 signaling pathway through Kelch-like ECH-associated protein-1 (Keap1) and MAPKs, PKC signaling pathways. In conclusion, adoption of RNA interference technology to explore the role of RpAhR gene played in the detoxification and antioxidation defense system under the PAHs stress at different time points can informe molecular endpoints for application towards ecotoxicology monitoring of bivalves.
Collapse
Affiliation(s)
- Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Rongwang Ji
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingjun Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yunhao Cao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
22
|
Manzella CR, Ackerman M, Singhal M, Ticho AL, Ceh J, Alrefai WA, Saksena S, Dudeja PK, Gill RK. Serotonin Modulates AhR Activation by Interfering with CYP1A1-Mediated Clearance of AhR Ligands. Cell Physiol Biochem 2020; 54:126-141. [PMID: 32017483 PMCID: PMC7050772 DOI: 10.33594/000000209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/AIMS Serotonin (5-hydroxytryptamine, 5-HT) is a neurotransmitter and hormone with important physiological functions in many organs, including the intestine. We have previously shown that 5-HT activates the aryl hydrocarbon receptor (AhR) in intestinal epithelial cells (IECs) via a serotonin transporter (SERT)-dependent mechanism. AhR is a nuclear receptor that binds a variety of molecules including tryptophan (TRP) metabolites to regulate physiological processes in the intestine including xenobiotic detoxification and immune modulation. We hypothesized that 5-HT activates AhR indirectly by interfering with metabolic clearance of AhR ligands by cytochrome P450 1A1 (CYP1A1). METHODS Inhibition of CYP1A1 activity by 5-HT was assessed in the human intestinal epithelial cell line Caco-2 and recombinant CYP1A1 microsomes using both luciferase and LC-MS/MS. Degradation of 5-HT by recombinant CYP1A1 was measured by LC-MS/MS. For in vitro studies, CYP1A1 and CYP1B1 mRNA expression levels were measured by RT-PCR and CYP1A1 activity was measured by ethoxyresorufin-O-deethylase (EROD) assays. For in vivo studies, AhR ligands were administered to SERT KO mice and WT littermates and intestinal mucosa CYP1A1 mRNA was measured. RESULTS We show that 5-HT inhibits metabolism of both the pro-luciferin CYP1A1 substrate Luc-CEE as well as the high affinity AhR ligand 6-formylindolo[3,2-b] carbazole (FICZ). Recombinant CYP1A1 assays revealed that 5-HT is metabolized by CYP1A1 in an NADPH dependent manner. Treatment with 5-HT in TRP-free medium, which is devoid of trace AhR ligands, showed that 5-HT requires the presence of AhR ligands to activate AhR. Cotreatment with 5-HT and FICZ confirmed that 5-HT potentiates induction of AhR target genes by AhR ligands. However, this was only true for ligands which are CYP1A1 substrates such as FICZ. Administration of β-napthoflavone by gavage or indole-3-carbinol via diet to SERT KO mice revealed that lack of SERT impairs intestinal AhR activation. CONCLUSION Our studies provide novel evidence of crosstalk between serotonergic and AhR signaling where 5-HT can influence the ability of AhR ligands to activate the receptor in the intestine.
Collapse
Affiliation(s)
- Christopher R Manzella
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Max Ackerman
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Megha Singhal
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexander L Ticho
- Department of Physiology & Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Justin Ceh
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA
| | - Waddah A Alrefai
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Seema Saksena
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Pradeep K Dudeja
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Ravinder K Gill
- Division of Gastroenterology & Hepatology, University of Illinois at Chicago, Chicago, IL, USA,
| |
Collapse
|
23
|
Doan TQ, Berntsen HF, Verhaegen S, Ropstad E, Connolly L, Igout A, Muller M, Scippo ML. A mixture of persistent organic pollutants relevant for human exposure inhibits the transactivation activity of the aryl hydrocarbon receptor in vitro. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113098. [PMID: 31479813 DOI: 10.1016/j.envpol.2019.113098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/16/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
While humans are exposed to mixtures of persistent organic pollutants (POPs), their risk assessment is usually based on a chemical-by-chemical approach. To assess the health effects associated with mixed exposures, knowledge on mixture toxicity is required. Several POPs are potential ligands of the Aryl hydrocarbon receptor (AhR), which involves in xenobiotic metabolism and controls many biological pathways. This study assesses AhR agonistic and antagonistic activities of 29 POPs individually and in mixtures by using Chemical-Activated LUciferase gene eXpression bioassays with 3 transgenic cell lines (rat hepatoma DR-H4IIE, human hepatoma DR-Hep G2 and human mammary gland carcinoma DR-T47-D). Among the 29 POPs, which were selected based on their abundance in Scandinavian human blood, only 4 exerted AhR agonistic activities, while 16 were AhR antagonists in DR-H4IIE, 5 in DR-Hep G2 and 7 in DR-T47-D when tested individually. The total POP mixture revealed to be AhR antagonistic. It antagonized EC50 TCDD inducing AhR transactivation at a concentration of 125 and 250 and 500 fold blood levels in DR-H4IIE, DR-T47-D and DR-Hep G2, respectively, although each compound was present at these concentrations lower than their LOEC values. Such values could occur in real-life in food contamination incidents or in exposed populations. In DR-H4IIE, the antagonism of the total POP mixture was due to chlorinated compounds and, in particular, to PCB-118 and PCB-138 which caused 90% of the antagonistic activity in the POP mixture. The 16 active AhR antagonists acted additively. Their mixed effect was predicted successfully by concentration addition or generalized concentration addition models, rather than independent action, with only two-fold IC50 underestimation. We also attained good predictions for the full dose-response curve of the antagonistic activity of the total POP mixture.
Collapse
Affiliation(s)
- T Q Doan
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium
| | - H F Berntsen
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway; Department of Administration, Lab Animal Unit, National Institute of Occupational Health, P.O. Box 8149 Dep, Oslo, N-0033, Norway
| | - S Verhaegen
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway
| | - E Ropstad
- Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, NMBU - Faculty of Veterinary Medicine, Oslo, N-0033, Norway
| | - L Connolly
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, BT7 1NN, UK
| | - A Igout
- Department of Biomedical and Preclinical Sciences, Faculty of Medicine, University of Liège, Liège, 4000, Belgium
| | - M Muller
- GIGA-R, Laboratory for Organogenesis and Regeneration, University of Liège, Liège, 4000, Belgium
| | - M L Scippo
- Laboratory of Food Analysis, FARAH-Veterinary Public Health, University of Liège, Liège, 4000, Belgium.
| |
Collapse
|
24
|
Zacchi FL, Dos Reis IMM, Siebert MN, Mattos JJ, Flores-Nunes F, Toledo-Silva GD, Piazza CE, Bícego MC, Taniguchi S, Bainy ACD. Differential responses in the biotransformation systems of the oyster Crassostrea gasar (Adanson, 1757) elicited by pyrene and fluorene: molecular, biochemical and histological approach - Part I. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105318. [PMID: 31590133 DOI: 10.1016/j.aquatox.2019.105318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the main contaminants in aquatic environments. PAHs can affect organisms due to their carcinogenic, mutagenic and/or teratogenic characteristics. Depending on the PAHs, concentration, and period of exposure, biological damage can occur leading to histopathologic alterations. This study aimed to evaluate the molecular, biochemical and histological responses of the oyster Crassostrea gasar exposed to pyrene (0.25 and 0.5 μM) and fluorene (0.6 and 1.2 μM), after exposure for 24 and 96 h. Concentrations of both PAHs were quantified in the water and in oyster tissues. Transcript levels of phase I (CYP3475C1, CYP2-like, CYP2AU1 and CYP356A) and phase II (GSTO-like, MGST-like and SULT-like) biotransformation-related genes and the activities of ethoxyresorufin-O-deethylase (EROD), total and microsomal glutathione S-transferase (GST and MGST) were evaluated in the gills. Also, histological changes and localization of mRNA transcripts CYP2AU1 in gills, mantle, and digestive diverticula were evaluated. Both PAHs accumulated in oyster tissues. Pyrene half-life in water was significantly lower than fluorene. Transcript levels of all genes were higher in oysters exposed to of pyrene 0.5 μM (24 h). Only CYP2AU1 gene was up-regulated by fluorene exposure. EROD and MGST activities were higher in oysters exposed to pyrene. Tubular atrophy in the digestive diverticula and an increased number of mucous cells in the mantle were observed in oysters exposed to pyrene. CYP2AU1 transcripts were observed in different tissues of pyrene-exposed oysters. A significant correlation was observed between tubular atrophy and the CYP2AU1 hybridization signal in oysters exposed to pyrene, suggesting the sensibility of the species to this PAH. These results suggest an important role of biotransformation-related genes and enzymes and tissue alterations associated to pyrene metabolism but not fluorene. In addition, it reinforces the role of CYP2AU1 gene in the biotransformation process of PAHs in the gills of C. gasar.
Collapse
Affiliation(s)
- Flávia Lucena Zacchi
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Isis Mayna Martins Dos Reis
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Marília Nardelli Siebert
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center - NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, Brazil
| | - Fabrício Flores-Nunes
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Guilherme de Toledo-Silva
- Bioinformatics Laboratory, Cell biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil
| | - Márcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, USP, São Paulo, SP, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC, Brazil.
| |
Collapse
|
25
|
Zhao Y, Li D, Zhang Z, Pan L. In vitro recombinant yeast assay reveals the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and aryl hydrocarbon receptor (AhR) from scallop Chlamys farreri. Toxicol In Vitro 2019; 59:64-69. [PMID: 30954654 DOI: 10.1016/j.tiv.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
|
26
|
Akishina AA, Vorontsova JE, Cherezov RO, Slezinger MS, Simonova OB, Kuzin BA. NAP Family CG5017 Chaperone Pleiotropically Regulates Human AHR Target Genes Expression in Drosophila Testis. Int J Mol Sci 2018; 20:ijms20010118. [PMID: 30597983 PMCID: PMC6337364 DOI: 10.3390/ijms20010118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
To study the regulatory mechanism of the Aryl hydrocarbon receptor (AHR), target genes of transcription are necessary for understanding the normal developmental and pathological processes. Here, we examined the effects of human AHR ligands on male fecundity. To induce ectopic human AhR gene expression, we used Drosophilamelanogaster transformed with human AhR under the control of a yeast UAS promoter element capable of activation in the two-component UAS-GAL4 system. We found that exogenous AHR ligands decrease the number of Drosophila gonadal Tj-positive cells. We also found both an increase and decrease of AHR target gene expression, including in genes that control homeostasis and testis development. This suggests that gonadal AHR activation may affect the expression of gene networks that control sperm production and could be critical for fertility not just in Drosophila but also in humans. Finally, we found that the activation of the expression for some AHR target genes depends on the expression of testis-specific chaperone CG5017 in gonadal cells. Since CG5017 belongs to the nucleosome assembly protein (NAP) family and may participate in epigenetic regulation, we propose that this nucleotropic chaperone is essential to provide the human AHR with access to only the defined set of its target genes during spermatogenesis.
Collapse
Affiliation(s)
- Angelina A Akishina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Julia E Vorontsova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Roman O Cherezov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Mikhail S Slezinger
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Olga B Simonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Boris A Kuzin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| |
Collapse
|
27
|
The Aryl Hydrocarbon Receptor and the Nervous System. Int J Mol Sci 2018; 19:ijms19092504. [PMID: 30149528 PMCID: PMC6163841 DOI: 10.3390/ijms19092504] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (or AhR) is a cytoplasmic receptor of pollutants. It translocates into the nucleus upon binding to its ligands, and forms a heterodimer with ARNT (AhR nuclear translocator). The heterodimer is a transcription factor, which regulates the transcription of xenobiotic metabolizing enzymes. Expressed in many cells in vertebrates, it is mostly present in neuronal cell types in invertebrates, where it regulates dendritic morphology or feeding behavior. Surprisingly, few investigations have been conducted to unravel the function of the AhR in the central or peripheral nervous systems of vertebrates. In this review, we will present how the AhR regulates neural functions in both invertebrates and vertebrates as deduced mainly from the effects of xenobiotics. We will introduce some of the molecular mechanisms triggered by the well-known AhR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which impact on neuronal proliferation, differentiation, and survival. Finally, we will point out the common features found in mice that are exposed to pollutants, and in AhR knockout mice.
Collapse
|
28
|
Larigot L, Juricek L, Dairou J, Coumoul X. AhR signaling pathways and regulatory functions. BIOCHIMIE OPEN 2018; 7:1-9. [PMID: 30003042 PMCID: PMC6039966 DOI: 10.1016/j.biopen.2018.05.001] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/28/2018] [Indexed: 12/12/2022]
Abstract
Animals and humans are exposed each day to a multitude of chemicals in the air, water and food. They have developed a battery of enzymes and transporters that facilitate the biotransformation and elimination of these compounds. Moreover, a majority of these enzymes and transporters are inducible due to the activation of xenobiotic receptors which act as transcription factors for the regulation of their target genes (such as xenobiotic metabolizing enzymes, see below §4 for the AhR). These receptors include several members of the nuclear/steroid receptor family (CAR for Constitutive Androstane Receptor, PXR for Pregnane X Receptor) but also the Aryl hydrocarbon Receptor or AhR, a member of the bHLH-PAS family (basic Helix-Loop-Helix - Period/ARNT/Single minded). In addition to the regulation of xenobiotic metabolism, numerous alternative functions have been characterized for the AhR since its discovery. These alternative functions will be described in this review along with its endogenous functions as revealed by experiments performed on knock-out animals.
Collapse
Affiliation(s)
- Lucie Larigot
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Ludmila Juricek
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| | - Julien Dairou
- CNRS 8601, 45 rue des Saints-Pères, 75006 Paris, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation Cellulaire, 45 rue des Saints-Pères, 75006 Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints-Pères, 75006 Paris, France
| |
Collapse
|
29
|
Akishina AA, Vorontsova JE, Cherezov RO, Mertsalov IB, Zatsepina OG, Slezinger MS, Panin VM, Petruk S, Enikolopov GN, Mazo A, Simonova OB, Kuzin BA. Xenobiotic-induced activation of human aryl hydrocarbon receptor target genes in Drosophila is mediated by the epigenetic chromatin modifiers. Oncotarget 2017; 8:102934-102947. [PMID: 29262535 PMCID: PMC5732701 DOI: 10.18632/oncotarget.22173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is the key transcription factor that controls animal development and various adaptive processes. The AHR’s target genes are involved in biodegradation of endogenous and exogenous toxins, regulation of immune response, organogenesis, and neurogenesis. Ligand binding is important for the activation of the AHR signaling pathway. Invertebrate AHR homologs are activated by endogenous ligands whereas vertebrate AHR can be activated by both endogenous and exogenous ligands (xenobiotics). Several studies using mammalian cultured cells have demonstrated that transcription of the AHR target genes can be activated by exogenous AHR ligands, but little is known about the effects of AHR in a living organism. Here, we examined the effects of human AHR and its ligands using transgenic Drosophila lines with an inducible human AhR gene. We found that exogenous AHR ligands can increase as well as decrease the transcription levels of the AHR target genes, including genes that control proliferation, motility, polarization, and programmed cell death. This suggests that AHR activation may affect the expression of gene networks that could be critical for cancer progression and metastasis. Importantly, we found that AHR target genes are also controlled by the enzymes that modify chromatin structure, in particular components of the epigenetic Polycomb Repressive complexes 1 and 2. Since exogenous AHR ligands (alternatively – xenobiotics) and small molecule inhibitors of epigenetic modifiers are often used as pharmaceutical anticancer drugs, our findings may have significant implications in designing new combinations of therapeutic treatments for oncological diseases.
Collapse
Affiliation(s)
- Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia E Vorontsova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Il'ya B Mertsalov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Slezinger
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav M Panin
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, TX, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Grigori N Enikolopov
- Center for Developmental Genetics, Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olga B Simonova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris A Kuzin
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
30
|
Genetic dissection of endothelial transcriptional activity of zebrafish aryl hydrocarbon receptors (AHRs). PLoS One 2017; 12:e0183433. [PMID: 28817646 PMCID: PMC5560736 DOI: 10.1371/journal.pone.0183433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor conserved across phyla from flies to humans. Activated by a number of endogenous ligands and environmental toxins, studies on AHR function and gene regulation have largely focused on a toxicological perspective relating to aromatic hydrocarbons generated by human activities and the often-deleterious effects of exposure on vertebrates mediated by AHR activation. A growing body of work has highlighted the importance of AHR in physiologic processes, including immune cell differentiation and vascular patterning. Here we dissect the contribution of the 3 zebrafish AHRs, ahr1a, ahr1b and ahr2, to endothelial cyp1a1/b1 gene regulation under physiologic conditions and upon exposure to the AHR ligand Beta-naphthoflavone. We show that in fish multiple AHRs are functional in the vasculature, with vessel-specific differences in the ability of ahr1b to compensate for the loss of ahr2 to maintain AHR signaling. We further provide evidence that AHR can regulate the expression of the chemokine receptor cxcr4a in endothelial cells, a regulatory mechanism that may provide insight into AHR function in the endothelium.
Collapse
|
31
|
Yim B, Kim H, Kim J, Kim H, Won EJ, Lee YM. Identification and molecular characterization of cytochrome P450 (CYP450) family genes in the marine ciliate Euplotes crassus: The effect of benzo[a]pyrene and beta-naphthoflavone. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:71-80. [PMID: 28341215 DOI: 10.1016/j.cbpc.2017.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/12/2017] [Accepted: 03/19/2017] [Indexed: 11/20/2022]
Abstract
Marine ciliate Euplotes crassus, a single-cell eukaryote, and has been considered as a model organism for monitoring of environmental pollutions in sediments. Cytochrome P450 (CYP450) monooxygenase are phase I enzyme involved in detoxification of environmental pollutants, such as polycyclic aromatic hydrocarbons (PAHs). However, little information on CYP450 family genes in ciliate is available. In the present study, acute toxicity of PAH, benzo[a]pyrene (B[a]P) and PAH-like model compound, beta-naphthoflavone (β-NF), was investigated; full-length cDNA sequences and genomic structure of five CYP450 genes (CYP5680A1, CYP5681A1, CYP5681B1, CYP5682A1, and CYP5683A1) were analyzed; and finally their activities and transcriptional changes were measured after exposure to PAHs for 48h. According to the results, B[a]P exposure showed a negative effect on E. crassus survival, whereas β-NF exposure showed no significant effect. The 8h-LC50 value of B[a]P was determined to be 2.449μM (95%-C.L., 7.726-3.619μM). Five genes belonging to the CYP450 family had conserved domains and clustered with those of ciliate group, as revealed in phylogenetic analysis. CYP activity did not change after exposure to B[a]P, whereas it was slightly, but significantly, induced after exposure to β-NF. The mRNA expression of five CYP450 genes was significantly modulated in a concentration- and time-dependent manner after exposure to both the chemicals. Our findings suggest that CYP450 genes in E. crassus may be involved in detoxification of B[a]P and β-NF. This study would give a better understanding about the mode of action of B[a]P and β-NF in marine ciliates at the molecular level.
Collapse
Affiliation(s)
- Bora Yim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hokyun Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Jisoo Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Haeyeon Kim
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea
| | - Eun-Ji Won
- Marine Chemistry & Geochemistry Research Center, Korea Institute of Ocean Science & Technology, Ansan 15627, Republic of Korea
| | - Young-Mi Lee
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
32
|
Whitehead A, Clark BW, Reid NM, Hahn ME, Nacci D. When evolution is the solution to pollution: Key principles, and lessons from rapid repeated adaptation of killifish ( Fundulus heteroclitus) populations. Evol Appl 2017; 10:762-783. [PMID: 29151869 PMCID: PMC5680427 DOI: 10.1111/eva.12470] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/10/2017] [Indexed: 12/18/2022] Open
Abstract
For most species, evolutionary adaptation is not expected to be sufficiently rapid to buffer the effects of human‐mediated environmental changes, including environmental pollution. Here we review how key features of populations, the characteristics of environmental pollution, and the genetic architecture underlying adaptive traits, may interact to shape the likelihood of evolutionary rescue from pollution. Large populations of Atlantic killifish (Fundulus heteroclitus) persist in some of the most contaminated estuaries of the United States, and killifish studies have provided some of the first insights into the types of genomic changes that enable rapid evolutionary rescue from complexly degraded environments. We describe how selection by industrial pollutants and other stressors has acted on multiple populations of killifish and posit that extreme nucleotide diversity uniquely positions this species for successful evolutionary adaptation. Mechanistic studies have identified some of the genetic underpinnings of adaptation to a well‐studied class of toxic pollutants; however, multiple genetic regions under selection in wild populations seem to reflect more complex responses to diverse native stressors and/or compensatory responses to primary adaptation. The discovery of these pollution‐adapted killifish populations suggests that the evolutionary influence of anthropogenic stressors as selective agents occurs widely. Yet adaptation to chemical pollution in terrestrial and aquatic vertebrate wildlife may rarely be a successful “solution to pollution” because potentially adaptive phenotypes may be complex and incur fitness costs, and therefore be unlikely to evolve quickly enough, especially in species with small population sizes.
Collapse
Affiliation(s)
- Andrew Whitehead
- Department of Environmental Toxicology University of California Davis Davis CA USA
| | - Bryan W Clark
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development Oak Ridge Institute for Science and Education US Environmental Protection Agency Narragansett RI USA
| | - Noah M Reid
- Department of Molecular and Cell Biology University of Connecticut Storrs CT USA
| | - Mark E Hahn
- Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA.,Superfund Research Program Boston University Boston MA USA
| | - Diane Nacci
- Atlantic Ecology Division National Health and Environmental Effects Research Laboratory Office of Research and Development US Environmental Protection Agency Narragansett RI USA
| |
Collapse
|
33
|
Han J, Kim DH, Seo JS, Kim IC, Nelson DR, Puthumana J, Lee JS. Assessing the identity and expression level of the cytochrome P450 20A1 (CYP20A1) gene in the BPA-, BDE-47, and WAF-exposed copepods Tigriopus japonicus and Paracyclopina nana. Comp Biochem Physiol C Toxicol Pharmacol 2017; 193:42-49. [PMID: 28088650 DOI: 10.1016/j.cbpc.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 01/28/2023]
Abstract
CYP20A1 is a member of the cytochrome P450 (CYP) superfamily, identified as an orphan P450 without any assigned biological function; hence, its continued status as an "orphan" gene. In order to address this shortcoming in our understanding of this superfamily, we sought to characterize the CYP20A1 gene in the copepods Tigriopus japonicus (Tj-CYP20A1) and Paracyclopina nana (Pn-CYP20A1) at their mRNA transcriptional level. We assessed the response of this gene's expression in various developmental stages and in response to treatment with bisphenol A (BPA), 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47), and water accommodated fractions (WAFs) of crude oil. As shown in the vertebrate CYP20A1, both Tj-CYP20A1 and Pn-CYP20A1 contained characteristic conserved motifs and domain regions (I helix, K helix and heme-binding motifs) with unusual amino acid sequences apparent in their gene structure. Also molecular characterization of the putative responsive elements in the promoter regions was performed. We observed transcriptional up-regulation of these genes during post-embryonic developmental stages including sex-specific up-regulation in adults. In addition, concentration- and time-dependent mRNA transcripts in response to xenobiotics (BPA, BDE-47, and WAFs) were seen. This study focuses on the molecular elucidation of CYP20A1 genes and their interactions with xenobiotics in the copepods T. japonicus and P. nana that provides important insight into the biological importance of CYP20A1 in invertebrates.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jung Soo Seo
- Pathology Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee, Memphis, TN 38163, United States
| | - Jayesh Puthumana
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
34
|
Hahn ME, Karchner SI, Merson RR. Diversity as Opportunity: Insights from 600 Million Years of AHR Evolution. CURRENT OPINION IN TOXICOLOGY 2017; 2:58-71. [PMID: 28286876 DOI: 10.1016/j.cotox.2017.02.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) was for many years of interest only to pharmacologists and toxicologists. However, this protein has fundamental roles in biology that are being revealed through studies in diverse animal species. The AHR is an ancient protein. AHR homologs exist in most major groups of modern bilaterian animals, including deuterostomes (chordates, hemichordates, echinoderms) and the two major clades of protostome invertebrates [ecdysozoans (e.g. arthropods and nematodes) and lophotrochozoans (e.g. molluscs and annelids)]. AHR homologs also have been identified in cnidarians such as the sea anemone Nematostella and in the genome of Trichoplax, a placozoan. Bilaterians, cnidarians, and placozoans form the clade Eumetazoa, whose last common ancestor lived approximately 600 million years ago (MYA). The presence of AHR homologs in modern representatives of all these groups indicates that the original eumetazoan animal possessed an AHR homolog. Studies in invertebrates and vertebrates reveal parallel functions of AHR in the development and function of sensory neural systems, suggesting that these may be ancestral roles. Vertebrate animals are characterized by the expansion and diversification of AHRs, via gene and genome duplications, from the ancestral protoAHR into at least five classes of AHR-like proteins: AHR, AHR1, AHR2, AHR3, and AHRR. The evolution of multiple AHRs in vertebrates coincided with the acquisition of high-affinity binding of halogenated and polynuclear aromatic hydrocarbons and the emergence of adaptive functions involving regulation of xenobiotic-metabolizing enzymes and roles in adaptive immunity. The existence of multiple AHRs may have facilitated subfunction partitioning and specialization of specific AHR types in some taxa. Additional research in diverse model and non-model species will continue to enrich our understanding of AHR and its pleiotropic roles in biology and toxicology.
Collapse
Affiliation(s)
- Mark E Hahn
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Sibel I Karchner
- Biology Department, Woods Hole Oceanographic Institution, MS-32, Woods Hole, MA 02543, USA
| | - Rebeka R Merson
- Biology Department, Rhode Island College, 600 Mt. Pleasant Avenue, 251 Fogarty Life Sciences, Providence, RI 02908
| |
Collapse
|
35
|
Jenny MJ, Walton WC, Payton SL, Powers JM, Findlay RH, O'Shields B, Diggins K, Pinkerton M, Porter D, Crane DM, Tapley J, Cunningham C. Transcriptomic evaluation of the American oyster, Crassostrea virginica, deployed during the Deepwater Horizon oil spill: Evidence of an active hydrocarbon response pathway. MARINE ENVIRONMENTAL RESEARCH 2016; 120:166-181. [PMID: 27564836 DOI: 10.1016/j.marenvres.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 08/01/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
Estuarine organisms were impacted by the Deepwater Horizon oil spill which released ∼5 million barrels of crude oil into the Gulf of Mexico in the spring and summer of 2010. Crassostrea virginica, the American oyster, is a keystone species in these coastal estuaries and is routinely used for environmental monitoring purposes. However, very little is known about their cellular and molecular responses to hydrocarbon exposure. In response to the spill, a monitoring program was initiated by deploying hatchery-reared oysters at three sites along the Alabama and Mississippi coast (Grand Bay, MS, Fort Morgan, AL, and Orange Beach, AL). Oysters were deployed for 2-month periods at five different time points from May 2010 to May 2011. Gill and digestive gland tissues were harvested for gene expression analysis and determination of aliphatic and polycyclic aromatic hydrocarbon (PAH) concentrations. To facilitate identification of stress response genes that may be involved in the hydrocarbon response, a nearly complete transcriptome was assembled using Roche 454 and Illumina high-throughput sequencing from RNA samples obtained from the gill and digestive gland tissues of deployed oysters. This effort resulted in the assembly and annotation of 27,227 transcripts comprised of a large assortment of stress response genes, including members of the aryl hydrocarbon receptor (AHR) pathway, Phase I and II biotransformation enzymes, antioxidant enzymes and xenobiotic transporters. From this assembly several potential biomarkers of hydrocarbon exposure were chosen for expression profiling, including the AHR, two cytochrome P450 1A genes (CYP1A-like 1 and CYP1A-like 2), Cu/Zn superoxide dismutase (CuZnSOD), glutathione S-transferase theta (GST theta) and multidrug resistance protein 3 (MRP3). Higher expression levels of GST theta and MRP3 were observed in gill tissues from all three sites during the summer to early fall 2010 deployments. Linear regression analysis indicated a statistically significant relationship between total PAH levels in digestive gland tissue samples with CYP1A-like 2, CuZnSOD, GST theta and MRP3 induction. These observations provide evidence of a potentially conserved AHR pathway in invertebrates and yield new insight into the development of novel biomarkers for use in environmental monitoring activities.
Collapse
Affiliation(s)
- Matthew J Jenny
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| | - William C Walton
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Dauphin Island, AL 36528, USA
| | - Samantha L Payton
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - John M Powers
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Robert H Findlay
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Britton O'Shields
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kirsten Diggins
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mark Pinkerton
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Danielle Porter
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Daniel M Crane
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Jeffrey Tapley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Charles Cunningham
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
36
|
Molecular evidence for the existence of an aryl hydrocarbon receptor pathway in scallops Chlamys farreri. Comp Biochem Physiol B Biochem Mol Biol 2016; 196-197:74-84. [DOI: 10.1016/j.cbpb.2016.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/14/2016] [Accepted: 02/23/2016] [Indexed: 11/22/2022]
|
37
|
Kurita H, Carreira VS, Fan Y, Jiang M, Naticchioni M, Koch S, Rubinstein J, Puga A. Ah receptor expression in cardiomyocytes protects adult female mice from heart dysfunction induced by TCDD exposure. Toxicology 2016; 355-356:9-20. [DOI: 10.1016/j.tox.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
|
38
|
Tavakoly Sany SB, Narimani L, Soltanian FK, Hashim R, Rezayi M, Karlen DJ, Mahmud HNME. An overview of detection techniques for monitoring dioxin-like compounds: latest technique trends and their applications. RSC Adv 2016. [DOI: 10.1039/c6ra11442c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dioxin-like compounds (DLCs) are considered as persistent bioaccumulative toxicants with a number of continuing issues in the fields of ecotoxicology and bioassay.
Collapse
Affiliation(s)
| | - Leila Narimani
- Chemistry Department
- Faculty of Science
- University Malaya
- 50603 Kuala Lumpur
- Malaysia
| | | | - Rosli Hashim
- Institute of Biological Sciences University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Majid Rezayi
- Chemistry Department
- Faculty of Science
- University Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - David J. Karlen
- Environmental Protection Commission of Hillsborough County
- Tampa
- USA
| | | |
Collapse
|
39
|
Vázquez-Gómez G, Rubio-Lightbourn J, Espinosa-Aguirre JJ. MECANISMOS DE ACCIÓN DEL RECEPTOR DE HIDROCARBUROS DE ARILOS EN EL METABOLISMO DEL BENZO[A]PIRENO Y EL DESARROLLO DE TUMORES. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Du J, Liao C, Zhou H, Diao X, Li Y, Zheng P, Wang F. Gene cloning and expression analysis of AhR and CYP4 from Pinctada martensii after exposed to pyrene. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1574-1582. [PMID: 25666496 DOI: 10.1007/s10646-015-1424-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Pyrene, a typical polycyclic aromatic hydrocarbon, is a common pollutant in the marine environment. Polycyclic aromatic hydrocarbons initiate cellular detoxification in an exposed organism via the activation of the aryl hydrocarbon receptor (AhR). Subsequent metabolism of these xenobiotics is mainly by the cytochrome P450 enzymes of the phase I detoxification system. Full-length complementary DNA sequences from the pearl oyster Pinctada martensii (pm) encoding AhR and cytochrome P4 were cloned. The P. martensii AhR complementary DNA sequence constitutes an open reading frame that encodes for 848 amino acids. Sequence analysis indicated PmAhR showed high similarity with its homologues of other bivalve species. The cytochrome P(CYP)4 complementary DNA sequence of P. martensii constitutes an open reading frame that encodes for 489 amino acids. Quantitative real-time analysis detected both PmAhR and PmCYP4 messenger RNA expressions in the mantle, gill, hepatapancreas and adductor muscle of P. martensii exposed to pyrene. The highest transcript-band intensities of PmAhR and PmCYP4 were observed in the gill. Temporal expression of PmAhR and PmCYP4 messenger RNAs induction was observed in gills and increased between 3 and 5 days post exposure; then returned to control level. These results suggest that messenger RNAs of PmAhR and PmCYP4 in pearl oysters might be useful parameters for monitoring marine environment pyrene pollution.
Collapse
Affiliation(s)
- Junqiao Du
- College of Environment and Plant Protection, Hainan University, Haikou, 570228, China
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou, 570228, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Hainan University, Haikou, 570228, China
| | - Chenghong Liao
- College of Agriculture, Hainan University, Haikou, 570228, China
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou, 570228, China
| | - Hailong Zhou
- College of Agriculture, Hainan University, Haikou, 570228, China
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou, 570228, China
| | - Xiaoping Diao
- College of Agriculture, Hainan University, Haikou, 570228, China.
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou, 570228, China.
| | - Yuhu Li
- College of Agriculture, Hainan University, Haikou, 570228, China
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou, 570228, China
| | - Pengfei Zheng
- College of Agriculture, Hainan University, Haikou, 570228, China
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou, 570228, China
| | - Fuqiang Wang
- College of Environment and Plant Protection, Hainan University, Haikou, 570228, China
- Haikou Key Laboratory of Environment Toxicology, Hainan University, Haikou, 570228, China
| |
Collapse
|
41
|
Sany SBT, Hashim R, Rezayi M, Rahman MA, Razavizadeh BBM, Abouzari-lotf E, Karlen DJ. Integrated ecological risk assessment of dioxin compounds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11193-11208. [PMID: 25953606 DOI: 10.1007/s11356-015-4511-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Current ecological risk assessment (ERA) schemes focus mainly on bioaccumulation and toxicity of pollutants in individual organisms. Ecological models are tools mainly used to assess ecological risks of pollutants to ecosystems, communities, and populations. Their main advantage is the relatively direct integration of the species sensitivity to organic pollutants, the fate and mechanism of action in the environment of toxicants, and life-history features of the individual organism of concern. To promote scientific consensus on ERA schemes, this review is intended to provide a guideline on short-term ERA involving dioxin chemicals and to identify key findings for exposure assessment based on policies of different agencies. It also presents possible adverse effects of dioxins on ecosystems, toxicity equivalence methodology, environmental fate and transport modeling, and development of stressor-response profiles for dioxin-like chemicals.
Collapse
|
42
|
Kim BM, Rhee JS, Hwang UK, Seo JS, Shin KH, Lee JS. Dose- and time-dependent expression of aryl hydrocarbon receptor (AhR) and aryl hydrocarbon receptor nuclear translocator (ARNT) in PCB-, B[a]P-, and TBT-exposed intertidal copepod Tigriopus japonicus. CHEMOSPHERE 2015; 120:398-406. [PMID: 25216468 DOI: 10.1016/j.chemosphere.2014.07.099] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 05/20/2023]
Abstract
The aryl hydrocarbon receptor (AhR) and aryl hydrocarbon nuclear translocator (ARNT) genes from the copepod Tigriopus japonicus (Tj) were cloned to examine their potential functions in the invertebrate putative AhR-CYP signaling pathway. The amino acid sequences encoded by the Tj-AhR and Tj-ARNT genes showed high similarity to homologs of Daphnia and Drosophila, ranging from 68% and 70% similarity for the AhR genes to 56% for the ARNT genes. To determine whether Tj-AhR and Tj-ARNT are modulated by environmental pollutants, transcriptional expression of Tj-AhR and Tj-ARNT was analyzed in response to exposure to five concentrations of polychlorinated biphenyl (PCB 126) (control, 10, 50, 100, 500 μg L(-1)), benzo[a]pyrene (B[a]P) (control, 5, 10, 50, 100 μg L(-1)), and tributyltin (TBT) (control, 1, 5, 10, 20 μg L(-1)) 24h after exposure. A time-course experiment (0, 3, 6, 12, 24h) was performed to analyze mRNA expression patterns after exposure to PCB, B[a]P, and TBT. T. japonicus exhibited dose-dependent and time-dependent upregulation of Tj-AhR and Tj-ARNT in response to pollutant exposure, and the degree of expression was dependent on the pollutant, suggesting that pollutants such as PCB, B[a]P, and TBT modulate expression of Tj-AhR and Tj-ARNT genes in the putative AhR-CYP signaling pathway.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Science, Incheon National University, Incheon 406-772, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 400-420, South Korea
| | - Jung Soo Seo
- Pathology Team, National Fisheries Research & Development Institute, Busan 619-902, South Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences and Convergent Technology, College of Science and Technology, Hanyang University, Ansan 426-791, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
43
|
The Cytochrome P450 superfamily complement (CYPome) in the annelid Capitella teleta. PLoS One 2014; 9:e107728. [PMID: 25390889 PMCID: PMC4229089 DOI: 10.1371/journal.pone.0107728] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023] Open
Abstract
The Cytochrome P450 super family (CYP) is responsible for a wide range of functions in metazoans, having roles in both exogenous and endogenous substrate metabolism. Annelids are known to metabolize polycyclic aromatic hydrocarbons (PAHs) and produce estrogen. CYPs are postulated to be key enzymes in these processes in annelids. In this study, the CYP complement (CYPome) of the annelid Capitella teleta has been robustly identified and annotated with the genome assembly available. Phylogenetic analyses were performed to understand the evolutionary relationships between CYPs in C. teleta and other species. Predictions of which CYPs are potentially involved in both PAH metabolism and steroidogensis were made based on phylogeny. Annotation of 84 full length and 12 partial CYP sequences predicted a total of 96 functional CYPs in C. teleta. A further 13 CYP fragments were found but these may be pseudogenes. The C. teleta CYPome contained 24 novel CYP families and seven novel CYP subfamilies within existing families. A phylogenetic analysis identified that the C. teleta sequences were found in 9 of the 11 metazoan CYP clans. Two CYPs, CYP3071A1 and CYP3072A1, did not cluster with any metazoan CYP clans. We found xenobiotic response elements (XREs) upstream of C. teleta CYPs related to vertebrate CYP1 (CYP3060A1, CYP3061A1) and from families with reported transcriptional upregulation in response to PAH exposure (CYP4, CYP331). C. teleta had a CYP51A1 with ∼65% identity to vertebrate CYP51A1 sequences and has been predicted to have lanosterol 14 α-demethylase activity. CYP376A1, CYP3068A1, CYP3069A1, and CYP3070A1 were the most appropriate candidates for steroidogenesis genes based on their phylogeny and warrant further analyses, though no specific aromatase (estrogen synthesis) candidates were found. Presence of XREs upstream of C. teleta CYPs may indicate a functional aryl hydrocarbon receptor in C. teleta and candidate CYPs for studies of PAH metabolism.
Collapse
|
44
|
Jaronen M, Quintana FJ. Immunological Relevance of the Coevolution of IDO1 and AHR. Front Immunol 2014; 5:521. [PMID: 25368620 PMCID: PMC4202789 DOI: 10.3389/fimmu.2014.00521] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified because of its role in controlling the cellular response to environmental molecules. More recently, AHR has been shown to play a crucial role in controlling innate and adaptive immune responses through several mechanisms, one of which is the regulation of tryptophan metabolism. Indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are considered rate-limiting enzymes in the tryptophan catabolism and play important roles in the regulation of the immunity. Moreover, AHR and IDO/TDO are closely interconnected: AHR regulates IDO and TDO expression, and kynurenine produced by IDO/TDO is an AHR agonist. In this review, we propose to examine the relationship between AHR and IDO/TDO and its relevance for the regulation of the immune response in health and disease.
Collapse
Affiliation(s)
- Merja Jaronen
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| | - Francisco J Quintana
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
45
|
Meyer W, Seiler TB, Schwarzbauer J, Püttmann W, Hollert H, Achten C. Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 494-495:320-328. [PMID: 25063955 DOI: 10.1016/j.scitotenv.2014.06.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/28/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
Investigations of the bioavailability and toxicity of polycyclic aromatic compounds (PAC) have rarely considered the heterogeneity of coals and the impact of more polar PAC besides polycyclic aromatic hydrocarbons (PAH). Earlier, we investigated the toxicity of eight heterogeneous coals and their extracts. In the present study, the hazard potential with respect to mechanism-specific toxicity of polar fractions of dichloromethane extracts from coals was studied. Polar extract fractions of all coal types except for anthracite induced EROD activity (determined in RTL-W1 cells), independent of coal type (Bio-TEQs between 23 ± 16 and 52 ± 22 ng/g). The polar fractions of all bituminous coal extracts revealed mutagenic activity (determined using the Ames Fluctuation test). No significant mutation induction was detected for the polar extract fractions from the lignite, sub-bituminous coal and anthracite samples, which indicates a higher dependency on coal type for polar PAC here. Additionally, information on bioavailability was derived from a bioaccumulation test using the deposit-feeding oligochaete Lumbriculus variegatus which was exposed for 28 days to ground coal samples. Despite the high toxic potential of most coal extracts and a reduced biomass of Lumbriculus in bituminous coal samples, bioaccumulation of PAH and mortality after 28 days were found to be low. Limited bioaccumulation of PAH (up to 3.6 ± 3.8 mg/kg EPA-PAH) and polar PAC were observed for all coal samples. A significant reduction of Lumbriculus biomass was observed in the treatments containing bituminous coals (from 0.019 ± 0.004 g to 0.046 ± 0.011 g compared to 0.080 ± 0.025 g per replicate in control treatments). We conclude that bioavailability of native PAC from coals including polar PAC is low for all investigated coal types. In comparison to lignite, sub-bituminous coals and anthracite, the bioavailability of PAC from bituminous coals is slightly increased.
Collapse
Affiliation(s)
- Wiebke Meyer
- University of Münster, Institute of Geology and Palaeontology - Applied Geology, Corrensstrasse 24, 48149 Münster, Germany
| | - Thomas-Benjamin Seiler
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Jan Schwarzbauer
- RWTH Aachen University, Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstrasse 4-20, 52056 Aachen, Germany
| | - Wilhelm Püttmann
- J.W. Goethe-University Frankfurt am Main, Institute for Atmospheric and Environmental Sciences, Department of Environmental Analytical Chemistry, Altenhöferallee 1, 60438 Frankfurt/Main, Germany
| | - Henner Hollert
- RWTH Aachen University, Institute for Environmental Research, Department of Ecosystem Analysis, Worringerweg 1, 52074 Aachen, Germany
| | - Christine Achten
- University of Münster, Institute of Geology and Palaeontology - Applied Geology, Corrensstrasse 24, 48149 Münster, Germany.
| |
Collapse
|
46
|
Roubalová R, Dvořák J, Procházková P, Elhottová D, Rossmann P, Škanta F, Bilej M. The effect of dibenzo-p-dioxin- and dibenzofuran-contaminated soil on the earthworm Eisenia andrei. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:22-28. [PMID: 24992343 DOI: 10.1016/j.envpol.2014.05.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/26/2014] [Accepted: 05/29/2014] [Indexed: 06/03/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) belong to the group of persistent organic pollutants, highly toxic environmental pollutants that include hydrophobic compounds with the tendency to bioaccumulate. Earthworms (Eisenia andrei) were exposed to PCDD/Fs-contaminated soil, and changes in their lipophilic structures and the gene expression of their defense molecules were followed. Damage to the intestinal wall and adjacent chloragogenous tissue was observed. Further, the up-regulation of the expression of several genes was detected. On the basis of these results, the mechanism of the impact of PCDD/Fs on earthworms has been proposed. Dioxins that accumulate in the lipophilic structures cause an increase in reactive oxidative species that triggers oxidative stress followed by the gene expression of two molecules that play a role in protection against oxidant toxicity, calreticulin (CRT) and Hsp70. Moreover, the effect of microbial biomass on the expression of coelomic cytolytic factor (CCF), a pattern recognition receptor, was also observed.
Collapse
Affiliation(s)
- Radka Roubalová
- Department of Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Vídeňská 1083, 142 20, Praha 4, Czech Republic.
| | - Jiří Dvořák
- Department of Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Vídeňská 1083, 142 20, Praha 4, Czech Republic.
| | - Petra Procházková
- Department of Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Vídeňská 1083, 142 20, Praha 4, Czech Republic.
| | - Dana Elhottová
- Biology Centre of the Academy of Sciences of the Czech Republic, v. v. i., Institute of Soil Biology, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| | - Pavel Rossmann
- Department of Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Vídeňská 1083, 142 20, Praha 4, Czech Republic.
| | - František Škanta
- Department of Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Vídeňská 1083, 142 20, Praha 4, Czech Republic.
| | - Martin Bilej
- Department of Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, v. v. i., Vídeňská 1083, 142 20, Praha 4, Czech Republic.
| |
Collapse
|
47
|
Halm-Lemeille MP, Abbaszadeh Fard E, Latire T, Ferard JF, Costil K, Lebel JM, Bureau R, Serpentini A. The effect of different polychlorinated biphenyls on two aquatic models, the green alga Pseudokirchneriella subcapitata and the haemocytes from the European abalone Haliotis tuberculata. CHEMOSPHERE 2014; 110:120-128. [PMID: 24630249 DOI: 10.1016/j.chemosphere.2014.02.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 06/03/2023]
Abstract
The present study was conducted to determine the toxicity of different polychlorinated biphenyls (PCBs) on the green algae, Pseudokirchneriella subcapitata and the haemocytes from the European abalone, Haliotis tuberculata. Using the algal growth inhibition test, the green algae median Effective Concentration (EC50) values ranged from 0.34μM for PCB28 to more than 100μM for PCBs 101 and 153. Considering the MTT viability test, the abalone EC50 values ranged from 1.67μM for PCB153 to 89μM for PCB28. Our results in contrast to previous observation in vertebrates did not show significant differences between the dioxin like- and non dioxin like-PCBs toxicities regardless of the model used. However, our results demonstrated that the toxicities of PCBs were species dependent. For example, PCB28 was the most toxic compound for P. subcapitata whereas PCBs 1, 180 and 153 were less toxic for that species. On the contrary, PCB153 was reported as the most toxic for H. tuberculata haemocytes and PCB28 the least toxic. To investigate the mode of action of these compounds, we used an in silico method. Our results suggested that PCBs have a non-specific mode of action (e.g., narcosis) on green algae, and another mode of action, probably more specific than narcosis, was reported for PCBs on the abalone haemocytes.
Collapse
Affiliation(s)
- Marie-Pierre Halm-Lemeille
- Normandie Université, F-14032 Caen, France; Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA-4258, INC3M FR CNRS 3038, SFR ICORE, Université de Caen Basse-Normandie, UFR des Sciences pharmaceutiques, Boulevard Becquerel, F-14032 Caen cedex, France.
| | - Elham Abbaszadeh Fard
- Normandie Université, F-14032 Caen, France; Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA-4258, INC3M FR CNRS 3038, SFR ICORE, Université de Caen Basse-Normandie, UFR des Sciences pharmaceutiques, Boulevard Becquerel, F-14032 Caen cedex, France; CNRS INEE, FRE3484 BioMEA, SFR ICORE, IBFA Université de Caen Basse-Normandie, IBFA, Esplanade de la Paix, F-14032 Caen, France
| | - Thomas Latire
- Normandie Université, F-14032 Caen, France; CNRS INEE, FRE3484 BioMEA, SFR ICORE, IBFA Université de Caen Basse-Normandie, IBFA, Esplanade de la Paix, F-14032 Caen, France
| | - Jean-François Ferard
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360 CNRS, Rue du Général Delestraint, F-57070 Metz, France
| | - Katherine Costil
- Normandie Université, F-14032 Caen, France; CNRS INEE, FRE3484 BioMEA, SFR ICORE, IBFA Université de Caen Basse-Normandie, IBFA, Esplanade de la Paix, F-14032 Caen, France
| | - Jean-Marc Lebel
- Normandie Université, F-14032 Caen, France; CNRS INEE, FRE3484 BioMEA, SFR ICORE, IBFA Université de Caen Basse-Normandie, IBFA, Esplanade de la Paix, F-14032 Caen, France
| | - Ronan Bureau
- Normandie Université, F-14032 Caen, France; Centre d'Etudes et de Recherche sur le Médicament de Normandie, UPRES EA-4258, INC3M FR CNRS 3038, SFR ICORE, Université de Caen Basse-Normandie, UFR des Sciences pharmaceutiques, Boulevard Becquerel, F-14032 Caen cedex, France
| | - Antoine Serpentini
- Normandie Université, F-14032 Caen, France; CNRS INEE, FRE3484 BioMEA, SFR ICORE, IBFA Université de Caen Basse-Normandie, IBFA, Esplanade de la Paix, F-14032 Caen, France.
| |
Collapse
|
48
|
Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification. PLoS One 2014; 9:e94975. [PMID: 24736732 PMCID: PMC3988104 DOI: 10.1371/journal.pone.0094975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/21/2014] [Indexed: 12/21/2022] Open
Abstract
Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans.
Collapse
|
49
|
Riva C, Binelli A. Analysis of the Dreissena polymorpha gill proteome following exposure to dioxin-like PCBs: mechanism of action and the role of gender. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2014; 9:23-30. [PMID: 24365568 DOI: 10.1016/j.cbd.2013.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/24/2013] [Accepted: 08/26/2013] [Indexed: 06/03/2023]
Abstract
PCBs are a persistent environmental problem due to their high stability and lipophilicity. The non-ortho- and the mono-ortho-substituted PCBs (dioxin-like-PCBs) share a common and well-described toxicity mechanism in vertebrates, initially involving binding to cytosolic AhRs. Invertebrate AhRs, however, show a lack of dioxin binding, and little information is available regarding the mechanism of toxicity of dl-PCBs in invertebrates. In this study, a proteomic approach was applied to analyse the variations in the pattern of the gill proteome of the freshwater mussel Dreissena polymorpha. Mussels were exposed to a mixture of dl-PCBs, and to perform a more in-depth evaluation, we chose to investigate the role of gender in the proteome response by analysing male and female mussels separately. The results revealed significant modulation of the gill tissue proteome: glycolysis and Ca(2+) homeostasis appear to be the main pathways targeted by dl-PCBs. In light of the differences between the male and female gill proteome profiles following exposure to dl-PCBs, further in-depth investigations of the role of gender in the protein expression profiles of a selected biological model are required.
Collapse
Affiliation(s)
- C Riva
- University of Milan, Department of Bioscience, Via Celoria 26, 20133 Milan, Italy.
| | - A Binelli
- University of Milan, Department of Bioscience, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
50
|
Long M, Strand J, Lassen P, Krüger T, Dahllöf I, Bossi R, Larsen MM, Wiberg-Larsen P, Bonefeld-Jørgensen EC. Endocrine-disrupting effects of compounds in Danish streams. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 66:1-18. [PMID: 24145922 DOI: 10.1007/s00244-013-9959-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 10/04/2013] [Indexed: 06/02/2023]
Abstract
Effluents from municipal wastewater-treatment plants and scattered dwellings, as well as runoff from agricultural fields, are sources of endocrine-disrupting compounds (EDCs) in the aquatic environment. The present study investigated the correlation between the occurrence of EDCs in nine Danish streams using passive samplers (polar organic integrative samplers and silicone membranes) and determined their possible biological effects as assessed by mammal cell cultures and the mussel (Unio tumidus). The passive samplers and mussels were exposed simultaneously at the study sites. The extracts from the passive samplers were used to measure the concentrations of EDCs and the biological effects on the estrogen (ER), androgen (AR), and aryl hydrocarbon (AhR)-receptor transactivation. Male mussels were investigated for biomarkers of endocrine effects, such as the levels of vitellogenin-like proteins measured as alkali-labile phosphate (ALP). EDC concentrations, hormone-receptor transactivation (ER, AR, AhR), and level of ALP were greater downstream of wastewater-treatment plants compared with upstream sites and sites supposed to be relatively nonimpacted by wastewater. Furthermore, there was a significant positive correlation between in vitro AhR transactivation and frequency of ALP of male mussels. We conclude that wastewater effluent is an important source of endocrine-disrupting effects in the aquatic environment and that the combination of biological effect measurements and chemical analyses based on passive sampling is useful in the assessment of the ecological state of the aquatic environment.
Collapse
Affiliation(s)
- Manhai Long
- Unit of Cellular and Molecular Toxicology, Department of Public Health, Centre for Arctic Health, Aarhus University, BartholinsAllé 2, Building 1260, 8000, Århus C, Denmark,
| | | | | | | | | | | | | | | | | |
Collapse
|