1
|
Little Polymorphism at the K13 Propeller Locus in Worldwide Plasmodium falciparum Populations Prior to the Introduction of Artemisinin Combination Therapies. Antimicrob Agents Chemother 2016; 60:3340-7. [PMID: 27001814 DOI: 10.1128/aac.02370-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
The emergence and spread of artemisinin-resistant Plasmodium falciparum is of huge concern for the global effort toward malaria control and elimination. Artemisinin resistance, defined as a delayed time to parasite clearance following administration of artemisinin, is associated with mutations in the Pfkelch13 gene of resistant parasites. To date, as many as 60 nonsynonymous mutations have been identified in this gene, but whether these mutations have been selected by artemisinin usage or merely reflect natural polymorphism independent of selection is currently unknown. To clarify this, we sequenced the Pfkelch13 propeller domain in 581 isolates collected before (420 isolates) and after (161 isolates) the implementation of artemisinin combination therapies (ACTs), from various regions of endemicity worldwide. Nonsynonymous mutations were observed in 1% of parasites isolated prior to the introduction of ACTs. Frequencies of mutant isolates, nucleotide diversity, and haplotype diversity were significantly higher in the parasites isolated from populations exposed to artemisinin than in those from populations that had not been exposed to the drug. In the artemisinin-exposed population, a significant excess of dN compared to dS was observed, suggesting the presence of positive selection. In contrast, pairwise comparison of dN and dS and the McDonald and Kreitman test indicate that purifying selection acts on the Pfkelch13 propeller domain in populations not exposed to ACTs. These population genetic analyses reveal a low baseline of Pfkelch13 polymorphism, probably due to purifying selection in the absence of artemisinin selection. In contrast, various Pfkelch13 mutations have been selected under artemisinin pressure.
Collapse
|
2
|
Zhu X, Zhao Z, Feng Y, Li P, Liu F, Liu J, Yang Z, Yan G, Fan Q, Cao Y, Cui L. Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area. INFECTION GENETICS AND EVOLUTION 2016; 39:155-162. [PMID: 26825252 DOI: 10.1016/j.meegid.2016.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/20/2016] [Accepted: 01/23/2016] [Indexed: 11/28/2022]
Abstract
To investigate the genetic diversity of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1) gene in Southeast Asia, we determined PfAMA1 sequences from 135 field isolates collected from the China-Myanmar border area and compared them with 956 publically available PfAMA1 sequences from seven global P. falciparum populations. This analysis revealed high genetic diversity of PfAMA1 in global P. falciparum populations with a total of 229 haplotypes identified. The genetic diversity of PfAMA1 gene from the China-Myanmar border is not evenly distributed in the different domains of this gene. Sequence diversity in PfAMA1 from the China-Myanmar border is lower than that observed in Thai, African and Oceanian populations, but higher than that in the South American population. This appeared to correlate well with the levels of endemicity of different malaria-endemic regions, where hyperendemic regions favor genetic cross of the parasite isolates and generation of higher genetic diversity. Neutrality tests show significant departure from neutrality in the entire ectodomain and Domain I of PfAMA1 in the China-Myanmar border parasite population. We found evidence supporting a substantial continent-wise genetic structure among P. falciparum populations, with the highest genetic differentiation detected between the China-Myanmar border and the South American populations. Whereas no alleles were unique to a specific region, there were considerable geographical differences in major alleles and their frequencies, highlighting further necessity to include more PfAMA1 alleles in vaccine designs.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Peipei Li
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China.
| | - Liwang Cui
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China; Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
Chan CW, Sakihama N, Tachibana SI, Idris ZM, Lum JK, Tanabe K, Kaneko A. Plasmodium vivax and Plasmodium falciparum at the crossroads of exchange among islands in Vanuatu: implications for malaria elimination strategies. PLoS One 2015; 10:e0119475. [PMID: 25793260 PMCID: PMC4368729 DOI: 10.1371/journal.pone.0119475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/20/2015] [Indexed: 01/09/2023] Open
Abstract
Understanding the transmission and movement of Plasmodium parasites is crucial for malaria elimination and prevention of resurgence. Located at the limit of malaria transmission in the Pacific, Vanuatu is an ideal candidate for elimination programs due to low endemicity and the isolated nature of its island setting. We analyzed the variation in the merozoite surface protein 1 (msp1) and the circumsporozoite protein (csp) of P. falciparum and P. vivax populations to examine the patterns of gene flow and population structures among seven sites on five islands in Vanuatu. Genetic diversity was in general higher in P. vivax than P. falciparum from the same site. In P. vivax, high genetic diversity was likely maintained by greater extent of gene flow among sites and among islands. Consistent with the different patterns of gene flow, the proportion of genetic variance found among islands was substantially higher in P. falciparum (28.81–31.23%) than in P. vivax (-0.53–3.99%). Our data suggest that the current island-by-island malaria elimination strategy in Vanuatu, while adequate for P. falciparum elimination, might need to be complemented with more centrally integrated measures to control P. vivax movement across islands.
Collapse
Affiliation(s)
- Chim W Chan
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Naoko Sakihama
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shin-Ichiro Tachibana
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - J Koji Lum
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, New York, United States of America; Department of Anthropology, Binghamton University, Binghamton, New York, United States of America; Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Akira Kaneko
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan; Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
4
|
Patterns and dynamics of genetic diversity in Plasmodium falciparum: what past human migrations tell us about malaria. Parasitol Int 2014; 64:238-43. [PMID: 25305418 DOI: 10.1016/j.parint.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/14/2014] [Accepted: 09/12/2014] [Indexed: 01/23/2023]
Abstract
Plasmodium falciparum is the main agent of malaria, one of the major human infectious diseases affecting millions of people worldwide. The genetic diversity of P. falciparum populations is an essential factor in the parasite's ability to adapt to changes in its environment, enabling the development of drug resistance and the evasion from the host immune system through antigenic variation. Therefore, characterizing these patterns and understanding the main drivers of the pathogen's genetic diversity can provide useful inputs for informing control strategies. In this paper, we review the pioneering work led by Professor Kazuyuki Tanabe on the genetic diversity of P. falciparum populations. In a first part, we recall basic results from population genetics for quantifying within-population genetic diversity, and discuss the main mechanisms driving this diversity. Then, we show how these approaches have been used for reconstructing the historical spread of malaria worldwide, and how current patterns of genetic diversity suggest that the pathogen followed our ancestors in their journey out of Africa. Because these results are robust to different types of genetic markers, they provide a baseline for predicting the pathogen's diversity in unsampled populations, and some useful elements for predicting vaccine efficacy and informing malaria control strategies.
Collapse
|
5
|
Characteristic age distribution of Plasmodium vivax infections after malaria elimination on Aneityum Island, Vanuatu. Infect Immun 2013; 82:243-52. [PMID: 24166950 DOI: 10.1128/iai.00931-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resurgence is a major concern after malaria elimination. After the initiation of the elimination program on Aneityum Island in 1991, microscopy showed that Plasmodium falciparum disappeared immediately, whereas P. vivax disappeared from 1996 onward, until P. vivax cases were reported in January 2002. By conducting malariometric surveys of the entire population of Aneityum, we investigated the age distribution of individuals with parasites during this epidemic in the context of antimalarial antibody levels and parasite antigen diversity. In July 2002, P. vivax infections were detected by microscopy in 22/759 individuals: 20/298 born after the beginning of the elimination program in 1991, 2/126 born between 1982 and 1991, and none of 335 born before 1982. PCR increased the number of infections detected to 77, distributed among all age groups. Prevalences were 12.1%, 16.7%, and 6.0%, respectively (P < 0.001). In November, a similar age pattern was found, but with fewer infections: 6/746 and 39/741 individuals were found to be infected by microscopy and PCR, respectively. The frequencies of antibody responses to P. vivax were significantly higher in individuals born before 1991 than in younger age groups and were similar to those on Malakula Island, an area of endemicity. Remarkably low antigen diversity (h, 0.15) of P. vivax infections was observed on Aneityum compared with the other islands (h, 0.89 to 1.0). A P. vivax resurgence was observed among children and teenagers on Aneityum, an age distribution similar to those before elimination and on islands where P. vivax is endemic, suggesting that in the absence of significant exposure, immunity may persist, limiting infection levels in adults. The limited parasite gene pool on islands may contribute to this protection.
Collapse
|
6
|
Tanabe K, Zollner G, Vaughan JA, Sattabongkot J, Khuntirat B, Honma H, Mita T, Tsuboi T, Coleman R. Plasmodium falciparum: genetic diversity and complexity of infections in an isolated village in western Thailand. Parasitol Int 2013; 64:260-6. [PMID: 24060540 DOI: 10.1016/j.parint.2013.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/30/2013] [Accepted: 09/11/2013] [Indexed: 01/11/2023]
Abstract
Genetic diversity of Plasmodium falciparum is intimately associated with morbidity, mortality and malaria control strategies. It is therefore imperative to study genetic makeup and population structure of this parasite in endemic areas. In Kong Mong Tha, an isolated village in western Thailand, the majority of P. falciparum infections are asymptomatic. In this study we investigated complexity of infections and single nucleotide polymorphisms (SNPs) in the P. falciparum population of Kong Mong Tha, and compared results with those previously obtained from Mae Sod, in northwestern Thailand, where the majority of infections were symptomatic. Using PCR-based determination of the 5' merozoite surface protein 1 gene (msp1) recombinant types, we found that 39% of 59 P. falciparum isolates from Kong Mong Tha had multiple 5' recombinant types with a mean number of 1.54. These values were much lower than those obtained from Mae Sod: 96% for multiple infections and with a mean number of 3.61. Analysis of full-length sequences of two housekeeping genes, the P-type Ca(2+)-transporting ATPase gene (n=33) plus adenylosuccinate lyase gene (n=33), and three vaccine candidate antigen genes, msp1 (n=26), the circumsporozoite protein gene, csp (n=30) and the apical membrane antigen 1 gene, ama 1 (n=32), revealed that in all of these genes within-population SNP diversity was at similar levels between Kong Mong Tha and Mae Sod, suggesting that the extent of MOI and clinical manifestations of malaria are not strongly associated with genetic diversity. Additionally, we did not detect significant genetic differentiation between the two parasite populations, as estimated by the Wright's fixation index of inter-population variance in allele frequencies, suggesting that gene flow prevented the formation of population structuring. Thus, this study highlights unique features of P. falciparum populations in Thailand. The implications of these finding are discussed.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Gabriela Zollner
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Jefferson A Vaughan
- Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
| | - Jetsumon Sattabongkot
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Benjawan Khuntirat
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Hajime Honma
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshihiro Mita
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, Tokyo, Japan; Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan.
| | - Russell Coleman
- Department of Entomology, U.S. Army Medical Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
7
|
Tanabe K, Jombart T, Horibe S, Palacpac NMQ, Honma H, Tachibana SI, Nakamura M, Horii T, Kishino H, Mita T. Plasmodium falciparum mitochondrial genetic diversity exhibits isolation-by-distance patterns supporting a sub-Saharan African origin. Mitochondrion 2013; 13:630-6. [PMID: 24004956 DOI: 10.1016/j.mito.2013.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/13/2013] [Accepted: 08/26/2013] [Indexed: 01/31/2023]
Abstract
The geographical distribution of single nucleotide polymorphism (SNP) in the mitochondrial genome of the human malaria parasite Plasmodium falciparum was investigated. We identified 88 SNPs in 516 isolates from seven parasite populations in Africa, Southeast Asia and Oceania. Analysis of the SNPs postulated a sub-Saharan African origin and recovered a strong negative correlation between within-population SNP diversity and geographic distance from the putative African origin over Southeast Asia and Oceania. These results are consistent with those previously obtained for nuclear genome-encoded housekeeping genes, indicating that the pattern of inheritance does not substantially affect the geographical distribution of SNPs.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hunja CW, Unger H, Ferreira PE, Lumsden R, Morris S, Aman R, Alexander C, Mita T, Culleton R. Travellers as sentinels: Assaying the worldwide distribution of polymorphisms associated with artemisinin combination therapy resistance in Plasmodium falciparum using malaria cases imported into Scotland. Int J Parasitol 2013; 43:885-9. [PMID: 23899818 DOI: 10.1016/j.ijpara.2013.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/02/2013] [Accepted: 07/05/2013] [Indexed: 11/29/2022]
Abstract
There is growing evidence that Plasmodium falciparum parasites in southeastern Asia have developed resistance to artemisinin combination therapy. The resistance phenotype has recently been shown to be associated with four single nucleotide polymorphisms in the parasite's genome. We assessed the prevalence of two of these single nucleotide polymorphisms in P. falciparum parasites imported into Scotland between 2009 and 2012, and in additional field samples from six countries in southeastern Asia. We analysed 28 samples from 11 African countries, and 25 samples from nine countries in Asia/southeastern Asia/Oceania. Single nucleotide polymorphisms associated with artemisinin combination therapy resistance were not observed outside Thailand and Cambodia.
Collapse
Affiliation(s)
- Carol W Hunja
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Within-population genetic diversity of Plasmodium falciparum vaccine candidate antigens reveals geographic distance from a Central sub-Saharan African origin. Vaccine 2013; 31:1334-9. [DOI: 10.1016/j.vaccine.2012.12.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/15/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
|
10
|
Large-scale survey for novel genotypes of Plasmodium falciparum chloroquine-resistance gene pfcrt. Malar J 2012; 11:92. [PMID: 22453078 PMCID: PMC3369212 DOI: 10.1186/1475-2875-11-92] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/28/2012] [Indexed: 11/23/2022] Open
Abstract
Background In Plasmodium falciparum, resistance to chloroquine (CQ) is conferred by a K to T mutation at amino acid position 76 (K76T) in the P. falciparum CQ transporter (PfCRT). To date, at least 15 pfcrt genotypes, which are represented by combinations of five amino acids at positions 72-76, have been described in field isolates from various endemic regions. To identify novel mutant pfcrt genotypes and to reveal the genetic relatedness of pfcrt genotypes, a large-scale survey over a wide geographic area was performed. Methods Sequences for exon 2 in pfcrt, including known polymorphic sites at amino acid positions 72, 74, 75 and 76, were obtained from 256 P. falciparum isolates collected from eight endemic countries in Asia (Bangladesh, Cambodia, Lao P.D.R., the Philippines and Thailand), Melanesia (Papua New Guinea and Vanuatu) and Africa (Ghana). A haplotype network was constructed based on six microsatellite markers located -29 kb to 24 kb from pfcrt in order to examine the genetic relatedness among mutant pfcrt genotypes. Results In addition to wild type (CVMNK at positions 72-76), four mutant pfcrt were identified; CVIET, CVIDT, SVMNT and CVMNT (mutated amino acids underlined). Haplotype network revealed that there were only three mutant pfcrt lineages, originating in Indochina, Philippines and Melanesia. Importantly, the Indochina lineage contained two mutant pfcrt genotypes, CVIET (n = 95) and CVIDT (n = 14), indicating that CVIDT shares a common origin with CVIET. Similarly, one major haplotype in the Melanesian lineage contained two pfcrt genotypes; SVMNT (n = 71) and CVMNT (n = 3). In Africa, all mutant pfcrt genotypes were the CVIET of the Indochina lineage, probably resulting from the intercontinental migration of CQ resistance from Southeast Asia. Conclusions The number of CQ-mutant lineages observed in this study was identical to that found in previous studies. This supports the hypothesis that the emergence of novel CQ resistance is rare. However, in the mutant pfcrt genotypes, amino acid changes at positions 72, 74 and 75 appear to have recently been generated at least several times, producing distinct pfcrt mutant genotypes. The occurrence of new mutations flanking K76T may yield stronger resistance to CQ and/or a higher fitness than the original pfcrt mutant.
Collapse
|
11
|
Tanabe K, Mita T, Jombart T, Eriksson A, Horibe S, Palacpac N, Ranford-Cartwright L, Sawai H, Sakihama N, Ohmae H, Nakamura M, Ferreira MU, Escalante AA, Prugnolle F, Björkman A, Färnert A, Kaneko A, Horii T, Manica A, Kishino H, Balloux F. Plasmodium falciparum accompanied the human expansion out of Africa. Curr Biol 2010; 20:1283-9. [PMID: 20656209 DOI: 10.1016/j.cub.2010.05.053] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/11/2010] [Accepted: 05/12/2010] [Indexed: 01/11/2023]
Abstract
Plasmodium falciparum is distributed throughout the tropics and is responsible for an estimated 230 million cases of malaria every year, with a further 1.4 billion people at risk of infection. Little is known about the genetic makeup of P. falciparum populations, despite variation in genetic diversity being a key factor in morbidity, mortality, and the success of malaria control initiatives. Here we analyze a worldwide sample of 519 P. falciparum isolates sequenced for two housekeeping genes (63 single nucleotide polymorphisms from around 5000 nucleotides per isolate). We observe a strong negative correlation between within-population genetic diversity and geographic distance from sub-Saharan Africa (R(2) = 0.95) over Africa, Asia, and Oceania. In contrast, regional variation in transmission intensity seems to have had a negligible impact on the distribution of genetic diversity. The striking geographic patterns of isolation by distance observed in P. falciparum mirror the ones previously documented in humans and point to a joint sub-Saharan African origin between the parasite and its host. Age estimates for the expansion of P. falciparum further support that anatomically modern humans were infected prior to their exit out of Africa and carried the parasite along during their colonization of the world.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kinzer MH, Chand K, Basri H, Lederman ER, Susanti AI, Elyazar I, Taleo G, Rogers WO, Bangs MJ, Maguire JD. Active case detection, treatment of falciparum malaria with combined chloroquine and sulphadoxine/pyrimethamine and vivax malaria with chloroquine and molecular markers of anti-malarial resistance in the Republic of Vanuatu. Malar J 2010; 9:89. [PMID: 20370920 PMCID: PMC2853556 DOI: 10.1186/1475-2875-9-89] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 04/06/2010] [Indexed: 11/15/2022] Open
Abstract
Background Chloroquine-resistant Plasmodium falciparum was first described in the Republic of Vanuatu in the early 1980s. In 1991, the Vanuatu Ministry of Health instituted new treatment guidelines for uncomplicated P. falciparum infection consisting of chloroquine/sulphadoxine-pyrimethamine combination therapy. Chloroquine remains the recommended treatment for Plasmodium vivax. Methods In 2005, cross-sectional blood surveys at 45 sites on Malo Island were conducted and 4,060 adults and children screened for malaria. Of those screened, 203 volunteer study subjects without malaria at the time of screening were followed for 13 weeks to observe peak seasonal incidence of infection. Another 54 subjects with malaria were followed over a 28-day period to determine efficacy of anti-malarial therapy; chloroquine alone for P. vivax and chloroquine/sulphadoxine-pyrimethamine for P. falciparum infections. Results The overall prevalence of parasitaemia by mass blood screening was 6%, equally divided between P. falciparum and P. vivax. Twenty percent and 23% of participants with patent P. vivax and P. falciparum parasitaemia, respectively, were febrile at the time of screening. In the incidence study cohort, after 2,303 person-weeks of follow-up, the incidence density of malaria was 1.3 cases per person-year with P. vivax predominating. Among individuals participating in the clinical trial, the 28-day chloroquine P. vivax cure rate was 100%. The 28-day chloroquine/sulphadoxine-pyrimethamine P. falciparum cure rate was 97%. The single treatment failure, confirmed by merozoite surface protein-2 genotyping, was classified as a day 28 late parasitological treatment failure. All P. falciparum isolates carried the Thr-76 pfcrt mutant allele and the double Asn-108 + Arg-59 dhfr mutant alleles. Dhps mutant alleles were not detected in the study sample. Conclusion Peak seasonal malaria prevalence on Malo Island reached hypoendemic levels during the study observation period. The only in vivo malaria drug efficacy trial thus far published from the Republic of Vanuatu showed chloroquine/sulphadoxine-pyrimethamine combination therapy for P. falciparum and chloroquine alone for P. vivax to be highly efficacious. Although the chloroquine-resistant pfcrt allele was present in all P. falciparum isolates, mutant alleles in the dhfr and dhps genes do not yet occur to the extent required to confer sulphadoxine-pyrimethamine resistance in this population.
Collapse
Affiliation(s)
- Michael H Kinzer
- U,S, Naval Medical Research Unit No,2, Kompleks P2P/PLP-LITBANGKES, Jl, Percetakan Negara No. 29, Jakarta Pusat 10560, Indonesia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sakihama N, Nakamura M, Palanca AA, Argubano RA, Realon EP, Larracas AL, Espina RL, Tanabe K. Allelic diversity in the merozoite surface protein 1 gene of Plasmodium falciparum on Palawan Island, the Philippines. Parasitol Int 2007; 56:185-94. [PMID: 17347029 DOI: 10.1016/j.parint.2007.01.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/29/2007] [Accepted: 01/31/2007] [Indexed: 11/15/2022]
Abstract
Allelic diversity of the Plasmodium falciparum merozoite surface protein 1 gene (msp1) is mainly generated by meiotic recombination at the mosquito stage. We investigated recombination-based allelic diversity of msp1 in a P. falciparum population from Palawan Island, the Philippines, where malaria transmission is moderate. We identified the 5' recombinant types, 3' sequence types and msp1 haplotypes (unique combinations of 5' recombinant type and 3' sequence type), and compared them with those of P. falciparum from the Solomon Islands, where malaria transmission is high. The mean number of 5' recombinant types per patient in Palawan was 1.44, which is comparable to the number for the Solomon Islands (1.41). The Palawan parasite population had 15 msp1 haplotypes, whereas the Solomon Islands population had only 8 haplotypes. The Palawan population showed strong linkage disequilibrium between polymorphic blocks/sites within msp1, which is comparable to the results for the Solomon Islands. These findings support our hypothesis that the extent of allelic diversity of msp1 is determined not only by the transmission intensity but also by the number of msp1 alleles prevalent in the local parasite population and the extent of mixed-allele infections. Contribution of a high prevalence of the chloroquine (CQ)-sensitive allele of P. falciparum CQ resistance transporter (pfcrt) to the relatively high msp1 diversity in the Palawan population is discussed.
Collapse
Affiliation(s)
- Naoko Sakihama
- Laboratory of Malariology, International Research Center of Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-Oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lum JK, Kaneko A, Taleo G, Amos M, Reiff DM. Genetic diversity and gene flow of humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu: inferred malaria dispersal and implications for malaria control. Acta Trop 2007; 103:102-7. [PMID: 17662681 DOI: 10.1016/j.actatropica.2007.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
A comparison of the patterns of gene flow within and between islands and the genetic diversities of the three species required for malaria transmission (humans, Plasmodium falciparum, and Anopheles farauti s.s.) within the model island system of Vanuatu, shows that the active dispersal of An. farauti s.s. is responsible for within island movement of parasites. In contrast, since both P. falciparum and An. farauti s.s. populations are largely restricted to islands, movement of parasites between islands is likely due to human transport. Thus, control of vectors is crucial for controlling malaria within islands, while control of human movement is essential to control malaria transmission across the archipelago.
Collapse
Affiliation(s)
- J K Lum
- Laboratory of Evolutionary Anthropology and Health, Binghamton University, Binghamton, NY 13902-6000, USA
| | | | | | | | | |
Collapse
|
15
|
Mascorro CN, Zhao K, Khuntirat B, Sattabongkot J, Yan G, Escalante AA, Cui L. Molecular evolution and intragenic recombination of the merozoite surface protein MSP-3alpha from the malaria parasite Plasmodium vivax in Thailand. Parasitology 2005; 131:25-35. [PMID: 16038393 DOI: 10.1017/s0031182005007547] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The merozoite surface antigens of malaria parasites are prime anti-morbidity/mortality vaccine candidates. However, their highly polymorphic nature requires extensive surveys of parasite populations to validate vaccine designs. Previous studies have found 3 molecular types (A, B and C) of the Plasmodium vivax merozoite surface protein 3a (PvMSP-3alpha) among parasite field populations. Here we analysed complete PvMSP-3alpha sequences from 17 clinical P. vivax isolates from Thailand and found that the nucleotide diversity was as high as that from samples widely separated by time and space. The polymorphic sites were not randomly distributed but concentrated in the N-terminal Ala-rich domain (block 2A), which is partially deleted in type B and C sequences. The size variations among type A sequences were due to small indels occurring in block 2A, whereas type B and C sequences were uniform in length with each type having a different large deletion. Analysis of synonymous and non-synonymous substitutions suggested that different selection forces were operating on different regions of the molecule. The numerous recombination sites detected within the Ala-rich domain suggested that intragenic recombination was at least partially responsible for the observed genetic diversity of the PvMSP-3alpha gene. Phylogenetic analysis failed to link any alleles to a specific geographical origin, even when different domains of PvMSP-3alpha were used for analysis. The highly polymorphic nature and lack of geographical clustering of isolates suggest that more systematic investigations of the PvMSP-3alpha gene are needed to explore its evolution and vaccine potential.
Collapse
Affiliation(s)
- C N Mascorro
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Sakihama N, Matsuo T, Mitamura T, Horii T, Kimura M, Kawabata M, Tanabe K. Relative frequencies of polymorphisms of variation in Block 2 repeats and 5' recombinant types of Plasmodium falciparum msp1 alleles. Parasitol Int 2004; 53:59-67. [PMID: 14984836 DOI: 10.1016/j.parint.2003.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Accepted: 11/12/2003] [Indexed: 11/25/2022]
Abstract
The mechanisms producing the genetic polymorphism at Plasmodium falciparum merozoite surface antigen-1 locus (pfmsp1) include the insertion and deletion of the different type of dimorphic Block 2 9-nucleotide repeat units as well as the intragenic recombination. To study relative occurrence frequencies of these two distinct mechanisms, we have developed a sensitive PCR strategy to identify both 5' recombinant types and the number of Block 2 repeats from the same sample. This method can specifically detect the target 5' recombinant type (Blocks 2-6) at the sensitivity of 1-4 copies of the pfmsp1. Applying the new method to field isolates from the Solomon Islands enabled us to identify six different 5' recombinant types and variation in Block 2 repeat number in three of them, thus distinguishing 10 different alleles. Distribution of these alleles in local three villages in the study area suggests that frequencies of variation in the number of Block 2 9-bp repeats and recombination events within Blocks 2-6 are mutually independent and the frequency of repeat variation is relatively high as compared to that of recombination events at the pfmsp1 locus in P. falciparum populations from the Solomon Islands.
Collapse
Affiliation(s)
- Naoko Sakihama
- Laboratory of Biology, Osaka Institute of Technology, 5-16-1, Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Lum JK, Kaneko A, Tanabe K, Takahashi N, Björkman A, Kobayakawa T. Malaria dispersal among islands: human mediated Plasmodium falciparum gene flow in Vanuatu, Melanesia. Acta Trop 2004; 90:181-5. [PMID: 15177144 DOI: 10.1016/j.actatropica.2003.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2003] [Revised: 09/26/2003] [Accepted: 09/29/2003] [Indexed: 11/20/2022]
Abstract
A comparison of human and Plasmodium falciparum gene flow patterns in the model island system of Vanuatu, the limit of malaria in the Pacific reveals that human movement is essential for long, but not short distance P. falciparum gene flow. This suggests that long distance movement of humans may accelerate the evolution and spread of drug resistance and therefore exacerbate the global malaria problem.
Collapse
Affiliation(s)
- J Koji Lum
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Putaporntip C, Jongwutiwes S, Sakihama N, Ferreira MU, Kho WG, Kaneko A, Kanbara H, Hattori T, Tanabe K. Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proc Natl Acad Sci U S A 2002; 99:16348-53. [PMID: 12466500 PMCID: PMC138614 DOI: 10.1073/pnas.252348999] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The organization and allelic recombination of the merozoite surface protein-1 gene of Plasmodium vivax (PvMsp-1), the most widely prevalent human malaria parasite, were evaluated in complete nucleotide sequences of 40 isolates from various geographic areas. Alignment of 31 distinct alleles revealed the mosaic organization of PvMsp-1, consisting of seven interallele conserved blocks flanked by six variable blocks. The variable blocks showed extensive variation in repeats and nonrepeat unique sequences. Numerous recombination sites were distributed throughout PvMsp-1, in both conserved blocks and variable block unique sequences, and the distribution was not uniform. Heterozygosity of PvMsp-1 alleles was higher in Asia (0.953 +/- 0.009) than in Brazil (0.813 +/- 0.047). No identical alleles were shared between Asia and Brazil, whereas all but one variable block nonrepeat sequence found in Brazil occurred in Asia. These observations suggest that P. vivax populations in Asia are ancestral to Brazilian populations, and that PvMsp-1 has heterogeneity in frequency of allelic recombination events. Recurrent origins of new PvMsp-1 alleles by repeated recombination events were supported by a rapid decline in linkage disequilibrium between pairs of synonymous sites with increasing nucleotide distance, with little linkage disequilibrium at a distance of over 3 kb in a P. vivax population from Thailand, evidence for an effectively high recombination rate of the parasite. Meanwhile, highly reduced nucleotide diversity was noted in a region encoding the 19-kDa C-terminal epidermal growth factor-like domain of merozoite surface protein-1, a vaccine candidate.
Collapse
Affiliation(s)
- Chaturong Putaporntip
- Laboratory of Biology and Department of Mathematics, Osaka Institute of Technology, Osaka 535-8585, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|