1
|
Zhang Y, Chen S, Luo L, Greenly S, Shi H, Xu JJ, Yan C. Role of cAMP in Cardiomyocyte Viability: Beneficial or Detrimental? Circ Res 2023; 133:902-923. [PMID: 37850368 PMCID: PMC10807647 DOI: 10.1161/circresaha.123.322652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND 3', 5'-cyclic AMP (cAMP) regulates numerous cardiac functions. Various hormones and neurotransmitters elevate intracellular cAMP (i[cAMP]) in cardiomyocytes through activating GsPCRs (stimulatory-G-protein-coupled-receptors) and membrane-bound ACs (adenylyl cyclases). Increasing evidence has indicated that stimulating different GsPCRs and ACs exhibits distinct, even opposite effects, on cardiomyocyte viability. However, the underlying mechanisms are not fully understood. METHODS We used molecular and pharmacological approaches to investigate how different GsPCR/cAMP signaling differentially regulate cardiomyocyte viability with in vitro, ex vivo, and in vivo models. RESULTS For prodeath GsPCRs, we explored β1AR (beta1-adrenergic receptor) and H2R (histamine-H2-receptor). We found that their prodeath effects were similarly dependent on AC5 activation, ATP release to the extracellular space via PANX1 (pannexin-1) channel, and extracellular ATP (e[ATP])-mediated signaling involving in P2X7R (P2X purinoceptor 7) and CaMKII (Ca2+/calmodulin-dependent protein kinase II). PANX1 phosphorylation at Serine 206 by cAMP-dependent-PKA (protein-kinase-A) promoted PANX1 activation, which was critical in β1AR- or H2R-induced cardiomyocyte death in vitro and in vivo. β1AR or H2R was localized proximately to PANX1, which permits ATP release. For prosurvival GsPCRs, we explored adenosine-A2-receptor (A2R), CGRPR (calcitonin-gene-related-peptide-receptor), and RXFP1 (relaxin-family peptide-receptor 1). Their prosurvival effects were dependent on AC6 activation, cAMP efflux via MRP4 (multidrug resistance protein 4), extracellular cAMP metabolism to adenosine (e[cAMP]-to-e[ADO]), and e[ADO]-mediated signaling. A2R, CGRPR, or RXFP1 was localized proximately to MRP4, which enables cAMP efflux. Interestingly, exogenously increasing e[cAMP] levels by membrane-impermeable cAMP protected against cardiomyocyte death in vitro and in ex vivo and in vivo mouse hearts with ischemia-reperfusion injuries. CONCLUSIONS Our findings indicate that the functional diversity of different GsPCRs in cardiomyocyte viability could be achieved by their ability to form unique signaling complexes (signalosomes) that determine the fate of cAMP: either stimulate ATP release by activating PKA or directly efflux to be e[cAMP].
Collapse
Affiliation(s)
- Yishuai Zhang
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Lingfeng Luo
- Aab Cardiovascular Research Institute, Department of Medicine
- Department of Biochemistry and Biophysics
| | - Sarah Greenly
- Aab Cardiovascular Research Institute, Department of Medicine
| | - Hangchuan Shi
- Department of Clinical and Translational Research
- Department of Public Health Sciences; University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | | | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine
| |
Collapse
|
2
|
Chen J, Zeng H, Lv W, Sun N, Wang C, Xu W, Hu M, Gan X, He L, He S, Fang C. Pseudo-chromosome-length genome assembly for a deep-sea eel Ilyophis brunneus sheds light on the deep-sea adaptation. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2251-8. [PMID: 36648612 DOI: 10.1007/s11427-022-2251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 01/18/2023]
Abstract
High hydrostatic pressure, low temperature, and scarce food supply are the major factors that limit the survival of vertebrates in extreme deep-sea environments. Here, we constructed a high-quality genome of the deep-sea Muddy arrowtooth eel (MAE, Ilyophis brunneus, captured below a depth of 3,500 m) by using Illumina, PacBio, and Hi-C sequencing. We compare it against those of shallow-water eel and other outgroups to explore the genetic basis that underlies the adaptive evolution to deep-sea biomes. The MAE genome was estimated to be 1.47 Gb and assembled into 14 pseudo-chromosomes. Phylogenetic analyses indicated that MAE diverged from its closely related shallow-sea species, European eel, ∼111.9 Mya and experienced a rapid evolution. The genome evolutionary analyses primarily revealed the following: (i) under high hydrostatic pressure, the positively selected gene TUBGCP3 and the expanded family MLC1 may improve the cytoskeleton stability; ACOX1 may enhance the fluidity of cell membrane and maintain transport activity; the expansion of ABCC12 gene family may enhance the integrity of DNA; (ii) positively selected HARS likely maintain the transcription ability at low temperatures; and (iii) energy metabolism under a food-limited environment may be increased by expanded and positively selected genes in AMPK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wenqi Lv
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Xu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Mingliang Hu
- School for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lisheng He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Shunping He
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China. .,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Chengchi Fang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Ding X, Zhang Y, Liang J, Yin J, Akbar N, Miguel V, Zhou Y. The long non-coding RNA CRNDE promotes osteosarcoma proliferation and migration by sponging miR-136-5p/MRP9 axis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:835. [PMID: 36034978 PMCID: PMC9403929 DOI: 10.21037/atm-22-3602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/29/2022] [Indexed: 01/17/2023]
Abstract
Background The long-noncoding RNA colorectal neoplasia differentially expressed (CRNDE) gene has been found to be upregulated in several solid tumors. Whether CRNDE affects osteosarcoma (OS) and its underling mechanism remains unknown. Methods Tumor tissues and corresponding normal tissues were collected from 45 patients with OS. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was applied to determine lncRNA CRNDE level in the tissues. Participants were divided into a high CRNDE group and a low CRNDE group according to the median value of lncRNA CRNDE expression detected by in situ hybridization (ISH). The differences between high and low expression of lncRNA CRNDE in patients were compared clinically by chi-square test. Kaplan-Meier survival analysis was applied to analyze the relationship between lncRNA CRNDE expression and patient survival. Subsequently, silencing or overexpression of lncRNA CRNDE were performed in MG63 and 143B cell lines, qRT-PCR was applied to verify the expression of lncRNA CRNDE, miR-136-5p, and MRP9; dual-luciferase reporter assay was used to evaluate the targeting relationship between miR-136-5p, lncRNA CRNDE, and Cell Counting Kit-8 (CCK8), wound-healing, and Transwell assays were used to analyze for cell proliferation, migration, and invasion, respectively, and western blot was used to detect expression in cells. Results The expression of CRNDE in OS tissues was higher than that in normal tissues. High lncRNA CRNDE expression was significantly associated with clinical stage, lung metastasis, and poor prognosis in OS patients. Additionally, overexpression of lncRNA CRNDE promoted proliferation and migration of OS cells. Bioinformatics analysis showed that lncRNA CRNDE competitively inhibited miR-136-5p through acting as a competitive endogenous RNA (ceRNA). It was also revealed that miR-136-5p is a binding target gene of lncRNA CRNDE and that MRP9 is involved in this process as a downstream target gene of miR-136-5p. Conclusions The lncRNA CRNDE promotes the proliferation and migration of OS cells by regulating the miR-136-5p/MRP9 pathway, and lncRNA CRNDE can be a significant marker of OS prognosis.
Collapse
Affiliation(s)
- Xiaomin Ding
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yawen Zhang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinrong Liang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Junyi Yin
- Department of Medical Oncology, Shanghai Tongji University Affiliated Tongji Hospital, Shanghai, China
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Verónica Miguel
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University Hospital, Aachen, Germany
| | - Yan Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
4
|
MRP5 and MRP9 play a concerted role in male reproduction and mitochondrial function. Proc Natl Acad Sci U S A 2022; 119:2111617119. [PMID: 35121660 PMCID: PMC8832985 DOI: 10.1073/pnas.2111617119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/17/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs) are typically implicated in cancer biology. Here, we show that MRP9 and MRP5 localize to mitochondrial-associated membranes and play a concerted role in maintaining mitochondrial homeostasis and male reproductive fitness. Our work fills in significant gaps in our understanding of MRP9 and MRP5 with wider implications in male fertility. It is plausible that variants in these transporters are associated with male reproductive dysfunction. Multidrug Resistance Proteins (MRPs) are transporters that play critical roles in cancer even though the physiological substrates of these enigmatic transporters are poorly elucidated. In Caenorhabditis elegans, MRP5/ABCC5 is an essential heme exporter because mrp-5 mutants are unviable due to their inability to export heme from the intestine to extraintestinal tissues. Heme supplementation restores viability of these mutants but fails to restore male reproductive deficits. Correspondingly, cell biological studies show that MRP5 regulates heme levels in the mammalian secretory pathway even though MRP5 knockout (KO) mice do not show reproductive phenotypes. The closest homolog of MRP5 is MRP9/ABCC12, which is absent in C. elegans, raising the possibility that MRP9 may genetically compensate for MRP5. Here, we show that MRP5 and MRP9 double KO (DKO) mice are viable but reveal significant male reproductive deficits. Although MRP9 is highly expressed in sperm, MRP9 KO mice show reproductive phenotypes only when MRP5 is absent. Both ABCC transporters localize to mitochondrial-associated membranes, dynamic scaffolds that associate the mitochondria and endoplasmic reticulum. Consequently, DKO mice reveal abnormal sperm mitochondria with reduced mitochondrial membrane potential and fertilization rates. Metabolomics show striking differences in metabolite profiles in the DKO testes, and RNA sequencing shows significant alterations in genes related to mitochondrial function and retinoic acid metabolism. Targeted functional metabolomics reveal lower retinoic acid levels in the DKO testes and higher levels of triglycerides in the mitochondria. These findings establish a model in which MRP5 and MRP9 play a concerted role in regulating male reproductive functions and mitochondrial sufficiency.
Collapse
|
5
|
Saito H, Toyoda Y, Hirata H, Ota-Kontani A, Tsuchiya Y, Takada T, Suzuki H. Soy Isoflavone Genistein Inhibits an Axillary Osmidrosis Risk Factor ABCC11: In Vitro Screening and Fractional Approach for ABCC11-Inhibitory Activities in Plant Extracts and Dietary Flavonoids. Nutrients 2020; 12:E2452. [PMID: 32824087 PMCID: PMC7468911 DOI: 10.3390/nu12082452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
Axillary osmidrosis (AO) is a common chronic skin condition characterized by unpleasant body odors emanating from the armpits, and its aetiology is not fully understood. AO can seriously impair the psychosocial well-being of the affected individuals; however, no causal therapy has been established for it other than surgical treatment. Recent studies have revealed that human ATP-binding cassette transporter C11 (ABCC11) is an AO risk factor when it is expressed in the axillary apocrine glands-the sources of the offensive odors. Hence, identifying safe ways to inhibit ABCC11 may offer a breakthrough in treating AO. We herein screened for ABCC11-inhibitory activities in 34 natural products derived from plants cultivated for human consumption using an in vitro assay system to measure the ABCC11-mediated transport of radiolabeled dehydroepiandrosterone sulfate (DHEA-S-an ABCC11 substrate). The water extract of soybean (Glycine max) was found to exhibit the strongest transport inhibition. From this extract, via a fractionation approach, we successfully isolated and identified genistein, a soy isoflavone, as a novel ABCC11 inhibitor with a half-maximal inhibitory concentration value of 61.5 μM. Furthermore, we examined the effects of other dietary flavonoids on the ABCC11-mediated DHEA-S transport to uncover the effects of these phytochemicals on ABCC11 function. While further human studies are needed, our findings here about the natural compounds will help develop a non-surgical therapy for AO.
Collapse
Affiliation(s)
- Hiroki Saito
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Hiroshi Hirata
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Ami Ota-Kontani
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Youichi Tsuchiya
- Frontier Laboratories for Value Creation, Sapporo Holdings Ltd., 10 Okatome, Yaizu, Shizuoka 425-0013, Japan; (H.S.); (H.H.); (A.O.-K.); (Y.T.)
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (T.T.); (H.S.)
| |
Collapse
|
6
|
Dawson HD, Chen C, Gaynor B, Shao J, Urban JF. The porcine translational research database: a manually curated, genomics and proteomics-based research resource. BMC Genomics 2017; 18:643. [PMID: 28830355 PMCID: PMC5568366 DOI: 10.1186/s12864-017-4009-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 08/02/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The use of swine in biomedical research has increased dramatically in the last decade. Diverse genomic- and proteomic databases have been developed to facilitate research using human and rodent models. Current porcine gene databases, however, lack the robust annotation to study pig models that are relevant to human studies and for comparative evaluation with rodent models. Furthermore, they contain a significant number of errors due to their primary reliance on machine-based annotation. To address these deficiencies, a comprehensive literature-based survey was conducted to identify certain selected genes that have demonstrated function in humans, mice or pigs. RESULTS The process identified 13,054 candidate human, bovine, mouse or rat genes/proteins used to select potential porcine homologs by searching multiple online sources of porcine gene information. The data in the Porcine Translational Research Database (( http://www.ars.usda.gov/Services/docs.htm?docid=6065 ) is supported by >5800 references, and contains 65 data fields for each entry, including >9700 full length (5' and 3') unambiguous pig sequences, >2400 real time PCR assays and reactivity information on >1700 antibodies. It also contains gene and/or protein expression data for >2200 genes and identifies and corrects 8187 errors (gene duplications artifacts, mis-assemblies, mis-annotations, and incorrect species assignments) for 5337 porcine genes. CONCLUSIONS This database is the largest manually curated database for any single veterinary species and is unique among porcine gene databases in regard to linking gene expression to gene function, identifying related gene pathways, and connecting data with other porcine gene databases. This database provides the first comprehensive description of three major Super-families or functionally related groups of proteins (Cluster of Differentiation (CD) Marker genes, Solute Carrier Superfamily, ATP binding Cassette Superfamily), and a comparative description of porcine microRNAs.
Collapse
Affiliation(s)
- Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA.
| | - Celine Chen
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA
| | - Brady Gaynor
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Molecular Plant Pathology Lab, Beltsville, MD, 20705, USA
| | - Jonathan Shao
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Molecular Plant Pathology Lab, Beltsville, MD, 20705, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, USA
| |
Collapse
|
7
|
Gökirmak T, Campanale JP, Reitzel AM, Shipp LE, Moy GW, Hamdoun A. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing. Am J Physiol Cell Physiol 2016; 310:C911-20. [PMID: 27053522 DOI: 10.1152/ajpcell.00029.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/01/2016] [Indexed: 11/22/2022]
Abstract
The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals.
Collapse
Affiliation(s)
- Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Joseph P Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Lauren E Shipp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Gary W Moy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California; and
| |
Collapse
|
8
|
Diagnosis of Human Axillary Osmidrosis by Genotyping of the Human ABCC11 Gene: Clinical Practice and Basic Scientific Evidence. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7670483. [PMID: 27057547 PMCID: PMC4781944 DOI: 10.1155/2016/7670483] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 01/09/2023]
Abstract
The importance of personalized medicine and healthcare is becoming increasingly recognized. Genetic polymorphisms associated with potential risks of various human genetic diseases as well as drug-induced adverse reactions have recently been well studied, and their underlying molecular mechanisms are being uncovered by functional genomics as well as genome-wide association studies. Knowledge of certain genetic polymorphisms is clinically important for our understanding of interindividual differences in drug response and/or disease risk. As such evidence accumulates, new clinical applications and practices are needed. In this context, the development of new technologies for simple, fast, accurate, and cost-effective genotyping is imperative. Here, we describe a simple isothermal genotyping method capable of detecting single nucleotide polymorphisms (SNPs) in the human ATP-binding cassette (ABC) transporter ABCC11 gene and its application to the clinical diagnosis of axillary osmidrosis. We have recently reported that axillary osmidrosis is linked with one SNP 538G>A in the ABCC11 gene. Our molecular biological and biochemical studies have revealed that this SNP greatly affects the protein expression level and the function of ABCC11. In this review, we highlight the clinical relevance and importance of this diagnostic strategy in axillary osmidrosis therapy.
Collapse
|
9
|
Arlanov R, Lang T, Jedlitschky G, Schaeffeler E, Ishikawa T, Schwab M, Nies AT. Functional characterization of common protein variants in the efflux transporter ABCC11 and identification of T546M as functionally damaging variant. THE PHARMACOGENOMICS JOURNAL 2015; 16:193-201. [PMID: 25896536 DOI: 10.1038/tpj.2015.27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/23/2015] [Accepted: 03/02/2015] [Indexed: 11/09/2022]
Abstract
Multidrug resistance protein 8 (ABCC11) is an efflux transporter for anionic lipophilic compounds, conferring resistance to antiviral and anticancer agents like 5-fluorouracil (5-FU). ABCC11 missense variants may contribute to variability in drug response but functional consequences, except for the 'earwax variant' c.538G>A, are unknown. Using the 'Screen and Insert' technology, we generated human embryonic kidney 293 cells stably expressing ABCC11 missense variants frequently occurring in different ethnic populations: c.57G>A, c.538G>A, c.950C>A, c.1637C>T, c.1942G>A, c.4032A>G. A series of in silico prediction analyses and in vitro plasma membrane vesicle uptake, immunoblotting and immunolocalization experiments were undertaken to investigate functional consequences. We identified c.1637C>T (T546M), previously associated with 5-FU-related toxicity, as a novel functionally damaging ABCC11 variant exhibiting markedly reduced transport function of 5-FdUMP, the active cytotoxic metabolite of 5-FU. Detailed analysis of 14 subpopulations revealed highest allele frequencies of c.1637C>T in Europeans and Americans (up to 11%) compared with Africans and Asians (up to 3%).
Collapse
Affiliation(s)
- R Arlanov
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - T Lang
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - G Jedlitschky
- Department of Pharmacology, Center of Drug Absorption and Transport (C_DAT), University Medicine of Greifswald, Greifswald, Germany
| | - E Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| | - T Ishikawa
- RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - M Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany.,Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital of Tübingen, Tübingen, Germany
| | - A T Nies
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Stuttgart, Germany
| |
Collapse
|
10
|
Ishikawa T, Toyoda Y, Yoshiura KI, Niikawa N. Pharmacogenetics of human ABC transporter ABCC11: new insights into apocrine gland growth and metabolite secretion. Front Genet 2013; 3:306. [PMID: 23316210 PMCID: PMC3539816 DOI: 10.3389/fgene.2012.00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/11/2012] [Indexed: 11/13/2022] Open
Abstract
Cell secretion is an important physiological process that ensures smooth metabolic activities and tissue repair as well as growth and immunological functions in the body. Apocrine secretion occurs when the secretory process is accomplished with a partial loss of cell cytoplasm. The secretory materials are contained within secretory vesicles and are released during secretion as cytoplasmic fragments into the glandular lumen or interstitial space. The recent finding that the non-synonymous single nucleotide polymorphisms (SNP) 538G > A (rs17822931; Gly180Arg) in the ABCC11 gene determines the type of earwax in humans has shed light on the novel function of this ABC (ATP-binding cassette) transporter in apocrine glands. The wild-type (Gly180) of ABCC11 is associated with wet-type earwax, axillary osmidrosis, and colostrum secretion from the mammary gland as well as the potential risk of mastopathy. Furthermore, the SNP (538G > A) in the ABCC11 gene is suggested to be a clinical biomarker for the prediction of chemotherapeutic efficacy. The aim of this review article is to provide an overview on the discovery and characterization of genetic polymorphisms in the human ABCC11 gene and to explain the impact of ABCC11 538G > A on the apocrine phenotype as well as the anthropological aspect of this SNP in the ABCC11 gene and patients’ response to nucleoside-based chemotherapy.
Collapse
Affiliation(s)
- Toshihisa Ishikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology Yokohama, Japan ; Omics Science Center, RIKEN Yokohama Institute Yokohama, Japan
| | | | | | | |
Collapse
|
11
|
Barman HK, Patra SK, Das V, Mohapatra SD, Jayasankar P, Mohapatra C, Mohanta R, Panda RP, Rath SN. Identification and characterization of differentially expressed transcripts in the gills of freshwater prawn (Macrobrachium rosenbergii) under salt stress. ScientificWorldJournal 2012; 2012:149361. [PMID: 22619594 PMCID: PMC3349099 DOI: 10.1100/2012/149361] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 11/15/2011] [Indexed: 11/17/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important species. It is a euryhaline shrimp, surviving in wide-range salinity conditions. A change in gene expression has been suggested as an important component for stress management. To better understand the osmoregulatory mechanisms mediated by the gill, a subtractive and suppressive hybridization (SSH) tool was used to identify expressed transcripts linked to adaptations in saline water. A total of 117 transcripts represented potentially expressed under salinity conditions. BLAST analysis identified 22% as known genes, 9% as uncharacterized showing homologous to unannotated ESTs, and 69% as unknown sequences. All the identified known genes representing broad spectrum of biological pathways were particularly linked to stress tolerance including salinity tolerance. Expression analysis of 10 known genes and 7 unknown/uncharacterized genes suggested their upregulation in the gills of prawn exposed to saline water as compared to control indicating that these are likely to be associated with salinity acclimation. Rapid amplification of cDNA ends (RACE) was used for obtaining full-length cDNA of MRSW-40 clone that was highly upregulated during salt exposure. The sequenced ESTs presented here will have potential implications for future understanding about salinity acclimation and/or tolerance of the prawn.
Collapse
Affiliation(s)
- Hirak Kumar Barman
- Fish Genetics and Biotechnology Division, Central Institute of Freshwater Aquaculture, Indian Council of Agricultural Research, Kausalyaganga, Bhubaneswar, Odisha 751002, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The ATP-binding cassette (ABC) transporters are a superfamily of membrane proteins that are best known for their ability to transport a wide variety of exogenous and endogenous substances across membranes against a concentration gradient via ATP hydrolysis. There are seven subfamilies of human ABC transporters, one of the largest being the 'C' subfamily (gene symbol ABCC). Nine ABCC subfamily members, the so-called multidrug resistance proteins (MRPs) 1-9, have been implicated in mediating multidrug resistance in tumor cells to varying degrees as the efflux extrude chemotherapeutic compounds (or their metabolites) from malignant cells. Some of the MRPs are also known to either influence drug disposition in normal tissues or modulate the elimination of drugs (or their metabolites) via hepatobiliary or renal excretory pathways. In addition, the cellular efflux of physiologically important organic anions such as leukotriene C(4) and cAMP is mediated by one or more of the MRPs. Finally, mutations in several MRPs are associated with human genetic disorders. In this minireview, the current biochemical and physiological knowledge of MRP1-MRP9 in cancer chemotherapy and human genetic disease is summarized. The mutations in MRP2/ABCC2 leading to conjugated hyperbilirubinemia (Dubin-Johnson syndrome) and in MRP6/ABCC6 leading to the connective tissue disorder Pseudoxanthoma elasticum are also discussed.
Collapse
Affiliation(s)
- Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John's University, Queens, NY 11439, USA.
| | | |
Collapse
|
13
|
Toyoda Y, Ishikawa T. Pharmacogenomics of human ABC transporter ABCC11 (MRP8): potential risk of breast cancer and chemotherapy failure. Anticancer Agents Med Chem 2011; 10:617-24. [PMID: 21182469 PMCID: PMC3319924 DOI: 10.2174/187152010794473975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 10/29/2010] [Indexed: 11/22/2022]
Abstract
Some genetic polymorphisms of human ABC transporter genes are reportedly related to the risk of certain diseases and patients’ responses to medication. Human ABCC11 functions as an ATP-dependent efflux pump for amphipathic anions. One non-synonymous SNP 538G>A (Gly180Arg) has been found to greatly affect the function and stability of de novo synthesized ABCC11 (Arg180) variant protein. The SNP variant lacking N-linked glycosylation is recognized as a misfolded protein in the endoplasmic reticulum (ER) and readily undergoes proteasomal degradation. This ER-associated degradation of ABCC11 protein underlies the molecular mechanism of affecting the function of apocrine glands. On the other hand, the wild type (Gly180) of ABCC11 is associated with wettype earwax, axillary osmidrosis, colostrum secretion from the mammary gland, and the potential susceptibility of breast cancer. Furthermore, the wild type of ABCC11 reportedly has ability to efflux cyclic nucleotides and nucleoside-based anticancer drugs. The SNP (538G>A) of the ABCC11 gene is suggested to be a clinical biomarker for prediction of chemotherapeutic efficacy. Major obstacle to the successful chemotherapy of human cancer is development of resistance, and nucleoside-based chemotherapy is often characterized by inter-individual variability. This review provides an overview about the discovery and the genetic polymorphisms in human ABCC11. Furthermore, we focus on the impact of ABCC11 538G>A on the apocrine phenotype, patients’ response to nucleoside-based chemotherapy, and the potential risk of breast cancer.
Collapse
Affiliation(s)
- Yu Toyoda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | |
Collapse
|
14
|
Khan S, Elshaer A, Rahman AS, Hanson P, Perrie Y, Mohammed AR. Systems biology approach to study permeability of paracetamol and its solid dispersion. Int J Pharm 2010; 417:272-9. [PMID: 21187133 DOI: 10.1016/j.ijpharm.2010.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/17/2010] [Accepted: 12/18/2010] [Indexed: 10/18/2022]
Abstract
Physiological changes that take place at cellular level are usually reflective of their level of gene expression. Different formulation excipients have an impact on physiological behavior of the exposed cells and in turn affect transporter genes, enterocyte-mediated metabolism and toxicity biomarkers. The aim of this study was to prepare solid dispersion of paracetamol and evaluate genetic changes that occur in Caco-2 cell lines during the permeability of paracetamol alone and paracetamol solid dispersion formulations. Paracetamol-PEG 8000 solid dispersion was prepared by melt fusion method and the formulation was characterised using differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Formulation of solid dispersion resulted in the conversion of crystalline drug into an amorphous form. Permeability studies showed that paracetamol absorption was higher from the solid dispersion formulation. DNA microarrays analysis was carried out in order to investigate the involvement of any efflux/uptake transporters in paracetamol or its solid dispersion permeability. Neither transporter carriers nor efflux proteins were found to be involved in the absorption of paracetamol or its PEG solid dispersion. Gene expression analysis established that paracetamol toxicity was potentially reduced upon formulation into solid dispersion when ATP binding cassette (ABC) and solute carrier transporter (SLC) genes were analyzed.
Collapse
Affiliation(s)
- Sheraz Khan
- Aston Pharmacy School, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | | | | | | | | | |
Collapse
|
15
|
Inoue Y, Mori T, Toyoda Y, Sakurai A, Ishikawa T, Mitani Y, Hayashizaki Y, Yoshimura Y, Kurahashi H, Sakai Y. Correlation of axillary osmidrosis to a SNP in the ABCC11 gene determined by the Smart Amplification Process (SmartAmp) method. J Plast Reconstr Aesthet Surg 2010; 63:1369-74. [DOI: 10.1016/j.bjps.2009.06.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 06/11/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
|
16
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 582] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
17
|
Toyoda Y, Sakurai A, Mitani Y, Nakashima M, Yoshiura KI, Nakagawa H, Sakai Y, Ota I, Lezhava A, Hayashizaki Y, Niikawa N, Ishikawa T. Earwax, osmidrosis, and breast cancer: why does one SNP (538G>A) in the human ABC transporter
ABCC11
gene determine earwax type? FASEB J 2009; 23:2001-13. [DOI: 10.1096/fj.09-129098] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu Toyoda
- Department of Biomolecular EngineeringGraduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Aki Sakurai
- Department of Biomolecular EngineeringGraduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Omics Science Center (OSC)RIKEN Yokohama InstituteYokohamaJapan
| | - Yasumasa Mitani
- Omics Science Center (OSC)RIKEN Yokohama InstituteYokohamaJapan
- Tissue and Histopathology SectionAtomic Bomb Disease InstituteNagasakiJapan
| | - Masahiro Nakashima
- Department of Human GeneticsNagasaki University GraduateSchool of Biomedical SciencesNagasakiJapan
| | - Koh-ichiro Yoshiura
- Department of Human GeneticsNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroshi Nakagawa
- Department of Biomolecular EngineeringGraduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Yasuo Sakai
- Department of Plastic and Reconstructive SurgeryFujita Health UniversityToyoakeJapan
| | - Ikuko Ota
- Omics Science Center (OSC)RIKEN Yokohama InstituteYokohamaJapan
- Department of Gastroenterological SurgeryYokohama City University Graduate School of MedicineYokohamaJapan
| | | | | | - Norio Niikawa
- Department of Human GeneticsNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Research Institute of Personalized Health SciencesHealth Sciences University of HokkaidoHokkaidoJapan
| | - Toshihisa Ishikawa
- Department of Biomolecular EngineeringGraduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyYokohamaJapan
- Omics Science Center (OSC)RIKEN Yokohama InstituteYokohamaJapan
| |
Collapse
|
18
|
Identification of the efflux transporter of the fluoroquinolone antibiotic ciprofloxacin in murine macrophages: studies with ciprofloxacin-resistant cells. Antimicrob Agents Chemother 2009; 53:2410-6. [PMID: 19307362 DOI: 10.1128/aac.01428-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ciprofloxacin, the most widely used totally synthetic antibiotic, is subject to active efflux mediated by a MRP-like transporter in wild-type murine J774 macrophages. To identify the transporter among the seven potential Mrps, we used cells made resistant to ciprofloxacin obtained by long-term exposure to increasing drug concentrations (these cells show less ciprofloxacin accumulation and provide a protected niche for ciprofloxacin-sensitive intracellular Listeria monocytogenes). In the present paper, we first show that ciprofloxacin-resistant cells display a faster efflux of ciprofloxacin which is inhibited by gemfibrozil (an unspecific MRP inhibitor). Elacridar, at a concentration known to inhibit P-glycoprotein and breast cancer resistance protein (BCRP), only slightly increased ciprofloxacin accumulation, with no difference between resistant and wild-type cells. Analysis at the mRNA (real-time PCR) and protein (Western blotting) levels revealed an overexpression of Mrp2 and Mrp4. Mrp4 transcripts, however, were overwhelmingly predominant (45% [wild-type cells] to 95% [ciprofloxacin-resistant cells] of all Mrp transcripts tested [Mrp1 to Mrp7]). Silencing of Mrp2 and Mrp4 with specific small interfering RNAs showed that only Mrp4 is involved in ciprofloxacin transport in both ciprofloxacin-resistant and wild-type cells. The study therefore identifies Mrp4 as the most likely transporter of ciprofloxacin in murine macrophages but leaves open a possible common upregulation mechanism for both Mrp4 and Mrp2 upon chronic exposure of eukaryotic cells to this widely used antibiotic.
Collapse
|
19
|
van de Water FM, Masereeuw R, Russel FGM. Function and Regulation of Multidrug Resistance Proteins (MRPs) in the Renal Elimination of Organic Anions. Drug Metab Rev 2008; 37:443-71. [PMID: 16257830 DOI: 10.1080/03602530500205275] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The reabsorptive and excretory capacity of the kidney has an important influence on the systemic concentration of drugs. Multidrug resistance proteins (MRP/ABCC) expressed in the kidney play a critical role in the tubular efflux of a wide variety of drugs and toxicants, and, in particular, of their negatively charged phase II metabolites. Nine structurally and functionally related MRP family members have been identified (MRP1-9), which differ from each other by their localization, expression levels, and substrate specificity. During altered physiological circumstances, adaptations in these transporters are required to avoid systemic toxicity as well as renal tubular damage. Key players in these events are hormones, protein kinases, nuclear receptors, and disease conditions, which all may affect transporter protein expression levels. This review discusses current knowledge on the renal characteristics of MRP1-9, with specific focus on their regulation.
Collapse
Affiliation(s)
- Femke M van de Water
- Department of Pharmacology and Toxicology 233, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
20
|
Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 2008; 38:833-62. [DOI: 10.1080/00498250701883514] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Lin ZP, Zhu YL, Johnson DR, Rice KP, Nottoli T, Hains BC, McGrath J, Waxman SG, Sartorelli AC. Disruption of cAMP and prostaglandin E2 transport by multidrug resistance protein 4 deficiency alters cAMP-mediated signaling and nociceptive response. Mol Pharmacol 2008; 73:243-51. [PMID: 17959714 PMCID: PMC2780335 DOI: 10.1124/mol.107.039594] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance protein 4 (MRP4; ABCC4) is a member of the MRP/ATP-binding cassette family serving as a transmembrane transporter involved in energy-dependent efflux of anticancer/antiviral nucleotide agents and of physiological substrates, including cyclic nucleotides and prostaglandins (PGs). Phenotypic consequences of mrp4 deficiency were investigated using mrp4-knockout mice and derived immortalized mouse embryonic fibroblast (MEF) cells. Mrp4 deficiency caused decreased extracellular and increased intracellular levels of cAMP in MEF cells under normal and forskolin-stimulated conditions. Mrp4 deficiency and RNA interference-mediated mrp4 knockdown led to a pronounced reduction in extracellular PGE(2) but with no accumulation of intracellular PGE(2) in MEF cells. This result was consistent with attenuated cAMP-dependent protein kinase activity and reduced cyclooxygenase-2 (Cox-2) expression in mrp4-deficient MEF cells, suggesting that PG synthesis is restrained along with a lack of PG transport caused by mrp4 deficiency. Mice lacking mrp4 exhibited no outward phenotypes but had a decrease in plasma PGE metabolites and an increase in inflammatory pain threshold compared with wild-type mice. Collectively, these findings imply that mrp4 mediates the efflux of PGE(2) and concomitantly modulates cAMP mediated signaling for balanced PG synthesis in MEF cells. Abrogation of mrp4 affects the regulation of peripheral PG levels and consequently alters inflammatory nociceptive responses in vivo.
Collapse
Affiliation(s)
- Z. Ping Lin
- Department of Pharmacology and Developmental Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yong-Lian Zhu
- Department of Pharmacology and Developmental Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Dennis R. Johnson
- Department of Pharmacology and Developmental Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Kevin P. Rice
- Department of Chemistry, Colby College, Waterville, Maine
| | - Timothy Nottoli
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Bryan C. Hains
- Cancer Center, and Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - James McGrath
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Stephen G. Waxman
- Cancer Center, and Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Alan C. Sartorelli
- Department of Pharmacology and Developmental Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
22
|
Ono N, Van der Heijden I, Scheffer G, Van de Wetering K, Van Deemter E, De Haas M, Boerke A, Gadella B, De Rooij D, Neefjes J, Groothuis T, Oomen L, Brocks L, Ishikawa T, Borst P. Multidrug resistance-associated protein 9 (ABCC12) is present in mouse and boar sperm. Biochem J 2007; 406:31-40. [PMID: 17472575 PMCID: PMC1948986 DOI: 10.1042/bj20070292] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The human and murine genes for MRP9 (multidrug resistance-associated protein 9; ABCC12) yield many alternatively spliced RNAs. Using a panel of monoclonal antibodies, we detected full-length Mrp9 only in testicular germ cells and mouse sperm; we obtained no evidence for the existence of the truncated 100 kDa MRP9 protein reported previously. In contrast with other MRPs, neither murine Mrp9 nor the human MRP9 produced in MRP9-transfected HEK-293 cells (human embryonic kidney cells) appears to contain N-linked carbohydrates. In mouse and boar sperm, Mrp9 localizes to the midpiece, a structure containing all sperm mitochondria. However, immunolocalization microscopy and cell fractionation studies with transfected HEK-293 cells and mouse testis show that MRP9/Mrp9 does not localize to mitochondria. In HEK-293 cells, it is predominantly localized in the endoplasmic reticulum. We have been unable to demonstrate transport by MRP9 of substrates transported by other MRPs, such as drug conjugates and other organic anions.
Collapse
Affiliation(s)
- Nobuhito Ono
- *Division of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Ingrid Van der Heijden
- *Division of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - George L. Scheffer
- †Department of Pathology, Free University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Koen Van de Wetering
- *Division of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Elizabeth Van Deemter
- *Division of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marcel De Haas
- *Division of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Arjan Boerke
- ‡Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3508 TD Utrecht, The Netherlands
- §Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3508 TD Utrecht, The Netherlands
| | - Bart M. Gadella
- ‡Department of Biochemistry and Cell Biology, Utrecht University, Yalelaan 2, 3508 TD Utrecht, The Netherlands
- §Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3508 TD Utrecht, The Netherlands
| | - Dirk G. De Rooij
- ∥Department of Endocrinology, Faculty of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
- ¶Department of Cell Biology, UMCU (University Medical Centre Utrecht), Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Jacques J. Neefjes
- **Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tom A. M. Groothuis
- **Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lauran Oomen
- **Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lenny Brocks
- **Division of Tumor Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Toshihisa Ishikawa
- ††Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoziku, Yokohama 226-8501, Japan
| | - Piet Borst
- *Division of Molecular Biology and Center of Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
de Wolf CJF, Yamaguchi H, van der Heijden I, Wielinga PR, Hundscheid SL, Ono N, Scheffer GL, de Haas M, Schuetz JD, Wijnholds J, Borst P. cGMP transport by vesicles from human and mouse erythrocytes. FEBS J 2006; 274:439-50. [PMID: 17229149 DOI: 10.1111/j.1742-4658.2006.05591.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
cGMP secretion from cells can be mediated by ATP-binding cassette (ABC) transporters ABCC4, ABCC5, and ABCC11. Indirect evidence suggests that ABCC4 and ABCC5 contribute to cGMP transport by erythrocytes. We have re-investigated the issue using erythrocytes from wild-type and transporter knockout mice. Murine wild-type erythrocyte vesicles transported cGMP with an apparent Km that was 100-fold higher than their human counterparts, the apparent Vmax being similar. Whereas cGMP transport into human vesicles was efficiently inhibited by the ABCC4-specific substrate prostaglandin E1, cGMP transport into mouse vesicles was inhibited equally by Abcg2 and Abcc4 inhibitors/substrates. Similarly, cGMP transport into vesicles from Abcc4-/- and Abcg2-/- mice was 42% and 51% of that into wild-type mouse vesicles, respectively, whereas cGMP transport into vesicles from Abcc4(-/-)/Abcg2(-/-) mice was near background. The knockout mice were used to show that Abcg2-mediated cGMP transport occurred with lower affinity but higher Vmax than Abcc4-mediated transport. Involvement of Abcg2 in cGMP transport by Abcc4-/- erythrocyte vesicles was supported by higher transport at pH 5.5 than at pH 7.4, a characteristic of Abcg2-mediated transport. The relative contribution of ABCC4/Abcc4 and ABCG2/Abcg2 in cGMP transport was confirmed with a new inhibitor of ABCC4 transport, the protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride.
Collapse
Affiliation(s)
- Cornelia J F de Wolf
- Department of Molecular Biology, the Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86:849-99. [PMID: 16816140 DOI: 10.1152/physrev.00035.2005] [Citation(s) in RCA: 552] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Biochemistry, Queen's University Kingdom, Ontario, Canada.
| | | | | |
Collapse
|
25
|
Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG, Chen ZS. ABCC10, ABCC11, and ABCC12. Pflugers Arch 2006; 453:675-84. [PMID: 16868766 DOI: 10.1007/s00424-006-0114-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Accepted: 06/06/2006] [Indexed: 01/23/2023]
Abstract
Multidrug resistance protein (MRP)7, MRP8, and MRP9 (gene symbols ABCC10, ABCC11, and ABCC12) are recently identified members of the MRP family that are at relatively early stages of investigation. Of these proteins, a physiological function has only been established for MRP8, for which a single nucleotide polymorphism determines wet vs dry earwax type. MRP7 and MRP8 are lipophilic anion pumps that are able to confer resistance to chemotherapeutic agents. MRP7 is competent in the transport of the glucuronide E(2)17betaG, and its resistance profile, which includes several natural product anticancer agents, is distinguished by the taxane docetaxel. MRP8 is able to transport a diverse range of lipophilic anions, including cyclic nucleotides, E(2)17betaG, steroid sulfates such as dehydroepiandrosterone (DHEAS) and E(1)S, glutathione conjugates such as leukotriene C4 and dinitrophenyl-S-glutathione, and monoanionic bile acids. However, the constituent of earwax that is susceptible to transport by MRP8 has not been identified. MRP8 has complex interactions with its substrates, as indicated by the nonreciprocal ability of DHEAS to stimulate E(2)17betaG transport. Similar to the case for other MRPs that possess only two membrane spanning domains (MRP4 and MRP5), MRP8 is a cyclic nucleotide efflux pump that is able to confer resistance to nucleoside-based agents, such as PMEA and 5FU. The functional characteristics of MRP9 are currently unknown.
Collapse
Affiliation(s)
- Gary D Kruh
- Medical Science Division, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | | | | | | | |
Collapse
|
26
|
Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 2006; 58:140-61. [PMID: 16714484 DOI: 10.1124/pr.58.2.3] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Drug delivery to the brain is highly restricted, since compounds must cross a series of structural and metabolic barriers to reach their final destination, often a cellular compartment such as neurons, microglia, or astrocytes. The primary barriers to the central nervous system are the blood-brain and blood-cerebrospinal fluid barriers. Through structural modifications, including the presence of tight junctions that greatly limit paracellular transport, the cells that make up these barriers restrict diffusion of many pharmaceutically active compounds. In addition, the cells that comprise the blood-brain and blood-cerebrospinal fluid barriers express multiple ATP-dependent, membrane-bound, efflux transporters, such as members of the multidrug resistance-associated protein (MRP) family, which contribute to lowered drug accumulation. A relatively new concept in brain drug distribution just beginning to be explored is the possibility that cellular components of the brain parenchyma could act as a "second" barrier to brain permeation of pharmacological agents via expression of many of the same transporters. Indeed, efflux transporters expressed in brain parenchyma may facilitate the overall export of xenobiotics from the central nervous system, essentially handing them off to the barrier tissues. We propose that these primary and secondary barriers work in tandem to limit overall accumulation and distribution of xenobiotics in the central nervous system. The present review summarizes recent knowledge in this area and emphasizes the clinical significance of MRP transporter expression in a variety of neurological disorders.
Collapse
Affiliation(s)
- Shannon Dallas
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
27
|
Yoshiura KI, Kinoshita A, Ishida T, Ninokata A, Ishikawa T, Kaname T, Bannai M, Tokunaga K, Sonoda S, Komaki R, Ihara M, Saenko VA, Alipov GK, Sekine I, Komatsu K, Takahashi H, Nakashima M, Sosonkina N, Mapendano CK, Ghadami M, Nomura M, Liang DS, Miwa N, Kim DK, Garidkhuu A, Natsume N, Ohta T, Tomita H, Kaneko A, Kikuchi M, Russomando G, Hirayama K, Ishibashi M, Takahashi A, Saitou N, Murray JC, Saito S, Nakamura Y, Niikawa N. A SNP in the ABCC11 gene is the determinant of human earwax type. Nat Genet 2006; 38:324-30. [PMID: 16444273 DOI: 10.1038/ng1733] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 12/13/2005] [Indexed: 11/09/2022]
Abstract
Human earwax consists of wet and dry types. Dry earwax is frequent in East Asians, whereas wet earwax is common in other populations. Here we show that a SNP, 538G --> A (rs17822931), in the ABCC11 gene is responsible for determination of earwax type. The AA genotype corresponds to dry earwax, and GA and GG to wet type. A 27-bp deletion in ABCC11 exon 29 was also found in a few individuals of Asian ancestry. A functional assay demonstrated that cells with allele A show a lower excretory activity for cGMP than those with allele G. The allele A frequency shows a north-south and east-west downward geographical gradient; worldwide, it is highest in Chinese and Koreans, and a common dry-type haplotype is retained among various ethnic populations. These suggest that the allele A arose in northeast Asia and thereafter spread through the world. The 538G --> A SNP is the first example of DNA polymorphism determining a visible genetic trait.
Collapse
Affiliation(s)
- Koh-ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Klement JF, Matsuzaki Y, Jiang QJ, Terlizzi J, Choi HY, Fujimoto N, Li K, Pulkkinen L, Birk DE, Sundberg JP, Uitto J. Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues. Mol Cell Biol 2005; 25:8299-310. [PMID: 16135817 PMCID: PMC1234326 DOI: 10.1128/mcb.25.18.8299-8310.2005] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/01/2005] [Accepted: 06/17/2005] [Indexed: 12/19/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE), characterized by connective tissue mineralization of the skin, eyes, and cardiovascular system, is caused by mutations in the ABCC6 gene. ABCC6 encodes multidrug resistance-associated protein 6 (MRP6), which is expressed primarily in the liver and kidneys. Mechanisms producing ectopic mineralization as a result of these mutations remain unclear. To elucidate this complex disease, a transgenic mouse was generated by targeted ablation of the mouse Abcc6 gene. Abcc6 null mice were negative for Mrp6 expression in the liver, and complete necropsies revealed profound mineralization of several tissues, including skin, arterial blood vessels, and retina, while heterozygous animals were indistinguishable from the wild-type mice. Particularly striking was the mineralization of vibrissae, as confirmed by von Kossa and alizarin red stains. Electron microscopy revealed mineralization affecting both elastic structures and collagen fibers. Mineralization of vibrissae was noted as early as 5 weeks of age and was progressive with age in Abcc6(-/-) mice but was not observed in Abcc6(+/-) or Abcc6(+/+) mice up to 2 years of age. A total body computerized tomography scan of Abcc6(-/-) mice revealed mineralization in skin and subcutaneous tissue as well as in the kidneys. These data demonstrate aberrant mineralization of soft tissues in PXE-affected organs, and, consequently, these mice recapitulate features of this complex disease.
Collapse
Affiliation(s)
- John F Klement
- Department of Dermatology, Jefferson Medical College, 233 S. 10th Street, Suite 322 BLSB, Philadelphia, PA 19107, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maher JM, Slitt AL, Cherrington NJ, Cheng X, Klaassen CD. Tissue distribution and hepatic and renal ontogeny of the multidrug resistance-associated protein (Mrp) family in mice. Drug Metab Dispos 2005; 33:947-55. [PMID: 15802388 DOI: 10.1124/dmd.105.003780] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Analysis of the mouse genome has revealed eight multidrug resistance-associated (Mrp) transporters, with mouse homologs for all human MRPs except MRP8. Whereas MRP expression in tissues of humans and rats has been examined, no characterization exists for mice. Furthermore, the ontogeny of mouse Mrps is unknown, and such knowledge may be helpful in understanding age-related pharmacokinetics. Therefore, the purpose of this study was to quantitatively determine 1) expression of the Mrp family in 12 different tissues, 2) gender variations in Mrp expression in liver and kidney, and 3) whether Mrp expression is altered during development. Highest expression of the Mrp family members is as follows: Mrp1 in testes, ovary, and placenta; Mrp2 in intestine, followed by liver and kidney; Mrp3 in large intestine; Mrp4 in kidney; Mrp5 in brain, followed by lung and stomach; Mrp6 in liver; Mrp7 in testes, intestine, and kidney; and Mrp9 solely in testes. Gender differences in Mrp expression were observed: Mrp1, 3, and 4 in kidney, as well as Mrp1 and 4 in liver were female-predominant. Ontogeny of the four Mrps expressed in liver was as follows: Mrp2 and Mrp4 were expressed at adult levels at birth; Mrp3 reached adult levels at day 30, and Mrp6 was not expressed until day 10. In kidney, Mrp1 and Mrp5 were expressed at adult levels at birth, whereas Mrp2, 3, 4, and 6 generally increased over time. In conclusion, marked differences in expression of the individual Mrp family members exist in various tissues, with age, and with gender.
Collapse
Affiliation(s)
- Jonathan M Maher
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160-7417, USA
| | | | | | | | | |
Collapse
|
30
|
Ballatori N, Hammond CL, Cunningham JB, Krance SM, Marchan R. Molecular mechanisms of reduced glutathione transport: role of the MRP/CFTR/ABCC and OATP/SLC21A families of membrane proteins. Toxicol Appl Pharmacol 2005; 204:238-55. [PMID: 15845416 DOI: 10.1016/j.taap.2004.09.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/14/2004] [Indexed: 12/30/2022]
Abstract
The initial step in reduced glutathione (GSH) turnover in all mammalian cells is its transport across the plasma membrane into the extracellular space; however, the mechanisms of GSH transport are not clearly defined. GSH export is required for the delivery of its constituent amino acids to other tissues, detoxification of drugs, metals, and other reactive compounds of both endogenous and exogenous origin, protection against oxidant stress, and secretion of hepatic bile. Recent studies indicate that some members of the multidrug resistance-associated protein (MRP/CFTR or ABCC) family of ATP-binding cassette (ABC) proteins, as well as some members of the organic anion transporting polypeptide (OATP or SLC21A) family of transporters contribute to this process. In particular, five of the 12 members of the MRP/CFTR family appear to mediate GSH export from cells namely, MRP1, MRP2, MRP4, MRP5, and CFTR. Additionally, two members of the OATP family, rat Oatp1 and Oatp2, have been identified as GSH transporters. For the Oatp1 transporter, efflux of GSH may provide the driving force for the uptake of extracellular substrates. In humans, OATP-B and OATP8 do not appear to transport GSH; however, other members of this family have yet to be characterized in regards to GSH transport. In yeast, the ABC proteins Ycf1p and Bpt1p transport GSH from the cytosol into the vacuole, whereas Hgt1p mediates GSH uptake across the plasma membrane. Because transport is a key step in GSH homeostasis and is intimately linked to its biological functions, GSH export proteins are likely to modulate essential cellular functions.
Collapse
Affiliation(s)
- Nazzareno Ballatori
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | | | | | | | |
Collapse
|
31
|
Borst P, Balzarini J, Ono N, Reid G, de Vries H, Wielinga P, Wijnholds J, Zelcer N. The potential impact of drug transporters on nucleoside-analog-based antiviral chemotherapy. Antiviral Res 2004; 62:1-7. [PMID: 15026196 DOI: 10.1016/j.antiviral.2003.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2003] [Revised: 10/23/2003] [Accepted: 11/11/2003] [Indexed: 11/17/2022]
Abstract
Several ATP-binding cassette (ABC) transporters can transport drugs out of cells against steep concentration gradients resulting in resistance to the drugs transported. Recent work has shown that at least three members of the family of human Multidrug Resistance-associated Proteins (MRPs), MRP4, 5 and 8, are able to transport some nucleoside-monophosphate analogs. This can result in resistance to the base, nucleoside or nucleotide precursors of these results, at least in cell lines with high levels of transporter. The affinity of these transporters for the nucleotide analogs studied thus far is relatively low (millimolar rather than micromolar), and this limits their potential impact on the resistance. We briefly review how ABC transporters in general, and MRPs in particular, could affect the disposition and cellular accumulation of antiviral compounds.
Collapse
Affiliation(s)
- P Borst
- Division of Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|