1
|
Yao NH, Du YN, Xiong JX, Xiao Y, He HH, Xie ZF, Huang D, Song Q, Chen J, Yan D, Chao HJ. Microbial detoxification of 3,5-xylenol via a novel process with sequential methyl oxidation by Rhodococcus sp. CHJ602. ENVIRONMENTAL RESEARCH 2023; 220:115258. [PMID: 36634895 DOI: 10.1016/j.envres.2023.115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The compound 3,5-xylenol is an essential precursor used in pesticides and industrial intermediate in the disinfectants and preservatives industry. Its widespread application makes it an important source of pollution. Microbial bioremediation is more environmentally friendly than the physicochemical treatment process for removing alkylphenols from a polluted environment. However, the 3,5-xylenol-degrading bacteria is unavailable, and its degradation mechanism remains unclear. Here, a 3,5-xylenol-metabolizing bacterial strain, designated Rhodococcus sp. CHJ602, was isolated using 3,5-xylenol as the sole source of carbon and energy from a wastewater treatment factory. Results showed that strain CHJ602 maintained a high 3,5-xylenol-degrading performance under the conditions of 30.15 °C and pH 7.37. The pathway involved in 3,5-xylenol degradation by strain CHJ602 must be induced by 3,5-xylenol. Based on the identification of intermediate metabolites and enzyme activities, this bacterium could oxidize 3,5-xylenol by a novel metabolic pathway. One methyl oxidation converted 3,5-xylenol to 3-hydroxymethyl-5-methylphenol, 3-hydroxy-5-methyl benzaldehyde, and 3-hydroxy-5-methylbenzoate. After that, another methyl oxidation is converted to 5-hydroxyisophthalicate, which is metabolized by the protocatechuate pathway. It is catalyzed by a series of enzymes in strain CHJ602. In addition, toxicity bioassay result indicates that 3,5-xylenol is toxic to zebrafish and Rhodococcus sp. CHJ602 could eliminate 3,5-xylenol in water to protect zebrafish from its toxicity. The results provide insights into the bioremediation of wastewater contaminated 3,5-xylenol.
Collapse
Affiliation(s)
- Ni-Hong Yao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Ya-Nan Du
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Jia-Xi Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Ying Xiao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Hang-Hang He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Ze-Feng Xie
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan, 430223, PR China
| | - Duo Huang
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan, 430223, PR China
| | - Qi Song
- Hubei Accurate Inspection & Testing Co., Ltd., Wuhan, 430223, PR China
| | - Jing Chen
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Dazhong Yan
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Hong-Jun Chao
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, PR China.
| |
Collapse
|
2
|
Characterization of the 2,6-Dimethylphenol Monooxygenase MpdAB and Evaluation of Its Potential in Vitamin E Precursor Synthesis. Appl Environ Microbiol 2022; 88:e0011022. [PMID: 35380460 DOI: 10.1128/aem.00110-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,6-Dimethylphenol (2,6-DMP) is a widely used chemical intermediate whose residue has been frequently detected in the environment, posing a threat to some aquatic organisms. Microbial degradation is an effective method to eliminate 2,6-DMP in nature. However, the genetic and biochemical mechanisms of 2,6-DMP metabolism remain unknown. Mycobacterium neoaurum B5-4 is a 2,6-DMP-degrading bacterium isolated in our previous study. Here, a 2,6-DMP degradation-deficient mutant of strain B5-4 was screened. Comparative genomic, transcriptomic, gene disruption, and genetic complementation data indicated that mpdA and mpdB are responsible for the initial step of 2,6-DMP degradation in M. neoaurum B5-4. MpdAB was predicted to be a two-component flavin-dependent monooxygenase system, which shows 32% and 36% identities with HsaAB from Mycobacterium tuberculosis CDC1551. The transcription of mpdA and mpdB was substantially increased upon exposure to 2,6-DMP. Nuclear magnetic resonance analysis showed that purified 6×His-MpdA and 6×His-MpdB hydroxylated 2,6-DMP and 2,3,6-trimethylphenol (2,3,6-TMP) at the para-position using NADH and flavin adenine dinucleotide (FAD) as cofactors. The apparent Km values of MpdAB for 2,6-DMP and 2,3,6-TMP were 0.12 ± 0.01 and 0.17 ± 0.01 mM, respectively, and the corresponding kcat/Km values were 4.02 and 2.84 s-1 mM-1, respectively. Since para-hydroxylated 2,3,6-TMP is a major precursor for vitamin E synthesis, the potential of MpdAB in vitamin E synthesis was preliminarily evaluated using whole-cell catalysis. Low expression levels of MpdA and 2,3,6-TMP cytotoxicity limited the efficiency of whole-cell catalysis. Together, this study reveals the genetic and biochemical basis for the initial step of 2,6-DMP biodegradation and provides candidate enzymes for vitamin E synthesis. IMPORTANCE Although the microbial degradation of the six isomers of dimethylphenol has been extensively studied, the genetic and biochemical mechanisms of 2,6-DMP degradation remain unclear. This study identified the genes responsible for the initial step in the 2,6-DMP catabolic pathway in M. neoaurum B5-4. Moreover, MpdAB also catalyzed the transformation of 2,3,6-TMP to 2,3,5-trimethylhydroquinone (2,3,5-TMHQ), a crucial step in vitamin E synthesis. Overall, this study provides candidate enzymes for both the bioremediation of 2,6-DMP contamination and the development of a green method to synthesize vitamin E.
Collapse
|
3
|
Ji J, Zhang Y, Liu Y, Zhu P, Yan X. Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113793. [PMID: 31864921 DOI: 10.1016/j.envpol.2019.113793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 11/06/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
2,6-Dimethylphenol (2,6-DMP), an important chemical intermediate and the monomer of plastic polyphenylene oxide, is widely used in chemical and plastics industry. However, the pollution problem of 2,6-DMP residues is becoming increasingly serious, which is harmful to some aquatic animals. Microbial degradation provided an effective approach to eliminate DMPs in nature, which is considered as a prospective way to remediate DMPs-contaminated environments. But the 2,6-DMP-degrading bacteria is not available and the molecular mechanism of 2,6-DMP degradation is unclear as well. Here, a 2,6-DMP-degrading bacterium named B5-4 was isolated and identified as Mycobacterium neoaurum. M. neoaurum B5-4 could utilize 2,6-DMP as the sole carbon source for growth. Furthermore, M. neoaurum B5-4 could degrade 2,6-DMP with concentrations ranging from 1 to 500 mg L-1. Six intermediate metabolites of 2,6-DMP were identified and a metabolic pathway of 2,6-DMP in M. neoaurum B5-4 was proposed, in which 2,6-DMP was initially converted to 2,6-dimethyl-hydroquinone and 2,6-dimethyl-3-hydroxy-hydroquinone by two consecutive hydroxylations at C-4 and γ position; 2,6-dimethyl-3-hydroxy-hydroquinone was then subjected to aromatic ring ortho-cleavage to produce 2,4-dimethyl-3-hydroxymuconic acid, which was further transformed to citraconate, and subsequently into TCA cycle. In addition, toxicity bioassay of 2,6-DMP in water using zebrafish indicates that 2,6-DMP is toxic to zebrafish and M. neoaurum B5-4 could effectively eliminate 2,6-DMP in water to protect zebrafish from 2,6-DMP-induced death. This work provides a potential strain for bioremediation of 2,6-DMP-contaminated environments and lays a foundation for elucidating the molecular mechanism and genetic determinants of 2,6-DMP degradation.
Collapse
Affiliation(s)
- Junbin Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yanting Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yongchuang Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Pingping Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
4
|
Truskewycz A, Gundry TD, Khudur LS, Kolobaric A, Taha M, Aburto-Medina A, Ball AS, Shahsavari E. Petroleum Hydrocarbon Contamination in Terrestrial Ecosystems-Fate and Microbial Responses. Molecules 2019; 24:molecules24183400. [PMID: 31546774 PMCID: PMC6767264 DOI: 10.3390/molecules24183400] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022] Open
Abstract
Petroleum hydrocarbons represent the most frequent environmental contaminant. The introduction of petroleum hydrocarbons into a pristine environment immediately changes the nature of that environment, resulting in reduced ecosystem functionality. Natural attenuation represents the single, most important biological process which removes petroleum hydrocarbons from the environment. It is a process where microorganisms present at the site degrade the organic contaminants without the input of external bioremediation enhancers (i.e., electron donors, electron acceptors, other microorganisms or nutrients). So successful is this natural attenuation process that in environmental biotechnology, bioremediation has developed steadily over the past 50 years based on this natural biodegradation process. Bioremediation is recognized as the most environmentally friendly remediation approach for the removal of petroleum hydrocarbons from an environment as it does not require intensive chemical, mechanical, and costly interventions. However, it is under-utilized as a commercial remediation strategy due to incomplete hydrocarbon catabolism and lengthy remediation times when compared with rival technologies. This review aims to describe the fate of petroleum hydrocarbons in the environment and discuss their interactions with abiotic and biotic components of the environment under both aerobic and anaerobic conditions. Furthermore, the mechanisms for dealing with petroleum hydrocarbon contamination in the environment will be examined. When petroleum hydrocarbons contaminate land, they start to interact with its surrounding, including physical (dispersion), physiochemical (evaporation, dissolution, sorption), chemical (photo-oxidation, auto-oxidation), and biological (plant and microbial catabolism of hydrocarbons) interactions. As microorganism (including bacteria and fungi) play an important role in the degradation of petroleum hydrocarbons, investigations into the microbial communities within contaminated soils is essential for any bioremediation project. This review highlights the fate of petroleum hydrocarbons in tertial environments, as well as the contributions of different microbial consortia for optimum petroleum hydrocarbon bioremediation potential. The impact of high-throughput metagenomic sequencing in determining the underlying degradation mechanisms is also discussed. This knowledge will aid the development of more efficient, cost-effective commercial bioremediation technologies.
Collapse
Affiliation(s)
- Adam Truskewycz
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Taylor D Gundry
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Leadin S Khudur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Adam Kolobaric
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Mohamed Taha
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Qaliuobia 13736, Egypt.
| | - Arturo Aburto-Medina
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
5
|
Eppinger E, Ferraroni M, Bürger S, Steimer L, Peng G, Briganti F, Stolz A. Function of different amino acid residues in the reaction mechanism of gentisate 1,2-dioxygenases deduced from the analysis of mutants of the salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1425-37. [PMID: 26093111 DOI: 10.1016/j.bbapap.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022]
Abstract
The genome of the α-proteobacterium Pseudaminobacter salicylatoxidans codes for a ferrous iron containing ring-fission dioxygenase which catalyzes the 1,2-cleavage of (substituted) salicylate(s), gentisate (2,5-dihydroxybenzoate), and 1-hydroxy-2-naphthoate. Sequence alignments suggested that the "salicylate 1,2-dioxygenase" (SDO) from this strain is homologous to gentisate 1,2-dioxygenases found in bacteria, archaea and fungi. In the present study the catalytic mechanism of the SDO and gentisate 1,2-dioxygenases in general was analyzed based on sequence alignments, mutational and previously performed crystallographic studies and mechanistic comparisons with "extradiol- dioxygenases" which cleave aromatic nuclei in the 2,3-position. Different highly conserved amino acid residues that were supposed to take part in binding and activation of the organic substrates were modified in the SDO by site-specific mutagenesis and the enzyme variants subsequently analyzed for the conversion of salicylate, gentisate and 1-hydroxy-2-naphthoate. The analysis of enzyme variants which carried exchanges in the positions Arg83, Trp104, Gly106, Gln108, Arg127, His162 and Asp174 demonstrated that Arg83 and Arg127 were indispensable for enzymatic activity. In contrast, residual activities were found for variants carrying mutations in the residues Trp104, Gly106, Gln108, His162, and Asp174 and some of these mutants still could oxidize gentisate, but lost the ability to convert salicylate. The results were used to suggest a general reaction mechanism for gentisate-1,2-dioxygenases and to assign to certain amino acid residues in the active site specific functions in the cleavage of (substituted) salicylate(s).
Collapse
Affiliation(s)
- Erik Eppinger
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Marta Ferraroni
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentin, Italy
| | - Sibylle Bürger
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Lenz Steimer
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Grace Peng
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany
| | - Fabrizio Briganti
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentin, Italy
| | - Andreas Stolz
- Institut für Mikrobiologie, Universität Stuttgart, Stuttgart, Germany.
| |
Collapse
|
6
|
Identification of a Specific Maleate Hydratase in the Direct Hydrolysis Route of the Gentisate Pathway. Appl Environ Microbiol 2015; 81:5753-60. [PMID: 26070679 DOI: 10.1128/aem.00975-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
In contrast to the well-characterized and more common maleylpyruvate isomerization route of the gentisate pathway, the direct hydrolysis route occurs rarely and remains unsolved. In Pseudomonas alcaligenes NCIMB 9867, two gene clusters, xln and hbz, were previously proposed to be involved in gentisate catabolism, and HbzF was characterized as a maleylpyruvate hydrolase converting maleylpyruvate to maleate and pyruvate. However, the complete degradation pathway of gentisate through direct hydrolysis has not been characterized. In this study, we obtained from the NCIMB culture collection a Pseudomonas alcaligenes spontaneous mutant strain that lacked the xln cluster and designated the mutant strain SponMu. The hbz cluster in strain SponMu was resequenced, revealing the correct location of the stop codon for hbzI and identifying a new gene, hbzG. HbzIJ was demonstrated to be a maleate hydratase consisting of large and small subunits, stoichiometrically converting maleate to enantiomerically pure d-malate. HbzG is a glutathione-dependent maleylpyruvate isomerase, indicating the possible presence of two alternative pathways of maleylpyruvate catabolism. However, the hbzF-disrupted mutant could still grow on gentisate, while disruption of hbzG prevented this ability, indicating that the direct hydrolysis route was not a complete pathway in strain SponMu. Subsequently, a d-malate dehydrogenase gene was introduced into the hbzG-disrupted mutant, and the engineered strain was able to grow on gentisate via the direct hydrolysis route. This fills a gap in our understanding of the direct hydrolysis route of the gentisate pathway and provides an explanation for the high yield of d-malate from maleate by this d-malate dehydrogenase-deficient natural mutant.
Collapse
|
7
|
Aerobic biodegradation of organic compounds in hydraulic fracturing fluids. Biodegradation 2015; 26:271-87. [DOI: 10.1007/s10532-015-9733-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
|
8
|
Ferraroni M, Matera I, Bürger S, Reichert S, Steimer L, Scozzafava A, Stolz A, Briganti F. The salicylate 1,2-dioxygenase as a model for a conventional gentisate 1,2-dioxygenase: crystal structures of the G106A mutant and its adducts with gentisate and salicylate. FEBS J 2013; 280:1643-52. [DOI: 10.1111/febs.12173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/02/2013] [Accepted: 01/30/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Marta Ferraroni
- Dipartimento di Chimica ‘Ugo Schiff’; Università di Firenze; Sesto Fiorentino; Italy
| | - Irene Matera
- Dipartimento di Chimica ‘Ugo Schiff’; Università di Firenze; Sesto Fiorentino; Italy
| | - Sibylle Bürger
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart; Germany
| | - Sabrina Reichert
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart; Germany
| | - Lenz Steimer
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart; Germany
| | - Andrea Scozzafava
- Dipartimento di Chimica ‘Ugo Schiff’; Università di Firenze; Sesto Fiorentino; Italy
| | - Andreas Stolz
- Institut für Mikrobiologie; Universität Stuttgart; Stuttgart; Germany
| | - Fabrizio Briganti
- Dipartimento di Chimica ‘Ugo Schiff’; Università di Firenze; Sesto Fiorentino; Italy
| |
Collapse
|
9
|
HbzF catalyzes direct hydrolysis of maleylpyruvate in the gentisate pathway of Pseudomonas alcaligenes NCIMB 9867. Appl Environ Microbiol 2012. [PMID: 23204427 DOI: 10.1128/aem.02931-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HbzF from Pseudomonas alcaligenes NCIMB 9867 was purified to homogeneity as a His-tagged protein and likely a dimer by SDS-PAGE and gel filtration. This protein was demonstrated to be a novel maleylpyruvate hydrolase, catalyzing direct hydrolysis of maleylpyruvate to maleate and pyruvate, and belongs to the fumarylacetoacetate hydrolase superfamily. This study reveals the genetic determinate for the direct maleylpyruvate hydrolysis in the gentisate pathway, complementary to the well-studied maleylpyruvate isomerization route.
Collapse
|
10
|
Xu Y, Wang SH, Chao HJ, Liu SJ, Zhou NY. Biochemical and molecular characterization of the gentisate transporter GenK in Corynebacterium glutamicum. PLoS One 2012; 7:e38701. [PMID: 22808015 PMCID: PMC3392265 DOI: 10.1371/journal.pone.0038701] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/11/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Gentisate (2,5-dihydroxybenzoate) is a key ring-cleavage substrate involved in various aromatic compounds degradation. Corynebacterium glutamicum ATCC13032 is capable of growing on gentisate and genK was proposed to encode a transporter involved in this utilization by its disruption in the restriction-deficient mutant RES167. Its biochemical characterization by uptake assay using [(14)C]-labeled gentisate has not been previously reported. METHODOLOGY/PRINCIPAL FINDINGS In this study, biochemical characterization of GenK by uptake assays with [(14)C]-labeled substrates demonstrated that it specifically transported gentisate into the cells with V(max) and K(m) of 3.06 ± 0.16 nmol/min/mg of dry weight and 10.71 ± 0.11 µM respectively, and no activity was detected for either benzoate or 3-hydoxybenzoate. When GenK was absent in strain RES167 ΔgenK, it retained 85% of its original transport activity at pH 6.5 compared to that of strain RES167. However, it lost 79% and 88% activity at pH 7.5 and 8.0, respectively. A number of competing substrates, including 3-hydroxybenzoate, benzoate, protocatechuate and catechol, significantly inhibited gentisate uptake by more than 40%. Through site-directed mutagenesis, eight amino acid residues of GenK, Asp-54, Asp-57 and Arg-386 in the hydrophobic transmembrane regions and Arg-103, Trp-309, Asp-312, Arg-313 and Ile-317 in the hydrophilic cytoplasmic loops were shown to be important for gentisate transport. When conserved residues Asp-54 and Asp-57 respectively were changed to glutamate, both mutants retained approximately 50% activity and were able to partially complement the ability of strain RES167 ΔgenK to grow on gentisate. CONCLUSIONS/SIGNIFICANCE Our results demonstrate that GenK is an active gentisate transporter in Corynebacterium glutamicum ATCC13032. The GenK-mediated gentisate transport was also shown to be a limiting step for the gentisate utilization by this strain. This enhances our understanding of gentisate transport in the microbial degradation of aromatic compounds.
Collapse
Affiliation(s)
- Ying Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | | | | |
Collapse
|
11
|
Wöhlbrand L, Kallerhoff B, Lange D, Hufnagel P, Thiermann J, Reinhardt R, Rabus R. Functional proteomic view of metabolic regulation in "Aromatoleum aromaticum" strain EbN1. Proteomics 2007; 7:2222-39. [PMID: 17549795 DOI: 10.1002/pmic.200600987] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The denitrifying "Aromatoleum aromaticum" strain EbN1 utilizes a wide range of aromatic and nonaromatic compounds under anoxic and oxic conditions. The recently determined genome revealed corresponding degradation pathways and predicted a fine-tuned regulatory network. In this study, differential proteomics (2-D DIGE and MS) was used to define degradation pathway-specific subproteomes and to determine their growth condition dependent regulation. Differential protein profiles were determined for cultures adapted to growth under 22 different substrate and redox conditions. In total, 354 different proteins were identified, 199 of which displayed significantly changed abundances. These regulated proteins mainly represented enzymes of the different degradation pathways, and revealed different degrees of growth condition specific regulation. In case of three substrate conditions (e.g. phenylalanine, anoxic), proteins previously predicted to be involved in their degradation were apparently not involved (e.g. Pdh, phenylacetaldehyde dehydrogenase). Instead, previously not considered proteins were specifically increased in abundance (e.g. EbA5005, predicted aldehyde:ferredoxin oxidoreductase), shedding new light on the respective pathways. Moreover, strong evidence was obtained for thus far unpredicted degradation pathways of three hitherto unknown substrates (e.g. o-aminobenzoate, anoxic). Comparing all identified regulated and nonregulated proteins provided first insights into regulatory hierarchies of special degradation pathways versus general metabolism in strain EbN1.
Collapse
Affiliation(s)
- Lars Wöhlbrand
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Yeo CC, Tan CL, Gao X, Zhao B, Poh CL. Characterization of hbzE-encoded gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIMB 9867. Res Microbiol 2007; 158:608-16. [PMID: 17720458 DOI: 10.1016/j.resmic.2007.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 06/24/2007] [Accepted: 06/25/2007] [Indexed: 11/23/2022]
Abstract
Pseudomonas alcaligenes NCIMB 9867 (strain P25X) is known to synthesize two isofunctional gentisate 1,2-dioxygenases (GDO; EC 1.13.11.4) as well as other enzymes involved in the degradation of xylenols and cresols via the gentisate pathway. The hbzE gene encoding what is possibly the strictly inducible gentisate 1,2-dioxygenase II (GDO-II) was cloned, overexpressed and purified as a hexahistidine fusion protein from Escherichia coli. Active recombinant GDO-II had an estimated molecular mass of 150kDa and is likely a tetrameric protein with a subunit mass of approximately 40kDa, similar to the previously characterized gentisate 1,2-dioxygenase I (GDO-I) encoded by xlnE. However, GDO-II was unable to utilize gentisate that is substituted at the carbon-4 position, unlike GDO-I which had broader substrate specificity. GDO-II also possessed different kinetic characteristics when compared to GDO-I. The hbzE-encoded GDO-II shared higher sequence identities (53%) with GDOs from Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2, compared with only 35% identity with the xlnE-encoded GDO-I. The hbzE gene was found to be part of a cluster of nine genes including the putative regulatory gene designated hbzR, which encodes an LysR-type regulator and is divergently transcribed from the other genes of the hbzHIJKLFED cluster.
Collapse
Affiliation(s)
- Chew Chieng Yeo
- Department of Biotechnology, Malaysia University of Science and Technology, Block C, Kelana Square, 17 Jalan SS 7/26, 47301 Petaling Jaya, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
13
|
Zhao B, Yeo CC, Tan CL, Poh CL. Proteome analysis of heat shock protein expression inPseudomonas alcaligenes NCIMB 9867 in response to gentisate exposure and elevated growth temperature. Biotechnol Bioeng 2007; 97:506-14. [PMID: 17149773 DOI: 10.1002/bit.21253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas alcaligenes NCIMB 9867 (strain P25X) degrades xylenols and cresols via the gentisate pathway. P25X expresses two isofunctional gentisate 1,2-dioxygenases (GDO I and GDO II). The expression of both GDOs was not detected when P25X cells were grown at 42 degrees C, even in the presence of gentisate. A total of 19 heat shock proteins (Hsps) belonging to the Hsp100, Hsp90, Hsp70, Hsp60, Hsp45, and small heat shock protein (sHsp) families were identified among the protein spots that were either newly detected or were expressed at levels of at least twofold higher when P25X cells were cultured at 32 or 42 degrees C in the presence and absence of gentisate. Among these, 16 Hsps were commonly expressed at 42 degrees C. Two additional Hsps (H5 and H13) from the Hsp90 and Hsp60 families, respectively, were expressed only when P25X cells were grown at 42 degrees C and in the presence of gentisate. A protein of the sHsp (H16) family was expressed only in the presence of gentisate at 32 degrees C but not at 42 degrees C. The GroEL chaperonins of the Hsp60 family comprised the largest group of Hsps identified and exhibited high level of expression at 42 degrees C following gentisate exposure.
Collapse
Affiliation(s)
- Bing Zhao
- Programme in Environmental Microbiology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore
| | | | | | | |
Collapse
|
14
|
Adams MA, Singh VK, Keller BO, Jia Z. Structural and biochemical characterization of gentisate 1,2-dioxygenase from Escherichia coli O157:H7. Mol Microbiol 2006; 61:1469-84. [PMID: 16930152 DOI: 10.1111/j.1365-2958.2006.05334.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gentisic acid (2,5-dihydroxybenzoic acid) is a key intermediate in aerobic bacterial pathways that are responsible for the metabolism of a large number of aromatic compounds. The critical step of these pathways is the oxygen-dependent reaction catalysed by gentisate 1,2-dioxygenase which opens the aromatic ring of gentisate to form maleylpyruvate. From gentisic acid, the cell derives carbon and energy through the conversion of maleylpyruvate to central metabolites. We have confirmed the annotation of a gentisate 1,2-dioygenase from the pathogenic O157:H7 Escherichia coli strain and present the first structural characterization of this family of enzymes. The identity of the reaction product was revealed using tandem mass spectroscopy. The operon responsible for the degradation of gentisate in this organism exhibits a high degree of conservation with the gentisate-degrading operons of other pathogenic bacteria, including the Shiga toxin-producing E. coli O103:H2, but does not appear to be present in non-pathogenic strains. The acquisition of the gentisate operon may represent a special adaptation to meet carbon source requirements under conditions of environmental stress and may provide a selective advantage for enterohaemorrhagic E. coli relative to their non-pathogenic counterparts.
Collapse
Affiliation(s)
- Melanie A Adams
- Department of Biochemistry, Queen's University, Kingston, ON, Canada K7L 3N6
| | | | | | | |
Collapse
|
15
|
Litos C, Terzis A, Raptopoulou C, Rontoyianni A, Karaliota A. Polynuclear oxomolybdenum(VI) complexes of dihydroxybenzoic acids: Synthesis, spectroscopic and structure characterization of a tetranuclear catecholato-type coordinated 2,3-dihydroxybenzoate and a novel tridentate salicylato-type coordinated 2,5-dihydroxybenzoate trinuclear complex. Polyhedron 2006. [DOI: 10.1016/j.poly.2005.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Gao X, Tan CL, Yeo CC, Poh CL. Molecular and biochemical characterization of the xlnD-encoded 3-hydroxybenzoate 6-hydroxylase involved in the degradation of 2,5-xylenol via the gentisate pathway in Pseudomonas alcaligenes NCIMB 9867. J Bacteriol 2005; 187:7696-702. [PMID: 16267294 PMCID: PMC1280293 DOI: 10.1128/jb.187.22.7696-7702.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The xlnD gene from Pseudomonas alcaligenes NCIMB 9867 (strain P25X) was shown to encode 3-hydroxybenzoate 6-hydroxylase I, the enzyme that catalyzes the NADH-dependent conversion of 3-hydroxybenzoate to gentisate. Active recombinant XlnD was purified as a hexahistidine fusion protein from Escherichia coli, had an estimated molecular mass of 130 kDa, and is probably a trimeric protein with a subunit mass of 43 kDa. This is in contrast to the monomeric nature of the few 3-hydroxybenzoate 6-hydroxylases that have been characterized thus far. Like other 3-hydroxybenzoate 6-hydroxylases, XlnD could utilize either NADH or NADPH as the electron donor. P25X harbors a second 3-hydroxybenzoate 6-hydroxylase II that was strictly inducible by specific aromatic substrates. However, the degradation of 2,5-xylenol and 3,5-xylenol in strain P25X was found to be dependent on the xlnD-encoded 6-hydroxylase I and not the second, strictly inducible 6-hydroxylase II.
Collapse
Affiliation(s)
- Xiaoli Gao
- Programme in Environmental Microbiology, Department of Microbiology, National University of Singapore
| | | | | | | |
Collapse
|
17
|
Tan CL, Yeo CC, Khoo HE, Poh CL. Replacement of tyrosine 181 by phenylalanine in gentisate 1,2-dioxygenase I from Pseudomonas alcaligenes NCIMB 9867 enhances catalytic activities. J Bacteriol 2005; 187:7543-5. [PMID: 16237038 PMCID: PMC1272980 DOI: 10.1128/jb.187.21.7543-7545.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
xlnE, encoding gentisate 1,2-dioxygenase (EC 1.13.11.4), from Pseudomonas alcaligenes (P25X) was mutagenized by site-directed mutagenesis. The mutant enzyme, Y181F, demonstrated 4-, 3-, 6-, and 16-fold increases in relative activity towards gentisate and 3-fluoro-, 4-methyl-, and 3-methylgentisate, respectively. The specific mutation conferred a 13-fold higher catalytic efficiency (k(cat)/Km) on Y181F towards 3-methylgentisate than that of the wild-type enzyme.
Collapse
Affiliation(s)
- Chew Ling Tan
- Programme in Environmental Microbiology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597
| | | | | | | |
Collapse
|
18
|
Zhao B, Yeo CC, Poh CL. Proteome investigation of the global regulatory role of σ54 in response to gentisate induction inPseudomonas alcaligenes NCIMB 9867. Proteomics 2005; 5:1868-76. [PMID: 15815998 DOI: 10.1002/pmic.200401081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas alcaligenes NCIMB 9867 (strain P25X) utilizes the gentisate pathway for the degradation of aromatic hydrocarbons. The gene encoding the alternative sigma (sigma) factor sigma(54), rpoN, was cloned from strain P25X and a rpoN knock-out strain, designated G54, was constructed by insertional inactivation with a kanamycin resistance gene cassette. The role of sigma(54) in the physiological response of P. alcaligenes P25X to gentisate induction was assessed by comparing the global protein expression profiles of the wild-type P25X with the rpoN mutant strain G54. Analysis of two-dimensional polyacrylamide gel electrophoresis gels showed that 39 out of 355 prominent protein spots exhibited differential expression as a result of the insertional inactivation of rpoN. Identification of the protein spots by matrix-assisted laser desorption/ionization-time of flight/time of flight revealed a wide diversity of proteins that are affected by the sigma(54) mutation, the largest group being proteins that are involved in carbon metabolism. The strictly inducible gentisate 1,2-dioxygenase, one of two isofunctional copies of the key enzyme in the gentisate pathway, and enzymes of the TCA cycle, pyruvate metabolism and gluconeogenesis were part of this group. Other proteins that are part of the sigma(54) regulon include enzymes implicated in nitrogen metabolism, transport proteins, stress-response proteins and proteins involved in cell motility. The results of this study showed that sigma(54) plays a global regulatory role in the expression of a wide variety of genes in P. alcaligenes, including the wild-type response to the presence of the aromatic inducer, gentisate.
Collapse
Affiliation(s)
- Bing Zhao
- Programme in Environmental Microbiology, Department of Microbiology, Faculty of Medicine, National University of Singapore
| | | | | |
Collapse
|
19
|
Pinyakong O, Habe H, Kouzuma A, Nojiri H, Yamane H, Omori T. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degradingSphingomonassp. strain A4. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09770.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|