1
|
Pang C, Zhang M, Cai H, Song C, Jin Z, Ren SC, Chi YR. Design, Synthesis, and Herbicidal Activity of Biaryl-Pyridazinone/Phthalimide Derivatives as Novel Protoporphyrinogen Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6458-6467. [PMID: 40048640 DOI: 10.1021/acs.jafc.4c07526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
In this study, a series of biaryl-pyridazinone/phthalimide derivatives were designed and synthesized as novel protoporphyrinogen IX oxidase (PPO) inhibitors. Herbicidal activity and crop safety assessments revealed that some compounds exhibited excellent herbicidal activity and crop safety profiles. For instance, at 37.5 g ai/ha, compound 7m inhibited Amaranthus retroflexus (AR), Abutilon theophrasti (AT), Medicago sativa (MS), Echinochloa crus-galli (EC), and Digitaria sanguinalis (DS) with 90% to 100% efficacy, comparable to the commercial herbicide saflufenacil (SAF). Compound 7m still showed effective weed control against the test broadleaf weeds at a lower dose of 9.375 g ai/ha. Additionally, 7m demonstrated excellent safety for wheat and corn at dosages up to 150 g ai/ha. In vitro experiments revealed that the representative compounds exhibited significant inhibitory activity against Arabidopsis thaliana PPO (AtPPO). Molecular docking of Nicotiana tabacum PPO (NtPPO) and 7m showed significant hydrogen bonding, π-π stacking, and π-alkyl interactions between 7m and residues, such as Cys-177, Thr-176, Arg-98, Phe-392, and Leu-372. Furthermore, 7m caused a notable reduction in chlorophyll (Chl) content in weeds. 7m is a promising candidate for the development of novel herbicides.
Collapse
Affiliation(s)
- Chen Pang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Cai
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Chaoyang Song
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- Qingdao KingAgroot Precision Agriculture Technology Co. Ltd, Qingdao 266000, People's Republic of China
| | - Shi-Chao Ren
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide; Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
2
|
Zeng J, Zhao L, Lu Y, Zuo T, Huang B, Wang D, Zhou Y, Lei Z, Mo Y, Liu Y, Gao J. Agrobacterium-mediated transformation of B. juncea reveals that BjuLKP2 functions in plant yellowing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:200. [PMID: 39122841 DOI: 10.1007/s00122-024-04707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
KEY MESSAGE A stable Agrobacterium-mediated transformation system was constructed for B. juncea, and BjuLKP2 was overexpressed, leading to plant yellowing. A stable and efficient transformation system is necessary to verify gene functions in plants. To establish an Agrobacterium-mediated transformation system for B. juncea, various factors, including the explant types, hormone combination and concentration, infection time and concentration, were optimized. Eventually, a reliable system was established, and two BjuLKP2 overexpression (OE) lines, which displayed yellowing of cotyledons, shoot tips, leaves and flower buds, as well as a decrease in total chlorophyll content, were generated. qRT-PCR assays revealed significant upregulation of five chlorophyll synthesis genes and downregulation of one gene in the BjuLKP2 OE line. Furthermore, antioxidant capacity assays revealed reduced activities of APX, CAT and SOD, while POD activity increased in the BjuLKP2 OE26. Additionally, the kinetic determination of chlorophyll fluorescence induction suggested a decrease in the photosynthetic ability of BjuLKP2 OE26. GUS assays revealed the expression of BjuLKP2 in various tissues, including the roots, hypocotyls, cotyledons, leaf vasculature, trichomes, sepals, petals, filaments, styles and stigma bases, but not in seeds. Scanning electron revealed alterations in chloroplast ultrastructure in both the sponge and palisade tissue. Collectively, these findings indicate that BjuLKP2 plays a role in plant yellowing through a reduction in chlorophyll content and changes in chloroplasts structure.
Collapse
Affiliation(s)
- Jing Zeng
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, People's Republic of China
| | - Liang Zhao
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yuanqing Lu
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, People's Republic of China
| | - Tonghong Zuo
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, People's Republic of China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Diandong Wang
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, People's Republic of China
| | - Yawen Zhou
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, People's Republic of China
| | - Zhongxin Lei
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, People's Republic of China
| | - Yanling Mo
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, People's Republic of China
| | - Yihua Liu
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, People's Republic of China
| | - Jian Gao
- School of Life Advanced Agriculture Bioengineering, Yangtze Normal University, Chongqing, 408100, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Deng XJ, Li CY, Xiao YK, Zhao K, Guo J, Yang XR, Zhang HS, Chen CP, Luo YT, Tang YL, Yang B, Sun CH, Wang PR. Mutation of Protoporphyrinogen IX Oxidase Gene Causes Spotted and Rolled Leaf and Its Overexpression Generates Herbicide Resistance in Rice. Int J Mol Sci 2022; 23:ijms23105781. [PMID: 35628595 PMCID: PMC9146718 DOI: 10.3390/ijms23105781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
Protoporphyrinogen IX (Protogen IX) oxidase (PPO) catalyzes the oxidation of Protogen IX to Proto IX. PPO is also the target site for diphenyl ether-type herbicides. In plants, there are two PPO encoding genes, PPO1 and PPO2. To date, no PPO gene or mutant has been characterized in monocotyledonous plants. In this study, we isolated a spotted and rolled leaf (sprl1) mutant in rice (Oryza sativa). The spotted leaf phenotype was sensitive to high light intensity and low temperature, but the rolled leaf phenotype was insensitive. We confirmed that the sprl1 phenotypes were caused by a single nucleotide substitution in the OsPPO1 (LOC_Os01g18320) gene. This gene is constitutively expressed, and its encoded product is localized to the chloroplast. The sprl1 mutant accumulated excess Proto(gen) IX and reactive oxygen species (ROS), resulting in necrotic lesions. The expressions of 26 genes associated with tetrapyrrole biosynthesis, photosynthesis, ROS accumulation, and rolled leaf were significantly altered in sprl1, demonstrating that these expression changes were coincident with the mutant phenotypes. Importantly, OsPPO1-overexpression transgenic plants were resistant to the herbicides oxyfluorfen and acifluorfen under field conditions, while having no distinct influence on plant growth and grain yield. These finding indicate that the OsPPO1 gene has the potential to engineer herbicide resistance in rice.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (C.-H.S.)
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Xiao-Jian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (C.-H.S.)
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
- Correspondence: (X.-J.D.); (P.-R.W.)
| | - Chun-Yan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Yong-Kang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Ke Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Xiao-Rong Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Hong-Shan Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Cong-Ping Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Ya-Ting Luo
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Yu-Lin Tang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Chang-Hui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (C.-H.S.)
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
| | - Ping-Rong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.L.); (C.-H.S.)
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (C.-Y.L.); (Y.-K.X.); (K.Z.); (J.G.); (X.-R.Y.); (H.-S.Z.); (C.-P.C.); (Y.-T.L.); (Y.-L.T.); (B.Y.)
- Correspondence: (X.-J.D.); (P.-R.W.)
| |
Collapse
|
4
|
Kořený L, Oborník M, Horáková E, Waller RF, Lukeš J. The convoluted history of haem biosynthesis. Biol Rev Camb Philos Soc 2021; 97:141-162. [PMID: 34472688 DOI: 10.1111/brv.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/14/2023]
Abstract
The capacity of haem to transfer electrons, bind diatomic gases, and catalyse various biochemical reactions makes it one of the essential biomolecules on Earth and one that was likely used by the earliest forms of cellular life. Since the description of haem biosynthesis, our understanding of this multi-step pathway has been almost exclusively derived from a handful of model organisms from narrow taxonomic contexts. Recent advances in genome sequencing and functional studies of diverse and previously neglected groups have led to discoveries of alternative routes of haem biosynthesis that deviate from the 'classical' pathway. In this review, we take an evolutionarily broad approach to illuminate the remarkable diversity and adaptability of haem synthesis, from prokaryotes to eukaryotes, showing the range of strategies that organisms employ to obtain and utilise haem. In particular, the complex evolutionary histories of eukaryotes that involve multiple endosymbioses and horizontal gene transfers are reflected in the mosaic origin of numerous metabolic pathways with haem biosynthesis being a striking case. We show how different evolutionary trajectories and distinct life strategies resulted in pronounced tensions and differences in the spatial organisation of the haem biosynthesis pathway, in some cases leading to a complete loss of a haem-synthesis capacity and, rarely, even loss of a requirement for haem altogether.
Collapse
Affiliation(s)
- Luděk Kořený
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| | - Eva Horáková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge, CB2 1QW, U.K
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice (Budweis), 370 05, Czech Republic.,Faculty of Sciences, University of South Bohemia, Branišovská, České Budějovice (Budweis), 31, Czech Republic
| |
Collapse
|
5
|
Kaundun SS, Hutchings SJ, Marchegiani E, Rauser R, Jackson LV. A derived Polymorphic Amplified Cleaved Sequence assay for detecting the Δ210 PPX2L codon deletion conferring target-site resistance to protoporphyrinogen oxidase-inhibiting herbicides. PEST MANAGEMENT SCIENCE 2020; 76:789-796. [PMID: 31400066 DOI: 10.1002/ps.5581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Resistance to protoporphyrinogen oxidase (PPO)-inhibiting herbicides in Amaranthus rudis from corn/soybean production systems in the USA appears to be mainly due to a codon deletion at position 210 of the target PPX2L gene. In this study, we have developed a simple and cost-effective derived Polymorphic Amplified Cleaved Sequenced (dPACS) marker for detecting this resistance-causing deletion in A. rudis and other relevant weed species. RESULTS Ninety-six plants from 16 diverse fomesafen-sensitive and resistant A. rudis populations from Illinois and Iowa were used to establish the dPACS procedure. The assay requires forced mismatches in both the forward and reverse PCR primers and uses the restriction enzyme XcmI for the positive identification of wild type glycine residue at PPX2L codon position 210. The data from the dPACS method, using either leaf tissues or seeds as starting material, were completely correlated with direct Sanger sequencing results for samples that gave readable nucleotide peaks around codon 210 of PPX2L. Furthermore, the assay was directly transferable to all four other Amaranthus species tested, and to Ambrosia artemisiifolia using species-specific primers. CONCLUSION The proposed assay will allow the rapid detection of the Δ210 codon deletion in the PPX2L gene and the timely development of management strategies for tackling growing resistance to PPO-inhibiting herbicides in A. rudis and other broadleaf weed species. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shiv S Kaundun
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Sarah-Jane Hutchings
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Elisabetta Marchegiani
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Ruben Rauser
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| | - Lucy V Jackson
- Herbicide Bioscience, Syngenta, Jealott's Hill International Research Centre, Berkshire, UK
| |
Collapse
|
6
|
Li J, Zhang F, Li Y, Yang W, Lin R. Chloroplast-Localized Protoporphyrinogen IX Oxidase1 Is Involved in the Mitotic Cell Cycle in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2436-2448. [PMID: 31350548 DOI: 10.1093/pcp/pcz135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protoporphyrinogen IX oxidase1 (PPO1) catalyzes the oxidation of protoporphyrinogen IX to form protoporphyrin IX in the plastid tetrapyrrole biosynthesis pathway and is also essential for plastid RNA editing in Arabidopsis thaliana. The Arabidopsis ppo1-1 mutation was previously shown to be seedling lethal; however, in this study, we showed that the heterozygous ppo1-1/+ mutant exhibited reproductive growth defects characterized by reduced silique length and seed set, as well as aborted pollen development. In this mutant, the second mitotic division was blocked during male gametogenesis, whereas female gametogenesis was impaired at the one-nucleate stage. Before perishing at the seedling stage, the homozygous ppo1-1 mutant displayed reduced hypocotyl and root length, increased levels of reactive oxygen species accumulation and elevated cell death, especially under light conditions. Wild-type seedlings treated with acifluorfen, a PPO1 inhibitor, showed similar phenotypes to the ppo1-1 mutants, and both plants possessed a high proportion of 2C nuclei and a low proportion of 8C nuclei compared with the untreated wild type. Genome-wide RNA-seq analysis showed that a number of genes, including cell cycle-related genes, were differentially regulated by PPO1. Consistently, PPO1 was highly expressed in the pollen, anther, pistil and root apical meristem cells actively undergoing cell division. Our study reveals a role for PPO1 involved in the mitotic cell cycle during gametogenesis and seedling development.
Collapse
Affiliation(s)
- Jialong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fan Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weicai Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Brzezowski P, Ksas B, Havaux M, Grimm B, Chazaux M, Peltier G, Johnson X, Alric J. The function of PROTOPORPHYRINOGEN IX OXIDASE in chlorophyll biosynthesis requires oxidised plastoquinone in Chlamydomonas reinhardtii. Commun Biol 2019; 2:159. [PMID: 31069268 PMCID: PMC6499784 DOI: 10.1038/s42003-019-0395-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
In the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX). The absence of thylakoid-localised plastid terminal oxidase 2 (PTOX2) and cytochrome b6f complex in the ptox2 petB mutant, results in almost complete reduction of the plastoquinone pool (PQ pool) in light. Here we show that the lack of oxidised PQ impairs PPX function, leading to accumulation and subsequently uncontrolled oxidation of Protogen to non-metabolised Proto. Addition of 3(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) prevents the over-reduction of the PQ pool in ptox2 petB and decreases Proto accumulation. This observation strongly indicates the need of oxidised PQ as the electron acceptor for the PPX reaction in Chlamydomonas reinhardtii. The PPX-PQ pool interaction is proposed to function as a feedback loop between photosynthetic electron transport and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Pawel Brzezowski
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
- Humboldt-Universität zu Berlin, Institut für Biologie/Pflanzenphysiologie, 10115 Berlin, Germany
| | - Brigitte Ksas
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Michel Havaux
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire d’Ecophysiologie Moléculaire des Plantes, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Bernhard Grimm
- Humboldt-Universität zu Berlin, Institut für Biologie/Pflanzenphysiologie, 10115 Berlin, Germany
| | - Marie Chazaux
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Gilles Peltier
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Xenie Johnson
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Jean Alric
- Aix Marseille Université, CNRS, CEA, Institut de Biosciences et Biotechnologies Aix-Marseille, Laboratoire de Bioénergétique et Biotechnologie des Bactéries et Microalgues, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| |
Collapse
|
8
|
Park J, Ahn YO, Nam JW, Hong MK, Song N, Kim T, Yu GH, Sung SK. Biochemical and physiological mode of action of tiafenacil, a new protoporphyrinogen IX oxidase-inhibiting herbicide. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 152:38-44. [PMID: 30497709 DOI: 10.1016/j.pestbp.2018.08.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/05/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
We conducted biochemical and physiological experiments to investigate the mode of action of tiafenacil (Terrad'or™), a new protoporphyrinogen IX oxidase (PPO)-inhibiting pyrimidinedione herbicide. Analysis of the half-maximal inhibitory concentration (IC50) against recombinant PPO enzymes from various plant species, including amaranth (Amaranthus tuberculatus), soybean (Glycine max), arabidopsis (Arabidopsis thaliana), and rapeseed (Brassica napus), showed that tiafenacil had an IC50 of 22 to 28 nM, similar to the pyrimidinedione herbicides butafenacil and saflufenacil and the N-phenylphthalimide herbicide flumioxazin. By contrast, tiafenacil exhibited 3- to 134-fold lower IC50 values than the diphenyl ether herbicides fomesafen, oxyfluorfen, and acifluorfen. Tiafenacil is non-selective and is herbicidal to both dicots and monocots, such as the weeds velvetleaf (Abutilon theophrasti), amaranth, and barnyardgrass (Echinochloa crus-galli) as well as the crops soybean, rapeseed, rice (Oryza sativa), and maize (Zea mays) at concentrations ranging from 1 to 50 μM. Treatment of plant tissue with tiafenacil in darkness resulted in the accumulation of protoporphyrin IX. Subsequent exposure to light increased the content of malondialdehyde and significantly decreased the Fv/Fm values of chlorophyll fluorescence. The results suggest that tiafenacil is a new PPO-inhibiting pyrimidinedione herbicide.
Collapse
Affiliation(s)
- Joonghyuk Park
- FarmHannong Co., Ltd., Yeoui-daero 24, Yeongdeungpo-gu, Seoul 07320, Republic of Korea
| | - Young Ock Ahn
- FarmHannong Co., Ltd., Yeoui-daero 24, Yeongdeungpo-gu, Seoul 07320, Republic of Korea
| | - Jeong-Won Nam
- FarmHannong Co., Ltd., Yeoui-daero 24, Yeongdeungpo-gu, Seoul 07320, Republic of Korea
| | - Myoung-Ki Hong
- FarmHannong Co., Ltd., Yeoui-daero 24, Yeongdeungpo-gu, Seoul 07320, Republic of Korea
| | - Namsook Song
- FarmHannong Co., Ltd., Yeoui-daero 24, Yeongdeungpo-gu, Seoul 07320, Republic of Korea
| | - Taejoon Kim
- FarmHannong Co., Ltd., Yeoui-daero 24, Yeongdeungpo-gu, Seoul 07320, Republic of Korea
| | - Gyung-Hee Yu
- Korean Agency for Technology and Standards, Isu-ro 93, Maengdong-myeon, Eumseong-gun, Chungcheongbuk-do 27737, Republic of Korea
| | - Soon-Kee Sung
- FarmHannong Co., Ltd., Yeoui-daero 24, Yeongdeungpo-gu, Seoul 07320, Republic of Korea.
| |
Collapse
|
9
|
Skotnicová P, Sobotka R, Shepherd M, Hájek J, Hrouzek P, Tichý M. The cyanobacterial protoporphyrinogen oxidase HemJ is a new b-type heme protein functionally coupled with coproporphyrinogen III oxidase. J Biol Chem 2018; 293:12394-12404. [PMID: 29925590 DOI: 10.1074/jbc.ra118.003441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/14/2018] [Indexed: 12/27/2022] Open
Abstract
Protoporphyrinogen IX oxidase (PPO), the last enzyme that is common to both chlorophyll and heme biosynthesis pathways, catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX. PPO has several isoforms, including the oxygen-dependent HemY and an oxygen-independent enzyme, HemG. However, most cyanobacteria encode HemJ, the least characterized PPO form. We have characterized HemJ from the cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis 6803) as a bona fide PPO; HemJ down-regulation resulted in accumulation of tetrapyrrole precursors and in the depletion of chlorophyll precursors. The expression of FLAG-tagged Synechocystis 6803 HemJ protein (HemJ.f) and affinity isolation of HemJ.f under native conditions revealed that it binds heme b The most stable HemJ.f form was a dimer, and higher oligomeric forms were also observed. Using both oxygen and artificial electron acceptors, we detected no enzymatic activity with the purified HemJ.f, consistent with the hypothesis that the enzymatic mechanism for HemJ is distinct from those of other PPO isoforms. The heme absorption spectra and distant HemJ homology to several membrane oxidases indicated that the heme in HemJ is redox-active and involved in electron transfer. HemJ was conditionally complemented by another PPO, HemG from Escherichia coli. If grown photoautotrophically, the complemented strain accumulated tripropionic tetrapyrrole harderoporphyrin, suggesting a defect in enzymatic conversion of coproporphyrinogen III to protoporphyrinogen IX, catalyzed by coproporphyrinogen III oxidase (CPO). This observation supports the hypothesis that HemJ is functionally coupled with CPO and that this coupling is disrupted after replacement of HemJ by HemG.
Collapse
Affiliation(s)
- Petra Skotnicová
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Roman Sobotka
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Mark Shepherd
- the School of Biosciences, RAPID Group, University of Kent, Canterbury CT2 7NZ,United Kingdom
| | - Jan Hájek
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Pavel Hrouzek
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic.,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| | - Martin Tichý
- From the Czech Academy of Sciences, Institute of Microbiology, Centre Algatech, 379 81 Třeboň, Czech Republic, .,the Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic, and
| |
Collapse
|
10
|
Kachroo AH, Laurent JM, Akhmetov A, Szilagyi-Jones M, McWhite CD, Zhao A, Marcotte EM. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway. eLife 2017; 6:e25093. [PMID: 28661399 PMCID: PMC5536947 DOI: 10.7554/elife.25093] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from Escherichia coli. After accounting for mitochondrial localization and alternative start codons, 31 out of 51 bacterial genes tested (61%) could complement a lethal growth defect and replace their yeast orthologs with minimal effects on growth rate. Replaceability was determined on a pathway-by-pathway basis; codon usage, abundance, and sequence similarity contributed predictive power. The heme biosynthesis pathway was particularly amenable to inter-kingdom exchange, with each yeast enzyme replaceable by its bacterial, human, or plant ortholog, suggesting it as a near-universally swappable pathway.
Collapse
Affiliation(s)
- Aashiq H Kachroo
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Jon M Laurent
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Azat Akhmetov
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Madelyn Szilagyi-Jones
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Claire D McWhite
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Alice Zhao
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, United States
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| |
Collapse
|
11
|
Park JH, Jung S. Perturbations of carotenoid and tetrapyrrole biosynthetic pathways result in differential alterations in chloroplast function and plastid signaling. Biochem Biophys Res Commun 2017; 482:672-677. [PMID: 27865844 DOI: 10.1016/j.bbrc.2016.11.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022]
Abstract
In this study, we used the biosynthetic inhibitors of carotenoid and tetrapyrrole biosynthetic pathways, norflurazon (NF) and oxyfluorfen (OF), as tools to gain insight into mechanisms of photooxidation in rice plants. NF resulted in bleaching symptom on leaves of the treated plants, whereas OF treatment developed a fast symptom of an apparent necrotic phenotype. Both plants exhibited decreases in photosynthetic efficiency, as indicated by Fv/Fm. NF caused severe disruption in thylakoid membranes, whereas OF-treated plants exhibited disruption of chloroplast envelope and plasma membrane. Levels of Lhca and Lhcb proteins in photosystem I (PSI) and PSII were reduced by photooxidative stress in NF- and OF-treated plants, with a greater decrease in NF plants. The down-regulation of nuclear-encoded photosynthesis genes Lhcb and rbcS was also found in both NF- and OF-treated plants, whereas plastid-encoded photosynthetic genes including RbcL, PsaC, and PsbD accumulated normally in NF plants but decreased drastically in OF plants. This proposes that the plastids in NF plants retain their potential to develop thylakoid membranes and that photobleaching is mainly controlled by nuclear genes. Distinct photooxidation patterns between NF- and OF-treated plants developed differential signaling, which might enable the plant to coordinate the expression of photosynthetic genes from the nuclear and plastidic genomes.
Collapse
Affiliation(s)
- Joon-Heum Park
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea
| | - Sunyo Jung
- School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
12
|
|
13
|
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole Metabolism in Arabidopsis thaliana. THE ARABIDOPSIS BOOK 2011; 9:e0145. [PMID: 22303270 PMCID: PMC3268503 DOI: 10.1199/tab.0145] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Higher plants produce four classes of tetrapyrroles, namely, chlorophyll (Chl), heme, siroheme, and phytochromobilin. In plants, tetrapyrroles play essential roles in a wide range of biological activities including photosynthesis, respiration and the assimilation of nitrogen/sulfur. All four classes of tetrapyrroles are derived from a common biosynthetic pathway that resides in the plastid. In this article, we present an overview of tetrapyrrole metabolism in Arabidopsis and other higher plants, and we describe all identified enzymatic steps involved in this metabolism. We also summarize recent findings on Chl biosynthesis and Chl breakdown. Recent advances in this field, in particular those on the genetic and biochemical analyses of novel enzymes, prompted us to redraw the tetrapyrrole metabolic pathways. In addition, we also summarize our current understanding on the regulatory mechanisms governing tetrapyrrole metabolism. The interactions of tetrapyrrole biosynthesis and other cellular processes including the plastid-to-nucleus signal transduction are discussed.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Tatsuru Masuda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Boynton TO, Gerdes S, Craven SH, Neidle EL, Phillips JD, Dailey HA. Discovery of a gene involved in a third bacterial protoporphyrinogen oxidase activity through comparative genomic analysis and functional complementation. Appl Environ Microbiol 2011; 77:4795-801. [PMID: 21642412 PMCID: PMC3147383 DOI: 10.1128/aem.00171-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 05/20/2011] [Indexed: 11/20/2022] Open
Abstract
Tetrapyrroles are ubiquitous molecules in nearly all living organisms. Heme, an iron-containing tetrapyrrole, is widely distributed in nature, including most characterized aerobic and facultative bacteria. A large majority of bacteria that contain heme possess the ability to synthesize it. Despite this capability and the fact that the biosynthetic pathway has been well studied, enzymes catalyzing at least three steps have remained "missing" in many bacteria. In the current work, we have employed comparative genomics via the SEED genomic platform, coupled with experimental verification utilizing Acinetobacter baylyi ADP1, to identify one of the missing enzymes, a new protoporphyrinogen oxidase, the penultimate enzyme in heme biosynthesis. COG1981 was identified by genomic analysis as a candidate protein family for the missing enzyme in bacteria that lacked HemG or HemY, two known protoporphyrinogen oxidases. The predicted amino acid sequence of COG1981 is unlike those of the known enzymes HemG and HemY, but in some genomes, the gene encoding it is found neighboring other heme biosynthetic genes. When the COG1981 gene was deleted from the genome of A. baylyi, a bacterium that lacks both hemG and hemY, the organism became auxotrophic for heme. Cultures accumulated porphyrin intermediates, and crude cell extracts lacked protoporphyrinogen oxidase activity. The heme auxotrophy was rescued by the presence of a plasmid-borne protoporphyrinogen oxidase gene from a number of different organisms, such as hemG from Escherichia coli, hemY from Myxococcus xanthus, or the human gene for protoporphyrinogen oxidase.
Collapse
Affiliation(s)
- Tye O. Boynton
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia 30602
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois 60527
| | - Sarah H. Craven
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Ellen L. Neidle
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia 30602
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - John D. Phillips
- Division of Hematology, University of Utah School of Medicine, Salt Lake City, Utah 84132
| | - Harry A. Dailey
- Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia 30602
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
15
|
Identification of a gene essential for protoporphyrinogen IX oxidase activity in the cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A 2010; 107:16649-54. [PMID: 20823222 DOI: 10.1073/pnas.1000771107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protoporphyrinogen oxidase (Protox) catalyses the oxidation of protoporphyrinogen IX to protoporphyrin IX during the synthesis of tetrapyrrole molecules. Protox is encoded by the hemY gene in eukaryotes and by the hemG gene in many γ-proteobacteria, including Escherichia coli. It has been suggested that other bacteria possess a yet unidentified type of Protox. To identify a unique bacterial gene encoding Protox, we first introduced the Arabidopsis hemY gene into the genome of the cyanobacterium, Synechocystis sp. PCC6803. We subsequently mutagenized the cells by transposon tagging and screened the tagged lines for mutants that were sensitive to acifluorfen, which is a specific inhibitor of the hemY-type Protox. Several cell lines containing the tagged slr1790 locus exhibited acifluorfen sensitivity. The slr1790 gene encodes a putative membrane-spanning protein that is distantly related to the M subunit of NADH dehydrogenase complex I. We attempted to disrupt this gene in the wild-type background of Synechocystis, but we were only able to obtain heteroplasmic disruptants. These cells accumulated a substantial amount of protoporphyrin IX, suggesting that the slr1790 gene is essential for growth and Protox activity of cells. We found that most cyanobacteria and many other bacteria possess slr1790 homologs. We overexpressed an slr1790 homolog of Rhodobacter sphaeroides in Escherichia coli and found that this recombinant protein possesses Protox activity in vitro. These results collectively demonstrate that slr1790 encodes a unique Protox enzyme and we propose naming the slr1790 gene "hemJ."
Collapse
|
16
|
Yue B, Cai X, Vick B, Hu J. Genetic characterization and molecular mapping of a chlorophyll deficiency gene in sunflower (Helianthus annuus). JOURNAL OF PLANT PHYSIOLOGY 2009; 166:644-51. [PMID: 18947900 DOI: 10.1016/j.jplph.2008.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/02/2008] [Accepted: 09/02/2008] [Indexed: 05/04/2023]
Abstract
A major gene controlling chlorophyll deficiency (phenotyped by yellow leaf color, yl) in sunflower was identified and mapped in an F(2) population derived from a cross between two breeding lines. Greenness degree was scored by a hand-held chlorophyll meter in the F(2) population. Leaf tissue from the parents, F(1) hybrids, and some F(2) progenies were also sampled to determine the chlorophyll content. All F(1) plants had normal green leaf color and the segregation of the plants in the F(2) population fits the monogenic ratio (chi((3:1))(2)=0.03, p>0.9), indicating that leaf color is a monogenic trait with normal green dominant over yellow leaf color in this population. The contents of chlorophyll a, chlorophyll b, and total chlorophyll in the yellow-leafed lines were reduced by 41.6%, 53.5%, and 44.3%, respectively, in comparison with those in the green-leafed lines. Genetic mapping with molecular markers positioned the gene, yl, to linkage group 10 of sunflower. An SSR marker, ORS 595, cosegregated with yl, and a TRAP marker, B26P17ga5-300, was linked to yl with a genetic distance of 4.2cM. The molecular marker tightly linked to the chlorophyll deficiency gene will provide insight into the process of chlorophyll metabolism in sunflower.
Collapse
Affiliation(s)
- Bing Yue
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58105, USA
| | | | | | | |
Collapse
|
17
|
Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. PLANT PHYSIOLOGY 2007; 145:29-40. [PMID: 17535821 PMCID: PMC1976586 DOI: 10.1104/pp.107.100321] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Chlorophyll (Chl) synthase catalyzes esterification of chlorophyllide to complete the last step of Chl biosynthesis. Although the Chl synthases and the corresponding genes from various organisms have been well characterized, Chl synthase mutants have not yet been reported in higher plants. In this study, a rice (Oryza Sativa) Chl-deficient mutant, yellow-green leaf1 (ygl1), was isolated, which showed yellow-green leaves in young plants with decreased Chl synthesis, increased level of tetrapyrrole intermediates, and delayed chloroplast development. Genetic analysis demonstrated that the phenotype of ygl1 was caused by a recessive mutation in a nuclear gene. The ygl1 locus was mapped to chromosome 5 and isolated by map-based cloning. Sequence analysis revealed that it encodes the Chl synthase and its identity was verified by transgenic complementation. A missense mutation was found in a highly conserved residue of YGL1 in the ygl1 mutant, resulting in reduction of the enzymatic activity. YGL1 is constitutively expressed in all tissues, and its expression is not significantly affected in the ygl1 mutant. Interestingly, the mRNA expression of the cab1R gene encoding the Chl a/b-binding protein was severely suppressed in the ygl1 mutant. Moreover, the expression of some nuclear genes associated with Chl biosynthesis or chloroplast development was also affected in ygl1 seedlings. These results indicate that the expression of nuclear genes encoding various chloroplast proteins might be feedback regulated by the level of Chl or Chl precursors.
Collapse
Affiliation(s)
- Ziming Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Tetrapyrroles play vital roles in various biological processes, including photosynthesis and respiration. Higher plants contain four classes of tetrapyrroles, namely, chlorophyll, heme, siroheme, and phytochromobilin. All of the tetrapyrroles are derived from a common biosynthetic pathway. Here we review recent progress in the research of tetrapyrrole biosynthesis from a cellular biological view. The progress consists of biochemical, structural, and genetic analyses, which contribute to our understanding of how the flow and the synthesis of tetrapyrrole molecules are regulated and how the potentially toxic intermediates of tetrapyrrole synthesis are maintained at low levels. We also describe interactions of tetrapyrrole biosynthesis and other cellular processes including the stay-green events, the cell-death program, and the plastid-to-nucleus signal transduction. Finally, we present several reports on attempts for agricultural and horticultural applications in which the tetrapyrrole biosynthesis pathway was genetically modified.
Collapse
Affiliation(s)
- Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-ku, Sapporo 060-0819, Japan.
| | | |
Collapse
|
19
|
Lermontova I, Grimm B. Reduced activity of plastid protoporphyrinogen oxidase causes attenuated photodynamic damage during high-light compared to low-light exposure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:499-510. [PMID: 17059408 DOI: 10.1111/j.1365-313x.2006.02894.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Protoporphyrinogen oxidase (EC 1.3.3.4, PPOX) is the last enzyme in the branched tetrapyrrole biosynthetic pathway, before its substrate protoporphyrin is directed to the Mg and Fe branches for chlorophyll and haem biosynthesis, respectively. The enzyme exists in many plants in two similar isoforms, which are either exclusively located in plastids (PPOX I) or in mitochondria and plastids (PPOX II). Antisense RNA expression inhibited the formation of PPOX I in transgenic tobacco plants, which showed reduced growth rate and necrotic leaf damage. The cytotoxic effect is attributed to accumulation of photodynamically acting protoporphyrin. The expression levels of PPOX I mRNA and protein and the cellular enzyme activities were reduced to similar extents in transgenic plants grown under low- or high-light conditions (70 and 530 mumol photons m(-2) sec(-1)). More necrotic leaf lesions were surprisingly generated under low- than under high-light exposure. Several reasons were explored to explain this paradox and the intriguing necrotic phenotype of PPOX-deficient plants under both light intensity growth conditions. The same reduction of PPOX expression and activity under both light conditions led to similar initial protoporphyrin, but to faster decrease in protoporphyrin content during high light. It is likely that a light intensity-dependent degradation of reduced and oxidized porphyrins prevents severe photodynamic leaf damage. Moreover, under high-light conditions, elevated contents of reduced and total low-molecular-weight antioxidants contribute to the protection against photosensitizing porphyrins. These reducing conditions stabilize protoporphyrinogen in plastids and allow their redirection into the metabolic pathway.
Collapse
Affiliation(s)
- Inna Lermontova
- Institute of Biology/Plant Physiology, Humboldt University, Philippstr. 13, Building 12, 10115 Berlin, Germany
| | | |
Collapse
|
20
|
Patzoldt WL, Hager AG, McCormick JS, Tranel PJ. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc Natl Acad Sci U S A 2006; 103:12329-34. [PMID: 16894159 PMCID: PMC1567880 DOI: 10.1073/pnas.0603137103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herbicides that act by inhibiting protoporphyrinogen oxidase (PPO) are widely used to control weeds in a variety of crops. The first weed to evolve resistance to PPO-inhibiting herbicides was Amaranthus tuberculatus, a problematic weed in the midwestern United States that previously had evolved multiple resistances to herbicides inhibiting two other target sites. Evaluation of a PPO-inhibitor-resistant A. tuberculatus biotype revealed that resistance was a (incompletely) dominant trait conferred by a single, nuclear gene. Three genes predicted to encode PPO were identified in A. tuberculatus. One gene from the resistant biotype, designated PPX2L, contained a codon deletion that was shown to confer resistance by complementation of a hemG mutant strain of Escherichia coli grown in the presence and absence of the PPO inhibitor lactofen. PPX2L is predicted to encode both plastid- and mitochondria-targeted PPO isoforms, allowing a mutation in a single gene to confer resistance to two herbicide target sites. Unique aspects of the resistance mechanism include an amino acid deletion, rather than a substitution, and the dual-targeting nature of the gene, which may explain why resistance to PPO inhibitors has been rare.
Collapse
Affiliation(s)
| | - Aaron G. Hager
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Joel S. McCormick
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | - Patrick J. Tranel
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
- To whom correspondence should be addressed at:
Department of Crop Sciences, University of Illinois, 320 ERML, 1201 West Gregory Drive, Urbana, IL 61801. E-mail:
| |
Collapse
|
21
|
Li X, Nicholl D. Development of PPO inhibitor-resistant cultures and crops. PEST MANAGEMENT SCIENCE 2005; 61:277-285. [PMID: 15660355 DOI: 10.1002/ps.1011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent progress in the development of protoporphyrinogen oxidase (PPO, Protox) inhibitor-resistant plant cell cultures and crops is reviewed, with emphasis on the molecular and cellular aspects of this topic. PPO herbicide-resistant maize plants have been reported, along with the isolation of plant PPO genes and the isolation of herbicide-resistant mutants. At the same time, PPO inhibitor-resistant rice plants have been developed by expression of the Bacillus subtilis PPO gene via targeting the gene into either chloroplast or cytoplasm. Other attempts to develop PPO herbicide-resistant plants include conventional tissue culture methods, expression of modified co-factors of the protoporphyrin IX binding subunit proteins, over-expression of wild-type plant PPO gene, and engineering of P-450 monooxygenases to degrade the PPO inhibitor.
Collapse
Affiliation(s)
- Xianggan Li
- Syngenta Biotechnology, Inc, PO Box 12257, 3054 Cornwallis Road, Research Triangle Park, North Carolina 27709-2257, USA.
| | | |
Collapse
|
22
|
Morgan RR, Errington R, Elder GH. Identification of sequences required for the import of human protoporphyrinogen oxidase to mitochondria. Biochem J 2004; 377:281-7. [PMID: 14535846 PMCID: PMC1223874 DOI: 10.1042/bj20030978] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 09/26/2003] [Accepted: 10/10/2003] [Indexed: 11/17/2022]
Abstract
Protoporphyrinogen oxidase (PPOX; EC 1.3.3.4), the penultimate enzyme of haem biosynthesis, is a nucleus-encoded flavoprotein strongly associated with the outer surface of the inner mitochondrial membrane. It is attached to this membrane by an unknown mechanism that appears not to involve a membrane-spanning domain. The pathway for its import to mitochondria and insertion into the inner membrane has not been established. We have fused human PPOXs containing N-terminal deletions, C-terminal deletions or missense mutations to yellow fluorescent protein (YFP) and have used these constructs to investigate the mitochondrial import of PPOX in human cells. We show that all the information required for efficient import is contained within the first 250 amino acid residues of human PPOX and that targeting to mitochondria is prevented by fusion of YFP to the N-terminus. Deletion of between 151 and 175 residues from the N-terminus is required to abolish import, whereas shorter deletions impair its efficiency. Fully efficient targeting appears to require both a major targeting signal, the whole or part of which is contained between residues 151 and 175, and which may be involved in anchoring to the inner mitochondrial membrane, together with interaction between this region and a sequence(s) within the first 150 residues. These features suggest that the mechanism for import of human PPOX to mitochondria differs from those identified for the translocation of nucleus-encoded, membrane-spanning, inner membrane proteins. In addition, a missense mutation outside this region (Val(335)-->Gly) prevented targeting to mitochondria and delayed the appearance of YFP fluorescence. This mutation appeared to prevent import by a direct effect on protein folding rather than by altering a sequence required for targeting. It may lead to sequestration of the PPOX-YFP construct in an unfolded conformation, followed by proteolytic degradation, possibly through enhanced binding to a cytosolic chaperone protein.
Collapse
Affiliation(s)
- Rhian R Morgan
- Department of Medical Biochemistry and Immunology, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | |
Collapse
|
23
|
Li X, Volrath SL, Nicholl DBG, Chilcott CE, Johnson MA, Ward ER, Law MD. Development of protoporphyrinogen oxidase as an efficient selection marker for Agrobacterium tumefaciens-mediated transformation of maize. PLANT PHYSIOLOGY 2003; 133:736-47. [PMID: 12972658 PMCID: PMC219048 DOI: 10.1104/pp.103.026245] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Revised: 07/01/2003] [Accepted: 07/19/2003] [Indexed: 05/18/2023]
Abstract
In this article, we report the isolation of plant protoporphyrinogen oxidase (PPO) genes and the isolation of herbicide-tolerant mutants. Subsequently, an Arabidopsis double mutant (Y426M + S305L) was used to develop a selectable marker system for Agrobacterium tumefaciens-mediated transformation of maize (Zea mays) and to obtain multiple events tolerant to the PPO family of herbicides. Maize transformants were produced via butafenacil selection using a flexible light regime to increase selection pressure. Butafenacil selection per se did not change transgene copy number distribution relative to other selectable marker systems, but the most tolerant events identified in the greenhouse were more likely to contain multiple copies of the introduced mutant PPO gene. To date, more than 2,500 independent transgenic maize events have been produced using butafenacil selection. The high frequency of A. tumefaciens-mediated transformation via PPO selection enabled us to obtain single-copy transgenic maize lines tolerant to field levels of butafenacil.
Collapse
Affiliation(s)
- Xianggan Li
- Syngenta Biotechnology, Inc., P.O. Box 12257, 3054 Cornwallis Road, Research Triangle Park, NC 27709-2257, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Kusaba A, Ansai T, Akifusa S, Nakahigashi K, Taketani S, Inokuchi H, Takehara T. Cloning and expression of a Porphyromonas gingivalis gene for protoporphyrinogen oxidase by complementation of a hemG mutant of Escherichia coli. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:290-5. [PMID: 12354210 DOI: 10.1034/j.1399-302x.2002.170505.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Porphyromonas gingivalis, a bacterium implicated in periodontal pathogenesis, has a growth requirement for iron protoporphyrin IX. By complementation with a P. gingivalis 381 chromosomal DNA library, we were able to isolate a clone that enhanced the poor growth of a hemG mutant of Escherichia coli. The DNA sequence analysis of this clone revealed three open reading frames (ORFs). ORF3 encoded a protein of 466 amino acids with a calculated molecular weight of 51 695 Da. The deduced amino acid sequence of the ORF3 gene had significant similarity to sequences of protoporphyrinogen oxidase (PPO) from Myxococcus xanthus (30% identical residues). When the ORF3 gene was overexpressed in E. coli, the extract had much higher PPO activity than a control extract, and this activity was inhibited by acifluorfen, a specific inhibitor of PPO. Thus, ORF3 was named PgHemG. Furthermore, several porphyrin-related genes, including hemD, hemN and hemH, were identified in the data bases on the websites available on-line. We postulated that a porphyrin biosynthetic pathway to heme from preuroporphyrin may be conserved in P. gingivalis.
Collapse
Affiliation(s)
- A Kusaba
- Department of Preventive Dentistry, Kyushu Dental College, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Kanjo N, Nakahigashi K, Oeda K, Inokuchi H. Isolation and characterization of a cDNA from soybean and its homolog from Escherichia coli, which both complement the light sensitivity of Escherichia coli hemH mutant strain VS101. Genes Genet Syst 2001; 76:327-34. [PMID: 11817648 DOI: 10.1266/ggs.76.327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Using Escherichia coli strain VS101, whose hemH gene encoding the ferrochelatase is partially defective, we isolated and analyzed a clone (designated XWH-1) from a X phage library of soybean (Glycine max) cDNA, which exhibited weak complementation activity against the light sensitivity of VS101. In VS101 bacteria lysogenized with lambdaWH-1, a significant decrease in accumulation of protoporphyrin IX (PROTO IX) was detected as compared with that in non-lysogenic bacteria. On the other hand, in the wild-type E. coli strains lysogenized with lambdaWH-1, significant accumulation of delta-aminolevulinic acid (ALA) was observed, although accumulation of other intermediates such as uroporphyrinogen III (UROGEN III) and coproporphyrinogen III (COPROGEN III), was not observed. The growth of the wild-type bacteria in which the insert cDNA from deltaWH-1 had been introduced via a plasmid vector was markedly inhibited. By constructing, testing and sequencing a series of deletion clones of the insert, it was found that the insert encodes two proteins, a trancated LepA and a hypothetical protein ORF296, and that only ORF296 possesses the ability to block the heme biosynthetic pathway. ORF296 showed about 30% identity with the E. coli hypothetical protein YicL. By cloning and examining the gene for YicL in E. coli, we found that YicL shows the same effect as that of the soybean cDNA. From these findings, we concluded that the clone from soybean and yicL from E. coli block a step in an early stage of the heme biosynthetic pathway (probably the step catalyzed by HemB). Consequently, we postulate that the VS101 bacteria harboring these genes became light resistant as a result of a decrease in accumulated PROTO IX, and that the growth of the bacteria harboring these genes was inhibited because of the inhibition of heme biosynthesis at the step catalyzed by HemB.
Collapse
Affiliation(s)
- N Kanjo
- Department of Biophysics, Graduate School of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
26
|
de Marco A, Volrath S, Bruyere T, Law M, Fonné-Pfister R. Recombinant maize protoporphyrinogen IX oxidase expressed in Escherichia coli forms complexes with GroEL and DnaK chaperones. Protein Expr Purif 2000; 20:81-6. [PMID: 11035954 DOI: 10.1006/prep.2000.1274] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The clone corresponding to maize plastidic protoporphyrinogen IX oxidase (PPO) has been isolated by functional complementation and inserted into a pET16b vector for expression in Escherichia coli. Recombinant PPO was purified by standard affinity chromatography using a metal chelating resin. Two contaminants copurified with recombinant PPO and were identified as GroEL and DnaK. Since chaperone binding to hydrophobic regions of the protein is regulated by ATP availability, an ATP washing step was introduced prior to elution of the recombinant protein from an affinity column. This washing step selectively removed both chaperones and allowed the recovery of pure PPO. Coexpression of PPO and GroELS resulted in a sixfold increase of soluble PPO yield, suggesting that bacterial chaperones could be limiting during the folding of the heterologous protein. However, a portion of PPO was still found in the insoluble fraction. Buffer containing the GroEL and DnaK enabled resuspension of PPO from the insoluble fraction but failed to enhance refolding of the denaturated protein. Attempts to increase the amount of soluble PPO using a thioredoxin-PPO fusion protein were not successful. Initial characterization of the recombinant PPO found that it possessed a high V(max), an elevated affinity for substrate, and an elevated sensitivity to PPO inhibitor herbicides compared to previous reports.
Collapse
Affiliation(s)
- A de Marco
- LD Biochemistry Unit, Novartis Crop Protection AG, Basel, CH-4002, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Che FS, Watanabe N, Iwano M, Inokuchi H, Takayama S, Yoshida S, Isogai A. Molecular characterization and subcellular localization of protoporphyrinogen oxidase in spinach chloroplasts. PLANT PHYSIOLOGY 2000; 124:59-70. [PMID: 10982422 PMCID: PMC59122 DOI: 10.1104/pp.124.1.59] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2000] [Accepted: 04/27/2000] [Indexed: 05/23/2023]
Abstract
Protoporphyrinogen oxidase (Protox) is the last common enzyme in the biosynthesis of chlorophylls and heme. In plants, there are two isoenzymes of Protox, one located in plastids and other in the mitochondria. We cloned the cDNA of spinach (Spinacia oleracea) plastidal Protox and purified plastidal Protox protein from spinach chloroplasts. Sequence analysis of the cDNA indicated that the plastid Protox of spinach is composed of 562 amino acids containing the glycine-rich motif GxGxxG previously proposed to be a dinucleotide binding site of many flavin-containing proteins. The cDNA of plastidal Protox complemented a Protox mutation in Escherichia coli. N-terminal sequence analysis of the purified enzyme revealed that the plastidal Protox precursor is processed at the N-terminal site of serine-49. The predicted transit peptide (methionine-1 to cysteine-48) was sufficient for the transport of precursors into the plastid because green fluorescent protein fused with the predicted transit peptide was transported to the chloroplast. Immunocytochemical analysis using electron microscopy showed that plastidal Protox is preferentially associated with the stromal side of the thylakoid membrane, and a small portion of the enzyme is located on the stromal side of the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- F S Che
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama Ikoma, Nara 630-0101, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Maeda N, Horie Y, Sasaki Y, Adachi K, Nanba E, Nishida K, Saigo R, Nakagawa M, Kawasaki H, Kudo Y, Kondo M. Three novel mutations in the protoporphyrinogen oxidase gene in Japanese patients with variegate porphyria. Clin Biochem 2000; 33:495-500. [PMID: 11074242 DOI: 10.1016/s0009-9120(00)00142-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- N Maeda
- Second Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Watanabe N, Che FS, Terashima K, Takayama S, Yoshida S, Isogai A. Purification and properties of protoporphyrinogen oxidase from spinach chloroplasts. PLANT & CELL PHYSIOLOGY 2000; 41:889-92. [PMID: 10965946 DOI: 10.1093/pcp/pcd007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Protoporphyrinogen oxidase (Protox), an enzyme that catalyzes the common step of chlorophyll and heme biosynthetic pathways, was purified from spinach chloroplasts. The molecular weight of purified protein was estimated to be approximately 60,000 by SDS-PAGE. Protox activity was stimulated by addition of FAD, suggesting that chloroplast Protox requires FAD as a cofactor. Furthermore, the Protox-inhibiting herbicide, S23142, specifically inhibited the purified Protox activity at an IC50 value of 1 nM.
Collapse
Affiliation(s)
- N Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Corrigall AV, Hift RJ, Davids LM, Hancock V, Meissner D, Kirsch RE, Meissner PN. Homozygous variegate porphyria in South Africa: genotypic analysis in two cases. Mol Genet Metab 2000; 69:323-30. [PMID: 10870850 DOI: 10.1006/mgme.2000.2975] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Variegate porphyria is an autosomal dominant disorder of heme metabolism which results from decreased activity of the enzyme protoporphyrinogen oxidase. Clinically, the disease manifests postpubertally and is characterized by photocutaneous sensitivity and/or acute neurovisceral crises. However, in homozygous variegate porphyria, onset of the disease usually occurs in infancy with severe skin manifestations. The molecular basis of variegate porphyria in two severely affected probands in two South African families is described. Mutation detection included combined SSCP-heteroduplex analysis followed by direct sequencing. The unrelated probands both had the common R59W mutation while the other lesion was Y348C or R138P (both novel mutations), causing homozygous variegate porphyria.
Collapse
Affiliation(s)
- A V Corrigall
- Department of Medicine, University of Cape Town Medical School, South Africa
| | | | | | | | | | | | | |
Collapse
|
31
|
Lermontova I, Grimm B. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl-ether herbicide acifluorfen. PLANT PHYSIOLOGY 2000; 122:75-84. [PMID: 10631251 PMCID: PMC58846 DOI: 10.1104/pp.122.1.75] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/1999] [Accepted: 10/01/1999] [Indexed: 05/18/2023]
Abstract
The use of herbicides to control undesirable vegetation has become a universal practice. For the broad application of herbicides the risk of damage to crop plants has to be limited. We introduced a gene into the genome of tobacco (Nicotiana tabacum) plants encoding the plastid-located protoporphyrinogen oxidase of Arabidopsis, the last enzyme of the common tetrapyrrole biosynthetic pathway, under the control of the cauliflower mosaic virus 35S promoter. The transformants were screened for low protoporphyrin IX accumulation upon treatment with the diphenyl ether-type herbicide acifluorfen. Leaf disc incubation and foliar spraying with acifluorfen indicated the lower susceptibility of the transformants against the herbicide. The resistance to acifluorfen is conferred by overexpression of the plastidic isoform of protoporphyrinogen oxidase. The in vitro activity of this enzyme extracted from plastids of selected transgenic lines was at least five times higher than the control activity. Herbicide treatment that is normally inhibitory to protoporphyrinogen IX oxidase did not significantly impair the catalytic reaction in transgenic plants and, therefore, did not cause photodynamic damage in leaves. Therefore, overproduction of protoporphyrinogen oxidase neutralizes the herbicidal action, prevents the accumulation of the substrate protoporphyrinogen IX, and consequently abolishes the light-dependent phytotoxicity of acifluorfen.
Collapse
Affiliation(s)
- I Lermontova
- Institut f]ur Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | | |
Collapse
|
32
|
Molina A, Volrath S, Guyer D, Maleck K, Ryals J, Ward E. Inhibition of protoporphyrinogen oxidase expression in Arabidopsis causes a lesion-mimic phenotype that induces systemic acquired resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 17:667-678. [PMID: 10230064 DOI: 10.1046/j.1365-313x.1999.00420.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have used an antisense expression technology in Arabidopsis based on the yeast GAL4/UAS transactivation system (Guyer et al., Genetics, 1998; 149:633-639) to reduce levels of protoporphyrinogen IX oxidase (PPO), the last common enzyme of the biosynthesis of the haem group and chlorophyll. Plants expressing the antisense PPO gene presented growth alterations and their leaves showed necrotic lesions that appeared similar to lesions characteristic of the pathogen-induced hypersensitive reaction, and seen in the so-called lesion-mimic mutants. Plants expressing the antisense gene also had high endogenous salicylic acid levels, constitutive expression of the PR-1 gene, and were resistant to Peronospora parasitica, consistent with the activation of systemic acquired resistance (SAR). Treatment of wild-type plants with sublethal concentrations of herbicides that inhibit PPO also induced defence responses that conferred enhanced tolerance to P. parasitica. This effect was not observed in NahG and nim1 plants, which are compromised in their ability to activate SAR. These results demonstrate that genetic or chemical disruption of a metabolic pathway can lead to the induction of a set of defence responses including activation of SAR.
Collapse
Affiliation(s)
- A Molina
- Biotechnology and Genomics Center, Novartis Crop Protection Inc., Research Triangle Park, NC 27709-2257, USA
| | | | | | | | | | | |
Collapse
|
33
|
Corrigall AV, Siziba KB, Maneli MH, Shephard EG, Ziman M, Dailey TA, Dailey HA, Kirsch RE, Meissner PN. Purification of and kinetic studies on a cloned protoporphyrinogen oxidase from the aerobic bacterium Bacillus subtilis. Arch Biochem Biophys 1998; 358:251-6. [PMID: 9784236 DOI: 10.1006/abbi.1998.0834] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The previously cloned and expressed protoporphyrinogen oxidase from Bacillus subtilis has been purified to homogeneity by Ni2+ affinity chromatography using a His6 tag and characterized. The enzyme has a molecular weight of approximately 56,000 daltons, a pI of 7.5, a pH optimum (protoporphyrinogen) of 8.7, and a noncovalently bound flavine adenine dinucleotide cofactor. The Michaelis constants (Km) for protoporphyrinogen-IX, coproporphyrinogen-III, and mesoporphyrinogen-IX are 1.0, 5.29, and 4.92 microM, respectively. Polyclonal antibody to B. subtilis protoporphyrinogen oxidase demonstrated weak cross-reactivity with both human and Myxococcus xanthus protoporphyrinogen oxidase. B. subtilis protoporphyrinogen oxidase is not inhibited by the diphenyl ether herbicide acifluorfen at 100 microM and is weakly inhibited by methylacifluorfen at the same concentration. Bilirubin, biliverdin, and hemin are all competitive inhibitors of this enzyme.
Collapse
Affiliation(s)
- A V Corrigall
- MRC/UCT Liver Research Centre, University of Cape Town Medical School, Observatory, 7925, South Africa
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Arnould S, Camadro JM. The domain structure of protoporphyrinogen oxidase, the molecular target of diphenyl ether-type herbicides. Proc Natl Acad Sci U S A 1998; 95:10553-8. [PMID: 9724741 PMCID: PMC27932 DOI: 10.1073/pnas.95.18.10553] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protoporphyrinogen oxidase (EC 1-3-3-4), the 60-kDa membrane-bound flavoenzyme that catalyzes the final reaction of the common branch of the heme and chlorophyll biosynthesis pathways in plants, is the molecular target of diphenyl ether-type herbicides. It is highly resistant to proteases (trypsin, endoproteinase Glu-C, or carboxypeptidases A, B, and Y), because the protein is folded into an extremely compact form. Trypsin maps of the native purified and membrane-bound yeast protoporphyrinogen oxidase show that this basic enzyme (pI > 8.5) was cleaved at a single site under nondenaturing conditions, generating two peptides with relative molecular masses of 30,000 and 35,000. The endoproteinase Glu-C also cleaved the protein into two peptides with similar masses, and there was no additional cleavage site under mild denaturing conditions. N-terminal peptide sequence analysis of the proteolytic (trypsin and endoproteinase Glu-C) peptides showed that both cleavage sites were located in putative connecting loop between the N-terminal domain (25 kDa) with the betaalphabeta ADP-binding fold and the C-terminal domain (35 kDa), which possibly is involved in the binding of the isoalloxazine moiety of the FAD cofactor. The peptides remained strongly associated and fully active with the Km for protoporphyrinogen and the Ki for various inhibitors, diphenyl-ethers, or diphenyleneiodonium derivatives, identical to those measured for the native enzyme. However, the enzyme activity of the peptides was much more susceptible to thermal denaturation than that of the native protein. Only the C-terminal domain of protoporphyrinogen oxidase was labeled specifically in active site-directed photoaffinity-labeling experiments. Trypsin may have caused intramolecular transfer of the labeled group to reactive components of the N-terminal domain, resulting in nonspecific labeling. We suggest that the active site of protoporphyrinogen oxidase is in the C-terminal domain of the protein, at the interface between the C- and N-terminal domains.
Collapse
Affiliation(s)
- S Arnould
- Laboratoire de Biochimie des Porphyrines, Département de Microbiologie, Institut Jacques Monod, Unité Mixte de Recherche 7592 Centre National de la Recherche Scientifique- Université Paris 7-Université Paris 6, 2 Place Jussieu, F-7525, France
| | | |
Collapse
|
35
|
Lermontova I, Kruse E, Mock HP, Grimm B. Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci U S A 1997; 94:8895-900. [PMID: 9238074 PMCID: PMC23187 DOI: 10.1073/pnas.94.16.8895] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1997] [Accepted: 05/23/1997] [Indexed: 02/04/2023] Open
Abstract
Protoporphyrinogen IX oxidase is the last enzyme in the common pathway of heme and chlorophyll synthesis and provides precursor for the mitochondrial and plastidic heme synthesis and the predominant chlorophyll synthesis in plastids. We cloned two different, full-length tobacco cDNA sequences by complementation of the protoporphyrin-IX-accumulating Escherichia coli hemG mutant from heme auxotrophy. The two sequences show similarity to the recently published Arabidopsis PPOX, Bacillus subtilis hemY, and to mammalian sequences encoding protoporphyrinogen IX oxidase. One cDNA sequence encodes a 548-amino acid residues protein with a putative transit sequence of 50 amino acid residues, and the second cDNA encodes a protein of 504 amino acid residues. Both deduced protein sequences share 27.2% identical amino acid residues. The first in vitro translated protoporphyrinogen IX oxidase could be translocated to plastids, and the approximately 53-kDa mature protein was detected in stroma and membrane fraction. The second enzyme was targeted to mitochondria without any detectable reduction in size. Localization of both enzymes in subcellular fractions was immunologically confirmed. Steady-state RNA analysis indicates an almost synchronous expression of both genes during tobacco plant development, greening of young seedlings, and diurnal and circadian growth. The mature plastidal and the mitochondrial isoenzyme were overexpressed in E. coli. Bacterial extracts containing the recombinant mitochondrial enzyme exhibit high protoporphyrinogen IX oxidase activity relative to control strains, whereas the plastidal enzyme could only be expressed as an inactive peptide. The data presented confirm a compartmentalized pathway of tetrapyrrole synthesis with protoporphyrinogen IX oxidase in plastids and mitochondria.
Collapse
Affiliation(s)
- I Lermontova
- Institut für Pflanzengenetik und Kulturpflanzenforschung Gatersleben, IPK Corrensstrasse 3, 06466 Gatersleben, Germany
| | | | | | | |
Collapse
|