1
|
The wmN1 Enhancer Region of the Mouse Myelin Proteolipid Protein Gene (mPlp1) is Indispensable for Expression of an mPlp1-lacZ Transgene in Both the CNS and PNS. Neurochem Res 2019; 45:663-671. [PMID: 31782102 DOI: 10.1007/s11064-019-02919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
The myelin proteolipid protein gene (PLP1) encodes the most abundant protein in CNS myelin. Expression of the gene must be strictly regulated, as evidenced by human X-linked leukodystrophies resulting from variations in PLP1 copy number, including elevated dosages as well as deletions. Recently, we showed that the wmN1 region in human PLP1 (hPLP1) intron 1 is required to promote high levels of an hPLP1-lacZ transgene in mice, using a Cre-lox approach. The current study tests whether loss of the wmN1 region from a related transgene containing mouse Plp1 (mPlp1) DNA produces similar results. In addition, we investigated the effects of loss of another region (ASE) in mPlp1 intron 1. Previous studies have shown that the ASE is required to promote high levels of mPlp1-lacZ expression by transfection analysis, but had no effect when removed from the native gene in mouse. Whether this is due to compensation by another regulatory element in mPlp1 that was not included in the mPlp1-lacZ constructs, or to differences in methodology, is unclear. Two transgenic mouse lines were generated that harbor mPLP(+)Z/FL. The parental transgene utilizes mPlp1 sequences (proximal 2.3 kb of 5'-flanking DNA to the first 37 bp of exon 2) to drive expression of a lacZ reporter cassette. Here we demonstrate that mPLP(+)Z/FL is expressed in oligodendrocytes, oligodendrocyte precursor cells, olfactory ensheathing cells and neurons in brain, and Schwann cells in sciatic nerve. Loss of the wmN1 region from the parental transgene abolished expression, whereas removal of the ASE had no effect.
Collapse
|
2
|
Hamdan H, Patyal P, Kockara NT, Wight PA. The wmN1 enhancer region in intron 1 is required for expression of human PLP1. Glia 2018; 66:1763-1774. [PMID: 29683207 DOI: 10.1002/glia.23339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/10/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
Abstract
The myelin proteolipid protein gene (PLP1) encodes the most abundant protein present in myelin from the central nervous system (CNS). Its expression must be tightly controlled as evidenced by mutations that alter PLP1 dosage; both overexpression (elevated PLP1 copy number) and lack thereof (PLP1 deletion) result in X-linked genetic disorders in man. However, not much is known about the mechanisms that govern expression of the human gene. To address this, transgenic mice were generated which utilize human PLP1 (hPLP1) sequences (proximal 6.2 kb of 5'-flanking DNA to the first 38 bp of exon 2) to drive expression of a lacZ reporter cassette. LoxP sites were incorporated around a 1.5-kb section of hPLP1 intron 1 since it contains sequence orthologous to the wmN1 region from mouse which, previously, was shown to augment expression of a minimally-promoted transgene coincident with the active myelination period of CNS development. Eight transgenic lines were generated with the parental, 6.2hPLP(+)Z/FL, transgene. All lines expressed the transgene appropriately in brain as evidenced by staining with X-gal in white matter regions and olfactory bulb. Removal of the "wmN1" region from 6.2hPLP(+)Z/FL with a ubiquitously expressed Cre-driver caused a dramatic reduction in transgene activity. These results demonstrate for the first time that the wmN1 enhancer region: (1) is functional in hPLP1; (2) works in collaboration with its native promoter-not just a basal heterologous promoter; (3) is required for high levels of hPLP1 gene activity; (4) has a broader effect, both spatially and temporally, than originally projected with mPlp1.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Pankaj Patyal
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
3
|
Wang XH, Guo XJ, Li HY, Gou P. Characteristics of inositol phosphorylceramide synthase and effects of aureobasidin A on growth and pathogenicity of Botrytis cinerea. J GEN APPL MICROBIOL 2016; 61:108-16. [PMID: 26377130 DOI: 10.2323/jgam.61.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Inositol phosphorylceramide (IPC) synthase is the key enzyme with highly conserved sequences, which is involved in fungal sphingolipid biosynthesis. The antibiotic aureobasidin A (AbA) induces the death of fungi through inhibiting IPC synthase activity. The mutations of AUR1 gene coding IPC synthase in fungi and protozoa causes a resistance to AbA. However, the mechanism of AbA resistance is still elusive. In this paper, we generated two mutants of Botrytis cinerea with AbA-resistance, BcAUR1a and BcAUR1b, through UV irradiation. BcAUR1a lost an intron and BcAUR1b had three amino acid mutations (L197P, F288S and T323A) in the AUR1 gene. AbA strongly inhibits the activity of IPC synthase in wild-type B. cinerea, which leads to distinct changes in cell morphology, including the delay in conidial germination, excessive branching near the tip of the germ tube and mycelium, and the inhibition of the mycelium growth. Further, AbA prevents the infection of wild-type B. cinerea in tomato fruits via reducing oxalic acid secretion and the activity of cellulase and pectinase. On the contrary, AbA has no effect on the growth and pathogenicity of the two mutants. Although both mutants show a similar AbA resistance, the molecular mechanisms might be different between the two mutants.
Collapse
Affiliation(s)
- Xin-hui Wang
- College of Life Science and Technology, Xinjiang University
| | | | | | | |
Collapse
|
4
|
Hamdan H, Kockara NT, Jolly LA, Haun S, Wight PA. Control of human PLP1 expression through transcriptional regulatory elements and alternatively spliced exons in intron 1. ASN Neuro 2015; 7:7/1/1759091415569910. [PMID: 25694552 PMCID: PMC4342368 DOI: 10.1177/1759091415569910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
These authors contributed equally to this work. Although the myelin proteolipid protein gene (PLP1) encodes the most abundant protein in central nervous system (CNS) myelin, not much is known about the mechanisms that govern expression of the human gene (hPLP1). Much more is known about the processes that regulate Plp1 gene expression in rodents. From studies with Plp1-lacZ transgenic mice, it was determined that the first intron of mouse Plp1 (mPlp1) is required to attain high levels of expression in brain, concurrent with the active myelination period. Other studies have suggested that within mPlp1 intron 1 (>8 kb) lie several regions with enhancer-like activity. To test whether these sequences (and possibly others) in hPLP1 intron 1 are functional, deletion-transfection analysis was performed with hPLP1-lacZ constructs that contain various portions of the intron, or lack it altogether. Results presented here demonstrate the importance of hPLP1 intron 1 in achieving maximal levels of expression in the immortalized oligodendroglial cell line, Oli-neu. Deletion analysis indicates that the intron contains multiple positive regulatory elements which are active in Oli-neu cells. Some of these elements appear to be functionally conserved between human and mouse, while others are not. Furthermore, our studies demonstrate that multiple splice variants can be formed due to inclusion of extra (supplementary) exons from what is classically thought of as hPLP1 intron 1. Thus, splicing of these novel exons (which are not recognized as such in mPlp1 due to lack of conserved splice sites) must utilize factors common to both human and mouse since Oli-neu cells are of mouse origin.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Neriman T Kockara
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Lee Ann Jolly
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Shirley Haun
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Patricia A Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
5
|
Pereira GB, Meng F, Kockara NT, Yang B, Wight PA. Targeted deletion of the antisilencer/enhancer (ASE) element from intron 1 of the myelin proteolipid protein gene (Plp1) in mouse reveals that the element is dispensable for Plp1 expression in brain during development and remyelination. J Neurochem 2012; 124:454-65. [PMID: 23157328 DOI: 10.1111/jnc.12092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/01/2012] [Accepted: 11/03/2012] [Indexed: 01/16/2023]
Abstract
Myelin proteolipid protein gene (Plp1) expression is temporally regulated in brain, which peaks during the active myelination period of CNS development. Previous studies with Plp1-lacZ transgenic mice demonstrated that (mouse) Plp1 intron 1 DNA is required for high levels of expression in oligodendrocytes. Deletion-transfection analysis revealed the intron contains a single positive regulatory element operative in the N20.1 oligodendroglial cell line, which was named ASE (antisilencer/enhancer) based on its functional properties in these cells. To investigate the role of the ASE in vivo, the element was deleted from the native gene in mouse using a Cre/lox strategy. Although removal of the ASE from Plp1-lacZ constructs profoundly decreased expression in transfected oligodendroglial cell lines (N20.1 and Oli-neu), the element was dispensable to achieve normal levels of Plp1 gene expression in mouse during development (except perhaps at postnatal day 15) and throughout the remyelination period following cuprizone-induced (acute) demyelination. Thus, it is possible that the ASE is non-functional in vivo, or that loss of the ASE from the native gene in mouse can be compensated for by the presence of other regulatory elements within the Plp1 gene.
Collapse
Affiliation(s)
- Glauber B Pereira
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
6
|
Stiles TL, Dickendesher TL, Gaultier A, Fernandez-Castaneda A, Mantuano E, Giger RJ, Gonias SL. LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAG and CNS myelin. J Cell Sci 2012; 126:209-20. [PMID: 23132925 DOI: 10.1242/jcs.113191] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the injured adult mammalian central nervous system (CNS), products are generated that inhibit neuronal sprouting and regeneration. In recent years, most attention has focused on the myelin-associated inhibitory proteins (MAIs) Nogo-A, OMgp, and myelin-associated glycoprotein (MAG). Binding of MAIs to neuronal cell-surface receptors leads to activation of RhoA, growth cone collapse, and neurite outgrowth inhibition. In the present study, we identify low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) as a high-affinity, endocytic receptor for MAG. In contrast with previously identified MAG receptors, binding of MAG to LRP1 occurs independently of terminal sialic acids. In primary neurons, functional inactivation of LRP1 with receptor-associated protein, depletion by RNA interference (RNAi) knock-down, or LRP1 gene deletion is sufficient to significantly reverse MAG and myelin-mediated inhibition of neurite outgrowth. Similar results are observed when LRP1 is antagonized in PC12 and N2a cells. By contrast, inhibiting LRP1 does not attenuate inhibition of neurite outgrowth caused by chondroitin sulfate proteoglycans. Mechanistic studies in N2a cells showed that LRP1 and p75NTR associate in a MAG-dependent manner and that MAG-mediated activation of RhoA may involve both LRP1 and p75NTR. LRP1 derivatives that include the complement-like repeat clusters CII and CIV bind MAG and other MAIs. When CII and CIV were expressed as Fc-fusion proteins, these proteins, purified full-length LRP1 and shed LRP1 all attenuated the inhibition of neurite outgrowth caused by MAG and CNS myelin in primary neurons. Collectively, our studies identify LRP1 as a novel MAG receptor that functions in neurite outgrowth inhibition.
Collapse
Affiliation(s)
- Travis L Stiles
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
YY1 negatively regulates mouse myelin proteolipid protein (Plp1) gene expression in oligodendroglial cells. ASN Neuro 2011; 3:AN20110021. [PMID: 21973168 PMCID: PMC3207217 DOI: 10.1042/an20110021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
YY1 (Yin and Yang 1) is a multifunctional, ubiquitously expressed, zinc finger protein that can act as a transcriptional activator, repressor, or initiator element binding protein. Previous studies have shown that YY1 modulates the activity of reporter genes driven by the myelin PLP (proteolipid protein) (PLP1/Plp1) promoter. However, it is known that Plp1 intron 1 DNA contains regulatory elements that are required for the dramatic increase in gene activity, coincident with the active myelination period of CNS (central nervous system) development. The intron in mouse contains multiple prospective YY1 target sites including one within a positive regulatory module called the ASE (anti-silencer/enhancer) element. Results presented here demonstrate that YY1 has a negative effect on the activity of a Plp1-lacZ fusion gene [PLP(+)Z] in an immature oligodendroglial cell line (Oli-neu) that is mediated through sequences present in Plp1 intron 1 DNA. Yet YY1 does not bind to its alleged site in the ASE (even though the protein is capable of recognizing a target site in the promoter), indicating that the down-regulation of PLP(+)Z activity by YY1 in Oli-neu cells does not occur through a direct interaction of YY1 with the ASE sequence. Previous studies with Yy1 conditional knockout mice have demonstrated that YY1 is essential for the differentiation of oligodendrocyte progenitors. Nevertheless, the current study suggests that YY1 functions as a repressor (not an activator) of Plp1 gene expression in immature oligodendrocytes. Perhaps YY1 functions to keep the levels of PLP in check in immature cells before vast quantities of the protein are needed in mature myelinating oligodendrocytes.
Collapse
|
8
|
Pereira GB, Dobretsova A, Hamdan H, Wight PA. Expression of myelin genes: comparative analysis of Oli-neu and N20.1 oligodendroglial cell lines. J Neurosci Res 2011; 89:1070-8. [PMID: 21472765 PMCID: PMC3088771 DOI: 10.1002/jnr.22625] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/07/2011] [Accepted: 01/20/2011] [Indexed: 01/20/2023]
Abstract
The use of immortalized cells has been instrumental as a tool with which to study gene regulation. However, it is crucial to understand the status of a given cell line, especially when investigating the regulation of genes whose expression is developmentally regulated. Several immortalized cell lines have been derived from primary cultures of mouse oligodendrocytes. Two such cell lines, N20.1 and Oli-neu, were characterized here in terms of their relative expression of myelin genes at both the mRNA level and the protein level. Analysis of the splice isoforms expressed by the myelin proteolipid protein (Plp1), myelin basic protein (Mbp), and 2',3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) genes, along with the relative amount of protein expressed by these genes, suggests that the cell lines are representative of immature oligodendrocytes, although Oli-neu cells appear to be farther along the differentiation pathway compared with N20.1 cells. Previous studies have shown that the developmental increase in Plp1 gene expression that occurs during the active myelination period is governed by transcription regulatory elements present within the first intron. The responsiveness of one of these elements, the so-called antisilencer/enhancer (ASE), was investigated in both cell lines. Results presented here suggest that the ASE has a much more potent effect in Oli-neu cells. Thus, the two cell lines appear to be at different stages and will be useful as a means to study transcription regulatory elements whose influence changes during development.
Collapse
Affiliation(s)
- Glauber B. Pereira
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Anna Dobretsova
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Hamdan Hamdan
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Patricia A. Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
9
|
Li S, Greuel BT, Meng F, Pereira GB, Pitts A, Dobretsova A, Wight PA. Leydig cells express the myelin proteolipid protein gene and incorporate a new alternatively spliced exon. Gene 2009; 436:30-6. [PMID: 19232385 PMCID: PMC2665910 DOI: 10.1016/j.gene.2009.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 02/04/2009] [Accepted: 02/05/2009] [Indexed: 11/27/2022]
Abstract
Although the myelin proteolipid protein gene (Plp1) is highly expressed in the central nervous system encoding the most abundant myelin protein in oligodendrocytes, it is also expressed in other tissues, including testis. Transgenic studies with mice that harbor Plp1-lacZ fusion genes suggest that Leydig cells are the source of Plp1 gene expression in testis. However, virtually nothing is known about Plp1 gene regulation in Leydig cells, which is the focus of this study. The first intron contains both positive and negative regulatory elements that are important in regulating Plp1 gene expression in oligodendrocytes. To test whether these elements are functional in Leydig cells, a battery of Plp1-lacZ fusion genes with partial deletion of Plp1 intron 1 sequence was transfected into the mouse Leydig cell line, TM3. Results presented here suggest that an enhancer, which is very potent in oligodendrocytes, is only nominally active in TM3 cells. The intron also contains several negative regulatory elements that are operative in TM3 cells. Moreover a new exon (exon 1.2) was identified within the first 'intron' resulting in novel splice variants in TM3 cells. Western blot analysis suggests that these splice variants, along with those containing another alternatively spliced exon (exon 1.1) derived from intron 1 sequence, give rise to multiple Plp1 gene products in the mouse testis.
Collapse
Affiliation(s)
- Shenyang Li
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, AR 72205, USA
| | - Brian T. Greuel
- Department of Biology, John Brown University, Siloam Springs, AR 72761, USA
| | - Fanxue Meng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, AR 72205, USA
| | - Glauber B. Pereira
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, AR 72205, USA
| | - Adria Pitts
- Department of Biology, John Brown University, Siloam Springs, AR 72761, USA
| | - Anna Dobretsova
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, AR 72205, USA
| | - Patricia A. Wight
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, AR 72205, USA
| |
Collapse
|
10
|
Dobretsova A, Johnson JW, Jones RC, Edmondson RD, Wight PA. Proteomic analysis of nuclear factors binding to an intronic enhancer in the myelin proteolipid protein gene. J Neurochem 2008; 105:1979-95. [PMID: 18266931 DOI: 10.1111/j.1471-4159.2008.05288.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The myelin proteolipid protein gene (Plp1) encodes the most abundant protein found in CNS myelin, accounting for nearly one-half of the total protein. Its expression in oligodendrocytes is developmentally regulated - peaking during the active myelination period of CNS development. Previously, we have identified a novel enhancer (designated ASE) in intron 1 DNA that appears to be important in mediating the surge of Plp1 gene activity during the active myelination period. Evidence suggests that the ASE participates in the formation of a specialized multi-protein/DNA complex called an enhanceosome. The current study describes an optimized, five-step, DNA affinity chromatography purification procedure to purify nuclear proteins from mouse brain that bind to the 85-bp ASE sequence, specifically. Electrophoretic mobility shift assay analysis demonstrated that specific DNA-binding activity was retained throughout the purification procedure, resulting in concomitant enrichment of nucleoprotein complexes. Identification of the purported regulatory factors was achieved through mass spectrometry analysis and included over 20 sequence-specific DNA-binding proteins. Supplementary western blot analyses to determine which of these sequence-specific factors are present in oligodendrocytes, and their developmental and regional expression in whole brain, suggest that Puralpha and Purbeta rank highest among the candidate factors as constituents of the multi-protein complex formed on the ASE.
Collapse
Affiliation(s)
- Anna Dobretsova
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
11
|
Wei Q, Miskimins WK, Miskimins R. Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2.2-mediated repression that is relieved by the Sp1 transcription factor. J Biol Chem 2005; 280:16284-94. [PMID: 15695521 DOI: 10.1074/jbc.m500491200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The homeodomain-containing protein Nkx2.2 is critical for the development of oligodendrocyte lineage cells, but the target genes of Nkx2.2 regulation have not been identified. In the present study, we found that the myelin basic protein gene is one of the genes that is regulated by Nkx2.2. Expression of Nkx2.2 represses the expression of myelin basic protein in oligodendrocyte progenitors. Two regulatory elements in the myelin basic protein promoter were identified and found to interact with Nkx2.2 in vitro. Despite their sequence divergence, both sites were involved in the Nkx2.2-mediated repression of the myelin basic protein promoter. Binding of Nkx2.2 also blocked and disrupted the binding of the transcriptional activator Puralpha to the myelin basic protein promoter. Additionally Nkx2.2 recruited a histone deacetylase 1-mSin3A complex to the myelin basic protein promoter. We also found that the transcription factor Sp1 was able to compete off the binding of Nkx2.2 to its consensus binding site in vitro and reversed the repressive effect of Nkx2.2 in vivo. Our data revealed a novel role for Nkx2.2 in preventing the precocious expression of myelin basic protein in immature oligodendrocytes. Based on this study and our previous reports, a model for myelin basic protein gene control is proposed.
Collapse
Affiliation(s)
- Qiou Wei
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, South Dakota 57069, USA
| | | | | |
Collapse
|
12
|
Meng F, Zolova O, Kokorina NA, Dobretsova A, Wight PA. Characterization of an intronic enhancer that regulates myelin proteolipid protein (Plp) gene expression in oligodendrocytes. J Neurosci Res 2005; 82:346-56. [PMID: 16155935 DOI: 10.1002/jnr.20640] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The myelin proteolipid protein (Plp) gene is expressed in oligodendrocytes and encodes the most abundant protein (approximately 50%) present in mature myelin from the central nervous system (CNS). Plp gene activity is low to nonexistent early in development but sharply increases, concurrently with the active myelination period of CNS development. Work from our laboratory suggests that the temporal regulation of Plp gene expression in mice is mediated by a positive regulatory element located within Plp intron 1 DNA. We have termed this regulatory element/region ASE (for antisilencer/enhancer). The ASE is situated approximately 1 kb downstream of exon 1 DNA and encompasses nearly 100 bp. To understand the mechanisms by which the ASE augments Plp gene expression in oligodendrocytes, Plp-lacZ constructs were generated and transfected into a mouse oligodendroglial cell line (N20.1). Results presented here demonstrate that upstream regulatory elements in the Plp promoter/5'-flanking DNA are not required for ASE activity; the ASE worked perfectly well when the thymidine kinase (TK) promoter was substituted for the Plp promoter. However, the relative location of the ASE appears to be important. When placed upstream of 2.4 kb of Plp 5'-flanking DNA, or downstream of the lacZ expression cassette, the ASE was no longer effective. Thus, the ASE might have to be in the context of the intron in order to function. To begin to identify the crucial nucleotides within the ASE, orthologous sequences from rat, human, cow, and pig Plp genes were swapped for the mouse sequence. Results presented here demonstrate that the orthologous sequence from rat can substitute for the mouse ASE, unlike those from human, cow, or pig.
Collapse
Affiliation(s)
- Fanxue Meng
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
13
|
Vourc'h P, Dessay S, Mbarek O, Marouillat Védrine S, Müh JP, Andres C. The oligodendrocyte-myelin glycoprotein gene is highly expressed during the late stages of myelination in the rat central nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 144:159-68. [PMID: 12935913 DOI: 10.1016/s0165-3806(03)00167-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oligodendrocyte-myelin glycoprotein (OMgp) is expressed on the surface of oligodendrocytes and neurones and is thought to inhibit axonal regeneration after brain injury in adult, like Nogo and myelin-associated glycoprotein (MAG). We previously observed that the OMgp gene locus on chromosome 17 could be associated with autism, a developmental disorder. The aim of the present study was to characterise the developmental expression of OMgp mRNA in the central nervous system. First we determined the rat OMgp gene sequence and compared it with the human and mouse sequences. Several regions, putative sites for the fixation of transcription factors, are conserved between these three species in the unique intron of this gene. Using quantitative and semi-quantitative RT-PCR, we studied OMgp gene expression in rat brain during post-natal development. We found that OMgp mRNA expression was developmentally regulated, with a peak of expression in the late stages of myelination. We observed a similar profile in oligodendrocyte cultures, in absence of neurones, suggesting that OMgp mRNA expression by oligodendrocytes was independent of axonal influence. Our observations suggest that OMgp is a late marker of myelination, which could be implicated in the arrest of oligodendrocyte proliferation, arrest of myelination or compaction of myelin.
Collapse
Affiliation(s)
- Patrick Vourc'h
- Génétique de l'autisme et de la déficience mentale, INSERM U 316, 2 bis, Boulevard Tonnellé, 37032 Tours Cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Leone DP, Genoud S, Atanasoski S, Grausenburger R, Berger P, Metzger D, Macklin WB, Chambon P, Suter U. Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 2003; 22:430-40. [PMID: 12727441 DOI: 10.1016/s1044-7431(03)00029-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Inducible transgenesis provides a valuable technique for the analysis of gene function in vivo. We report the generation and characterization of mouse lines carrying glia lineage-specific transgenes expressing an improved variant of the tamoxifen-inducible Cre recombinase, CreERT2, where the recombinase is fused to a mutated ligand binding domain of the human estrogen receptor. Using a PLP-CreERT2 transgene, we have generated mice that show specific inducible Cre function, as analyzed by cross-breeding experiments into the Rosa26 Cre-LacZ reporter line, in developing and adult Schwann cells, in mature myelinating oligodendrocytes, and in undifferentiated NG2-positive oligodendrocyte precursors in the adult. Using a P0Cx-CreERT2 transgene, we have also established mouse lines with inducible Cre function specifically in the Schwann cell lineage. These tamoxifen-inducible CreERT2 lines will allow detailed spatiotemporally controlled analysis of gene functions in loxP-based conditional mutant mice in both developing and adult Schwann cells and in the oligodendrocyte lineage.
Collapse
Affiliation(s)
- Dino P Leone
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Baek WK, Park JW, Lim JH, Suh SI, Suh MH, Gabrielson E, Kwon TK. Molecular cloning and characterization of the human budding uninhibited by benomyl (BUB3) promoter. Gene 2003; 295:117-23. [PMID: 12242018 DOI: 10.1016/s0378-1119(02)00827-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, cDNA corresponding to the human homologue of the BUB3 (budding uninhibited by benomyl) mitotic checkpoint protein has been identified and cloned. Previous studies from our laboratory and others have found this gene to localize to 10q26, a region that is frequently altered in various human cancers. We describe here a series of studies designed to understand the genomic structure of BUB3, particularly as it relates to regulation of gene expression. The human BUB3 gene has seven exons and six introns, and spans a genomic region of over 16 kb. The four WD repeat sequences in this gene are localized to exons 2, 4, and 6, and there is a major transcriptional start site located 554 nucleotides upstream of the ATG translation initiator codon. The promoter region lacks a TATA box but contains potential binding sites for the transcriptional factors including SP1, E2F, c-Myc, C/EBP and NFkappaB. To analyse the regulatory mechanisms controlling hBUB3 gene expression, we characterized the 5'-flanking region from nucleotide -1.3 to +0.58 kb by cloning various potions of this region in front of a luciferase reporter sequence. These experiments indicate that this region 5' region contains distinctive positive and negative regulatory elements.
Collapse
Affiliation(s)
- Won-Ki Baek
- Department of Microbiology, School of Medicine, Keimyung University, 194 DongSan-Dong Jung-Gu, Taegu 700-712, South Korea
| | | | | | | | | | | | | |
Collapse
|
16
|
Li S, Moore CL, Dobretsova A, Wight PA. Myelin proteolipid protein (Plp) intron 1 DNA is required to temporally regulate Plp gene expression in the brain. J Neurochem 2002; 83:193-201. [PMID: 12358743 DOI: 10.1046/j.1471-4159.2002.01142.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The myelin proteolipid protein (Plp) gene encodes the most abundant protein found in mature CNS myelin. Expression of the gene is regulated spatiotemporally, with maximal expression occurring in oligodendrocytes during the myelination period of CNS development. Plp gene expression is tightly controlled. Misregulation of the gene in humans can result in the dysmyelinating disorder Pelizaeus-Merzbacher disease, and in transgenic mice carrying a null mutation or extra copies of the gene can result in a variety of conditions, from late onset demyelination and axonopathy, to severe early onset dysmyelination. In this study we have examined the effects of Plp intron 1 DNA in mediating proper developmental expression of Plp-lacZ fusion genes in transgenic mice. Our results reveal the importance of Plp intron 1 sequences in instigating the expected surge in Plp-lacZ gene activity during (and following) the active myelination period of brain development. Transgene expression was also detected in the testis (Leydig cells), however, the presence or absence of Plp intron 1 sequences had no effect on the temporal profile in the testis. Surprisingly, expression of the transgene missing Plp intron 1 DNA was always higher in the testis, as compared to the brain, in all of the transgenic lines generated.
Collapse
Affiliation(s)
- Shenyang Li
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
17
|
Li S, Dobretsova A, Kokorina NA, Wight PA. Repression of myelin proteolipid protein gene expression is mediated through both general and cell type-specific negative regulatory elements in nonexpressing cells. J Neurochem 2002; 82:159-71. [PMID: 12091477 DOI: 10.1046/j.1471-4159.2002.00962.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The myelin proteolipid protein gene (Plp ) is expressed primarily in oligodendrocytes. Yet how the gene remains repressed in nonexpressing cells has not been defined, and potentially could cause adverse effects in an organism if the mechanism for repression was impaired. Previous studies suggest that the first intron contains element(s), which suppress expression in nonexpressing cells, although the identity of these elements within the 8 kb intron was not characterized. Here we report the localization of multiple negative regulatory elements that repress Plp gene expression in nonexpressing cells (+/+ Li). Two of these elements (regions) correspond to those used by Plp expressing cells (N20.1), whilst another acts in a cell type-specific manner (i.e. operational in +/+ Li liver cells, but not N20.1 cells). By gel-shift and DNase I footprinting analyses, the factor(s) that bind to the cell type-specific negative regulatory region appear to be far more abundant in +/+ Li cells than in N20.1 cells. Thus, Plp gene repression is mediated through the combinatorial action of both "general" and cell type-specific negative regulatory elements. Additionally, repression in +/+ Li cells cannot be overcome via an antisilencer/enhancer element, which previously has been shown to function in N20.1 cells.
Collapse
Affiliation(s)
- Shenyang Li
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 W. Markham Street, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
The nature of the role played by mobile elements in host genome evolution is reassessed considering numerous recent developments in many areas of biology. It is argued that easy popular appellations such as "selfish DNA" and "junk DNA" may be either inaccurate or misleading and that a more enlightened view of the transposable element-host relationship encompasses a continuum from extreme parasitism to mutualism. Transposable elements are potent, broad spectrum, endogenous mutators that are subject to the influence of chance as well as selection at several levels of biological organization. Of particular interest are transposable element traits that early evolve neutrally at the host level but at a later stage of evolution are co-opted for new host functions.
Collapse
Affiliation(s)
- M G Kidwell
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson 85721, USA.
| | | |
Collapse
|
20
|
Dobretsova A, Kokorina NA, Wight PA. Functional characterization of a cis-acting DNA antisilencer region that modulates myelin proteolipid protein gene expression. J Neurochem 2000; 75:1368-76. [PMID: 10987816 DOI: 10.1046/j.1471-4159.2000.0751368.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of myelin proteolipid protein (PLP:) gene expression is tightly controlled, both spatially and temporally. Previously, we have shown with transgenic mice that a PLP:-lacZ fusion gene (which includes the entire sequence for PLP: intron 1 DNA) is regulated in a similar manner to endogenous PLP: gene expression. Furthermore, by deletion-transfection analyses using assorted PLP:-lacZ constructs with partial deletion of PLP: intron 1 sequences, we have shown that the first intron possesses an antisilencer region that is capable of over-coming repression mediated by two distinct regions located elsewhere within intron 1 DNA. Here, we report the ability of various fragments encompassing the antisilencer region to restore beta-galactosidase activity when inserted into PLP:-lacZ constructs, which originally exhibited low levels of beta-galactosidase activity. Additional constructs were generated to test the effects of these antisilencer-containing fragments in constructs that are missing either one or both of the negative regulatory regions that are overridden during antisilencing. Transfection analyses, in conjunction with protein-DNA binding assays, suggest that several nuclear factors are necessary for derepression of PLP: gene activity in an oligodendroglial cell line. Moreover, either the "core" or complete antisilencing region can act in an additive or synergistic fashion when multiple copies are inserted into the Plp-lacZ constructs.
Collapse
Affiliation(s)
- A Dobretsova
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | |
Collapse
|
21
|
Baumgartner BG, Masabanda J, Fries R, Brenig B. Structural analysis and transcript processing of the bovine proteolipid protein (PLP) gene. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2000; 10:379-85. [PMID: 10826694 DOI: 10.3109/10425170009015605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study we present the complete genomic structure of the bovine PLP gene and its assignment to the long arm of the X-chromosome (BTXq2.1). We determined a total of 18,767 bp of the bovine PLP gene and compared it to the human heterolog. A very high similarity was detected between the non-coding regions, interrupted primarily by several transposable elements. A deletion of 13 bp in the vicinity to the translation start signal in the promoter of the bovine PLP gene was found. Functional studies of the 3' region showed the use of several polyadenylation signals. Three main transcripts were detected in adult cattle in the range of 3200, 2400, and 1600 nucleotides using Northern blot analysis. An additional shorter transcript was detected in the cerebrum of calves.
Collapse
Affiliation(s)
- B G Baumgartner
- Institute of Veterinary Medicine, University of Göttingen, Germany
| | | | | | | |
Collapse
|
22
|
Fuss B, Mallon B, Phan T, Ohlemeyer C, Kirchhoff F, Nishiyama A, Macklin WB. Purification and analysis of in vivo-differentiated oligodendrocytes expressing the green fluorescent protein. Dev Biol 2000; 218:259-74. [PMID: 10656768 DOI: 10.1006/dbio.1999.9574] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complete understanding of the molecular mechanisms involved in the formation and repair of the central nervous system myelin sheath requires an unambiguous identification and isolation of in vivo-differentiated myelin-forming cells. In order to develop a novel tool for the analysis of in vivo-differentiated oligodendrocytes, we generated transgenic mice expressing a red-shifted variant of the green fluorescent protein under the control of the proteolipid protein promoter. We demonstrate here that green fluorescent protein-derived fluorescence in the central nervous system of 9-day- to 7-week-old mice is restricted to mature oligodendrocytes, as determined by its spatiotemporal appearance and by both immunocytochemical and electrophysiological criteria. Green fluorescent protein-positive oligodendrocytes could easily be visualized in live and fixed tissue. Furthermore, we show that this convenient and reliable identification now allows detailed physiological analyses of differentiated oligodendrocytes in situ. In addition, we developed a novel tissue culture system for in vivo-differentiated oligodendrocytes. Initial data using this system indicate that, for oligodendrocytes isolated after differentiation in vivo, as yet unidentified factors secreted by astrocytes are necessary for survival and/or reappearance of a mature phenotype in culture.
Collapse
Affiliation(s)
- B Fuss
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Identification of a new exon in the myelin proteolipid protein gene encoding novel protein isoforms that are restricted to the somata of oligodendrocytes and neurons. J Neurosci 1999. [PMID: 10493736 DOI: 10.1523/jneurosci.19-19-08349.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The myelin proteolipid protein (PLP) gene (i.e., the PLP/DM20 gene) has been of some interest because of its role in certain human demyelinating diseases, such as Pelizaeus-Merzbacher disease. A substantial amount of evidence, including neuronal pathology in knock-out and transgenic animals, suggests the gene also has functions unrelated to myelin structure, but the products of the gene responsible for these putative functions have not yet been identified. Here we report the identification of a new exon of the PLP/DM20 gene and at least two new products of the gene that contain this exon. The new exon, located between exons 1 and 2, is spliced into PLP and DM20 mRNAs creating a new translation initiation site that generates PLP and DM20 proteins with a 12 amino acid leader sequence. This leader sequence appears to target these proteins to a different cellular compartment within the cell bodies of oligodendrocytes and away from the myelin membranes. Furthermore, these new products are also expressed in a number of neuronal populations within the postnatal mouse brain, including the cerebellum, hippocampus, and olfactory system. We term these products somal-restricted PLP and DM20 proteins to distinguish them from the classic PLP and DM20 proteolipids. They represent putative candidates for some of the nonmyelin-related functions of the PLP/DM20 gene.
Collapse
|
24
|
Dobretsova A, Wight PA. Antisilencing: myelin proteolipid protein gene expression in oligodendrocytes is regulated via derepression. J Neurochem 1999; 72:2227-37. [PMID: 10349830 DOI: 10.1046/j.1471-4159.1999.0722227.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antisilencer or antirepressor elements have been described, thus far, for only a few eukaryotic genes and were identified by their ability not to augment gene expression per se but to override repression mediated via negative transcription regulatory elements. Here we report the first case of antisilencing for a neural-specific gene, the myelin proteolipid protein (PLP) gene (Plp). PLP is the most abundant protein found in CNS myelin. The protein is synthesized in oligodendrocytes, and its expression is regulated developmentally. Previously we have shown that a PLP-lacZ transgene (which includes the entire sequence for Plp intron 1) is regulated in mice, in a manner consistent with the spatial and temporal expression of the endogenous Plp gene. In the present report, we demonstrate by transfection analyses, using various PLP-lacZ deletion constructs, that Plp intron 1 DNA contains multiple elements that collectively regulate Plp gene expression in oligodendrocytes. One of these regulatory elements functions as an antisilencer element, which acts to override repression mediated by at least two negative regulatory elements located elsewhere within Plp intron 1 DNA. The mechanism for antisilencing appears to be complex as the intragenic region that mediates this function binds multiple nuclear factors specifically.
Collapse
Affiliation(s)
- A Dobretsova
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| | | |
Collapse
|
25
|
Saito K, Tobe T, Minoshima S, Asakawa S, Sumiya J, Yoda M, Nakano Y, Shimizu N, Tomita M. Organization of the gene for gelatin-binding protein (GBP28). Gene 1999; 229:67-73. [PMID: 10095105 DOI: 10.1016/s0378-1119(99)00041-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
GBP28 is a novel human plasma gelatin-binding protein that is encoded by apM1 mRNA, expressed specifically in adipose tissue. Three overlapping clones (two lambda clones and one BAC clone) containing the human plasma gelatin-binding protein (GBP28) gene were isolated and characterized. The GBP28 gene spans 16kb and is composed of three exons from 18bp to 4277bp in size with consensus splice sites. The sizes of the two introns were 0.8 and 12kb, respectively. The gene's regulatory sequences contain putative promoter elements, but no typical TATA box. The third exon of this gene contains a long 3'-untranslated sequence containing three Alu repeats. The exon-intron organization of this gene was very similar to that of obese gene, encoding leptin. We also report the chromosome mapping of this gene by fluorescence in situ hybridization (FISH) using a genomic DNA fragment as a probe. The GBP28 gene was located on human chromosome 3q27. The nucleotide sequence data reported in this paper will appear in the DDBJ/EMBL/GenBank nucleotide sequence databases with the accession numbers ABO12163, ABO12164 or ABO12165.
Collapse
Affiliation(s)
- K Saito
- Department of Physiological Chemistry, School of Pharmaceutical Sciences, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Proteolipid protein (PLP) and its smaller isoform DM20 constitute the major myelin proteins of the CNS. Mutations of the X-linked Plp gene cause the heterogeneous syndromes of Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia (SPG) in man and similar dysmyelinating disorders in a range of animal species. A variety of mutations including missense mutations, deletions, and duplications are responsible. Missense mutations cause a predicted alteration in primary structure of the encoded protein(s) and are generally associated with early onset of signs and generalised dysmyelination. The severity of the phenotype varies according to the particular codon involved and the influence of uncharacterised modifying genes. There is some evidence that the dysmyelination results from the altered protein acquiring a novel function deleterious to the oligodendrocyte's function. Transgenic mice carrying extra copies of the Plp gene provide a valid model of PMD/SPG due to gene duplication. Depending on the gene dosage, the phenotype can vary from early onset of severe and lethal dysmyelination through to a very late onset of a tract-specific demyelination and axonal degeneration. Mice with a null mutation of the Plp gene assemble and maintain normal amounts of myelin but develop a progressive axonopathy, again demonstrating tract specificity. The results indicate that the functions of PLP are far from clear. There is good evidence that it is involved in the formation of the intraperiod line of myelin, and the results from the knockout and transgenic mice suggest a role in the interaction of oligodendrocyte and axon.
Collapse
Affiliation(s)
- I Griffiths
- Department of Veterinary Clinical Studies, University of Glasgow, Bearsden, Scotland.
| | | | | | | | | | | |
Collapse
|