1
|
Hu D, Yang Q, Xian H, Wang M, Zheng H, Mallilankaraman KB, Yu VC, Liou Y. Death-Associated Protein 3 Triggers Intrinsic Apoptosis via Miro1 Upon Inducing Intracellular Calcium Changes. MedComm (Beijing) 2025; 6:e70214. [PMID: 40351389 PMCID: PMC12064944 DOI: 10.1002/mco2.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/14/2025] Open
Abstract
Mitochondrial homeostasis is essential for cell survival and function, necessitating quality control mechanisms to ensure a healthy mitochondrial network. Death-associated protein 3 (DAP3) serves as a subunit of the mitochondrial ribosome, playing a pivotal role in the translation of mitochondrial-encoded proteins. Apart from its involvement in protein synthesis, DAP3 has been implicated in the process of cell death and mitochondrial dynamics. In this study, we demonstrate that DAP3 mediates cell death via intrinsic apoptosis by triggering excessive mitochondrial fragmentation, loss of mitochondrial membrane potential (ΔΨm), ATP decline, and oxidative stress. Notably, DAP3 induces mitochondrial fragmentation through the Mitochondrial Rho GTPase 1 (Miro1), independently of the canonical fusion/fission machinery. Mechanistically, DAP3 promotes mitochondrial calcium accumulation through the MCU complex, leading to decreased cytosolic Ca2+ levels. This reduction in cytosolic Ca2+ is sensed by Miro1, which subsequently drives mitochondrial fragmentation. Depletion of Miro1 or MCU alleviates mitochondrial fragmentation, oxidative stress, and cell death. Collectively, our findings reveal a novel function of the mitoribosomal protein DAP3 in regulating calcium signalling and maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Qiaoyun Yang
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Hongxu Xian
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- Department of PharmacologySchool of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Minghao Wang
- Department of Breast and Thyroid SurgerySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Hong Zheng
- Department of Thoracic SurgeryXinqiao HospitalArmy Medical UniversityChongqingChina
| | | | - Victor C. Yu
- The Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Tianjian Laboratory of Advanced Biomedical SciencesZhengzhouChina
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- Integrative Sciences and Engineering ProgrammeNUS Graduate School, National University of SingaporeSingaporeSingapore
| |
Collapse
|
2
|
Wu H, Zhu X, Zhou H, Sha M, Ye J, Yu H. Mitochondrial Ribosomal Proteins and Cancer. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:96. [PMID: 39859078 PMCID: PMC11766452 DOI: 10.3390/medicina61010096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Mitochondria play key roles in maintaining cell life and cell function, and their dysfunction can lead to cell damage. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes and are assembled within the mitochondria. MRPs are pivotal components of the mitochondrial ribosomes, which are responsible for translating 13 mitochondrial DNA-encoded proteins essential for the mitochondrial respiratory chain. Recent studies have underscored the importance of MRPs in cancer biology, revealing their altered expression patterns in various types of cancer and their potential as both prognostic biomarkers and therapeutic targets. Herein, we review the current knowledge regarding the multiple functions of MRPs in maintaining the structure of the mitochondrial ribosome and apoptosis, their implications for cancer susceptibility and progression, and the innovative strategies being developed to target MRPs and mitoribosome biogenesis in cancer therapy. This comprehensive overview aims to provide insights into the role of MRPs in cancer biology and highlight promising strategies for future precision oncology.
Collapse
Affiliation(s)
- Huiyi Wu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (H.W.); (X.Z.); (H.Z.)
| | - Xiaowei Zhu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (H.W.); (X.Z.); (H.Z.)
| | - Huilin Zhou
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (H.W.); (X.Z.); (H.Z.)
| | - Min Sha
- Translational Medicine Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (M.S.); (J.Y.)
| | - Jun Ye
- Translational Medicine Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (M.S.); (J.Y.)
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (H.W.); (X.Z.); (H.Z.)
- Translational Medicine Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China; (M.S.); (J.Y.)
| |
Collapse
|
3
|
Damir HA, Ali MA, Adem MA, Amir N, Ali OM, Tariq S, Adeghate E, Greenwood MP, Lin P, Alvira-Iraizoz F, Gillard B, Murphy D, Adem A. Effects of long-term dehydration and quick rehydration on the camel kidney: pathological changes and modulation of the expression of solute carrier proteins and aquaporins. BMC Vet Res 2024; 20:367. [PMID: 39148099 PMCID: PMC11328374 DOI: 10.1186/s12917-024-04215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Recurrent dehydration causes chronic kidney disease in humans and animal models. The dromedary camel kidney has remarkable capacity to preserve water and solute during long-term dehydration. In this study, we investigated the effects of dehydration and subsequent rehydration in the camel's kidney histology/ultrastructure and changes in aquaporin/solute carrier proteins along with gene expression. RESULTS In light microscopy, dehydration induced few degenerative and necrotic changes in cells of the cortical tubules with unapparent or little effect on medullary cells. The ultrastructural changes encountered in the cortex were infrequent during dehydration and included nuclear chromatin condensation, cytoplasmic vacuolization, mitochondrial swelling, endoplasmic reticulum/ lysosomal degeneration and sometimes cell death. Some mRNA gene expressions involved in cell stability were upregulated by dehydration. Lesions in endothelial capillaries, glomerular membranes and podocyte tertiary processes in dehydrated camels indicated disruption of glomerular filtration barrier which were mostly corrected by rehydration. The changes in proximal tubules brush borders after dehydration, were accompanied by down regulation of ATP1A1 mRNA involved in Na + /K + pump that were corrected by rehydration. The increased serum Na, osmolality and vasopressin were paralleled by modulation in expression level for corresponding SLC genes with net Na retention in cortex which were corrected by rehydration. Medullary collecting ducts and interstitial connective tissue were mostly unaffected during dehydration. CKD, a chronic nephropathy induced by recurrent dehydration in human and animal models and characterized by interstitial fibrosis and glomerular sclerosis, were not observed in the dehydrated/rehydrated camel kidneys. The initiating factors, endogenous fructose, AVP/AVPR2 and uric acid levels were not much affected. TGF-β1 protein and TGF-β1gene expression showed no changes by dehydration in cortex/medulla to mediate fibrosis. KCNN4 gene expression level was hardly detected in the dehydrated camel's kidney; to encode for Ca + + -gated KCa3.1 channel for Ca + + influx to instigate TGF-β1. Modulation of AQP 1, 2, 3, 4, 9 and SLC protein and/or mRNAs expression levels during dehydration/rehydration was reported. CONCLUSIONS Long-term dehydration induces reversible or irreversible ultrastructural changes in kidney cortex with minor effects in medulla. Modulation of AQP channels, SLC and their mRNAs expression levels during dehydration/rehydration have a role in water conservation. Cortex and medulla respond differently to dehydration/rehydration.
Collapse
Affiliation(s)
- Hassan Abu Damir
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mahmoud A Ali
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muna A Adem
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naheed Amir
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Osman M Ali
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy, College of Medicine & Health Sciences, Emirates University, Al-Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine & Health Sciences, Emirates University, Al-Ain, United Arab Emirates
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - Panjiao Lin
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - Fernando Alvira-Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - Benjamin Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Dorothy Hodgkin Building, Bristol, BS13NY, UK.
| | - Abdu Adem
- Department of Pharmacology, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University, PO. Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Nishimura Y, Bittel AJ, Stead CA, Chen YW, Burniston JG. Facioscapulohumeral Muscular Dystrophy is Associated With Altered Myoblast Proteome Dynamics. Mol Cell Proteomics 2023; 22:100605. [PMID: 37353005 PMCID: PMC10392138 DOI: 10.1016/j.mcpro.2023.100605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023] Open
Abstract
Proteomic studies in facioscapulohumeral muscular dystrophy (FSHD) could offer new insight into disease mechanisms underpinned by post-transcriptional processes. We used stable isotope (deuterium oxide; D2O) labeling and peptide mass spectrometry to investigate the abundance and turnover rates of proteins in cultured muscle cells from two individuals affected by FSHD and their unaffected siblings (UASb). We measured the abundance of 4420 proteins and the turnover rate of 2324 proteins in each (n = 4) myoblast sample. FSHD myoblasts exhibited a greater abundance but slower turnover rate of subunits of mitochondrial respiratory complexes and mitochondrial ribosomal proteins, which may indicate an accumulation of "older" less viable mitochondrial proteins in myoblasts from individuals affected by FSHD. Treatment with a 2'-O-methoxyethyl modified antisense oligonucleotide targeting exon 3 of the double homeobox 4 (DUX4) transcript tended to reverse mitochondrial protein dysregulation in FSHD myoblasts, indicating the effect on mitochondrial proteins may be a DUX4-dependent mechanism. Our results highlight the importance of post-transcriptional processes and protein turnover in FSHD pathology and provide a resource for the FSHD research community to explore this burgeoning aspect of FSHD.
Collapse
Affiliation(s)
- Yusuke Nishimura
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Adam J Bittel
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia, USA
| | - Connor A Stead
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia, USA.
| | - Jatin G Burniston
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom.
| |
Collapse
|
5
|
Chemotherapy Resistance: Role of Mitochondrial and Autophagic Components. Cancers (Basel) 2022; 14:cancers14061462. [PMID: 35326612 PMCID: PMC8945922 DOI: 10.3390/cancers14061462] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Chemotherapy resistance is a common occurrence during cancer treatment that cancer researchers are attempting to understand and overcome. Mitochondria are a crucial intracellular signaling core that are becoming important determinants of numerous aspects of cancer genesis and progression, such as metabolic reprogramming, metastatic capability, and chemotherapeutic resistance. Mitophagy, or selective autophagy of mitochondria, can influence both the efficacy of tumor chemotherapy and the degree of drug resistance. Regardless of the fact that mitochondria are well-known for coordinating ATP synthesis from cellular respiration in cellular bioenergetics, little is known its mitophagy regulation in chemoresistance. Recent advancements in mitochondrial research, mitophagy regulatory mechanisms, and their implications for our understanding of chemotherapy resistance are discussed in this review. Abstract Cancer chemotherapy resistance is one of the most critical obstacles in cancer therapy. One of the well-known mechanisms of chemotherapy resistance is the change in the mitochondrial death pathways which occur when cells are under stressful situations, such as chemotherapy. Mitophagy, or mitochondrial selective autophagy, is critical for cell quality control because it can efficiently break down, remove, and recycle defective or damaged mitochondria. As cancer cells use mitophagy to rapidly sweep away damaged mitochondria in order to mediate their own drug resistance, it influences the efficacy of tumor chemotherapy as well as the degree of drug resistance. Yet despite the importance of mitochondria and mitophagy in chemotherapy resistance, little is known about the precise mechanisms involved. As a consequence, identifying potential therapeutic targets by analyzing the signal pathways that govern mitophagy has become a vital research goal. In this paper, we review recent advances in mitochondrial research, mitophagy control mechanisms, and their implications for our understanding of chemotherapy resistance.
Collapse
|
6
|
Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, Pandey V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer 2021; 1876:188534. [PMID: 33794332 DOI: 10.1016/j.bbcan.2021.188534] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria, well recognized as the "powerhouse" of cells, are maternally inherited organelles with bacterial ancestry that play essential roles in a myriad of cellular functions. It has become profoundly evident that mitochondria regulate a wide array of cellular and metabolic functions, including biosynthetic metabolism, cell signaling, redox homeostasis, and cell survival. Correspondingly, defects in normal mitochondrial functioning have been implicated in various human malignancies. Cancer development involves the activation of oncogenes, inactivation of tumor suppressor genes, and impairment of apoptotic programs in cells. Mitochondria have been recognized as the site of key metabolic switches for normal cells to acquire a malignant phenotype. This review outlines the role of mitochondria in human malignancies and highlights potential aspects of mitochondrial metabolism that could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
7
|
Abnormal Expression of Mitochondrial Ribosomal Proteins and Their Encoding Genes with Cell Apoptosis and Diseases. Int J Mol Sci 2020; 21:ijms21228879. [PMID: 33238645 PMCID: PMC7700125 DOI: 10.3390/ijms21228879] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian mitochondrial ribosomes translate 13 proteins encoded by mitochondrial genes, all of which play roles in the mitochondrial respiratory chain. After a long period of reconstruction, mitochondrial ribosomes are the most protein-rich ribosomes. Mitochondrial ribosomal proteins (MRPs) are encoded by nuclear genes, synthesized in the cytoplasm and then, transported to the mitochondria to be assembled into mitochondrial ribosomes. MRPs not only play a role in mitochondrial oxidative phosphorylation (OXPHOS). Moreover, they participate in the regulation of cell state as apoptosis inducing factors. Abnormal expressions of MRPs will lead to mitochondrial metabolism disorder, cell dysfunction, etc. Many researches have demonstrated the abnormal expression of MRPs in various tumors. This paper reviews the basic structure of mitochondrial ribosome, focuses on the structure and function of MRPs, and their relationships with cell apoptosis and diseases. It provides a reference for the study of the function of MRPs and the disease diagnosis and treatment.
Collapse
|
8
|
Guan X, Zhang H, Qin H, Chen C, Hu Z, Tan J, Zeng L. CRISPR/Cas9-mediated whole genomic wide knockout screening identifies mitochondrial ribosomal proteins involving in oxygen-glucose deprivation/reperfusion resistance. J Cell Mol Med 2020; 24:9313-9322. [PMID: 32618081 PMCID: PMC7417733 DOI: 10.1111/jcmm.15580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/18/2020] [Accepted: 06/13/2020] [Indexed: 01/06/2023] Open
Abstract
Recanalization therapy by intravenous thrombolysis or endovascular therapy is critical for the treatment of cerebral infarction. However, the recanalization treatment will also exacerbate acute brain injury and even severely threatens human life due to the reperfusion injury. So far, the underlying mechanisms for cerebral ischaemia-reperfusion injury are poorly understood and effective therapeutic interventions are yet to be discovered. Therefore, in the research, we subjected SK-N-BE(2) cells to oxygen-glucose deprivation/reperfusion (OGDR) insult and performed a pooled genome-wide CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) knockout screen to discover new potential therapeutic targets for cerebral ischaemia-reperfusion injury. We used Metascape to identify candidate genes which might involve in OGDR resistance. We found that the genes contributed to OGDR resistance were primarily involved in neutrophil degranulation, mitochondrial translation, and regulation of cysteine-type endopeptidase activity involved in apoptotic process and response to oxidative stress. We then knocked down some of the identified candidate genes individually. We demonstrated that MRPL19, MRPL32, MRPL52 and MRPL51 inhibition increased cell viability and attenuated OGDR-induced apoptosis. We also demonstrated that OGDR down-regulated the expression of MRPL19 and MRPL51 protein. Taken together, our data suggest that genome-scale screening with Cas9 is a reliable tool to analyse the cellular systems that respond to OGDR injury. MRPL19 and MRPL51 contribute to OGDR resistance and are supposed to be promising targets for the treatment of cerebral ischaemia-reperfusion damage.
Collapse
Affiliation(s)
- Xinjie Guan
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Animal Model for Human DiseasesCentral South UniversityChangshaHunanChina
| | - Hainan Zhang
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Haiyun Qin
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chunli Chen
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhiping Hu
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jieqiong Tan
- Center for Medical GeneticsSchool of Life SciencesCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Medical GeneticsCentral South UniversityChangshaHunanChina
- Hunan Key Laboratory of Animal Model for Human DiseasesCentral South UniversityChangshaHunanChina
| | - Liuwang Zeng
- Department of NeurologySecond Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
9
|
Abstract
Mammalian mitochondrial ribosomal proteins are functionally involved in protein synthesis in mitochondrion. Recently numerous studies have illuminated the role of mitochondrion in cancer development. However, the precise function of mitochondrial ribosomal protein L42 (MRPL42) remains unclear. Here in the present study, we identified MRPL42 as a novel oncogene in glioma. By analyzing the Cancer Genome Atlas (TCGA) database, we first found that MRPL42 was significantly up-regulated in glioma tissues compared with normal tissues. Functionally, we silenced MRPL42 in glioma cells and revealed that MRPL42 knockdown largely blunted the proliferation of U251 and A172 cells. Mechanistically, our results suggested that MRPL42 silencing resulted in increased distribution of cell cycle in G1 and G2/M phases, while the S-phase decreased. In addition, the apoptosis and caspase3/7 activity were both activated after MRPL42 knockdown. Taken together, MRPL42 is a novel oncogene in glioma and might help us develop promising targetted therapies for glioma patients.
Collapse
|
10
|
Abstract
Mitochondria play fundamental roles in the regulation of life and death of eukaryotic cells. They mediate aerobic energy conversion through the oxidative phosphorylation (OXPHOS) system, and harbor and control the intrinsic pathway of apoptosis. As a descendant of a bacterial endosymbiont, mitochondria retain a vestige of their original genome (mtDNA), and its corresponding full gene expression machinery. Proteins encoded in the mtDNA, all components of the multimeric OXPHOS enzymes, are synthesized in specialized mitochondrial ribosomes (mitoribosomes). Mitoribosomes are therefore essential in the regulation of cellular respiration. Additionally, an increasing body of literature has been reporting an alternative role for several mitochondrial ribosomal proteins as apoptosis-inducing factors. No surprisingly, the expression of genes encoding for mitoribosomal proteins, mitoribosome assembly factors and mitochondrial translation factors is modified in numerous cancers, a trait that has been linked to tumorigenesis and metastasis. In this article, we will review the current knowledge regarding the dual function of mitoribosome components in protein synthesis and apoptosis and their association with cancer susceptibility and development. We will also highlight recent developments in targeting mitochondrial ribosomes for the treatment of cancer.
Collapse
|
11
|
Abstract
Oxidative phosphorylation (OXPHOS) is the mechanism whereby ATP, the major energy source for the cell, is produced by harnessing cellular respiration in the mitochondrion. This is facilitated by five multi-subunit complexes housed within the inner mitochondrial membrane. These complexes, with the exception of complex II, are of a dual genetic origin, requiring expression from nuclear and mitochondrial genes. Mitochondrially encoded mRNA is translated on the mitochondrial ribosome (mitoribosome) and the recent release of the near atomic resolution structure of the mammalian mitoribosome has highlighted its peculiar features. However, whereas some aspects of mitochondrial translation are understood, much is to be learnt about the presentation of mitochondrial mRNA to the mitoribosome, the biogenesis of the machinery, the exact role of the membrane, the constitution of the translocon/insertion machinery and the regulation of translation in the mitochondrion. This review addresses our current knowledge of mammalian mitochondrial gene expression, highlights key questions and indicates how defects in this process can result in profound mitochondrial disease.
Collapse
|
12
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
13
|
Schmeits PCJ, van Kol S, van Loveren H, Peijnenburg AACM, Hendriksen PJM. The effects of tributyltin oxide and deoxynivalenol on the transcriptome of the mouse thymoma cell line EL-4. Toxicol Res (Camb) 2014. [DOI: 10.1039/c3tx50100k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
14
|
Quigley DA, Fiorito E, Nord S, Van Loo P, Alnæs GG, Fleischer T, Tost J, Moen Vollan HK, Tramm T, Overgaard J, Bukholm IR, Hurtado A, Balmain A, Børresen-Dale AL, Kristensen V. The 5p12 breast cancer susceptibility locus affects MRPS30 expression in estrogen-receptor positive tumors. Mol Oncol 2013; 8:273-84. [PMID: 24388359 DOI: 10.1016/j.molonc.2013.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/17/2022] Open
Abstract
Genome-wide association studies have identified numerous loci linked to breast cancer susceptibility, but the mechanism by which variations at these loci influence susceptibility is usually unknown. Some variants are only associated with particular clinical subtypes of breast cancer. Understanding how and why these variants influence subtype-specific cancer risk contributes to our understanding of cancer etiology. We conducted a genome-wide expression Quantitative Trait Locus (eQTL) study in a discovery set of 287 breast tumors and 97 normal mammary tissue samples and a replication set of 235 breast tumors. We found that the risk-associated allele of rs7716600 in the 5p12 estrogen receptor-positive (ER-positive) susceptibility locus was associated with elevated expression of the nearby gene MRPS30 exclusively in ER-positive tumors. We replicated this finding in 235 independent tumors. Further, we showed the rs7716600 risk genotype was associated with decreased MRPS30 promoter methylation exclusively in ER-positive breast tumors. In vitro studies in MCF-7 cells carrying the protective genotype showed that estrogen stimulation decreased MRPS30 promoter chromatin availability and mRNA levels. In contrast, in 600MPE cells carrying the risk genotype, estrogen increased MRPS30 expression and did not affect promoter availability. Our data suggest the 5p12 risk allele affects MRPS30 expression in estrogen-responsive tumor cells after tumor initiation by a mechanism affecting chromatin availability. These studies emphasize that the genetic architecture of breast cancer is context-specific, and integrated analysis of gene expression and chromatin remodeling in normal and tumor tissues will be required to explain the mechanisms of risk alleles.
Collapse
Affiliation(s)
- David A Quigley
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, USA.
| | - Elisa Fiorito
- Breast Cancer Research Group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway, (NCMM), University of Oslo, Norway.
| | - Silje Nord
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Peter Van Loo
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton UK; Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium.
| | - Grethe Grenaker Alnæs
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Thomas Fleischer
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Jorg Tost
- Laboratory for Functional Genomics, Fondation Jean Dausset, Centre Etude Polymorphism Humain, (CEPH), Paris, France; Laboratory of Epigenetics, Centre National de Génotypage, Commissariat à l'énergie Atomique et, aux énergies Alternatives (CEA)-Institut de Génomique, Evry, France.
| | - Hans Kristian Moen Vollan
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Trine Tramm
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Ida R Bukholm
- Department of Breast-Endocrine Surgery, Akershus University Hospital, Oslo, Norway; Department of Oncology, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Oslo, Norway.
| | - Antoni Hurtado
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Breast Cancer Research Group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway, (NCMM), University of Oslo, Norway.
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, USA.
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway.
| |
Collapse
|
15
|
Wang X, Zhang L, Chen Z, Ma Y, Zhao Y, Rewuti A, Zhang F, Fu D, Han Y. Association between 5p12 genomic markers and breast cancer susceptibility: evidence from 19 case-control studies. PLoS One 2013; 8:e73611. [PMID: 24039999 PMCID: PMC3765311 DOI: 10.1371/journal.pone.0073611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022] Open
Abstract
Background The association between polymorphisms on 5p12 and breast cancer (BC) has been widely evaluated since it was first identified through genome-wide association approach; however, the studies have yielded contradictory results. We sought to investigate this inconsistency by performing a comprehensive meta-analysis on two wildly studied polymorphisms (rs10941679 and rs4415084) on 5p12. Methods Databases including Pubmed, EMBASE, Web of Science, EBSCO, and Cochrane Library databases were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. The random-effects model was applied, addressing heterogeneity and publication bias. Results A total of 19 articles involving 100,083 cases and 163,894 controls were included. An overall random-effects per-allele OR of 1.09 (95% CI: 1.06–1.12; P = 4.5×10−8) and 1.09 (95% CI: 1.05–1.12; P = 4.2×10−7) was found for the rs10941679 and rs4415084 polymorphism respectively. Significant results were found in Asians and Caucasians when stratified by ethnicity; whereas no significant associations were found among Africans/African-Americans. Similar results were also observed using dominant or recessive genetic models. In addition, we find both rs4415084 and rs10941679 conferred significantly greater risks of ER-positive breast cancer than of ER-negative tumors. Conclusions Our findings demonstrated that rs10941679-G allele and rs4415084-T allele might be risk-conferring factors for the development of breast cancer, especially in Caucasians and East-Asians.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Orthopedics Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liang Zhang
- Department of Orthopedics Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zixian Chen
- Department of Orthopedics Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yushui Ma
- Department of Orthopedics Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yuan Zhao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Abudouaini Rewuti
- Department of Orthopedics Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Feng Zhang
- Department of Orthopedics Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Da Fu
- Department of Orthopedics Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- * E-mail: (DF); (YSH)
| | - Yusong Han
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
- * E-mail: (DF); (YSH)
| |
Collapse
|
16
|
Rackham O, Filipovska A. Supernumerary proteins of mitochondrial ribosomes. Biochim Biophys Acta Gen Subj 2013; 1840:1227-32. [PMID: 23958563 DOI: 10.1016/j.bbagen.2013.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes. SCOPE OF REVIEW Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions. MAJOR CONCLUSIONS The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems. GENERAL SIGNIFICANCE Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Oliver Rackham
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia.
| |
Collapse
|
17
|
Bhatti P, Doody MM, Rajaraman P, Alexander BH, Yeager M, Hutchinson A, Burdette L, Thomas G, Hunter DJ, Simon SL, Weinstock RM, Rosenstein M, Stovall M, Preston DL, Linet MS, Hoover RN, Chanock SJ, Sigurdson AJ. Novel breast cancer risk alleles and interaction with ionizing radiation among U.S. radiologic technologists. Radiat Res 2010; 173:214-24. [PMID: 20095854 PMCID: PMC2922870 DOI: 10.1667/rr1985.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As genome-wide association studies of breast cancer are replicating findings and refinement studies are narrowing the signal location, additional efforts are necessary to elucidate the underlying functional relationships. One approach is to evaluate variation in risk by genotype based on known breast carcinogens, such as ionizing radiation. Given the public health concerns associated with recent increases in medical radiation exposure, this approach may also identify potentially susceptible subpopulations. We examined interaction between 27 newly identified breast cancer risk alleles (identified within the NCI Cancer Genetic Markers of Susceptibility and the Breast Cancer Association Consortium genome-wide association studies) and occupational and medical diagnostic radiation exposure among 859 cases and 1083 controls nested within the United States Radiologic Technologists cohort. We did not find significant variation in the radiation-related breast cancer risk for the variant in RAD51L1 (rs10483813) on 14q24.1 as we had hypothesized. In exploratory analyses, we found that the radiation-associated breast cancer risk varied significantly by linked markers in 5p12 (rs930395, rs10941679, rs2067980 and rs4415084) in the mitochondrial ribosomal protein S30 (MRPS30) gene (P(interaction) = 0.04). Chance, however, may explain these findings, and as such, these results need to be confirmed in other populations with low to moderate levels of radiation exposure. Even though a complete understanding of the way(s) in which these variants may increase breast cancer risk remains elusive, this approach may yield clues for further investigation.
Collapse
Affiliation(s)
- Parveen Bhatti
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp Gerontol 2009; 45:611-20. [PMID: 20036725 DOI: 10.1016/j.exger.2009.12.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/16/2009] [Accepted: 12/17/2009] [Indexed: 11/23/2022]
Abstract
Aging is a complex process accompanied by a decreased capacity to tolerate and respond to various stresses. Heat shock proteins as part of cell defense mechanisms are up-regulated following stress. In Drosophila, the mitochondrial Hsp22 is preferentially up-regulated in aged flies. Its over-expression results in an extension of lifespan and an increased resistance to stress. Hsp22 has chaperone-like activity in vitro, but the mechanism(s) by which it increases lifespan in flies are unknown. Genome-wide analysis was performed on long-lived Hsp22+ and control flies to unveil transcriptional changes brought by Hsp22. Transcriptomes obtained at 45days, 90% and 50% survival were then compared between them to focus more on genes up- or down-regulated in presence of higher levels of hsp22 mRNA. Hsp22+ flies display an up-regulation of genes mainly related to mitochondrial energy production and protein biosynthesis, two functions normally down-regulated during aging. Interestingly, among the 26 genes up-regulated in Hsp22+ flies, 7 genes encode for mitochondrial proteins, 5 of which being involved in OXPHOS complexes. Other genes that could influence aging such as CG5002, dGCC185 and GstS1 also displayed a regulation linked to Hsp22 expression. The up-regulation of genes of the OXPHOS system in Hsp22+ flies suggest that mitochondrial homeostasis is at the center of Hsp22 beneficial effects on lifespan.
Collapse
|
19
|
Hu X, Gao Y, Feng C, Liu Q, Wang X, Du Z, Wang Q, Li N. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping. Genetica 2008; 136:371-86. [DOI: 10.1007/s10709-008-9338-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 11/19/2008] [Indexed: 12/25/2022]
|
20
|
Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 2008; 40:703-6. [PMID: 18438407 DOI: 10.1038/ng.131] [Citation(s) in RCA: 365] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/26/2008] [Indexed: 01/22/2023]
Abstract
We carried out a genome-wide association study of breast cancer predisposition with replication and refinement studies involving 6,145 cases and 33,016 controls and identified two SNPs (rs4415084 and rs10941679) on 5p12 that confer risk, preferentially for estrogen receptor (ER)-positive tumors (OR = 1.27, P = 2.5 x 10(-12) for rs10941679). The nearest gene, MRPS30, was previously implicated in apoptosis, ER-positive tumors and favorable prognosis. A recently reported signal in FGFR2 was also found to associate specifically with ER-positive breast cancer.
Collapse
|
21
|
Smits P, Smeitink JAM, van den Heuvel LP, Huynen MA, Ettema TJG. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 2007; 35:4686-703. [PMID: 17604309 PMCID: PMC1950548 DOI: 10.1093/nar/gkm441] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For production of proteins that are encoded by the mitochondrial genome, mitochondria rely on their own mitochondrial translation system, with the mitoribosome as its central component. Using extensive homology searches, we have reconstructed the evolutionary history of the mitoribosomal proteome that is encoded by a diverse subset of eukaryotic genomes, revealing an ancestral ribosome of alpha-proteobacterial descent that more than doubled its protein content in most eukaryotic lineages. We observe large variations in the protein content of mitoribosomes between different eukaryotes, with mammalian mitoribosomes sharing only 74 and 43% of its proteins with yeast and Leishmania mitoribosomes, respectively. We detected many previously unidentified mitochondrial ribosomal proteins (MRPs) and found that several have increased in size compared to their bacterial ancestral counterparts by addition of functional domains. Several new MRPs have originated via duplication of existing MRPs as well as by recruitment from outside of the mitoribosomal proteome. Using sensitive profile-profile homology searches, we found hitherto undetected homology between bacterial and eukaryotic ribosomal proteins, as well as between fungal and mammalian ribosomal proteins, detecting two novel human MRPs. These newly detected MRPs constitute, along with evolutionary conserved MRPs, excellent new screening targets for human patients with unresolved mitochondrial oxidative phosphorylation disorders.
Collapse
Affiliation(s)
- Paulien Smits
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Jan A. M. Smeitink
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Lambert P. van den Heuvel
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Martijn A. Huynen
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Thijs J. G. Ettema
- Nijmegen Center for Mitochondrial Disorders, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert–Grooteplein-Zuid 10 and Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Geert-Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- *To whom correspondence should be addressed.
| |
Collapse
|
22
|
Papapetropoulos S, FFrench-Mullen J, McCorquodale D, Qin Y, Pablo J, Mash DC. Multiregional gene expression profiling identifies MRPS6 as a possible candidate gene for Parkinson's disease. Gene Expr 2006; 13:205-15. [PMID: 17193926 PMCID: PMC6032441 DOI: 10.3727/000000006783991827] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Combining large-scale gene expression approaches and bioinformatics may provide insights into the molecular variability of biological processes underlying neurodegeneration. To identify novel candidate genes and mechanisms, we conducted a multiregional gene expression analysis in postmortem brain. Gene arrays were performed utilizing Affymetrix HG U133 Plus 2.0 gene chips. Brain specimens from 21 different brain regions were taken from Parkinson's disease (PD) (n = 22) and normal aged (n = 23) brain donors. The rationale for conducting a multiregional survey of gene expression changes was based on the assumption that if a gene is changed in more than one brain region, it may be a higher probability candidate gene compared to genes that are changed in a single region. Although no gene was significantly changed in all of the 21 brain regions surveyed, we identified 11 candidate genes whose pattern of expression was regulated in at least 18 out of 21 regions. The expression of a gene encoding the mitochondria ribosomal protein S6 (MRPS6) had the highest combined mean fold change and topped the list of regulated genes. The analysis revealed other genes related to apoptosis, cell signaling, and cell cycle that may be of importance to disease pathophysiology. High throughput gene expression is an emerging technology for molecular target discovery in neurological and psychiatric disorders. The top gene reported here is the nuclear encoded MRPS6, a building block of the human mitoribosome of the oxidative phosphorylation system (OXPHOS). Impairments in mitochondrial OXPHOS have been linked to the pathogenesis of PD.
Collapse
Affiliation(s)
| | | | - Donald McCorquodale
- *Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Yujing Qin
- *Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - John Pablo
- *Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Deborah C. Mash
- *Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
23
|
O'Brien TW, O'Brien BJ, Norman RA. Nuclear MRP genes and mitochondrial disease. Gene 2005; 354:147-51. [PMID: 15908146 DOI: 10.1016/j.gene.2005.03.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 02/21/2005] [Accepted: 03/25/2005] [Indexed: 11/23/2022]
Abstract
The ancestral mitochondrial ribosome (70S) underwent major structural remodeling during the evolution of mammalian mitochondrial ribosomes (55S). Despite the loss of nearly half their RNA, 55S ribosomes are actually larger than bacterial ribosomes because of all the extra proteins they contain. Typical of mammalian mitochondrial ribosomes, the human mitochondrial ribosome is one of the most protein-rich ribosomes, containing several new proteins. One of the new proteins is a novel GTP binding protein, DAP3, that has been implicated in apoptosis. Except for DAP3, the locations of the individual new proteins in the ribosome are unknown. All of the MRPs are encoded by nuclear genes. Mutations or deficiencies of ribosome assembly proteins or other essential proteins are candidates for mitochondrial disease, since the mitochondrial ribosome translates mRNAs for the 13 essential components of the oxidative phosphorylation system. Several of the MRP genes map to loci associated with disorders consistent with impaired oxidative phosphorylation, such as Leigh Syndrome, multiple mitochondrial dysfunctions, and non-syndromic hearing loss. This manuscript reviews the distinctive properties of human mitochondrial ribosomes and ribosomal proteins, and the correlation of MRP3 gene locations with loci associated with disorders of energy metabolism, and provides localization information for one of the unusual proteins contained in human mitochondrial ribosomes, MRPS29.
Collapse
Affiliation(s)
- Thomas W O'Brien
- Department of Biochemistry and Molecular Biology, Health Science Center, University of Florida, Gainesville, FL 32610-0245, USA.
| | | | | |
Collapse
|
24
|
Tselykh TV, Roos C, Heino TI. The mitochondrial ribosome-specific MrpL55 protein is essential in Drosophila and dynamically required during development. Exp Cell Res 2005; 307:354-66. [PMID: 15894314 DOI: 10.1016/j.yexcr.2005.03.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022]
Abstract
We report on the essential Drosophila mRpL55 gene conserved exclusively in metazoans. Null mRpL55 mutants did not grow after hatching, moved slowly and died as first instar larvae. MrpL55 is similar to mammalian MRPL55, a protein that, in a large-scale mass spectrometry study, has been found as a mitoribosome-specific large subunit protein. We showed that MrpL55 was localised to the mitochondrion in S2 cells and tissues and was enriched in cells with a higher protein synthesis activity. The MrpL55 protein contains a KOW-like motif present in proteins with a role in transcriptional anti-termination and regulation of translation. Modulation of mRpL55 expression level is critical for development. Somatic clonal analysis showed that MrpL55 was not required in larval eye imaginal discs but required in pupal discs apparently during the second mitotic wave. Therefore, our results showed that the MrpL55 protein acts dynamically in the cell during development. We propose that MrpL55 is involved in Drosophila mitochondrial biogenesis and G2/M phase cell cycle progression.
Collapse
MESH Headings
- Amino Acid Motifs/genetics
- Amino Acid Sequence
- Animals
- Animals, Genetically Modified
- Cell Line
- Cloning, Molecular
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila Proteins/physiology
- Drosophila melanogaster/embryology
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/physiology
- Eye/cytology
- Eye/growth & development
- Female
- Gene Deletion
- Gene Expression/genetics
- Gene Expression Regulation, Developmental
- Humans
- Immunohistochemistry
- Larva/genetics
- Larva/growth & development
- Mitochondria/chemistry
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mitochondrial Proteins/physiology
- Molecular Sequence Data
- Mutation
- Nematoda/genetics
- Oogenesis/physiology
- Phenotype
- Protein Structure, Secondary
- RNA, Messenger, Stored/analysis
- RNA, Messenger, Stored/physiology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/physiology
- Recombination, Genetic/genetics
- Ribosomal Proteins/genetics
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/physiology
- Salivary Glands/cytology
- Salivary Glands/metabolism
- Sequence Homology, Amino Acid
- Subcellular Fractions/chemistry
Collapse
Affiliation(s)
- Timofey V Tselykh
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, FIN-00014 Helsinki, Finland.
| | | | | |
Collapse
|
25
|
Liobikas J, Polianskyte Z, Speer O, Thompson J, Alakoskela JM, Peitsaro N, Franck M, Whitehead MA, Kinnunen PJK, Eriksson O. Expression and purification of the mitochondrial serine protease LACTB as an N-terminal GST fusion protein in Escherichia coli. Protein Expr Purif 2005; 45:335-42. [PMID: 16202624 DOI: 10.1016/j.pep.2005.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/06/2005] [Accepted: 08/11/2005] [Indexed: 11/29/2022]
Abstract
LACTB is a mammalian mitochondrial protein sharing sequence similarity to the beta-lactamase/penicillin-binding protein family of serine proteases that are involved in bacterial cell wall metabolism. The physiological role of LACTB is unclear. In this study we have subcloned the cDNA of mouse LACTB (mLACTB) and produced recombinant mLACTB protein in Escherichia coli. When mLACTB was expressed as an N-terminal GST fusion protein (GST-mLACTB), full-length GST-mLACTB protein was recovered by glutathione-agarose affinity chromatography as determined by MALDI-TOF mass spectrometry and immunoblotting. Expression of mLACTB as a C-terminal GST fusion protein or with either an N- or C-terminal His6-tag resulted in proteolytic degradation of the protein and we were not able to detect full-length mLACTB. Analysis of GST-mLACTB by Fourier transform infrared spectrometry revealed the presence of alpha-helices, beta-sheets and turns, consistent with a well-defined secondary structure. These results show that mLACTB can be expressed as a GST fusion protein in E. coli and suggest that GST-mLACTB was properly folded.
Collapse
Affiliation(s)
- Julius Liobikas
- Helsinki Biophysics and Biomembrane Group, Institute of Biomedicine/Biochemistry, Biomedicum Helsinki, P.O. Box 63, FIN-00014, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chintharlapalli SR, Jasti M, Malladi S, Parsa KVL, Ballestero RP, González-García M. BMRP is a Bcl-2 binding protein that induces apoptosis. J Cell Biochem 2004; 94:611-26. [PMID: 15547950 DOI: 10.1002/jcb.20292] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Members of the Bcl-2 family of proteins play important roles in the regulation of cell death by apoptosis. The yeast Two-Hybrid system was utilized to identify a protein that interacts with the anti-apoptotic protein Bcl-2, designated BMRP. This protein corresponds to a previously known mitochondrial ribosomal protein (MRPL41). Binding experiments confirmed the interaction of BMRP to Bcl-2 in mammalian cells. Subcellular fractionation by differential centrifugation studies showed that both Bcl-2 and BMRP are localized to the same fractions (fractions that are rich in mitochondria). Northern blot analysis revealed a major bmrp mRNA band of approximately 0.8 kb in several human tissues. Additionally, a larger 2.2 kb mRNA species was also observed in some tissues. Western blot analysis showed that endogenous BMRP runs as a band of 16-17 kDa in SDS-PAGE. Overexpression of BMRP induced cell death in primary embryonic fibroblasts and NIH/3T3 cells. Transfection of BMRP showed similar effects to those observed by overexpression of the pro-apoptotic proteins Bax or Bad. BMRP-stimulated cell death was counteracted by co-expression of Bcl-2. The baculoviral caspase inhibitor p35 also protected cells from BMRP-induced cell death. These findings suggest that BMRP is a mitochondrial ribosomal protein involved in the regulation of cell death by apoptosis, probably affecting pathways mediated by Bcl-2 and caspases.
Collapse
Affiliation(s)
- Sudhakar R Chintharlapalli
- Departments of Biology and Chemistry, Texas A&M University-Kingsville, 700 University Blvd., Kingsville, Texas 78363, USA
| | | | | | | | | | | |
Collapse
|
27
|
Qin W, Hu J, Guo M, Xu J, Li J, Yao G, Zhou X, Jiang H, Zhang P, Shen L, Wan D, Gu J. BNIPL-2, a novel homologue of BNIP-2, interacts with Bcl-2 and Cdc42GAP in apoptosis. Biochem Biophys Res Commun 2003; 308:379-85. [PMID: 12901880 DOI: 10.1016/s0006-291x(03)01387-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The execution phase of apoptosis is characterized by marked changes in cell morphology that include contraction and membrane blebbing. Little is known about the mechanisms underlying this process. We report here the identification of a novel member of BNIPL family, designated Bcl-2/adenovirus E1B 19kDa interacting protein 2 like-2 (BNIPL-2), which interacts with Bcl-2 and Cdc42GAP. We found that the human BNIPL-2 shares homology to human BNIP-2 and also possesses a BNIP-2 and Cdc42GAP homology (BCH) domain. Deletion experiments indicated that the BCH domain of BNIPL-2 is critical for its interactions with the Bcl-2 and Cdc42GAP and also for its cell death-inducing function. Our data showed that BNIPL-2 may be a linker protein located at the front end of Bcl-2 pathway for DNA fragmentation and Cdc42 signaling for morphological changes during apoptosis. We propose that BNIPL-2 protein may play an important role in regulation of both pathways for DNA fragmentation and for formation of membrane blebs in apoptotic cells.
Collapse
Affiliation(s)
- Wenxin Qin
- National Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao-Tong University Medical School, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Mitochondrial ribosomes comprise the most diverse group of ribosomes known. The mammalian mitochondrial ribosomes (55S) differ unexpectedly from bacterial (70S) and cytoplasmic ribosomes (80S), as well as other kinds of mitochondrial ribosomes. The bovine mitochondrial ribosome has been developed as a model system for the study of human mitochondrial ribosomes to address several questions related to the structure, function, biosynthesis and evolution of these interesting ribosomes. Bovine mitochondrial ribosomal proteins (MRPs) from each subunit have been identified and characterized with respect to individuality and electrophoretic properties, amino acid sequence, topographic disposition, RNA binding properties, evolutionary relationships and reaction with affinity probes of ribosomal functional domains. Several distinctive properties of these ribosomes are being elucidated, including their antibiotic susceptibility and composition. Mammalian mitochondrial ribosomes lack several of the major RNA stem structures of bacterial ribosomes but they contain a correspondingly higher protein content (as many as 80 proteins), suggesting a model where proteins have replaced RNA structural elements during the evolution of these ribosomes. Despite their lower RNA content they are physically larger than bacterial ribosomes, because of the 'extra' proteins they contain. The extra proteins in mitochondrial ribosomes are 'new' in the sense that they are not homologous to proteins in bacterial or cytoplasmic ribosomes. Some of the new proteins appear to be bifunctional. All of the mammalian MRPs are encoded in nuclear genes (a separate set from those encoding cytoplasmic ribosomal proteins) which are evolving more rapidly than those encoding cytoplasmic ribosomal proteins. The MRPs are imported into mitochondria where they assemble coordinately with mitochondrially transcribed rRNAs into ribosomes that are responsible for translating the 13 mRNAs for essential proteins of the oxidative phosphorylation system. Interest is growing in the structure, organization, chromosomal location and expression of genes for human MRPs. Proteins which are essential for mitoribosome function are candidates for involvement in human genetic disease.
Collapse
Affiliation(s)
- Thomas W O'Brien
- Department of Biochemistry and Molecular Biology, Health Science Center, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
29
|
Asakura M, Kitakaze M, Sakata Y, Asanuma H, Sanada S, Kim J, Ogida H, Liao Y, Node K, Takashima S, Tada M, Hori M. Adenosine-induced cardiac gene expression of ischemic murine hearts revealed by cDNA array hybridization. Circ J 2002; 66:93-6. [PMID: 11999673 DOI: 10.1253/circj.66.93] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because many endogenous substances, including adenosine, contribute to the pathophysiology of ischemic hearts, the present study was designed to investigate the transcription responses of murine hearts to ischemia with or without administration of an inhibitor of adenosine receptor, 8-sulfophenyltheophylline (8SPT). Sixty minutes after ligation of the proximal site of the left coronary artery with (n=9) or without (n=9) 8SPT, the hearts were excised to obtain mRNA for cDNA array analysis. In 18,376 cDNA, 2 known genes were upregulated over 10-fold, and 11 known genes were upregulated 5.0-9.9-fold. 8SPT reduced the expressed gene to the control levels. Furthermore, 32 unknown genes were also upregulated over 5.0-fold. In contrast, 11 known genes were downregulated below 0.2-fold, and 64% of the downregulated genes were restored by 8SPT. The 7 unknown genes were downregulated to levels below 0.2-fold. Therefore, it was concluded that the cardiac expression of 24 known and 39 unknown genes was modulated by ischemic stress, and that these genes appeared to be related to the pathophysiology of the ischemic heart because endogenous adenosine modulated their expression.
Collapse
Affiliation(s)
- Masanori Asakura
- Department of Internal Medicine and Therapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cavdar Koc E, Ranasinghe A, Burkhart W, Blackburn K, Koc H, Moseley A, Spremulli LL. A new face on apoptosis: death-associated protein 3 and PDCD9 are mitochondrial ribosomal proteins. FEBS Lett 2001; 492:166-70. [PMID: 11248257 DOI: 10.1016/s0014-5793(01)02250-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two proteins known to be involved in promoting apoptosis in mammalian cells have been identified as components of the mammalian mitochondrial ribosome. Proteolytic digestion of whole mitochondrial ribosomal subunits followed by analysis of the peptides present using liquid chromatography-tandem mass spectrometry revealed that the proapoptotic proteins, death-associated protein 3 (DAP3) and the programmed cell death protein 9, are both components of the mitochondrial ribosome. DAP3 has motifs characteristic of guanine nucleotide binding proteins and is probably the protein that accounts for the nucleotide binding activity of mammalian mitochondrial ribosomes. The observations reported here implicate mitochondrial protein synthesis as a major component in cellular apoptotic signaling pathways.
Collapse
Affiliation(s)
- E Cavdar Koc
- Department of Chemistry, University of North Carolina, Chapel Hill, 27599-3290, USA
| | | | | | | | | | | | | |
Collapse
|