1
|
Lutz MW, Chiba-Falek O. Bioinformatics pipeline to guide post-GWAS studies in Alzheimer's: A new catalogue of disease candidate short structural variants. Alzheimers Dement 2023; 19:4094-4109. [PMID: 37253165 PMCID: PMC10524333 DOI: 10.1002/alz.13168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Short structural variants (SSVs), including insertions/deletions (indels), are common in the human genome and impact disease risk. The role of SSVs in late-onset Alzheimer's disease (LOAD) has been understudied. In this study, we developed a bioinformatics pipeline of SSVs within LOAD-genome-wide association study (GWAS) regions to prioritize regulatory SSVs based on the strength of their predicted effect on transcription factor (TF) binding sites. METHODS The pipeline utilized publicly available functional genomics data sources including candidate cis-regulatory elements (cCREs) from ENCODE and single-nucleus (sn)RNA-seq data from LOAD patient samples. RESULTS We catalogued 1581 SSVs in candidate cCREs in LOAD GWAS regions that disrupted 737 TF sites. That included SSVs that disrupted the binding of RUNX3, SPI1, and SMAD3, within the APOE-TOMM40, SPI1, and MS4A6A LOAD regions. CONCLUSIONS The pipeline developed here prioritized non-coding SSVs in cCREs and characterized their putative effects on TF binding. The approach integrates multiomics datasets for validation experiments using disease models.
Collapse
Affiliation(s)
- Michael W. Lutz
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Wu G, Shen W, Xue X, Wang L, Ma Y, Zhou J. A novel (ATC) n microsatellite locus is associated with litter size in an indigenous Chinese pig. Vet Med Sci 2021; 7:1332-1338. [PMID: 33955708 PMCID: PMC8294369 DOI: 10.1002/vms3.371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
Simple sequence repeats (SSRs) are an important part of the genome and have become powerful auxiliary DNA markers in animal breeding using marker-assisted selection (MAS). Based on previous sequencing data of Qinghai Bamei pigs, a total of three novel candidate SSR loci were analysed in this study. Time-of-flight mass spectrometry (TOF-MS) was used for SSR genotyping, and association analyses between SSRs and the litter size of Qinghai Bamei sows was also performed. The results of genotyping showed that the (ATC)n -P1, (AC)n -P2 and (AC)n -P3 loci had 2, 3 and 18 genotypes, respectively; 2, 3 and 8 alleles were also identified at these loci. Except for the (AC)n -P2 locus, the polymorphism information content (PIC) values of other loci were greater than 0.25. Association analyses indicated that only the (ATC)n -P1 locus was significantly associated with the litter size of Qinghai Bamei sows (p = .047). Compared to 189-/189- genotype, individuals with the 189-/195- genotype had the senior litter size, which was 9.04 ± 0.21. Our results enrich the data on SSRs in Qinghai Bamei pigs and indicate that (ATC)n -P1 is a candidate locus for MAS in the pig industry.
Collapse
Affiliation(s)
- Guofang Wu
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Wenjuan Shen
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Xingxing Xue
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Yuhong Ma
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jiping Zhou
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
3
|
Kénémé B, Sembène M. GTn Repeat Microsatellite Instability in Uterine Fibroids. Front Genet 2019; 10:810. [PMID: 31616464 PMCID: PMC6764323 DOI: 10.3389/fgene.2019.00810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Background:Type I collagen is a triple helix structure with two α1 and one α2 chains. Coordinated biosynthesis of α1 and α2 subunits is very important for tissue morphogenesis, growth, and repair. In contrast, abnormal deposition in response to proinflammatory cytokines is associated with organ dysfunction. In humans, COL1A2 contains two microsatellite loci: one located at the 5’-flanking region is composed of poly CA and poly CG; the other located in the 1st intron is constituted of poly GT. Expression of COL1A2 has been noted in gastric cancer and was positively correlated with degree of invasion and metastases. But no genetic study taking into account polymorphism of COL1A2 in uterine fibroids has been undertaken. Methods: In this study, repeated dinucleotide GTn of intron 1 COL1A2 was highlighted in 55 patients with uterine fibroids (UF). Clinical and pathological data were obtained from patient’s records, and other parameters were recorded. Mutation Surveyor version 5.0.1, DnaSP version 5.10, MEGA version 7.0.26, and Arlequin version 3.5.1.3 were used to determine genetics parameters. To estimate genetic variation according to epidemiological parameters, index of genetic differentiation (Fst) and genetic structure (AMOVA) were determined with Arlequin version. Results: Based on reference microsatellite pattern (GT)14CT(GT)3CT(GT)3, 15 haplotypes were found. Among the 15 haplotypes, 12 have mutation at position 2284C > G and 7 at position 2292C > G. Insertions of repeated dinucleotide GTn were found on three haplotypes against eight haplotypes in which they are deletions. Intron 1 of COL1A2 gene exhibits high genetic diversity in uterine fibroids with 35.34% polymorphic sites, 95.74% of which were parsimoniously variable and an average number of nucleotide difference of 10.442, which reflects an important genetic variability. According to epidemiological parameters, our results showed, for the first time, a genetic structuring of uterine fibroids according to ethnicity, marital status, use of contraception, diet, and physical activity, beyond confirming the involvement dinucleotide length polymorphism GTn in occurrence of uterine fibroids in Senegalese women. Conclusion: Results obtained open up avenues for understanding the mechanisms involved in the racial variation in the prevalence of uterine fibroids as well as the predisposing factors.
Collapse
Affiliation(s)
- Bineta Kénémé
- GenGesPop, Cheikh Anta Diop University, Animal Biology, Dakar-Fann, Senegal
| | - Mbacké Sembène
- GenGesPop, Cheikh Anta Diop University, Animal Biology, Dakar-Fann, Senegal.,Biopass, IRD, Dakar-Bel Air, Senegal
| |
Collapse
|
4
|
Afek A, Tagliafierro L, Glenn OC, Lukatsky DB, Gordan R, Chiba-Falek O. Toward deciphering the mechanistic role of variations in the Rep1 repeat site in the transcription regulation of SNCA gene. Neurogenetics 2018; 19:135-144. [PMID: 29730780 DOI: 10.1007/s10048-018-0546-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/25/2018] [Indexed: 12/01/2022]
Abstract
Short structural variants-variants other than single nucleotide polymorphisms-are hypothesized to contribute to many complex diseases, possibly by modulating gene expression. However, the molecular mechanisms by which noncoding short structural variants exert their effects on gene regulation have not been discovered. Here, we study simple sequence repeats (SSRs), a common class of short structural variants. Previously, we showed that repetitive sequences can directly influence the binding of transcription factors to their proximate recognition sites, a mechanism we termed non-consensus binding. In this study, we focus on the SSR termed Rep1, which was associated with Parkinson's disease (PD) and has been implicated in the cis-regulation of the PD-risk SNCA gene. We show that Rep1 acts via the non-consensus binding mechanism to affect the binding of transcription factors from the GATA and ELK families to their specific sites located right next to the Rep1 repeat. Next, we performed an expression analysis to further our understanding regarding the GATA and ELK family members that are potentially relevant for SNCA transcriptional regulation in health and disease. Our analysis indicates a potential role for GATA2, consistent with previous reports. Our study proposes non-consensus transcription factor binding as a potential mechanism through which noncoding repeat variants could exert their pathogenic effects by regulating gene expression.
Collapse
Affiliation(s)
- A Afek
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA.,Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - L Tagliafierro
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - O C Glenn
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - D B Lukatsky
- Department of Chemistry, Ben-Gurion University of the Negev, 8410501, Beersheba, Israel
| | - R Gordan
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA. .,Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Computer Science, Duke University, Durham, NC, 27708, USA.
| | - O Chiba-Falek
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27710, USA. .,Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Chiba-Falek O, Gottschalk WK, Lutz MW. The effects of the TOMM40 poly-T alleles on Alzheimer's disease phenotypes. Alzheimers Dement 2018. [PMID: 29524426 DOI: 10.1016/j.jalz.2018.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The TOMM40 poly-T is a polymorphism in intron 6 of the TOMM40 gene, which is adjacent to and in linkage disequilibrium with APOE. Roses et al. identified the association between the length of TOMM40 poly-T with the risk and age of onset of late-onset Alzheimer's disease (LOAD). Following the original discovery, additional studies found associations between the TOMM40 poly-T and LOAD-related phenotypes independent of APOE genotypes, while others did not replicate these associations. Furthermore, the identity of the TOMM40 poly-T risk allele has been controversial between different LOAD-related phenotypes. Here, we propose a framework to address the conflicting findings with respect to the TOMM40 poly-T allele associations with LOAD phenotypes and their functional effects. The framework is used to interpret previous studies as means to gain insights regarding the nature of the risk allele, very long versus short. We suggest that the identity of the TOMM40 poly-T risk allele depends on the phenotype being evaluated, the ages of the study subjects at the time of assessment, and the context of the APOE genotypes. In concluding remarks, we outline future studies that will inform the mechanistic interpretation of the genetic data.
Collapse
Affiliation(s)
- Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC, USA; Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, USA.
| | | | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Yu L, Lutz MW, Wilson RS, Burns DK, Roses AD, Saunders AM, Yang J, Gaiteri C, De Jager PL, Barnes LL, Bennett DA. APOE ε4-TOMM40 '523 haplotypes and the risk of Alzheimer's disease in older Caucasian and African Americans. PLoS One 2017; 12:e0180356. [PMID: 28672022 PMCID: PMC5495438 DOI: 10.1371/journal.pone.0180356] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/14/2017] [Indexed: 11/23/2022] Open
Abstract
Patterns of linkage between the ε4 allele of Apolipoprotein E (APOE) and '523 poly-T alleles in the adjacent gene, TOMM40, differ between Caucasian and African Americans. The extent to which this difference affects the risk of Alzheimer's disease (AD) is unclear. We compared the APOE ε4-TOMM40 '523 haplotypes between older Caucasian and African Americans, and examined their relationship with AD dementia. Data came from three community based cohort studies of diverse participants. APOE genotypes were determined by polymorphisms of rs429358 and rs7412. TOMM40 '523 genotypes were defined by the poly-T repeat length of rs10524523 (short ['523-S]: poly-T ≤ 19, long ['523-L]: 20 ≤ poly-T ≤ 29, and very long ['523-VL]: poly-T ≥ 30). Cox proportional hazards models examined the effect of haplotype variation on the risk of incident AD dementia. A total of 1,848 Caucasian and 540 African American individuals were included in the study. In Caucasians, nearly none (0.8%) of the non-ε4 carriers and almost all (94.2%) of the ε4 carriers had '523-L. The classification was highly concordant. Each ε4 allele doubled the risk for AD dementia and the dose effect was evident. Almost identical effect size and effect pattern were observed for TOMM40 '523-L. In African Americans, nearly none (1.1%) of the non-ε4 carriers had '523-L, but only 47.8% of the ε4 carriers had '523-L. The concordance was weaker compared with Caucasians. The effect patterns on incident AD dementia differed distinctively between ε4 and '523-L carriers. Further, both genotypic and allelic data support that among African Americans the ε4-'523-L haplotype had stronger effect on risk of AD dementia than other ε4-'523 haplotypes.
Collapse
Affiliation(s)
- Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Michael W. Lutz
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert S. Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Research Triangle Park, North Carolina, United States of America
| | - Allen D. Roses
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Zinfandel Pharmaceuticals, Inc., Research Triangle Park, North Carolina, United States of America
| | - Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Research Triangle Park, North Carolina, United States of America
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Chris Gaiteri
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, United States of America
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts, United States of America
| | - Lisa L. Barnes
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, United States of America
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dias C, Giordano M, Frechette R, Bellone S, Polychronakos C, Legault L, Deal CL, Goodyer CG. Genetic variations at the human growth hormone receptor (GHR) gene locus are associated with idiopathic short stature. J Cell Mol Med 2017; 21:2985-2999. [PMID: 28557176 PMCID: PMC5661101 DOI: 10.1111/jcmm.13210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/17/2017] [Indexed: 12/15/2022] Open
Abstract
GH plays an essential role in the growing child by binding to the growth hormone receptor (GHR) on target cells and regulating multiple growth promoting and metabolic effects. Mutations in the GHR gene coding regions result in GH insensitivity (dwarfism) due to a dysfunctional receptor protein. However, children with idiopathic short stature (ISS) show growth impairment without GH or GHR defects. We hypothesized that decreased expression of the GHR gene may be involved. To test this, we investigated whether common genetic variants (microsatellites, SNPs) in regulatory regions of the GHR gene region were associated with the ISS phenotype. Genotyping of a GT‐repeat microsatellite in the GHR 5′UTR in a Montreal ISS cohort (n = 37 ISS, n = 105 controls) revealed that the incidence of the long/short (L/S) genotype was 3.3× higher in ISS children than controls (P = 0.04, OR = 3.85). In an Italian replication cohort (n = 143 ISS, n = 282 controls), the medium/short (M/S) genotype was 1.9× more frequent in the male ISS than controls (P = 0.017, OR = 2.26). In both ISS cohorts, logistic regression analysis of 27 SNPs showed an association of ISS with rs4292454, while haplotype analysis revealed specific risk haplotypes in the 3′ haploblocks. In contrast, there were no differences in GT genotype frequencies in a cohort of short stature (SS) adults versus controls (CARTaGENE: n = 168 SS, n = 207 controls) and the risk haplotype in the SS cohort was located in the most 5′ haploblock. These data suggest that the variants identified are potentially genetic markers specifically associated with the ISS phenotype.
Collapse
Affiliation(s)
- Christel Dias
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Mara Giordano
- Laboratory of Human Genetics, Department of Health Science, University of Eastern Piedmont, Novara, Italy
| | | | - Simonetta Bellone
- Division of Pediatrics, Department of Health Science, University of Eastern Piedmont, Novara, Italy
| | - Constantin Polychronakos
- Departments of Experimental Medicine, Human Genetics and Pediatrics, McGill University, Montreal, QC, Canada
| | - Laurent Legault
- Department of Pediatrics, McGill University, Montreal, QC, Canada
| | - Cheri L Deal
- CHU Ste-Justine Research Centre and Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Cynthia Gates Goodyer
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada.,Departments of Experimental Medicine and Pediatrics, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Structural variants in SNCA gene and the implication to synucleinopathies. Curr Opin Genet Dev 2017; 44:110-116. [PMID: 28319736 DOI: 10.1016/j.gde.2017.01.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/30/2017] [Indexed: 01/23/2023]
Abstract
Synucleinopathies are a group of neurodegenerative diseases that share a common pathological lesion of intracellular protein inclusions largely composed of aggregates of alpha-synuclein protein. Accumulating evidence, including genome-wide association studies, has implicated the alpha-synuclein (SNCA) gene in the etiology of synucleinopathies and it has been suggested that SNCA expression levels are critical for the development of these diseases. This review focuses on genetic variants from the class of structural variants (SVs), including multiplication of large genomic segments and short (<50bp) genomic variants such as simple sequence repeats (SSRs), within the SNCA locus. We provide evidence that SNCA-SVs play a key role in the pathogenesis of synucleinopathies via their effects on gene expression and on regulatory mechanisms including transcription and splicing.
Collapse
|
9
|
Chiba-Falek O, Lutz MW. Towards precision medicine in Alzheimer's disease: deciphering genetic data to establish informative biomarkers. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:47-55. [PMID: 28944295 DOI: 10.1080/23808993.2017.1286227] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Developing biomarker tools for identification of individuals at high-risk for late-onset Alzheimer's disease (LOAD) is important for prognosis and early treatment. This review focuses on genetic factors and their potential role for precision medicine in LOAD. AREAS COVERED APOEe4 is the strongest genetic risk factor for non-Mendelian LOAD, and the APOE-linkage disequilibrium (LD) region has produced the most significant association signal in multi-center genome-wide-association-studies (GWAS). Consideration of extended haplotypes in the APOE-LD region and specifically, non-coding variants in putative enhancer elements, such as the TOMM40-polyT, in-addition to the coding variants that comprise the APOE-genotypes, may be useful for predicting subjects at high-risk of developing LOAD and estimating age-of-onset of early disease-stage symptoms. A genetic-biomarker based on APOE-TOMM40-polyT haplotypes, and age is currently applied in a clinical trial for prevention/delay of LOAD onset. Additionally, we discuss LOAD-GWAS discoveries and the development of new genetic risk scores based on LOAD-GWAS findings other than the APOE-LD region. EXPERT COMMENTARY Deciphering the precise causal genetic-variants within LOAD-GWAS regions will advance the development of genetic-biomarkers to complement and refine the APOE-LD region based prediction model. Collectively, the genetic-biomarkers will be translational for early diagnosis and enrichment of clinical trials with subjects at high-risk.
Collapse
Affiliation(s)
- Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA.,Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Saul R, Lutz MW, Burns DK, Roses AD, Chiba-Falek O. The SSV Evaluation System: A Tool to Prioritize Short Structural Variants for Studies of Possible Regulatory and Causal Variants. Hum Mutat 2016; 37:877-83. [PMID: 27279261 DOI: 10.1002/humu.23023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/26/2016] [Indexed: 01/09/2023]
Abstract
Short structural variants (SSVs) are short genomic variants (<50 bp) other than SNPs. It has been suggested that SSVs contribute to many human complex traits. However, high-throughput analysis of SSVs presents numerous technical challenges. In order to facilitate the discovery and assessment of SSVs, we have developed a prototype bioinformatics tool, "SSV evaluation system," which is a searchable, annotated database of SSVs in the human genome, with associated customizable scoring software that is used to evaluate and prioritize SSVs that are most likely to have significant biological effects and impact on disease risk. This new bioinformatics tool is a component in a larger strategy that we have been using to discover potentially important SSVs within candidate genomic regions that have been identified in genome-wide association studies, with the goal to prioritize potential functional/causal SSVs and focus the follow-up experiments on a relatively small list of strong candidate SSVs. We describe our strategy and discuss how we have used the SSV evaluation system to discover candidate causal variants related to complex neurodegenerative diseases. We present the SSV evaluation system as a powerful tool to guide genetic investigations aiming to uncover SSVs that underlie human complex diseases including neurodegenerative diseases in aging.
Collapse
Affiliation(s)
- Robert Saul
- Polymorphic DNA Technologies, Alameda, California, 94501
| | - Michael W Lutz
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, 27710
| | - Daniel K Burns
- Zinfandel Pharmaceuticals, Chapel Hill, North Carolina, 27710
| | - Allen D Roses
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, 27710.,Zinfandel Pharmaceuticals, Chapel Hill, North Carolina, 27710
| | - Ornit Chiba-Falek
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, 27710.,Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina, 27710
| |
Collapse
|
11
|
|
12
|
Roses AD, Akkari PA, Chiba-Falek O, Lutz MW, Gottschalk WK, Saunders AM, Saul B, Sundseth S, Burns D. Structural variants can be more informative for disease diagnostics, prognostics and translation than current SNP mapping and exon sequencing. Expert Opin Drug Metab Toxicol 2016; 12:135-47. [PMID: 26727306 DOI: 10.1517/17425255.2016.1133586] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION In this article we discuss several human neurological diseases and their relationship to specific highly polymorphic small structural variants (SVs). Unlike genome-wide association analysis (GWAS), this methodology is not a genome screen to define new possibly associated genes, requiring statistical corrections for a million association tests. SVs provide local mapping information at a specific locus. Used with phylogenetic analysis, the specific association of length variants can be mapped and recognized. AREAS COVERED This experimental strategy provides identification of DNA variants, particularly variable length Simple Sequence Repeats (SSRs or STRs or microsatellites) that provide specific local association data at the SV locus. Phylogenetic analysis that includes the specific appearance of different length SV variations can differentiate specific phenotypic risks in a population such as age of onset related to variable length polymorphisms and risk of phenotypic variations associated with several adjacent structural variations (SVs). We focus on data for three recent examples associated with Alzheimer's disease, Levy Bodies, and Parkinson's disease. EXPERT OPINION SVs are understudied, but have led directly to mechanism of pathogenesis studies involving the regulation of gene expression. The identification of specific length polymorphisms associated with clinical disease has led to translational advances and new drug discovery.
Collapse
Affiliation(s)
- Allen D Roses
- a Department of Neurology and Neurosciences , Duke University , Durham , NC , USA.,b Zinfandel Pharmaceuticals , Chapel Hill , NC , USA
| | | | | | - Michael W Lutz
- d Department of Neurology , Duke University , Durham , NC , USA
| | | | | | - Bob Saul
- e Polymorphic DNA , Alameda , CA , USA
| | - Scott Sundseth
- f Caberner Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - Daniel Burns
- g Zinfandel Pharmaceuticals, Inc , Raleigh-Durham , NC , USA
| |
Collapse
|
13
|
A cytosine-thymine (CT)-rich haplotype in intron 4 of SNCA confers risk for Lewy body pathology in Alzheimer's disease and affects SNCA expression. Alzheimers Dement 2015; 11:1133-43. [PMID: 26079410 DOI: 10.1016/j.jalz.2015.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/30/2015] [Accepted: 05/09/2015] [Indexed: 01/07/2023]
Abstract
INTRODUCTION We recently showed that tagging single-nucleotide polymorphisms across the SNCA locus were significantly associated with increased risk for Lewy body (LB) pathology in Alzheimer's disease (AD) cases. However, the actual genetic variant(s) that underlie the observed associations remain elusive. METHODS We used a bioinformatics algorithm to catalog structural variants in a region of SNCA intron 4, followed by phased sequencing. We performed a genetic association analysis in autopsy series of LB variant of Alzheimer's disease (LBV/AD) cases compared with AD-only controls. We investigated the biological functions by expression analysis using temporal-cortex samples. RESULTS We identified four distinct haplotypes within a highly polymorphic low-complexity cytosine-thymine (CT)-rich region. We showed that a specific haplotype conferred risk to develop LBV/AD. We demonstrated that the CT-rich site acts as an enhancer element, where the risk haplotype was significantly associated with elevated levels of SNCA messenger RNA. DISCUSSION We have discovered a novel haplotype in a CT-rich region in SNCA that contributes to LB pathology in AD patients, possibly via cis-regulation of the gene expression.
Collapse
|
14
|
Du X, Lan T, Yuan B, Chen J, Hu J, Ren W, Chen Z. Cadmium-induced microsatellite instability in the kidneys and leukocytes of C57BL/6J mice. ENVIRONMENTAL TOXICOLOGY 2015; 30:683-692. [PMID: 24391048 DOI: 10.1002/tox.21946] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/15/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
Cadmium is a cytotoxic, carcinogenic, and mutagenic industrial product or byproduct. The correlation between metal exposure and microsatellite instability (MSI) has been reported by several groups. In the present study, 50 C57BL/6J mice at 6 weeks of age were divided into five groups and intraperitoneally injected with 0, 0.25, 0.5, 1, or 2 mg/kg cadmium chloride quaque die alterna for 4 weeks. Then, the liver, kidney, testis, leukocytes, bone marrow, and small intestine were collected from the treated mice and weighed. Portions of these tissues were fixed for further histological analysis, and the remaining tissues were subjected to genomic DNA extraction for the analysis of a panel of 42 microsatellite markers. The liver and testis weight coefficients were significantly changed in the 1 and 2 mg/kg cadmium chloride-treated groups compared with the control group. Simultaneously, severe histopathologic changes in the liver and kidneys, along with a complete disorganization of testicular structure and obvious severe necrosis in the testes were observed in the cadmium-treated group. The cadmium accumulated in the liver and kidneys of the mice in all cadmium-treated groups; the tissue cadmium concentrations were significantly higher than those in the control group. After STR scanning, MSI was found at three loci (D15Mit5, D10Mit266, and DxMit172) in the kidneys and leukocytes of mice in the lower dose groups (0.25 and 0.5 mg/kg). In summary, we have successfully established a sub-chronic cadmium exposure model and confirmed that cadmium exposure can induce MSI in mice. We also identified two loci that could be regarded as "hotspots" of microsatellite mutation in mice.
Collapse
Affiliation(s)
- Xiaoyan Du
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Tianfeng Lan
- Laboratory Animal Center, Jilin University, Changchun, Jilin, 130062, China
| | - Bao Yuan
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Jian Chen
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Jinping Hu
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Wenzhi Ren
- Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Zhenwen Chen
- Laboratory Animal Center, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
15
|
Faust I, Böker KO, Lichtenberg C, Kuhn J, Knabbe C, Hendig D. First description of the complete human xylosyltransferase-I promoter region. BMC Genet 2014; 15:129. [PMID: 25480529 PMCID: PMC4264549 DOI: 10.1186/s12863-014-0129-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/17/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Human xylosyltransferase-I (XT-I) catalyzes the rate-limiting step in proteoglycan glycosylation. An increase in XYLT1 mRNA expression and serum XT activity is associated with diseases characterized by abnormal extracellular matrix accumulation like, for instance, fibrosis. Nevertheless, physiological and pathological mechanisms of transcriptional XT regulation remain elusive. RESULTS To elucidate whether promoter variations might affect the naturally occurring variability in serum XT activity, a complete sequence analysis of the XYLT1 promoter was performed in genomic DNA of healthy blood donors. Based on promoter amplification by a specialized PCR technique, sequence analysis revealed a fragment of 238 bp, termed XYLT1 238*, which has never been described in the human XYLT1 reference sequence so far. In silico characterization of this unconsidered fragment depicted an evolutionary conservation between sequences of Homo sapiens and Pan troglodytes (chimpanzee) or Mus musculus (mouse), respectively. Promoter activity studies indicated that XYLT1 238* harbors various transcription factor binding sites affecting basal XYLT1 expression and inducibility by transforming growth factor-β1, the key fibrotic mediator. A microsatellite and two single nucleotide variants (SNV), c.-403C>T and c.-1088C>A, were identified and genotyped in 100 healthy blood donors. Construct associated changes in XYLT1 promoter activity were detected for several sequence variants, whereas serum XT activity was only marginally affected. CONCLUSIONS Our findings describe for the first time the entire XYLT1 promoter sequence and provide new insights into transcriptional regulation of XT-I. Future studies should analyze the impact of regulatory XYLT1 promoter variations on XT-associated diseases.
Collapse
Affiliation(s)
- Isabel Faust
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Kai Oliver Böker
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Christoph Lichtenberg
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Joachim Kuhn
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
16
|
Sawaya S, Bagshaw A, Buschiazzo E, Kumar P, Chowdhury S, Black MA, Gemmell N. Microsatellite tandem repeats are abundant in human promoters and are associated with regulatory elements. PLoS One 2013; 8:e54710. [PMID: 23405090 PMCID: PMC3566118 DOI: 10.1371/journal.pone.0054710] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats are genomic elements that are prone to changes in repeat number and are thus often polymorphic. These sequences are found at a high density at the start of human genes, in the gene’s promoter. Increasing empirical evidence suggests that length variation in these tandem repeats can affect gene regulation. One class of tandem repeats, known as microsatellites, rapidly alter in repeat number. Some of the genetic variation induced by microsatellites is known to result in phenotypic variation. Recently, our group developed a novel method for measuring the evolutionary conservation of microsatellites, and with it we discovered that human microsatellites near transcription start sites are often highly conserved. In this study, we examined the properties of microsatellites found in promoters. We found a high density of microsatellites at the start of genes. We showed that microsatellites are statistically associated with promoters using a wavelet analysis, which allowed us to test for associations on multiple scales and to control for other promoter related elements. Because promoter microsatellites tend to be G/C rich, we hypothesized that G/C rich regulatory elements may drive the association between microsatellites and promoters. Our results indicate that CpG islands, G-quadruplexes (G4) and untranslated regulatory regions have highly significant associations with microsatellites, but controlling for these elements in the analysis does not remove the association between microsatellites and promoters. Due to their intrinsic lability and their overlap with predicted functional elements, these results suggest that many promoter microsatellites have the potential to affect human phenotypes by generating mutations in regulatory elements, which may ultimately result in disease. We discuss the potential functions of human promoter microsatellites in this context.
Collapse
Affiliation(s)
- Sterling Sawaya
- Centre for Reproduction and Genomics, Department of Anatomy, and Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
17
|
Promoter microsatellites as modulators of human gene expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:41-54. [PMID: 23560304 DOI: 10.1007/978-1-4614-5434-2_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsatellites in and around genes have been shown to modulate levels of gene expression in multiple organisms, ranging from bacteria to humans. Here we will discuss promoter microsatellites known to modulate gene expression, with a few key examples related to the human brain. Many of the microsatellites we discuss are highly conserved in mammals, indicating that selection may favor their retention as "tuning knobs" of gene expression. We will also discuss the mechanisms by which microsatellites in promoters can alter gene expression as they expand and contract, with particular attention to secondary structures like Z-DNA and H-DNA. We suggest that promoter microsatellites, especially those that are highly conserved, may be an important source of human phenotypic variation.
Collapse
|
18
|
Morris EE, Amria MY, Kistner-Griffin E, Svenson JL, Kamen DL, Gilkeson GS, Nowling TK. A GA microsatellite in the Fli1 promoter modulates gene expression and is associated with systemic lupus erythematosus patients without nephritis. Arthritis Res Ther 2010; 12:R212. [PMID: 21087477 PMCID: PMC3046520 DOI: 10.1186/ar3189] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 10/07/2010] [Accepted: 11/18/2010] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The transcription factor Fli1 is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Recently, a GA(n) polymorphic microsatellite was characterized in the mouse Fli1 promoter that modulates promoter activity and is truncated in two lupus mouse models compared to non-autoimmune prone mice. In this work, we characterize a homologous GA(n) microsatellite in the human Fli1 promoter. The purpose of this study is to determine the effect of the microsatellite length on Fli1 promoter activity in vitro and to determine if the length of the GA(n) microsatellite is associated with SLE and/or specific disease characteristics. METHODS Constructs with variable lengths of the GA(n) microsatellite in the Fli1 promoter were generated and analyzed in promoter/reporter (P/R) assays in a human T cell line. Using three SLE patient cohorts and matched controls, microsatellite length was measured and association with the presence of disease and the occurrence of specific disease manifestations was assessed. RESULTS P/R assays demonstrated that the presence of a shorter microsatellite resulted in higher Fli1 promoter activity. A significant association was observed in the lupus cohort SLE in Gullah Health (SLEIGH) between the GA(26) base pair allele and absence of nephritis. CONCLUSIONS This study demonstrates that a GA(n) microsatellite in the human Fli1 promoter is highly polymorphic. The length of the microsatellite is inversely correlated to Fli1 promoter activity in a human T cell line. Although no association between microsatellite length and lupus was observed, an association between a specific microsatellite length and patients without nephritis in the SLEIGH cohort was observed.
Collapse
Affiliation(s)
- Erin E Morris
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, 96 Jonathon Lucas St, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Komori R, Ozawa S, Kato Y, Shinji H, Kimoto S, Hata RI. Functional characterization of proximal promoter of gene for human BRAK/CXCL14, a tumor-suppressing chemokine. ACTA ACUST UNITED AC 2010; 31:123-31. [PMID: 20460740 DOI: 10.2220/biomedres.31.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BRAK/CXCL14 is a chemokine that is expressed in many normal cells and tissues but is absent from or expressed at very low levels in transformed cells and cancerous tissues including head and neck squamous cell carcinoma (HNSCC). We reported previously that the forced expression of BRAK/CXCL14 in HNSCC cells decreased the rate of tumor formation and size of tumor xenografts in athymic nude mice and SCID mice, suggesting that expression level of the gene is important for tumor suppression. In order to study the regulatory mechanisms governing the expression of this gene, we determined the transcriptional start site and promoter motifs of the gene. The major transcriptional start site determined by 5'rapid amplification of cDNA end method was located 283 bp downstream of the first proposed site of the gene. Determination of luciferase activities of reporter gene constructs with various deletions or mutations showed that an atypical TATA-like sequence, TATTAA was essential for the transcription of the gene and that the AP-1 binding sequence and tandem GC box were necessary for stimulating the expression of the gene in human squamous epithelial cells. The human DNA region was highly homologous (95% base identity) to the mouse gene. In addition, okadaic acid, an inhibitor of serine/threonine phosphatases 1, 2A and 2B, stimulated TATTAA sequence and AP-1 binding-sequence dependent promoter activity as well as increased the level of BRAK/CXCL14 mRNA, indicating that these sequences are essential for the regulation of BRAK/CXCL14 gene expression in the cells.
Collapse
Affiliation(s)
- Reika Komori
- Oral Health Science Research Center, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Kallel I, Kharrat N, Al-fadhly S, Rebai M, Khabir A, Boudawara TS, Rebaï A. HER2 polymorphisms and breast cancer in Tunisian women. Genet Test Mol Biomarkers 2010; 14:29-35. [PMID: 19929405 DOI: 10.1089/gtmb.2009.0069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HER2 has been thought to play a critical role in both breast cancer development and progression. Any functional polymorphisms can potentially affect breast cancer risk as well as cancer phenotype and outcome. In our study, we analyzed three polymorphisms in the HER2 gene: the single-nucleotide polymorphism (SNP) HER2 Ile(655)Val as well as another SNP (rs903506) close to it and a new screened dinucleotide repeat H(AC)I4 in intron 4, in a sample of 148 cases and 290 controls from the Tunisian population and investigated their association with breast cancer risk. For the HER2 Ile(655)Val, we found similar allele frequencies between cases and controls (frequency of I allele was 0.92 and 0.91, respectively). The same was observed for the noncoding SNP (rs903506). These two SNPs also showed no association with any clinical parameters, except the association of HER2 Ile(655)Val with tumor size (p = 0.002). But, a significant association was found between the short tandem repeat (STR) [H(AC)I4] and breast cancer risk at both genotypic and allelic levels (p = 0.0004 and p = 0.0001, respectively). Multivariate analysis with binary logistic regression of disease status on genotypes of the three polymorphisms confirmed the association of STR with breast cancer risk (p = 0.016). Therefore, this STR seems to be a promising biomarker in breast cancer and deserves further investigation.
Collapse
Affiliation(s)
- Imen Kallel
- Bioinformatics and Signalling Group, Centre de Biotechnologie de Sfax, Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
21
|
Kharrat N, Al'fadhli S, RebaÏ A. Screening and Validation of Dinucleotide Repeats in Intron 1 of the Human EGFR Gene and its Paralog in the HER2 Gene. J Recept Signal Transduct Res 2008; 28:475-83. [DOI: 10.1080/10799890802439958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Sukumaran SS, Banerjee S, Bhasker S, Thekkuveettil A. The cytoplasmic C2A domain of synaptotagmin shows sequence specific interaction with its own mRNA. Biochem Biophys Res Commun 2008; 373:509-14. [PMID: 18585366 DOI: 10.1016/j.bbrc.2008.06.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/13/2008] [Indexed: 11/17/2022]
Abstract
Synaptotagmin-1 (Syt1) is essential in Ca(2+)-dependent neurotransmitter release, but its expression regulation is unknown. Here we report that the cytoplasmic Syt1 fragment forms ribonucleoprotein complex by interacting with the 3' untranslated region (3(')UTR) of its own mRNA. Two protein-binding domains, GU(15) repeat and GUCAAUG, within the Syt 3'UTR and the C2 domains in Syt1, especially C2A, are essential in this ribonucleoprotein complex formation. Furthermore, in in vitro assay the translation efficiency of Syt1 mRNA was downregulated in presence of 3'UTR. These results demonstrate for the fist time that the soluble fraction of Syt1 can interact with its own mRNA in a highly sequence specific manner.
Collapse
Affiliation(s)
- Sunitha S Sukumaran
- Division of Molecular Medicine, Sree Chitra Tirunal Institute for Medical Sciences and Technology, BMT Wing, Poojapura, Trivandrum, Kerala 695012, India
| | | | | | | |
Collapse
|
23
|
Norgard EA, Roseman CC, Fawcett GL, Pavlicev M, Morgan CD, Pletscher LS, Wang B, Cheverud JM. Identification of quantitative trait loci affecting murine long bone length in a two-generation intercross of LG/J and SM/J Mice. J Bone Miner Res 2008; 23:887-95. [PMID: 18435578 PMCID: PMC2677087 DOI: 10.1359/jbmr.080210] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Revised: 11/27/2007] [Accepted: 01/31/2008] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Study of mutations with large phenotypic effects has allowed the identification of key players in skeletal development. However, the molecular nature of variation in large, phenotypically normal populations tends to be characterized by smaller phenotypic effects that remain undefined. MATERIALS AND METHODS We use interval mapping and quantitative trait locus (QTL) mapping techniques in the combined F2-F3 populations (n = 2111) of an LG/J x SM/J mouse intercross to detect QTLs associated with the lengths of the humerus, ulna, femur, and tibia. RESULTS Seventy individual trait QTLs affecting long bone lengths were detected, with several chromosomes harboring multiple QTLs. The genetic architecture suggests mainly small, additive effects on long bone length, with roughly one third of the QTLs displaying dominance. Sex interactions were common, and four sex-specific QTLs were observed. Pleiotropy could not be rejected for most of the QTLs identified. Thirty-one epistatic interactions were detected, almost all affecting regions including or immediately adjacent to QTLs. CONCLUSIONS A complex regulatory network with many gene interactions modulates bone growth, possibly with integrated skeletal modules that allow fine-tuning of developmental processes present. Candidate genes in the QTL CIs include many genes known to affect endochondral bone growth and genes that have not yet been associated with bone growth or body size but have a strong potential to influence these traits.
Collapse
Affiliation(s)
- Elizabeth A Norgard
- Department of Anatomy and Neurobiology, Washington University, St Louis, Missouri 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Granel B, Chevillard C, Dessein A. Facteurs de prédisposition génétiques à la fibrose au cours de la sclérodermie systémique. Rev Med Interne 2005; 26:294-303. [PMID: 15820565 DOI: 10.1016/j.revmed.2004.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 12/12/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE Physiopathology of systemic sclerosis includes autoimmunity factors, endothelial lesions and abnormal fibrotic process which characterizes this disease in the field of systemic autoimmune disorders. Genetic factors of susceptibility are showed by possibility of familial forms of the disease, Choctaw American Indians homogenous population with high disease prevalence of systemic sclerosis and experimental animal models. KEY POINTS We propose a review of the articles published to date in the literature concerning genetical analysis of genes coding for factors potentially involved in the fibrotic process of systemic sclerosis. This includes cytokines (TNF-alpha, interleukin-1, chemokines), growth factors (TGF-beta), extracellular matrix proteins (collagen, fibrillin, fibronectine) and agents acting on vascular tone (angiotensin-converting enzyme and NO synthase). PERSPECTIVES Identification of genetic factors involved in the susceptibility to fibrosis of systemic sclerosis would lead to a better understanding of physiopathological mechanisms of this disease and to therapeutic targets using immunomodulation with drugs, such as already performed in rheumatoid arthritis.
Collapse
Affiliation(s)
- B Granel
- Inserm U 399, faculté de médecine de La Timone, 27, boulevard Jean-Moulin, 13385 Marseille cedex 05, France.
| | | | | |
Collapse
|
25
|
Lei SF, Deng FY, Xiao SM, Chen XD, Deng HW. Association and haplotype analyses of the COL1A2 and ER-alpha gene polymorphisms with bone size and height in Chinese. Bone 2005; 36:533-41. [PMID: 15777651 DOI: 10.1016/j.bone.2004.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 11/01/2004] [Accepted: 11/09/2004] [Indexed: 11/23/2022]
Abstract
Bone size (BS) is another risk factor of fracture independent of BMD in determining bone strength, and height is highly related with BS. To test the effect of the estrogen receptor-alpha (ER-alpha) and collagen type I alpha 2 (COL1A2) genes on the variation of BS and height, we genotyped the PvuII and XbaI polymorphisms in the intron 1 of the ER-alpha gene and the MspI and (GT)n markers in the intron 47 and intron 1 of the COL1A2 gene in 400 Chinese nuclear families with a total of 1256 individuals. The BS at the hip and spine was measured using a Hologic QDR 2000 dual-energy X-ray absorptiometry (DXA) scanner. Population stratification, total-family association, and within-family association were used to test the relationship of BS (at the spine and hip) and height with the four polymorphisms. We also performed these association analyses with the haplotypes of the MspI and (GT)n polymorphisms in the COL1A2 gene, and with the haplotypes of the PvuII and XbaI markers in the ER-alpha gene. Weak within-family association was found between the COL1A2-MspI (P = 0.05) and the femoral neck BS, between the ER-alpha-PX (P = 0.04) and the intertrochanter BS, and between the COL1A2-(GT)(17) (P = 0.02), COL1A2-m(GT)(17) (P = 0.009) and height. Subsequent permutation tests generally confirmed the suggestive within-family association. For the weak within-family association, the proportions of phenotypic variance accounted by the COL1A2-MspI, ER-alpha-PX, COL1A2-(GT)(17), COL1A2-m(GT)(17) markers were 1.50%, 1.51%, 2.15%, and 2.43% for the corresponding phenotypes. The association results indicate that the (GT)n and MspI markers of COL1A2 gene may have some influence on the variation of both BS and height, and the XbaI and PvuII markers of ER-alpha gene may have some effect on the variation of height in Chinese but not on the variation of BS.
Collapse
Affiliation(s)
- Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | | | | | | | | |
Collapse
|
26
|
Lei SF, Deng FY, Dvornyk V, Liu MY, Xiao SM, Jiang DK, Deng HW. The (GT)n polymorphism and haplotype of the COL1A2 gene, but not the (AAAG)n polymorphism of the PTHR1 gene, are associated with bone mineral density in Chinese. Hum Genet 2005; 116:200-207. [PMID: 15599596 DOI: 10.1007/s00439-004-1225-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
Collagen type I alpha2 (COL1A2) and parathyroid hormone (PTH)/PTH-related peptide receptor (PTHR1) are two prominent candidate genes for bone mineral density (BMD). To test their importance for BMD variation in Chinese, we recruited 388 nuclear families composed of both parents and at least one healthy daughter with a total of 1,220 individuals, and simultaneously analyzed population stratification, total-family association, and within-family association between BMD at the spine and hip and the (GT)n marker in the intron 1 of the COL1A2 gene and the (AAAG)n marker in the P3 promoter of PTHR1 gene. We also performed these association analyses with haplotypes of the MspI and (GT)n polymorphisms in the COL1A2 gene. Significant within-family association was found between the M(GT)12 haplotype and trochanter BMD (P<0.001). Individuals with this haplotype have, on average, 9.53% lower trochanter BMD than the non-carriers. Suggestive evidence of the within-family association was detected between the (GT)17 allele and BMD at the spine (P=0.012), hip (P=0.011), femoral neck (P=0.032), trochanter (P=0.023), and intertrochanter (P=0.034). The association was confirmed by subsequent permutation tests. For the association, the proportion of phenotypic variance explained by the detected markers ranged from 1.2 to 3.9%, with the highest 3.9% at the trochanter for the M(GT)12 haplotype. This association indicates that there is strong linkage disequilibrium between the polymorphisms (MspI and GT repeat polymorphism) in the COL1A2 gene and a nearby quantitative trait locus (QTL) underlying BMD variation in Chinese, or the markers themselves may have an important effect on the variation of BMD. On the other hand, no significant within-family association, population stratification and total-family association between the PTHR1 polymorphism and BMD were found in our Chinese population.
Collapse
Affiliation(s)
- Shu-Feng Lei
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, Peoples' Republic of China
| | | | | | | | | | | | | |
Collapse
|
27
|
Ntumngia FB, Bouyou-Akotet MK, Uhlemann AC, Mordmüller B, Kremsner PG, Kun JFJ. Characterisation of a Tryptophan-rich Plasmodium falciparum antigen associated with merozoites. Mol Biochem Parasitol 2004; 137:349-53. [PMID: 15383306 DOI: 10.1016/j.molbiopara.2004.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Revised: 06/01/2004] [Accepted: 06/06/2004] [Indexed: 10/26/2022]
Affiliation(s)
- Francis B Ntumngia
- Department of Parasitology, Institute for Tropical Medicine, University of Tübingen, Wilhelmstr. 27, 72074 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Westberg L, Ho HP, Baghaei F, Nilsson S, Melke J, Rosmond R, Holm G, Björntorp P, Eriksson E. Polymorphisms in oestrogen and progesterone receptor genes: possible influence on prolactin levels in women. Clin Endocrinol (Oxf) 2004; 61:216-23. [PMID: 15272917 DOI: 10.1111/j.1365-2265.2004.02083.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Oestrogen and progesterone are known to influence the release of human prolactin. The present study was undertaken in order to investigate the possible influence of polymorphisms of the genes encoding the oestrogen receptor (ER)alpha, ERbeta and the progesterone receptor (PGR), on prolactin levels in premenopausal women. DESIGN AND MEASUREMENTS Serum levels of prolactin were measured in the follicular phase of the menstrual cycle. Subjects were genotyped with respect to a TA repeat polymorphism of the ERalpha gene, a CA repeat polymorphism of the ERbeta gene, and two polymorphisms of the PGR gene: one insertion polymorphism (PROGINS) and one single nucleotide polymorphism (G331A). SUBJECTS A population-based cohort of 270 42-year-old women. RESULTS The CA repeat polymorphism of the ERbeta gene and the G331A polymorphism of the PGR gene appeared to be associated with prolactin levels. In contrast, we found no evidence for an influence of the PROGINS polymorphism of the PGR gene or the TA repeat polymorphism of the ERalpha gene on the levels of this hormone. CONCLUSIONS These data suggest that genetic variants of both the ERbeta and the PGR may influence prolactin release.
Collapse
Affiliation(s)
- Lars Westberg
- Department of Pharmacology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Deng FY, Liu MY, Li MX, Lei SF, Qin YJ, Zhou Q, Liu YJ, Deng HW. Tests of linkage and association of the COL1A2 gene with bone phenotypes' variation in Chinese nuclear families. Bone 2003; 33:614-9. [PMID: 14555266 DOI: 10.1016/s8756-3282(03)00234-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we simultaneously test linkage and/or association of the collagen type I alpha 2 (COL1A2) gene with bone mineral density (BMD) and bone area. A total of 1280 subjects from 407 Chinese nuclear families (including both parents and their daughters) were genotyped for an intragenic marker MspI in the COL1A2 gene. BMD and bone area at the lumbar spine and hip were measured by dual-energy X-ray absorptiometry. Applying the QTDT (quantitative transmission disequilibrium test) program, we performed tests for population stratification, within-family association (via transmission disequilibrium test), total association, linkage, and linkage while modeling association. Significant or marginal within-family associations were found with BMD at the lumbar spine (P = 0.013), trochanter (P = 0.004), and total hip (P = 0.053) and with bone area at the intertrochanteric region (P = 0.024) and total hip (P = 0.048). The positive associations were confirmed in permutations except for bone area at total hip (P > 0.10). A small proportion (<1%) of the population variance of bone phenotypes can be explained by the MspI polymorphism; however, it may be underestimated given the significant population stratification detected in our sample. Due to the limited number of sib pairs in this sample, we did not find evidence of linkage. In summary, the MspI polymorphism is likely to be in linkage disequilibrium with a nearby functional mutation affecting BMD and bone area.
Collapse
Affiliation(s)
- F Y Deng
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yang B, Millward A, Demaine A. Functional differences between the susceptibility Z-2/C-106 and protective Z+2/T-106 promoter region polymorphisms of the aldose reductase gene may account for the association with diabetic microvascular complications. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1639:1-7. [PMID: 12943962 DOI: 10.1016/s0925-4439(03)00095-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Studies have shown that polymorphisms located at positions -106 and approximately -2100 base pairs (5'ALR2) in the regulatory region of the aldose reductase gene are associated with susceptibility to microvascular complications in patients with diabetes. The aim was to investigate the functional roles of these susceptibility alleles using an in vitro gene reporter assay. Susceptibility, neutral and protective 5'ALR2/-106 alleles were transfected into HepG2 cells and exposed to excess D-glucose (D-glucose at final concentrations 14 or 28 mmol/l). Transcriptional activities were determined using a dual luciferase reporter gene assay. The "susceptibility alleles" Z-2 with C-106 had the highest transcriptional activity when compared with the "protective" combination of Z+2 with C-106 alleles (58.7+/-9.9 vs. 10.1+/-0.7; P<0.0001). Those constructs with either the Z or Z-2 in combination with the C-106 allele had significantly higher transcriptional activities when compared to those with the T-106 allele (Z/C-106, 37.4+/-5.4 vs. Z/T-106 7.7+/-1.6, P<0.003; Z-2/C-106, 58.7+/-9.9 vs. Z-2/T-106 10.9+/-0.6, P<0.0001). These results demonstrate that the Z-2/C-106 haplotype is associated with elevated transcriptional activity of the aldose reductase gene. This in turn may explain the role of these polymorphisms in the susceptibility to diabetic microvascular complications.
Collapse
Affiliation(s)
- B Yang
- Molecular Medicine Research Group, Peninsula Medical School, Plymouth, UK
| | | | | |
Collapse
|
31
|
Zhang H, Marshall KW, Tang H, Hwang DM, Lee M, Liew CC. Profiling genes expressed in human fetal cartilage using 13,155 expressed sequence tags. Osteoarthritis Cartilage 2003; 11:309-19. [PMID: 12744936 DOI: 10.1016/s1063-4584(03)00032-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To analyze the gene expression profile of human fetal cartilage by expressed sequence tags (ESTs). METHODS A human fetal cartilage (8-12 weeks) cDNA library was constructed using the lambda ZAP Express vector. ESTs were obtained by partial sequencing of cDNA clones. The basic local alignment search tool algorithm was used to compare all generated ESTs to known sequences. RESULTS A total of 13,155 ESTs were analyzed, of which 8696 ESTs (66.1%) matched known genes, 53 ESTs (0.4%) were putatively novel (with no match) and the rest matched other ESTs, genomic DNA and repetitive sequences. Importantly, we identified 2448 unique known genes through non-redundancy analysis of the known gene matches, which were then functionally categorized. The tissue specificity of this library was reflected by its EST profile of the extracellular matrix (ECM) proteins. Collagens were the major transcripts, representing 68.5% of the ECM proteins. Proteoglycans were the second most abundant, constituting 9.5%. Collagen type II was the most abundant gene of all. Glypican 3, decorin and aggrecan were the major transcripts of proteoglycans. Many genes involved in cartilage development were identified, such as insulin-like growth factor-II, its receptor and binding proteins, connective tissue growth factor and fibroblast growth factors. Proteases and their regulatory factors were also identified, including matrix metalloprotease 2 and tissue inhibitor of metalloproteinase 1. CONCLUSIONS The EST approach is an effective way of characterizing the genes expressed in cartilage. These data represent the most extensive molecular information on human fetal cartilage to date. The availability of this information will serve as a basis for further research to identify genes that are essential in cartilage development.
Collapse
Affiliation(s)
- H Zhang
- ChondroGene Inc., 800 Petrolia Road, Unit 15, Toronto, Ontario, Canada M3J 3K4
| | | | | | | | | | | |
Collapse
|
32
|
Chiba-Falek O, Nussbaum RL. Regulation of -Synuclein Expression: Implications for Parkinson's Disease. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 68:409-15. [PMID: 15338643 DOI: 10.1101/sqb.2003.68.409] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- O Chiba-Falek
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-4472, USA
| | | |
Collapse
|
33
|
D' Alfonso S, Giordano M, Mellai M, Lanceni M, Barizzone N, Marchini M, Scorza R, Danieli MG, Cappelli M, Rovere P, Sabbadini MG, Momigliano-Richiardi P. Association tests with systemic lupus erythematosus (SLE) of IL10 markers indicate a direct involvement of a CA repeat in the 5' regulatory region. Genes Immun 2002; 3:454-63. [PMID: 12486603 DOI: 10.1038/sj.gene.6363928] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many lines of evidence suggest that IL10 is a strong candidate gene for systemic lupus erythematosus (SLE) susceptibility. In our previously reported study an allele (IL10.G-140bp) of the microsatellite IL10.G located at position -1100 was significantly increased in Italian SLE patients in comparison with controls. Starting from this observation, we tested if sequence variations in the vicinity of IL10.G were more strongly associated with SLE. We performed a comprehensive association study including 26 SNPs (of which four were newly identified in the present study by DHPLC analysis) spanning 8.5 Kb of the 5' flanking and the transcribed region of the IL10 gene. The association study was performed by the DNA pool method on an extended panel of Italian patients (205) and controls (631). Haplotypic associations were studied by individual typing of seven selected markers surrounding IL10.G. Gene, genotype and haplotype frequencies were not significantly different in patients and controls. Thus the IL10.G microsatellite remains to date the only IL10 marker associated with SLE in our population. A meta-analysis of all published results indicates a possible direct role of the IL10.G repeat number in SLE susceptibility.
Collapse
Affiliation(s)
- S D' Alfonso
- Laboratorio di Genetica Umana, Dipartimento Scienze Mediche, and IRCAD, Università del Piemonte Orientale, Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Changes in gene expression and regulation--due in particular to the evolution of cis-regulatory DNA sequences--may underlie many evolutionary changes in phenotypes, yet little is known about the distribution of such variation in populations. We present in this study the first survey of experimentally validated functional cis-regulatory polymorphism. These data are derived from more than 140 polymorphisms involved in the regulation of 107 genes in Homo sapiens, the eukaryote species with the most available data. We find that functional cis-regulatory variation is widespread in the human genome and that the consequent variation in gene expression is twofold or greater for 63% of the genes surveyed. Transcription factor-DNA interactions are highly polymorphic, and regulatory interactions have been gained and lost within human populations. On average, humans are heterozygous at more functional cis-regulatory sites (>16,000) than at amino acid positions (<13,000), in part because of an overrepresentation among the former in multiallelic tandem repeat variation, especially (AC)(n) dinucleotide microsatellites. The role of microsatellites in gene expression variation may provide a larger store of heritable phenotypic variation, and a more rapid mutational input of such variation, than has been realized. Finally, we outline the distinctive consequences of cis-regulatory variation for the genotype-phenotype relationship, including ubiquitous epistasis and genotype-by-environment interactions, as well as underappreciated modes of pleiotropy and overdominance. Ordinary small-scale mutations contribute to pervasive variation in transcription rates and consequently to patterns of human phenotypic variation.
Collapse
|
35
|
Uhlemann AC, Oguariri RM, McColl DJ, Coppel RL, Kremsner PG, Anders RF, Kun JF. Properties of the Plasmodium falciparum homologue of a protective vaccine candidate of Plasmodium yoelii. Mol Biochem Parasitol 2001; 118:41-8. [PMID: 11704272 DOI: 10.1016/s0166-6851(01)00370-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We describe an unusual tryptophan-rich protein of Plasmodium falciparum that contains threonine-rich repeats. The protein is encoded by a 2.5 kb gene with a two-exon structure including a short AT-rich intron that is spliced out of the mature message. The 5' end of the gene encodes a hydrophobic region, which is assumed to be a signal peptide. The peptide sequence is characterised by a tryptophan-rich region and a block of degenerate threonine repeats. The protein is synthesised throughout the asexual life cycle and has an apparent molecular weight of approximately 94 kDa. It has a variable molecular weight in different strains of P. falciparum. Length polymorphisms can be found in the intron region and the second exon. Four single nucleotide mutations are localised in the tryptophan-rich region and two were found in the threonine-repeat block. Homology searches based on gene structure and amino acid sequence revealed a relationship with a P. yoelii antigen that has been used successfully in vaccine studies. Thus, this P. falciparum antigen should be considered an additional candidate for assessment in vaccination against the asexual blood-stages of P. falciparum.
Collapse
Affiliation(s)
- A C Uhlemann
- Department of Parasitology, Institute of Tropical Medicine, University of Tübingen, Wilhelmstrasse 27, 72074, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Hadjiyannakis S, Zheng H, Hendy GN, Goodyer CG. GT repeat polymorphism in the 5' flanking region of the human growth hormone receptor gene. Mol Cell Probes 2001; 15:239-42. [PMID: 11513560 DOI: 10.1006/mcpr.2001.0366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A polymorphic GT dinucleotide repeat sequence has been identified in the 5' flanking region of the human growth hormone receptor (hGHR) gene on chromosome 5p13.1-p12, within the promoter region of the V9 5'UTR exon. Thirteen alleles have been identified in 50 non-related individuals, with an observed heterozygosity of 52%. The major allele contains 24 repeats, although a range of 19-32 repeats has been observed. Codominant segregation was demonstrated in five two-generation and two three-generation families. This marker may be useful in analysing the role of the hGHR gene in pre- and postnatal growth disorders.
Collapse
Affiliation(s)
- S Hadjiyannakis
- Department of Pediatrics, McGill University, Montreal, Quebec, H3Z 2Z3, Canada
| | | | | | | |
Collapse
|
37
|
Hata R, Akai J, Kimura A, Ishikawa O, Kuwana M, Shinkai H. Association of functional microsatellites in the human type I collagen alpha2 chain (COL1A2) gene with systemic sclerosis. Biochem Biophys Res Commun 2000; 272:36-40. [PMID: 10872800 DOI: 10.1006/bbrc.2000.2731] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc) or scleroderma is a generalized disorder of connective tissue. The etiology is poorly understood; however, both genetic and environmental factors have been implicated. To investigate the disease-susceptible gene for SSc, we examined the association of the disease with a gene (COL1A2) for type I collagen, which accumulates excessively in the affected organs. The COL1A2 gene containing a specific combination of the two dinucleotide repeats, repeat-haplotype, is involved in the regulation of gene expression. Homozygotes for a 5'-(CA)13CGCACA(CG)6(CA)8 -(GT)12 -3' were found with significantly higher frequency (P = 0.029, relative risk, RR > 6.93) in SSc patients than in controls, and association was prominent (P = 0.0042, RR > 32.0) in the male patients positive for SSc-specific antinuclear antibodies (ANAs). This repeat-haplotype showed the highest stimulative activity for the transcription of the COL1A2 promoter among the reporter gene constructs tested. The results indicate that a portion of the patients having a specific dinucleotide repeat-haplotype homozygously and expressing the ANAs have a significantly higher risk for SSc than those individuals with other combinations of the repeat-haplotypes.
Collapse
Affiliation(s)
- R Hata
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Japan.
| | | | | | | | | | | |
Collapse
|