1
|
Imai T, Kakino A, Sugawara A, Cheng X, Tachibana H. Remarkable genetic variability and high antigenicity of the octapeptide-repeat region in an Entamoeba nuttalli-specific surface protein. J Eukaryot Microbiol 2024; 71:e13055. [PMID: 39157904 DOI: 10.1111/jeu.13055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Entamoeba nuttalli is genetically the closest to Entamoeba histolytica, the causative agent of human amebiasis. E. nuttalli is found in Macaca species, exhibiting no symptoms while potentially virulent. Using comparative genomics of Entamoeba species, we identified a gene encoding an E. nuttalli-specific protein containing 42 repeats of an octapeptide (PTORS). In the present study, we analyzed the genes in E. nuttalli strains derived from various geographic locations and host species. Sequence analysis of genomic DNA from four strains indicated 43, 44, and 48 repeat types in addition to 42 repeats and remarkable genetic diversity in the repeat region, although all nucleotide substitutions were synonymous. In contrast, the sequences of the N-terminal side region and C-terminus were identical among the strains. Monoclonal antibodies prepared against recombinant PTORS were reactive to the repeat regions but not to the N-terminal side regions. Polyclonal antibodies did not react with the N-terminal region, demonstrating that the repeat region had higher antigenicity. Analysis using synthetic peptides revealed that the two repeats of the octapeptide functioned as epitopes. Immunofluorescence microscopy using monoclonal antibodies demonstrated the surface localization of PTORS. These results suggest that the repeat region of PTORS plays an important role in host-parasite interactions.
Collapse
Affiliation(s)
- Tatsuya Imai
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Azumi Kakino
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akitomo Sugawara
- Department of Radiation Oncology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Xunjia Cheng
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Parasitology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
2
|
Lamolle G, Iriarte A, Musto H. Codon usage in the flatworm Schistosoma mansoni is shaped by the mutational bias towards A+T and translational selection, which increases GC-ending codons in highly expressed genes. Mol Biochem Parasitol 2021; 247:111445. [PMID: 34942292 DOI: 10.1016/j.molbiopara.2021.111445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
Abstract
Schistosoma mansoni is a trematode flatworm that parasitizes humans and produces a disease called bilharzia. At the genomic level, it is characterized by a low genomic GC content and an "isochore-like" structure, where GC-richest regions, mainly placed at the extremes of the chromosomes, are interspersed with low GC-regions. Furthermore, the GC-richest regions are at the same time the gene-richest, and where the most heavily expressed genes are placed. Taking these features into account, we decided to reanalyze the codon usage of this flatworm. Our results show that a) when all genes are considered together, the strong mutational bias towards A + T leads to a predominance of A/T-ending codons, b) a multivariate analysis discriminates between highly and lowly expressed genes, c) the sequences expressed at highest levels display a significant increase in G/C-ending codons, d) when comparing the molecular distances with a closely related species the synonymous distance in highly expressed genes is significantly lower than in lowly expressed sequences. Therefore, we conclude that despite previous results, which were performed with a small sample of genes, codon usage in S. mansoni is the result of two forces that operate in opposite directions: while mutational bias leads to a predominance of A/T codons, translational selection, working at the level of speed, increment G/C ending triplets.
Collapse
Affiliation(s)
- Guillermo Lamolle
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay.
| | - Héctor Musto
- Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay.
| |
Collapse
|
3
|
Barbhuiya PA, Uddin A, Chakraborty S. Analysis of compositional properties and codon usage bias of mitochondrial CYB gene in anura, urodela and gymnophiona. Gene 2020; 751:144762. [PMID: 32407767 DOI: 10.1016/j.gene.2020.144762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023]
Abstract
We delineated the pattern of synonymous codon usage bias (CUB) and its determinants in mitochondrial CYB gene of respiratory chain across different amphibian groups namely orders anura, urodela and gymnophiona. We observed that CUB was low in CYB gene of amphibia. The gymnophionans had comparatively high bias followed by urodeles and anurans. The codons namely TCA, CCA, CAA, CGA, TGA, AAA and ACA were over-represented in all three orders. The codons such as GCC and TCC were over-represented in anura whereas in urodela, the over-represented codons were TTA, CTA, ATA, GTA, GAA, GGA and GCA. In gymnophiona, GCC, TTA, CTA, ATA, GTA, GAA and GGA codons were over-represented. The regression analysis between effective number of codons (ENC) and nucleobase at the 3rd position revealed that nucleobase A and C influenced CUB positively in order anura, while in urodela and gymnophiona, nucleobase A and T influenced the CUB positively. Mutation pressure and natural selection mutually illustrate the CUB of CYB gene (complex III gene) of amphibia as elucidated by correlation analysis between 3rd nucleotide in a codon and overall nucleotide content of the gene. However, neutrality plot showed that natural selection was the dominant evolutionary factor of CUB.
Collapse
Affiliation(s)
- Parvin A Barbhuiya
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| | - Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakand 788150, Assam, India
| | - Supriyo Chakraborty
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India.
| |
Collapse
|
4
|
Piovesan A, Pelleri MC, Antonaros F, Strippoli P, Caracausi M, Vitale L. On the length, weight and GC content of the human genome. BMC Res Notes 2019; 12:106. [PMID: 30813969 PMCID: PMC6391780 DOI: 10.1186/s13104-019-4137-z] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/15/2019] [Indexed: 01/08/2023] Open
Abstract
Objective Basic parameters commonly used to describe genomes including length, weight and relative guanine-cytosine (GC) content are widely cited in absence of a primary source. By using updated data and original software we determined these values to the best of our knowledge as standard reference for the whole human nuclear genome, for each chromosome and for mitochondrial DNA. We also devised a method to calculate the relative GC content in the whole messenger RNA sequence set and in transcriptomes by multiplying the GC content of each gene by its mean expression level. Results The male nuclear diploid genome extends for 6.27 Gigabase pairs (Gbp), is 205.00 cm (cm) long and weighs 6.41 picograms (pg). Female values are 6.37 Gbp, 208.23 cm, 6.51 pg. The individual variability and the implication for the DNA informational density in terms of bits/volume were discussed. The genomic GC content is 40.9%. Following analysis in different transcriptomes and species, we showed that the greatest deviation was observed in the pathological condition analysed (trisomy 21 leukaemic cells) and in Caenorhabditis elegans. Our results may represent a solid basis for further investigation on human structural and functional genomics while also providing a framework for other genome comparative analysis. Electronic supplementary material The online version of this article (10.1186/s13104-019-4137-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Allison Piovesan
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Chiara Pelleri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Francesca Antonaros
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Pierluigi Strippoli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy.
| | - Lorenza Vitale
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, BO, Italy
| |
Collapse
|
5
|
Delgado-Galván CJ, Padilla-Vaca F, Montiel FBR, Rangel-Serrano Á, Paramo-Pérez I, Anaya-Velázquez F, Franco B. Red fluorescent protein (DsRFP) optimization for Entamoeba histolytica expression. Exp Parasitol 2018; 187:86-92. [PMID: 29476758 DOI: 10.1016/j.exppara.2018.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/05/2018] [Accepted: 01/30/2018] [Indexed: 12/01/2022]
Abstract
Entamoeba histolytica genetic organization and genome structure is complex and under intense research. The genome is fully sequenced, and several tools have been developed for the molecular study of this organism. Nevertheless, good protein tracking tags that are easy to measure and image, like the fluorescent proteins are lacking. In this report, we codon-optimized the red fluorescent protein from the coral Discosoma striata (DsRFP) for its use in E. histolytica and demonstrated functionality in vivo. We envision that this protein can be widely used for the development of transcriptional reporter systems and protein-tagging applications.
Collapse
Affiliation(s)
- Cindy Jazmín Delgado-Galván
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Fátima Berenice Ramírez Montiel
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Ángeles Rangel-Serrano
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Itzel Paramo-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Fernando Anaya-Velázquez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto. 36050, Mexico.
| |
Collapse
|
6
|
Abstract
The analysis on codon usage bias of OmpA/MotB gene of Riemerella anatipestifer (RA) may provide a basis for understanding the evolution and pathogenesis of RA and for selecting appropriate host expression systems to improve the expression of target genes in vivo and in vitro. In our study, a comparative analysis of the codon usage bias in the newly discovered RA OmpA/MotB gene and the OmpA/MotB gene of 20 reference flavobacteriaceae was performed. The results of the codon adaptation indes (CAI), effective number of codon (ENC), and GC3s values indicated that synonymous codon usage bias in the OmpA/MotB gene of flavobacteriaceae. The results showed that codon usage bias in the RA OmpA/MotB gene was strong bias towards the synonymous codons with A and T at the third codon position. A high level of diversity in codon usage bias existed, and the effective number of codons used in a gene plot revealed that the G+C compositional constraint is the main factor that determines the codon usage bias in OmpA/MotB gene of flavobacteriaceae. Comparison of the codon usage in the OmpA/MotB gene of different organisms revealed that there were 31 codons showing distinct codon usage differences between the RA and E. coli, 41 between the RA and humans, but 29 between the RA and yeast. Therefore the yeast expression system may be more suitable for the expression of RA OmpA/MotB gene. These results may improve our understanding of the evolution, pathogenesis and functional studies of RA, as well as contribute significantly to the area of flavobacteriaceae research.
Collapse
|
7
|
The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution. PLoS Pathog 2012; 8:e1002979. [PMID: 23133373 PMCID: PMC3486916 DOI: 10.1371/journal.ppat.1002979] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022] Open
Abstract
The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome) making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome architecture in some, but not all, lineages. Microsporidians are enormously successful obligate intracellular parasites of animals, including humans. Despite their economic and medical importance, there are major gaps in our understanding of how microsporidians have made the transition from a free-living organism to one that can only complete its life cycle by living inside another cell. We present the larger genome of Trachipleistophora hominis isolated from a human patient with HIV/AIDS. Our analyses provide insights into the gene content, genome architecture and intergenic regions of a known opportunistic pathogen, and will facilitate the development of T. hominis as a much-needed model species that can also be grown in co-culture. The genome of T. hominis has more genes than other microsporidians, it has diverse regulatory motifs, and it contains a variety of transposable elements coupled with the machinery for RNA interference, which may eventually allow experimental down-regulation of T. hominis genes. Comparison of the genome of T. hominis with other microsporidians allowed us to infer properties of their common ancestor. Our analyses predict an ancestral microsporidian that was already an intracellular parasite with a reduced core proteome but one with a relatively large genome populated with diverse repetitive elements and a complex transcriptional regulatory network.
Collapse
|
8
|
Liu XS, Zhang YG, Fang YZ, Wang YL. Patterns and influencing factor of synonymous codon usage in porcine circovirus. Virol J 2012; 9:68. [PMID: 22416942 PMCID: PMC3341187 DOI: 10.1186/1743-422x-9-68] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/15/2012] [Indexed: 11/11/2022] Open
Abstract
Background Analysis of codon usage can reveal much about the molecular evolution of the viruses. Nevertheless, little information about synonymous codon usage pattern of porcine circovirus (PCV) genome in the process of its evolution is available. In this study, to give a new understanding on the evolutionary characteristics of PCV and the effects of natural selection from its host on the codon usage pattern of the virus, Patterns and the key determinants of codon usage in PCV were examined. Methods We carried out comprehensive analysis on codon usage pattern in the PCV genome, by calculating relative synonymous codon usage (RSCU), effective number of codons (ENC), dinucleotides and nucleic acid content of the PCV genome. Results PCV genomes have relatively much lower content of GC and codon preference, this result shows that nucleotide constraints have a major impact on its synonymous codon usage. The results of the correspondence analysis indicate codon usage patterns of PCV of various genotypes, various subgenotypes changed greatly, and significant differences in codon usage patterns of Each virus of Circoviridae.There is much comparability between PCV and its host in their synonymous codon usage, suggesting that the natural selection pressure from the host factor also affect the codon usage patterns of PCV. In particular, PCV genotype II is in synonymous codon usage more similar to pig than to PCV genotype I, which may be one of the most important molecular mechanisms of PCV genotype II to cause disease. The calculations results of the relative abundance of dinucleotides indicate that the composition of dinucleotides also plays a key role in the variation found in synonymous codon usage in PCV. Furthermore, geographic factors, the general average hydrophobicity and the aromaticity may be related to the formation of codon usage patterns of PCV. Conclusion The results of these studies suggest that synonymous codon usage pattern of PCV genome are the result of interaction between mutation pressure and natural selection from its host. The information from this study may not only have theoretical value in understanding the characteristics of synonymous codon usage in PCV genomes, but also have significant value for the molecular evolution of PCV.
Collapse
Affiliation(s)
- Xin-sheng Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, People's Republic of China
| | | | | | | |
Collapse
|
9
|
Selected codon usage bias in members of the class Mollicutes. Gene 2010; 473:110-8. [PMID: 21147204 DOI: 10.1016/j.gene.2010.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 11/20/2010] [Accepted: 11/22/2010] [Indexed: 11/24/2022]
Abstract
Mollicutes are parasitic microorganisms mainly characterized by small cell sizes, reduced genomes and great A and T mutational bias. We analyzed the codon usage patterns of the completely sequenced genomes of bacteria that belong to this class. We found that for many organisms not only mutational bias but also selection has a major effect on codon usage. Through a comparative perspective and based on three widely used criteria we were able to classify Mollicutes according to the effect of selection on codon usage. We found conserved optimal codons in many species and study the tRNA gene pool in each genome. Previous results are reinforced by the fact that, when selection is operative, the putative optimal codons found match the respective cognate tRNA. Finally, we trace selection effect backwards to the common ancestor of the class and estimate the phylogenetic inertia associated with this character. We discuss the possible scenarios that explain the observed evolutionary patterns.
Collapse
|
10
|
Codon Usage Patterns in Corynebacterium glutamicum: Mutational Bias, Natural Selection and Amino Acid Conservation. Comp Funct Genomics 2010; 2010:343569. [PMID: 20445740 PMCID: PMC2860111 DOI: 10.1155/2010/343569] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 11/17/2022] Open
Abstract
The alternative synonymous codons in Corynebacterium glutamicum, a well-known bacterium used in industry for the production of amino acid, have been investigated by multivariate analysis. As C. glutamicum is a GC-rich organism, G and C are expected to predominate at the third position of codons. Indeed, overall codon usage analyses have indicated that C and/or G ending codons are predominant in this organism. Through multivariate statistical analysis, apart from mutational selection, we identified three other trends of codon usage variation among the genes. Firstly, the majority of highly expressed genes are scattered towards the positive end of the first axis, whereas the majority of lowly expressed genes are clustered towards the other end of the first axis. Furthermore, the distinct difference in the two sets of genes was that the C ending codons are predominate in putatively highly expressed genes, suggesting that the C ending codons are translationally optimal in this organism. Secondly, the majority of the putatively highly expressed genes have a tendency to locate on the leading strand, which indicates that replicational and transciptional selection might be invoked. Thirdly, highly expressed genes are more conserved than lowly expressed genes by synonymous and nonsynonymous substitutions among orthologous genes fromthe genomes of C. glutamicum and C. diphtheriae. We also analyzed other factors such as the length of genes and hydrophobicity that might influence codon usage and found their contributions to be weak.
Collapse
|
11
|
Paz-Y-Miño C G, Espinosa A. Integrating horizontal gene transfer and common descent to depict evolution and contrast it with "common design". J Eukaryot Microbiol 2009; 57:11-8. [PMID: 20021546 DOI: 10.1111/j.1550-7408.2009.00458.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co-occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree-like representations of life's diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated-tree model, ring of life, symbiogenesis whole-organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron- and NAD(+) as cofactors, and the substrates acetyl-CoA for ALDH and acetaldehyde for ADH. Alternative views invoking "common design" (i.e. the non-naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded.
Collapse
Affiliation(s)
- Guillermo Paz-Y-Miño C
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA
| | | |
Collapse
|
12
|
Guo FB, Yuan JB. Codon usages of genes on chromosome, and surprisingly, genes in plasmid are primarily affected by strand-specific mutational biases in Lawsonia intracellularis. DNA Res 2009; 16:91-104. [PMID: 19221094 PMCID: PMC2671203 DOI: 10.1093/dnares/dsp001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, the factors driving genome-wide patterns of codon usages in Lawsonia intracellularis genome are determined. For genes on the chromosome of the bacterium, it is found that the most important source of variation results from strand-specific mutational biases. A lesser trend of variation is attributable to genes that are presumed as horizontally transferred. These putative alien genes are unusually GC richer than the other genes, whereas horizontally transferred genes have been observed to be AT rich in bacteria with medium and relatively low G + C contents. Hydropathy of encoded protein and expression level are also found to influence codon usage. Therefore, codon usage in L. intracellularis chromosome is the result of a complex balance among the different mutational and selectional factors. When analyzing genes in the largest plasmid, for the first time it is found that the strand-specific mutational biases are responsible for the primary variation of codon usages in plasmid. Genes, particularly highly expressed genes of this plasmid, are mainly located on the leading strands and this supposed to be the effects exerted by replicational-transcriptional selection. These facts suggest that this plasmid adopts the similar mechanism of replication as the chromosome in L. intracellularis. Common characters among the 10 bacteria in whose genomes the strand-specific mutational biases are the primary source of variation of codon usage are also investigated. For example, it is found that genes dnaT and fis that are involved in DNA replication initiation and re-initiation pathways are absent in all of the 10 bacteria.
Collapse
Affiliation(s)
- Feng-Biao Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| | | |
Collapse
|
13
|
Analysis of synonymous codon usage in the UL24 gene of duck enteritis virus. Virus Genes 2008; 38:96-103. [PMID: 18958612 DOI: 10.1007/s11262-008-0295-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 10/09/2008] [Indexed: 10/21/2022]
Abstract
The analysis on codon usage bias of UL24 gene of duck enteritis virus (DEV) may improve our understanding of the evolution and pathogenesis of DEV and provide a basis for understanding the relevant mechanism for biased usage of synonymous codons and for selecting appropriate expression systems to improve the expression of target genes. The codon usage bias of UL24 genes of DEV and 27 reference herpesviruses were analyzed. The results showed that codon of UL24 gene of DEV was strong bias toward the synonymous codons with A and T at the third codon position. A high level of diversity in codon usage bias existed, and the effective number of codons used in a gene plot revealed that the genetic heterogeneity in UL24 gene of herpesviruses was constrained by the G + C content. The phylogentic analysis suggested that DEV was evolutionarily closer to Alphaherpesvirinae and that there was no significant deviation in codon usage in different virus strains. There were 20 codons showing distinct usage differences between DEV and Escherichia coli, 23 between DEV and Homo sapiens, but only 16 codons between DEV and yeast. Therefore the yeast expression system may be more suitable for the expression of DEV genes.
Collapse
|
14
|
Zhong J, Li Y, Zhao S, Liu S, Zhang Z. Mutation pressure shapes codon usage in the GC-Rich genome of foot-and-mouth disease virus. Virus Genes 2007; 35:767-76. [PMID: 17768673 PMCID: PMC7089325 DOI: 10.1007/s11262-007-0159-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 08/09/2007] [Indexed: 11/25/2022]
Abstract
Foot-and-mouth disease (FMD) is economically the most important viral-induced livestock disease worldwide. In this study, we report the results of a survey of codon usage bias of FMD virus (FMDV) representing all seven serotypes (A, O, C, Asia 1, SAT 1, SAT 2, and SAT 3). Correspondence analysis, a commonly used multivariate statistical approach, was carried out to analyze synonymous codon usage bias. The analysis showed that the overall extent of codon usage bias in FMDV is low. Furthermore, the good correlation between the frequency of G + C at the synonymous third position of sense codons (GC3S) content at silent sites of each sequence and codon usage bias suggested that mutation pressure rather than natural (translational) selection is the most important determinant of the codon bias observed. In addition, other factors, such as the lengths of open reading frame (ORF) and the hydrophobicity of genes also influence the codon usage variation among the genomes of FMDV in a minor way. The result of phylogenetic analyses based on the relative synonymous codon usage (RSCU) values indicated a few obvious phylogenetic incongruities, which suggest that more FMDV genome diversity may exist in nature than is currently indicated. Our work might give some clues to the features of FMDV genome and some evolutionary information of this virus.
Collapse
Affiliation(s)
- Jincheng Zhong
- University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 P.R. China
| | - Yanmin Li
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF UK
| | - Sheng Zhao
- Jingmen Technical College, Jingmen, Hubei 448000 P.R. China
| | - Shenggang Liu
- University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 P.R. China
| | - Zhidong Zhang
- Institute for Animal Health, Pirbright, Woking, Surrey GU24 0NF UK
| |
Collapse
|
15
|
Sau K, Gupta SK, Sau S, Mandal SC, Ghosh TC. Factors influencing synonymous codon and amino acid usage biases in Mimivirus. Biosystems 2006; 85:107-13. [PMID: 16442213 DOI: 10.1016/j.biosystems.2005.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 12/05/2005] [Accepted: 12/17/2005] [Indexed: 10/25/2022]
Abstract
Synonymous codon and amino acid usage biases have been investigated in 903 Mimivirus protein-coding genes in order to understand the architecture and evolution of Mimivirus genome. As expected for an AT-rich genome, third codon positions of the synonymous codons of Mimivirus carry mostly A or T bases. It was found that codon usage bias in Mimivirus genes is dictated both by mutational pressure and translational selection. Evidences show that four factors such as mean molecular weight (MMW), hydropathy, aromaticity and cysteine content are mostly responsible for the variation of amino acid usage in Mimivirus proteins. Based on our observation, we suggest that genes involved in translation, DNA repair, protein folding, etc., have been laterally transferred to Mimivirus a long ago from living organism and with time these genes acquire the codon usage pattern of other Mimivirus genes under selection pressure.
Collapse
Affiliation(s)
- K Sau
- Department of Biotechnology, Haldia Institute of Technology, Haldia, India
| | | | | | | | | |
Collapse
|
16
|
Banerjee T, Ghosh TC. Gene expression level shapes the amino acid usages in Prochlorococcus marinus MED4. J Biomol Struct Dyn 2006; 23:547-54. [PMID: 16494504 DOI: 10.1080/07391102.2006.10507079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Prochlorococcus species are the first example of free-living bacteria with reduced genome. Codon and amino acid usages bias of Prochlorococcus marinus MED4 was investigated using all protein coding genes having length greater than or equal to 100 amino acids. Correspondence analysis on relative synonymous codon usage (RSCU) values shows that there is no such influence of translational selection in shaping the codon usage variation among the genes in this organism. However, amino acid usages were markedly different between the highly and lowly expressed genes in this organism and in particular, GC rich amino acids were found to occur significantly higher in highly expressed genes than the lowly expressed genes. Comparative analysis of the homologous genes of Synechococcus sp. WH8102 and Prochlorococcus marinus MED4 shows that amino acids conservation in highly expressed genes is significantly higher than lowly expressed genes. Based on our results we concluded that conservation of GC rich amino acids in the highly expressed genes to its ancestor is the major source of variation in amino acid usages in the organism.
Collapse
Affiliation(s)
- T Banerjee
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India
| | | |
Collapse
|
17
|
Sau K, Gupta SK, Sau S, Ghosh TC. Synonymous codon usage bias in 16 Staphylococcus aureus phages: implication in phage therapy. Virus Res 2005; 113:123-31. [PMID: 15970346 DOI: 10.1016/j.virusres.2005.05.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 05/06/2005] [Accepted: 05/10/2005] [Indexed: 11/22/2022]
Abstract
To reveal the factors influencing architecture of protein-coding genes in staphylococcal phages, relative synonymous codon usage variation has been investigated in 920 protein-coding genes of 16 staphylococcal phages. As expected for AT rich genomes, there are predominantly A and T ending codons in all 16 phages. Both Nc plot and correspondence analysis on relative synonymous codon usage indicates that mutation bias influences codon usage variation in the 16 phages. Correspondence analysis also suggests that translational selection and gene length also influence the codon usage variation in the phages to some extent and codon usage in staphylococcal phages is phage-specific but not S. aureus-specific. Further analysis indicates that among 16 staphylococcal phages, 44AHJD, P68 and K may be extremely virulent in nature as most of their genes have high translation efficiency. If this is true, then above three phages may be useful for curing staphylococcal infections.
Collapse
Affiliation(s)
- K Sau
- Bioinformatics Centre, Bose Institute, P1/12, CIT Scheme VII M, Calcutta 700 054, India.
| | | | | | | |
Collapse
|
18
|
Najafabadi HS, Goodarzi H, Torabi N. Optimality of codon usage in Escherichia coli due to load minimization. J Theor Biol 2005; 237:203-9. [PMID: 15932760 DOI: 10.1016/j.jtbi.2005.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2005] [Revised: 04/02/2005] [Accepted: 04/04/2005] [Indexed: 11/19/2022]
Abstract
The canonical genetic code is known to be highly efficient in minimizing the effects of mistranslational errors and point mutations, an ability which in term is designated "load minimization". One parameter involved in calculating the load minimizing property of the genetic code is codon usage. In most bacteria, synonymous codons are not used with equal frequencies. Different factors have been proposed to contribute to codon usage preference. It has been shown that the codon preference is correlated with the composition of the tRNA pool. Selection for translational efficiency and translational accuracy both result in such a correlation. In this work, it is shown that codon usage bias in Escherichia coli works so as to minimize the consequences of translational errors, i.e. optimized for load minimization.
Collapse
Affiliation(s)
- Hamed Shateri Najafabadi
- Department of Biotechnology, Faculty of Science, University of Tehran, Enghelab Ave., Tehran, Iran.
| | | | | |
Collapse
|
19
|
Gupta SK, Banerjee T, Basak S, Sahu K, Sau S, Ghosh TC. Studies on codon usage inThermoplasma acidophilum and its possible implications on the occurrences of lateral gene transfer. J Basic Microbiol 2005; 45:344-54. [PMID: 16187257 DOI: 10.1002/jobm.200510576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Codon usage studies have been carried out on the coding sequences of Thermoplasma acidophilum, which is an archaeon and grows at very low pH and high temperature. Overall codon usage data analysis indicates that all the four bases are almost equifrequent at the third position of codons, which is expected (since genomic GC % of this genome is about 46%). However, multivariate statistical analysis indicates that there are two major trends in the codon usage variation among the genes in this organism. In the first major trend it is observed that genes having G and C ending codons are clustered at one end while, A and T ending ones are clustered at the other end. We have also found a significant positive correlation between the expressivities of genes and GC contents at the synonymous third codon positions. In the second major trend, it is seen that the genes are clustered into three distinct parts. A comparative analyses of codon usage data of T. acidophilum and Sulfolobus solfataricus reveals that one of the three clusters of genes of T. acidophilum is very similar to a considerable number of S. solfataricus genes, suggesting possible occurrences of lateral gene transfer between these two microorganisms as reported by earlier workers.
Collapse
Affiliation(s)
- S K Gupta
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme, VII M Calcutta 700 054. India
| | | | | | | | | | | |
Collapse
|
20
|
Sau K, Sau S, Mandal SC, Ghosh TC. Factors influencing the synonymous codon and amino acid usage bias in AT-rich Pseudomonas aeruginosa phage PhiKZ. Acta Biochim Biophys Sin (Shanghai) 2005; 37:625-33. [PMID: 16143818 PMCID: PMC7109957 DOI: 10.1111/j.1745-7270.2005.00089.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
To reveal how the AT-rich genome of bacteriophage PhiKZ has been shaped in order to carry out its growth in the GC-rich host Pseudomonas aeruginosa, synonymous codon and amino acid usage bias of PhiKZ was investigated and the data were compared with that of P. aeruginosa. It was found that synonymous codon and amino acid usage of PhiKZ was distinct from that of P. aeruginosa. In contrast to P. aeruginosa, the third codon position of the synonymous codons of PhiKZ carries mostly A or T base; codon usage bias in PhiKZ is dictated mainly by mutational bias and, to a lesser extent, by translational selection. A cluster analysis of the relative synonymous codon usage values of 16 myoviruses including PhiKZ shows that PhiKZ is evolutionary much closer to Escherichia coli phage T4. Further analysis reveals that the three factors of mean molecular weight, aromaticity and cysteine content are mostly responsible for the variation of amino acid usage in PhiKZ proteins, whereas amino acid usage of P. aeruginosa proteins is mainly governed by grand average of hydropathicity, aromaticity and cysteine content. Based on these observations, we suggest that codons of the phage-like PhiKZ have evolved to preferentially incorporate the smaller amino acid residues into their proteins during translation, thereby economizing the cost of its development in GC-rich P. aeruginosa.
Collapse
Affiliation(s)
- K. Sau
- Department of Mathematics, Jadavpur UniversityCalcutta 700 032, India
| | - S. Sau
- Department of Biochemistry, Bose Institute, P1/12-CIT Scheme VII MCalcutta 700 054, India
| | - S. C. Mandal
- Department of Mathematics, Jadavpur UniversityCalcutta 700 032, India
- Corresponding authors: S. C. MANDAL: E-mail,
| | - T. C. Ghosh
- Bioinformatics Centre, Bose Institute, P1/12-CIT Scheme VII MCalcutta 700 054, India
- T. C. GHOSH: Tel, +91-33-2334 6626; Fax, +91-33-2334 3886; E-mail,
| |
Collapse
|
21
|
Chanda I, Pan A, Dutta C. Proteome composition in Plasmodium falciparum: higher usage of GC-rich nonsynonymous codons in highly expressed genes. J Mol Evol 2005; 61:513-23. [PMID: 16044241 DOI: 10.1007/s00239-005-0023-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The parasite Plasmodium falciparum, responsible for the most deadly form of human malaria, is one of the extremely AT-rich genomes sequenced so far and known to possess many atypical characteristics. Using multivariate statistical approaches, the present study analyzes the amino acid usage pattern in 5038 annotated protein-coding sequences in P. falciparum clone 3D7. The amino acid composition of individual proteins, though dominated by the directional mutational pressure, exhibits wide variation across the proteome. The Asn content, expression level, mean molecular weight, hydropathy, and aromaticity are found to be the major sources of variation in amino acid usage. At all stages of development, frequencies of residues encoded by GC-rich codons such as Gly, Ala, Arg, and Pro increase significantly in the products of the highly expressed genes. Investigation of nucleotide substitution patterns in P. falciparum and other Plasmodium species reveals that the nonsynonymous sites of highly expressed genes are more conserved than those of the lowly expressed ones, though for synonymous sites, the reverse is true. The highly expressed genes are, therefore, expected to be closer to their putative ancestral state in amino acid composition, and a plausible reason for their sequences being GC-rich at nonsynonymous codon positions could be that their ancestral state was less AT-biased. Negative correlation of the expression level of proteins with respective molecular weights supports the notion that P. falciparum, in spite of its intracellular parasitic lifestyle, follows the principle of cost minimization.
Collapse
Affiliation(s)
- Ipsita Chanda
- Human Genetics & Genomics Group, Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | |
Collapse
|
22
|
Ray D, Dutta S, Banerjee S, Banerjee R, Raha S. Identification, structure, and phylogenetic relationships of a mitogen-activated protein kinase homologue from the parasitic protist Entamoeba histolytica. Gene 2005; 346:41-50. [PMID: 15716029 DOI: 10.1016/j.gene.2004.10.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 07/30/2004] [Accepted: 10/21/2004] [Indexed: 10/25/2022]
Abstract
A gene encoding mitogen-activated protein kinase (MAPK) from the human enteric parasite, Entamoeba histolytica has been identified. Sequence analyses of the polymerase chain reaction (PCR) and reverse transcription PCR (RT-PCR) products reveal that the EhMAPK gene is intronless and encodes a protein of 352 amino acids. EhMAPK shows significant homology with other MAPKs and contains the 11 subdomains including the invariant residues characteristic of serine/threonine protein kinases. The MAPK signature residues and motifs are also present in EhMAPK. The atomic model of EhMAPK built with rat ERK2 as template exhibits the conservation of all major secondary structural features. However, a deletion in close proximity to the dual phosphorylation/activation site is of particular interest as it may have functional implications. Phylogenetic analysis indicates that EhMAPK is tightly clustered with Giardia intestinalis ERK2 and Dictyostelium discoideum ERK2. Detailed sequence analysis and phylogenetic study aided us to postulate that EhMAPK belongs to the extracellular signal-regulated kinase (ERK) family. Although EhMAPK bears good homology and phylogenetic closeness with human ERK8 and rat ERK7, sequence analysis indicates that they may be functionally different. The significant differences such as the deletions in the vicinity of the phosphorylation lip, variations in the P+1 specificity pocket, presence of additional acidic amino acids in the common docking domain provide a ground for postulations that activators and substrates for EhMAPK may be to some extent divergent from that of the ERKs of the mammalian host. Although functional characterization of EhMAPK remains to be done, this is the first study of any member of the MAPK signaling system in this organism.
Collapse
Affiliation(s)
- Doel Ray
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan nagar, Kolkata-700064, India
| | | | | | | | | |
Collapse
|
23
|
Banerjee T, Basak S, Gupta SK, Ghosh TC. Evolutionary forces in shaping the codon and amino acid usages in Blochmannia floridanus. J Biomol Struct Dyn 2005; 22:13-23. [PMID: 15214801 DOI: 10.1080/07391102.2004.10506976] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Endosymbiotic relationship has great effect on ecological system. Codon and amino acid usages bias of endosymbiotic bacteria Blochmannia floridanus (whose host is an ant Camponotus floridanus) was investigated using experimentally known genes of this organism. Correspondence Analysis on RSCU values show that there exists only one single explanatory major axis that is linked to the strand specific mutational biases. Majority of the genes have a tendency to concentrate on the leading strand, which may be related to the adaptive property related to the replication mechanisms. Amino acid usages were markedly different between the highly and lowly expressed genes in this organism and in particular, GC rich amino acids were found to occur significantly higher in highly expressed genes than the lowly expressed genes. Comparative analyses of the orthologous genes of Escherichia coli and Blochmannia floridanus show that highly expressed genes are significantly more conserved than lowly expressed genes. Based on our results we concluded that strand specific mutational bias is strongly operational in selecting the codon usage in this organism. Replicational-transcriptional selection can be invoked from the presence of majority of highly expressed genes in the leading strand. Conservation of GC rich amino acids in the highly expressed genes to its ancestor is the major source of variation in amino acid usages in the organism. Hydrophobicity of the genes is the second major source in differentiating the genes according to their amino acid usages in this organism.
Collapse
Affiliation(s)
- T Banerjee
- Bioinformatics Centre, Bose Institute, P 1/12, C.I.T. Scheme VII M, Kolkata 700 054, India
| | | | | | | |
Collapse
|
24
|
Fadiel A, Lithwick S, Naftolin F. The influence of environmental adaptation on bacterial genome structure. Lett Appl Microbiol 2005; 40:12-8. [PMID: 15612996 DOI: 10.1111/j.1472-765x.2004.01619.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Researchers have long been puzzled by the diversity of life. Now that the complete genomic sequence of many organisms has been determined, it is possible to evaluate the impact of organismal variation on sequence structure or vice versa. The aim of this investigation was to explore genomic changes mandated by organismal adaptation to its ecological niches. METHODS AND RESULTS Coding sequences from three phylogenetically related bacterial species namely Mycoplasma genitalium, M. pneumoniae and Ureaplasma urealyticum were subject to in depth sequence analyses. M. genitalium and M. pneumoniae both belong to the genus Mycoplasma while U. urealyticum is a member of the genus Ureaplasma. However, M. genitalium and U. urealyticum are urogenital pathogens while M. pneumoniae is a respiratory pathogen. Complete transcriptomes were downloaded from NCBI for each species, and were subject to in silico investigation using in-house software, and public sequence analysis tools. Clear similarities in transcriptome structure were identified among the functionally similar species M. genitalium and U. urealyticum while no such relationship was identified among the phylogenetically related species M. genitalium and M. pneumoniae. CONCLUSIONS It is plausible to conclude that, in these bacterial species, environmental stimuli might be more influential in shaping sequence signatures than phylogenetic relationships. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that molecular signatures within the transcriptomes of the species examined are likely to be a product of evolutionary adaptation to diverse environmental ecological stimuli, and not a result of common phylogeny.
Collapse
Affiliation(s)
- A Fadiel
- The Bioinformatics Supercomputing Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| | | | | |
Collapse
|
25
|
Peixoto L, Fernández V, Musto H. The effect of expression levels on codon usage in Plasmodium falciparum. Parasitology 2004; 128:245-51. [PMID: 15074874 DOI: 10.1017/s0031182003004517] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The usage of alternative synonymous codons in the completely sequenced, extremely A+T-rich parasite Plasmodium falciparum was studied. Confirming previous studies obtained with less than 3% of the total genes recently described, we found that A- and U-ending triplets predominate but translational selection increases the frequency of a subset of codons in highly expressed genes. However, some new results come from the analysis of the complete sequence. First, there is more variation in GC3 than previously described; second, the effect of natural selection acting at the level of translation has been analysed with real expression data at 4 different stages and third, we found that highly expressed proteins increment the frequency of energetically less expensive amino acids. The implications of these results are discussed.
Collapse
Affiliation(s)
- L Peixoto
- Laboratorio de Organización Evolución del Genoma, Facultad de Ciencias, Iguá 4225, Montevideo 11400, Uruguay
| | | | | |
Collapse
|
26
|
Gupta SK, Bhattacharyya TK, Ghosh TC. Synonymous Codon Usage inLactococcus lactis: Mutational Bias Versus Translational Selection. J Biomol Struct Dyn 2004; 21:527-36. [PMID: 14692797 DOI: 10.1080/07391102.2004.10506946] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In this study codon usage bias of all experimentally known genes of Lactococcus lactis has been analyzed. Since Lactococcus lactis is an AT rich organism, it is expected to occur A and/or T at the third position of codons and detailed analysis of overall codon usage data indicates that A and/or T ending codons are predominant in this organism. However, multivariate statistical analyses based both on codon count and on relative synonymous codon usage (RSCU) detect a large number of genes, which are supposed to be highly expressed are clustered at one end of the first major axis, while majority of the putatively lowly expressed genes are clustered at the other end of the first major axis. It was observed that in the highly expressed genes C and T ending codons are significantly higher than the lowly expressed genes and also it was observed that C ending codons are predominant in the duets of highly expressed genes, whereas the T endings codons are abundant in the quartets. Abundance of C and T ending codons in the highly expressed genes suggest that, besides, compositional biases, translational selection are also operating in shaping the codon usage variation among the genes in this organism as observed in other compositionally skewed organisms. The second major axis generated by correspondence analysis on simple codon counts differentiates the genes into two distinct groups according to their hydrophobicity values, but the same analysis computed with relative synonymous codon usage values could not discriminate the genes according to the hydropathy values. This suggests that amino acid composition exerts constraints on codon usage in this organism. On the other hand the second major axis produced by correspondence analysis on RSCU values differentiates the genes into two groups according to the synonymous codon usage for cysteine residues (rarest amino acids in this organism), which is nothing but a artifactual effect induced by the RSCU values. Other factors such as length of the genes and the positions of the genes in the leading and lagging strand of replication have practically no influence in the codon usage variation among the genes in this organism.
Collapse
Affiliation(s)
- S K Gupta
- Bioinformatics Centre Bose Institute, P 1/12, CIT Scheme VII M, Kolkata 700 054, India
| | | | | |
Collapse
|
27
|
Abstract
The association of codon context and codon usage was studied in seven bacteria as well as Schizosaccharomyces pombe and Encephalitozoon cuniculi. The association is strongest in magnitude closest to the codons of interest but there is apparently no rule about which of the two contexts is generally strongest associated to codon usage. In all bacterial species and in the intron-rich Sch. pombe it was furthermore observed from plots of chi2 versus N that the wobble positions of codons in the proximity cause regular peaks both upstream and downstream. This observation is discussed in relation to a possible effect of mutational pressure on the association of codon usage and codon context. Absence of peaks corresponding to the wobble positions in the intron-poor En. cuniculi, and presence in Sch. pombe, may indicate that the role of introns in the context-dependent codon bias is negligible.
Collapse
|
28
|
Musto H, Romero H, Zavala A. Translational selection is operative for synonymous codon usage in Clostridium perfringens and Clostridium acetobutylicum. MICROBIOLOGY (READING, ENGLAND) 2003; 149:855-863. [PMID: 12686628 DOI: 10.1099/mic.0.26063-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here, the codon usage patterns of two Clostridium species (Clostridium perfringens and Clostridium acetobutylicum) are reported. These prokaryotes are characterized by a strong mutational bias towards A+T, a striking excess of coding sequences and purine-rich leading strands of replication, strong GC-skews and a high frequency of genomic rearrangements. As expected, it was found that the mutational bias dominates codon usage but there is some variation of synonymous codon choices among genes in the two species. This variation was investigated using a multivariate statistical approach. In the two species, two major trends were detected. One was related to the location of the sequences in the leading or lagging strand of replication, and the other was associated with the preferential use of putatively translational optimal codons in heavily expressed genes. Analyses of the estimated number of synonymous and non-synonymous substitutions among orthologous genes permit us to postulate that optimal codons might be selected not only for speed but also for accuracy during translation.
Collapse
Affiliation(s)
- Héctor Musto
- Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias, Iguá 4225, Montevideo 11400, Uruguay
| | - Héctor Romero
- Escuela Universitaria de Tecnología Médica, Facultad de Medicina, Avda. Italia (s/n) Hospital de Clínicas, Montevideo 11600, Uruguay
- Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias, Iguá 4225, Montevideo 11400, Uruguay
| | - Alejandro Zavala
- Laboratorio de Organización y Evolución del Genoma, Facultad de Ciencias, Iguá 4225, Montevideo 11400, Uruguay
| |
Collapse
|
29
|
Mittleider D, Green LC, Mann VH, Michael SF, Didier ES, Brindley PJ. Sequence survey of the genome of the opportunistic microsporidian pathogen, Vittaforma corneae. J Eukaryot Microbiol 2002; 49:393-401. [PMID: 12425527 DOI: 10.1111/j.1550-7408.2002.tb00218.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The microsporidian Vittaforma corneae has been reported as a pathogen of the human stratum corneum, where it can cause keratitis, and is associated with systemic infections. In addition to this direct role as an infectious, etiologic agent of human disease, V. corneae has been used as a model organism for another microsporidian, Enterocytozoon bieneusi, a frequent and problematic pathogen of HIV-infected patients that, unlike V. corneae, is difficult to maintain and to study in vitro. Unfortunately, few molecular sequences are available for V. corneae. In this study, seventy-four genome survey sequences (GSS) were obtained from genomic DNA of spores of laboratory-cultured V. corneae. Approximately, 41 discontinuous kilobases of V. corneae were cloned and sequenced to generate these GSS. Putative identities were assigned to 44 of the V. corneae GSS based on BLASTX searches, representing 21 discrete proteins. Of these 21 deduced V. corneae proteins, only two had been reported previously from other microsporidia (until the recent report of the Encephalitozoon cuniculi genome). Two of the V. corneae proteins were of particular interest, reverse transcriptase and topoisomerase IV (parC). Since the existence of transposable elements in microsporidia is controversial, the presence of reverse transcriptase in V. corneae will contribute to resolution of this debate. The presence of topoisomerase IV was remarkable because this enzyme previously had been identified only from prokaryotes. The 74 GSS included 26.7 kilobases of unique sequences from which two statistics were generated: GC content and codon usage. The GC content of the unique GSS was 42%, lower than that of another microsporidian, E. cuniculi (48% for protein-encoding regions), and substantially higher than that predicted for a third microsporidian, Spraguea lophii (28%). A comparison using the Pearson correlation coefficient showed that codon usage in V. corneae was similar to that in the yeasts, Saccharomyces cerevisiae (r = 0.79) and Shizosaccharomyces pombe (r = 0.70), but was markedly dissimilar to E. cuniculi (r = 0.19).
Collapse
Affiliation(s)
- Derek Mittleider
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gupta SK, Ghosh TC. Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa. Gene 2001; 273:63-70. [PMID: 11483361 DOI: 10.1016/s0378-1119(01)00576-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Codon usage biases of all DNA sequences (length greater than or equal to 300 bp) from the complete genome of Pseudomonas aeruginosa have been analyzed. As P. aeruginosa is a GC-rich organism, G and/or C are expected to predominate in their codons. Overall codon usage data analysis indicates that indeed codons ending in G and/or C are predominant in this organism. But multivariate statistical analysis indicates that there is a single major trend in the codon usage variation among the genes in this organism, which has a strong negative correlation with the expressivities of the genes. The majority of the lowly expressed genes are scattered towards the positive end of the major axis whereas the highly expressed genes are clustered towards the negative end. This is the first report where the prokaryotic organism having highly skewed base composition is dictated mainly by translational selection, though some other factors such as the lengths of the genes as well as the hydrophobicity of genes also influence the codon usage variation among the genes in this organism in a minor way.
Collapse
Affiliation(s)
- S K Gupta
- Distributed Information Centre, Bose Institute, P 1/12, C.I.T. Scheme, VII M, Calcutta 700 054, India
| | | |
Collapse
|
31
|
Naya H, Romero H, Carels N, Zavala A, Musto H. Translational selection shapes codon usage in the GC-rich genome of Chlamydomonas reinhardtii. FEBS Lett 2001; 501:127-30. [PMID: 11470270 DOI: 10.1016/s0014-5793(01)02644-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In unicellular species codon usage is determined by mutational biases and natural selection. Among prokaryotes, the influence of these factors is different if the genome is skewed towards AT or GC, since in AT-rich organisms translational selection is absent. On the other hand, in AT-rich unicellular eukaryotes the two factors are present. In order to understand if GC-rich genomes display a similar behavior, the case of Chlamydomonas reinhardtii was studied. Since we found that translational selection strongly influences codon usage in this species, we conclude that there is not a common pattern among unicellular organisms.
Collapse
Affiliation(s)
- H Naya
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
32
|
Grocock RJ, Sharp PM. Synonymous codon usage in Cryptosporidium parvum: identification of two distinct trends among genes. Int J Parasitol 2001; 31:402-12. [PMID: 11306119 DOI: 10.1016/s0020-7519(01)00129-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The usage of alternative synonymous codons in the apicomplexan Cryptosporidium parvum has been investigated. A data set of 54 genes was analysed. Overall, A- and U-ending codons predominate, as expected in an A+T-rich genome. Two trends of codon usage variation among genes were identified using correspondence analysis. The primary trend is in the extent of usage of a subset of presumably translationally optimal codons, that are used at significantly higher frequencies in genes expected to be expressed at high levels. Fifteen of the 18 codons identified as optimal are more G+C-rich than the otherwise common codons, so that codon selection associated with translation opposes the general mutation bias. Among 40 genes with lower frequencies of these optimal codons, a secondary trend in G+C content was identified. In these genes, G+C content at synonymously variable third positions of codons is correlated with that in 5' and 3' flanking sequences, indicative of regional variation in G+C content, perhaps reflecting regional variation in mutational biases.
Collapse
Affiliation(s)
- R J Grocock
- Institute of Genetics, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
33
|
Garat B, Musto H. Trends of amino acid usage in the proteins from the unicellular parasite Giardia lamblia. Biochem Biophys Res Commun 2000; 279:996-1000. [PMID: 11162464 DOI: 10.1006/bbrc.2000.4051] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Correspondence analysis of amino acid frequencies was applied to 75 complete coding sequences from the unicellular parasite Giardia lamblia, and it was found that three major factors influence the variability of amino acidic composition of proteins. The first trend strongly correlated with (a) the cysteine content and (b) the mean weight of the amino acids used in each protein. The second trend correlated with the global levels of hydropathy and aromaticity of each protein. Both axes might be related with the defense of the parasite to oxygen free radicals. Finally, the third trend correlated with the expressivity of each gene, indicating that in G. lamblia highly expressed sequences display a tendency to preferentially use a subset of the total amino acids.
Collapse
Affiliation(s)
- B Garat
- Laboratorio de Organización y Evolución del Genoma, Sección Bioquímica, Facultad de Ciencias, Universidad de la Republica de Uruguay, Iguá 4225, Montevideo, 11400, Uruguay
| | | |
Collapse
|