1
|
Lorenzetti WR, Ibelli AMG, Peixoto JDO, Savoldi IR, Mores MAZ, de Souza Romano G, do Carmo KB, Ledur MC. The downregulation of genes encoding muscle proteins have a potential role in the development of scrotal hernia in pigs. Mol Biol Rep 2024; 51:822. [PMID: 39023774 DOI: 10.1007/s11033-024-09766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Testicular descent is a physiological process regulated by many factors. Eventually, disturbances in the embryological/fetal development path facilitate the occurrence of scrotal hernia, a congenital malformation characterized by the presence of intestinal portions within the scrotal sac due to the abnormal expansion of the inguinal ring. In pigs, some genes have been related to this anomaly, but the genetic mechanisms involved remain unclear. This study aimed to investigate the expression profile of a set of genes potentially involved with the manifestation of scrotal hernia in the inguinal ring tissue. METHODS AND RESULTS Tissue samples from the inguinal ring/canal of normal and scrotal hernia-affected male pigs with approximately 30 days of age were used. Relative expression analysis was performed using qPCR to confirm the expression profile of 17 candidate genes previously identified in an RNA-Seq study. Among them, the Myosin heavy chain 1 (MYH1), Desmin (DES), and Troponin 1 (TNNI1) genes were differentially expressed between groups and had reduced levels of expression in the affected animals. These genes encode proteins involved in the formation of muscle tissue, which seems to be important for increasing the resistance of the inguinal ring to the abdominal pressure, which is essential to avoid the occurrence of scrotal hernia. CONCLUSIONS The downregulation of muscular candidate genes in the inguinal tissue clarifies the genetic mechanisms involved with this anomaly in its primary site, providing useful information for developing strategies to control this malformation in pigs and other mammals.
Collapse
Affiliation(s)
- William Raphael Lorenzetti
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, São Carlos, São Paulo, 13560-970, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838, Guarapuava, Paraná, 85040-167, Brazil
| | - Igor Ricardo Savoldi
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil
- Laudo laboratório Avícola, Rodovia BR-365, Morumbi, Uberlândia, Minas Gerais, 38407180, Brazil
| | - Marcos Antônio Zanella Mores
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil
| | | | - Kamilla Bleil do Carmo
- Universidade do Contestado, Concórdia, Santa Catarina, Brazil
- Instituto Federal Catarinense, Rodovia SC 283, km 17, Concórdia, Santa Catarina, 89703-720, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-graduação em Zootecnia, Centro de Educação Superior do Oeste (CEO), Universidade do Estado de Santa Catarina, UDESC, Rua Beloni Trombeta Zanin 680E, Chapecó, Santa Catarina, 89815-630, Brazil.
- Embrapa Suínos e Aves, Rodovia BR153, km 110, Distrito de Tamanduá, Caixa Postal: 321, Concórdia, Santa Catarina, 89715-899, Brazil.
| |
Collapse
|
2
|
Mimpen JY, Ramos-Mucci L, Paul C, Kurjan A, Hulley PA, Ikwuanusi CT, Cohen CJ, Gwilym SE, Baldwin MJ, Cribbs AP, Snelling SJB. Single nucleus and spatial transcriptomic profiling of healthy human hamstring tendon. FASEB J 2024; 38:e23629. [PMID: 38742770 DOI: 10.1096/fj.202300601rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
The molecular and cellular basis of health in human tendons remains poorly understood. Among human tendons, hamstring tendon has markedly low pathology and can provide a prototypic healthy tendon reference. The aim of this study was to determine the transcriptomes and location of all cell types in healthy hamstring tendon. Using single nucleus RNA sequencing, we profiled the transcriptomes of 10 533 nuclei from four healthy donors and identified 12 distinct cell types. We confirmed the presence of two fibroblast cell types, endothelial cells, mural cells, and immune cells, and identified cell types previously unreported in tendons, including different skeletal muscle cell types, satellite cells, adipocytes, and undefined nervous system cells. The location of these cell types within tendon was defined using spatial transcriptomics and imaging, and potential transcriptional networks and cell-cell interactions were analyzed. We demonstrate that fibroblasts have the highest number of potential cell-cell interactions in our dataset, are present throughout the tendon, and play an important role in the production and organization of extracellular matrix, thus confirming their role as key regulators of hamstring tendon homeostasis. Overall, our findings underscore the complexity of the cellular networks that underpin healthy human tendon function and the central role of fibroblasts as key regulators of hamstring tendon tissue homeostasis.
Collapse
Affiliation(s)
- Jolet Y Mimpen
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Lorenzo Ramos-Mucci
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Claudia Paul
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alina Kurjan
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Philippa A Hulley
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | | | - Carla J Cohen
- Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Stephen E Gwilym
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Mathew J Baldwin
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah J B Snelling
- The Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
He X, Xu J, Liu Y, Guo X, Wei W, Xing C, Zhang H, Wang H, Liu M, Jiang R. Explorations on Key Module and Hub Genes Affecting IMP Content of Chicken Pectoralis Major Muscle Based on WGCNA. Animals (Basel) 2024; 14:402. [PMID: 38338044 PMCID: PMC10854493 DOI: 10.3390/ani14030402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Inosine monophosphate (IMP) is a substance that enhances flavor and plays a crucial role in the umami taste of chicken muscle. It is also an influential factor in determining chicken's economic value. However, the molecular regulatory network underlying the IMP content in muscle remains unclear. To address this issue, we performed transcriptome sequencing on 20 pectoralis major muscle samples from 120-day-old Guangde feathered-leg chicken and used weighted gene co-expression network analysis (WGCNA) to identify key regulatory factors that influence IMP content. The weighted gene co-expression network was constructed using a total of 16,344 genes, leading to the identification of 20 co-expression gene modules. Among the modules that were identified, it was observed that the purple module (R = -0.51, p = 0.02) showed a significant negative correlation with the IMP content. This suggests that the genes within the purple module had the ability to regulate the IMP content. A total of 68 hub genes were identified in the purple module through gene significance (GS) > 0.2 and module membership (MM) > 0.8. The STRING database was used for a protein-protein interaction (PPI) network of hub genes. Furthermore, troponin I type 1 (TNNI1), myozenin 2 (MYOZ2), myosin light chain 2 regulatory cardiac slow (MYL2), and myosin light chain 3 regulatory cardiac slow (MYL3) involved in the "ATP-dependent activity", "cAMP signaling pathway" and "cGMP-PKG signaling pathway" were identified as central regulators that contribute to IMP content. These results offer valuable information into the gene expression and regulation that affects IMP content in muscle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Runshen Jiang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (X.H.); (J.X.); (Y.L.); (X.G.); (W.W.); (C.X.); (H.Z.); (H.W.); (M.L.)
| |
Collapse
|
4
|
Kim M, Munyaneza JP, Cho E, Jang A, Jo C, Nam KC, Choo HJ, Lee JH. Genome-Wide Association Study on the Content of Nucleotide-Related Compounds in Korean Native Chicken Breast Meat. Animals (Basel) 2023; 13:2966. [PMID: 37760369 PMCID: PMC10525433 DOI: 10.3390/ani13182966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Meat flavor is an important factor that influences the palatability of chicken meat. Inosine 5'-monophosphate (IMP), inosine, and hypoxanthine are nucleic acids that serve as taste-active compounds, mainly enhancing flavor in muscle tissue. For this study, we performed a genome-wide association study (GWAS) using a mixed linear model to identify single-nucleotide polymorphisms (SNPs) that are significantly associated with changes in the contents of the nucleotide-related compounds of breast meat in the Korean native chicken (KNC) population. The genomic region on chicken chromosome 5 containing an SNP (rs316338889) was significantly (p < 0.05) associated with all three traits. The trait-related candidate genes located in this significant genomic region were investigated through performing a functional enrichment analysis and protein-protein interaction (PPI) database search. We found six candidate genes related to the function that possibly affected the content of nucleotide-related compounds in the muscle, namely, the TNNT3 and TNNT2 genes that regulate muscle contractions; the INS, IGF2, and DUSP8 genes associated with insulin sensitivity; and the C5NT1AL gene that is presumably related to the nucleotide metabolism process. This study is the first of its kind to find candidate genes associated with the content of all three types of nucleotide-related compounds in chicken meat using GWAS. The candidate genes identified in this study can be used for genomic selection to breed better-quality chickens in the future.
Collapse
Affiliation(s)
- Minjun Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
| | - Jean Pierre Munyaneza
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
| | - Eunjin Cho
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Aera Jang
- Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | - Ki-Chang Nam
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea;
| | - Hyo Jun Choo
- Poultry Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea
| | - Jun Heon Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea; (M.K.); (J.P.M.)
- Department of Bio-AI Convergence, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
5
|
Clostridium novyi’s Alpha-Toxin Changes Proteome and Phosphoproteome of HEp-2 Cells. Int J Mol Sci 2022; 23:ijms23179939. [PMID: 36077344 PMCID: PMC9456407 DOI: 10.3390/ijms23179939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
C. novyi type A produces the alpha-toxin (TcnA) that belongs to the large clostridial glucosylating toxins (LCGTs) and is able to modify small GTPases by N-acetylglucosamination on conserved threonine residues. In contrast, other LCGTs including Clostridioides difficile toxin A and toxin B (TcdA; TcdB) modify small GTPases by mono-o-glucosylation. Both modifications inactivate the GTPases and cause strong effects on GTPase-dependent signal transduction pathways and the consequent reorganization of the actin cytoskeleton leading to cell rounding and finally cell death. However, the effect of TcnA on target cells is largely unexplored. Therefore, we performed a comprehensive screening approach of TcnA treated HEp-2 cells and analyzed their proteome and their phosphoproteome using LC-MS-based methods. With this data-dependent acquisition (DDA) approach, 5086 proteins and 9427 phosphosites could be identified and quantified. Of these, 35 proteins were found to be significantly altered after toxin treatment, and 1832 phosphosites were responsive to TcnA treatment. By analyzing the TcnA-induced proteomic effects of HEp-2 cells, 23 common signaling pathways were identified to be altered, including Actin Cytoskeleton Signaling, Epithelial Adherens Junction Signaling, and Signaling by Rho Family GTPases. All these pathways are also regulated after application of TcdA or TcdB of C. difficile. After TcnA treatment the regulation on phosphorylation level was much stronger compared to the proteome level, in terms of both strength of regulation and the number of regulated phosphosites. Interestingly, various signaling pathways such as Signaling by Rho Family GTPases or Integrin Signaling were activated on proteome level while being inhibited on phosphorylation level or vice versa as observed for the Role of BRCA1 in DNA Damage Response. ZIP kinase, as well as Calmodulin-dependent protein kinases IV & II, were observed as activated while Aurora-A kinase and CDK kinases tended to be inhibited in cells treated with TcnA based on their substrate regulation pattern.
Collapse
|
6
|
Sahinyan K, Blackburn DM, Simon MM, Lazure F, Kwan T, Bourque G, Soleimani VD. Application of ATAC-Seq for genome-wide analysis of the chromatin state at single myofiber resolution. eLife 2022; 11:72792. [PMID: 35188098 PMCID: PMC8901173 DOI: 10.7554/elife.72792] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
Myofibers are the main components of skeletal muscle, which is the largest tissue in the body. Myofibers are highly adaptive and can be altered under different biological and disease conditions. Therefore, transcriptional and epigenetic studies on myofibers are crucial to discover how chromatin alterations occur in the skeletal muscle under different conditions. However, due to the heterogenous nature of skeletal muscle, studying myofibers in isolation proves to be a challenging task. Single-cell sequencing has permitted the study of the epigenome of isolated myonuclei. While this provides sequencing with high dimensionality, the sequencing depth is lacking, which makes comparisons between different biological conditions difficult. Here, we report the first implementation of single myofiber ATAC-Seq, which allows for the sequencing of an individual myofiber at a depth sufficient for peak calling and for comparative analysis of chromatin accessibility under various physiological and disease conditions. Application of this technique revealed significant differences in chromatin accessibility between resting and regenerating myofibers, as well as between myofibers from a mouse model of Duchenne Muscular Dystrophy (mdx) and wild-type (WT) counterparts. This technique can lead to a wide application in the identification of chromatin regulatory elements and epigenetic mechanisms in muscle fibers during development and in muscle-wasting diseases.
Collapse
Affiliation(s)
- Korin Sahinyan
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Darren M Blackburn
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Marie-Michelle Simon
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada
| | - Felicia Lazure
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Canada.,McGill Genome Centre, Montreal, Canada.,Canadian Centre for Computational Genomics, Montreal, Canada
| | - Vahab D Soleimani
- Department of Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Canada
| |
Collapse
|
7
|
Riederer I, Mendes-da-Cruz DA, da Fonseca GC, González MN, Brustolini O, Rocha C, Loss G, de Carvalho JB, Menezes MT, Raphael LMS, Gerber A, Bonaldo MC, Butler-Browne G, Mouly V, Cotta-de-Almeida V, Savino W, Ribeiro de Vasconcelos AT. Zika virus disrupts gene expression in human myoblasts and myotubes: Relationship with susceptibility to infection. PLoS Negl Trop Dis 2022; 16:e0010166. [PMID: 35171909 PMCID: PMC8923442 DOI: 10.1371/journal.pntd.0010166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/15/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection.
Collapse
Affiliation(s)
- Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, England, United Kingdom
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, England, United Kingdom
| | | | - Mariela Natacha González
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Otavio Brustolini
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Cássia Rocha
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Guilherme Loss
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Joseane Biso de Carvalho
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Mariane Talon Menezes
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lidiane Menezes Souza Raphael
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alexandra Gerber
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Myrna Cristina Bonaldo
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Rasmussen M, Jin JP. Troponin Variants as Markers of Skeletal Muscle Health and Diseases. Front Physiol 2021; 12:747214. [PMID: 34733179 PMCID: PMC8559874 DOI: 10.3389/fphys.2021.747214] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Ca2 +-regulated contractility is a key determinant of the quality of muscles. The sarcomeric myofilament proteins are essential players in the contraction of striated muscles. The troponin complex in the actin thin filaments plays a central role in the Ca2+-regulation of muscle contraction and relaxation. Among the three subunits of troponin, the Ca2+-binding subunit troponin C (TnC) is a member of the calmodulin super family whereas troponin I (TnI, the inhibitory subunit) and troponin T (TnT, the tropomyosin-binding and thin filament anchoring subunit) are striated muscle-specific regulatory proteins. Muscle type-specific isoforms of troponin subunits are expressed in fast and slow twitch fibers and are regulated during development and aging, and in adaptation to exercise or disuse. TnT also evolved with various alternative splice forms as an added capacity of muscle functional diversity. Mutations of troponin subunits cause myopathies. Owing to their physiological and pathological importance, troponin variants can be used as specific markers to define muscle quality. In this focused review, we will explore the use of troponin variants as markers for the fiber contents, developmental and differentiation states, contractile functions, and physiological or pathophysiological adaptations of skeletal muscle. As protein structure defines function, profile of troponin variants illustrates how changes at the myofilament level confer functional qualities at the fiber level. Moreover, understanding of the role of troponin modifications and mutants in determining muscle contractility in age-related decline of muscle function and in myopathies informs an approach to improve human health.
Collapse
Affiliation(s)
- Monica Rasmussen
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
9
|
Oda S, Yokoi T. Recent progress in the use of microRNAs as biomarkers for drug-induced toxicities in contrast to traditional biomarkers: A comparative review. Drug Metab Pharmacokinet 2021; 37:100372. [PMID: 33461055 DOI: 10.1016/j.dmpk.2020.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/09/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNAs with 18-25 nucleotides. They play key regulatory roles in versatile biological process including development and apoptosis, and in disease pathogenesis, for example carcinogenesis, by negatively regulating gene expression. miRNAs often exhibit characteristics suitable for biomarkers such as tissue-specific expression patterns, high stability in serum/plasma, and change in abundance in circulation immediately after toxic injury. Since the discovery of circulating miRNAs in extracellular biological fluids in 2008, there have been many reports on the use of miRNAs as biomarkers for various diseases including cancer and organ injury in humans and experimental animals. In this review article, we have summarized the utility and limitation of circulating miRNAs as safety/toxicology biomarkers for specific tissue injuries including liver, skeletal muscle, heart, retina, and pancreas, by comparing them with conventional protein biomarkers. We have also covered the discovery of miRNAs in serum/plasma and their stability, the knowledge of which is essential for understanding the kinetics of miRNA biomarkers. Since numerous studies have reported the use of these circulating miRNAs as safety biomarkers with high sensitivity and specificity, we believe that circulating miRNAs can promote pre-clinical drug development and improve the monitoring of tissue injuries in clinical pharmacotherapy.
Collapse
Affiliation(s)
- Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
10
|
Albooshoke SN, Bakhtiarizadeh MR. Divergent gene expression through PI3K/akt signalling pathway cause different models of hypertrophy growth in chicken. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1634498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- S. N. Albooshoke
- Department of Animal Science, Khuzestan Agricultural and Natural Resources, Research and Education Center, AREEO, Ahwaz, Iran
| | - M. R. Bakhtiarizadeh
- Department of Animal Science, College of Aburaihan, Iran University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Ji GG, Shu JT, Zhang M, Ju XJ, Shan YJ, Liu YF, Tu YJ. Transcriptional regulatory region and DNA methylation analysis of TNNI1 gene promoters in Gaoyou duck skeletal muscle ( Anas platyrhynchos domestica). Br Poult Sci 2019; 60:202-208. [PMID: 30968708 DOI: 10.1080/00071668.2019.1602250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. The slow skeletal muscle troponin I (TNNI1) gene has been found to be specifically expressed in slow muscle fibres and plays an important role in muscle development. The aim of this study was to determine the active control area of duck TNNI1 and identify the potential cis-regulatory elements in the promoter. 2. In this study, the TNNI1 promoter was first cloned by genome walking and the sequences were analysed using bioinformatics software. Firefly luciferase reporter gene vectors, driven by a series of constructs with progressive deletions, were used to identify the core transcriptional regulatory region of the duck TNNI1 gene. The methylation status of the CpG island in the TNNI1 promoter was detected in skeletal muscle on embryonic days 21 and 27, by bisulphite sequencing PCR (BSP). 3. The results showed two CpG islands presented in the promoter region, with one of the CpG islands located in the core transcriptional regulatory region (-2078/-885 bp). The total methylation levels of the 14 CpG sites were not altered between breast and leg muscles on embryonic days 21 and 27. However, four CpG sites (loci of positions 4, 11, 13, and 14) showed dramatically different methylation levels between breast and leg muscles at embryonic days 21 and 27. Analysis showed that multiple CpG sites had a significant correlation between the methylation levels of the CpG sites and mRNA expressions in skeletal muscle. Multiple transcription factor binding sites including Sp1, c-Myc, Oct-1 and NF-kB motifs were identified and might be responsible for transcriptional regulation of the TNNI1 gene. 4. These findings contribute to further understanding of the fundamental mechanism for transcriptional regulation of the TNNI1 gene in ducks.
Collapse
Affiliation(s)
- G-G Ji
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - J-T Shu
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - M Zhang
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - X-J Ju
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - Y-J Shan
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - Y-F Liu
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| | - Y-J Tu
- a Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province , Chinese Academy of Agricultural Science, Institute of Poultry Science , Yangzhou , China
| |
Collapse
|
12
|
Shu J, Ji G, Zhang M, Tu Y, Shan Y, Liu Y, Ju X, Zhang D. Molecular Cloning, Characterization, and Temporal Expression Profile of Troponin I Type 1 (TNNI1) Gene in Skeletal Muscle During Early Development of Gaoyou Duck (Anas Platyrhynchos Domestica). Anim Biotechnol 2018; 30:118-128. [DOI: 10.1080/10495398.2018.1444620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Jingting Shu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Gaige Ji
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Ming Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Yunjie Tu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Yanju Shan
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Yifan Liu
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Xiaojun Ju
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| | - Di Zhang
- Key Laboratory for Poultry Genetics and Breeding of Jiangsu Province, Chinese Academy of Agricultural Science, Institute of Poultry Science, Yangzhou, China
| |
Collapse
|
13
|
Zhu C, Song W, Tao Z, Liu H, Xu W, Zhang S, Li H. Deep RNA sequencing of pectoralis muscle transcriptomes during late-term embryonic to neonatal development in indigenous Chinese duck breeds. PLoS One 2017; 12:e0180403. [PMID: 28771592 PMCID: PMC5542427 DOI: 10.1371/journal.pone.0180403] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/15/2017] [Indexed: 12/14/2022] Open
Abstract
Pectoral muscle (PM) comprises an important component of overall meat mass in ducks. However, PM has shown arrested or even reduced growth during late embryonic development, and the molecular mechanisms underlying PM growth during the late embryonic to neonatal period in ducks have not been addressed. In this study, we characterized potential candidate genes and signaling pathways related to PM development using RNA sequencing of PM samples selected at embryonic days (E) 21 and 27 and 5 days post-hatch (dph) in two duck breeds (Gaoyou and Jinding ducks). A total of 393 differentially expressed genes (DEGs) were identified, which showed higher or lower expression levels at E27 compared with E21 and 5 dph, reflecting the pattern of PM growth rates. Among these, 43 DEGs were common to all three time points in both duck breeds. These DEGs may thus be involved in regulating this developmental process. Specifically, KEGG pathway analysis of the 393 DEGs showed that genes involved with different metabolism pathways were highly expressed, while genes involved with cell cycle pathways showed lower expression levels at E27. These DEGs may thus be involved in the mechanisms responsible for the phenomenon of static or decreased breast muscle growth in duck breeds during the late embryonic period. These results increase the available genetic information for ducks and provide valuable resources for analyzing the mechanisms underlying the process of PM development.
Collapse
Affiliation(s)
- Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Weitao Song
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Zhiyun Tao
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Hongxiang Liu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Wenjuan Xu
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Shuangjie Zhang
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
| | - Huifang Li
- Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu Province, People’s Republic of China
- * E-mail: ,
| |
Collapse
|
14
|
Lin Z, Lin Y. Identification of potential crucial genes associated with steroid-induced necrosis of femoral head based on gene expression profile. Gene 2017; 627:322-326. [PMID: 28501630 DOI: 10.1016/j.gene.2017.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/09/2017] [Indexed: 12/30/2022]
Abstract
The aim of this study was to explore potential crucial genes associated with the steroid-induced necrosis of femoral head (SINFH) and to provide valid biological information for further investigation of SINFH. Gene expression profile of GSE26316, generated from 3 SINFH rat samples and 3 normal rat samples were downloaded from Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) were identified using LIMMA package. After functional enrichment analyses of DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted based on the STRING database and cytoscape. In total, 59 up-regulated DEGs and 156 downregulated DEGs were identified. The up-regulated DEGs were mainly involved in functions about immunity (e.g. Fcer1A and Il7R), and the downregulated DEGs were mainly enriched in muscle system process (e.g. Tnni2, Mylpf and Myl1). The PPI network of DEGs consisted of 123 nodes and 300 interactions. Tnni2, Mylpf, and Myl1 were the top 3 outstanding genes based on both subgraph centrality and degree centrality evaluation. These three genes interacted with each other in the network. Furthermore, the significant network module was composed of 22 downregulated genes (e.g. Tnni2, Mylpf and Myl1). These genes were mainly enriched in functions like muscle system process. The DEGs related to the regulation of immune system process (e.g. Fcer1A and Il7R), and DEGs correlated with muscle system process (e.g. Tnni2, Mylpf and Myl1) may be closely associated with the progress of SINFH, which is still needed to be confirmed by experiments.
Collapse
Affiliation(s)
- Zhe Lin
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050051, PR China.
| | - Yongsheng Lin
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province 050051, PR China.
| |
Collapse
|
15
|
Koistinen V, Härkönen K, Kärnä R, Arasu UT, Oikari S, Rilla K. EMT induced by EGF and wounding activates hyaluronan synthesis machinery and EV shedding in rat primary mesothelial cells. Matrix Biol 2016; 63:38-54. [PMID: 28043889 DOI: 10.1016/j.matbio.2016.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/10/2016] [Indexed: 12/20/2022]
Abstract
The mesothelium is a membrane that forms the lining of several body cavities. It is composed of simple squamous mesothelial cells that secrete a glycosaminoglycan-rich lubricating fluid between inner organs. One of the most abundant glycosaminoglycans of those fluids is hyaluronan, which is synthesized on a plasma membrane and especially on apical filopodia of cultured cells. Our recent study showed that similar hyaluronan-rich protrusions are found in mesothelial lining in vivo, which suggests that hyaluronan synthesis in plasma membrane protrusions is a general process. However, the mesothelial lining was negative for the hyaluronan receptor CD44 while in many previous studies cultured mesothelial cells have been shown to express CD44. To further explore these findings we induced epithelial to mesenchymal transition in primary rat mesothelial cells by EGF-treatment and scratch wounding. Surprisingly, the results showed that at a normal epithelial, confluent stage the mesothelial cells are negative for CD44, but EMT induced by EGF or wounding activates CD44 expression and the whole hyaluronan synthesis machinery. In addition to typical EMT-like morphological changes, the growth of apical filopodia and budding of extracellular vesicles (EVs) were induced. In summary, the results of this study show that the activation of hyaluronan synthesis machinery, especially the expression of CD44 is strongly associated with EMT induced by EGF and wounding in mesothelial cells. Moreover, EMT enhances the secretion of EVs that carry CD44 and hyaluronan, which may be important regulators in EV interactions with their targets and ECM remodeling. The results of the present study also suggest that CD44 is a potential marker for EVs, especially those secreted from cells during tissue repair and pathological processes.
Collapse
Affiliation(s)
- Ville Koistinen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland.
| | - Kai Härkönen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Riikka Kärnä
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Uma Thanigai Arasu
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Sanna Oikari
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| |
Collapse
|
16
|
Hyaluronan-positive plasma membrane protrusions exist on mesothelial cells in vivo. Histochem Cell Biol 2016; 145:531-44. [DOI: 10.1007/s00418-016-1405-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2016] [Indexed: 11/27/2022]
|
17
|
Burch PM, Greg Hall D, Walker EG, Bracken W, Giovanelli R, Goldstein R, Higgs RE, King NMP, Lane P, Sauer JM, Michna L, Muniappa N, Pritt ML, Vlasakova K, Watson DE, Wescott D, Zabka TS, Glaab WE. Evaluation of the Relative Performance of Drug-Induced Skeletal Muscle Injury Biomarkers in Rats. Toxicol Sci 2015; 150:247-56. [DOI: 10.1093/toxsci/kfv328] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genomics 2015; 16:399. [PMID: 25994290 PMCID: PMC4438523 DOI: 10.1186/s12864-015-1623-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 05/06/2015] [Indexed: 01/22/2023] Open
Abstract
Background Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably “hard” or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as “Wooden Breast”, through the use of RNA-sequencing technology. Methods We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Results Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested “Diseases and Disorders” such as connective tissue disorders, “Molecular and Cellular Functions” such as cellular assembly and organization, cellular function and maintenance, and cellular movement, “Physiological System Development and Function” such as tissue development, and embryonic development, and “Top Canonical Pathways” such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. Conclusions There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1623-0) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
RNA sequencing reveals a slow to fast muscle fiber type transition after olanzapine infusion in rats. PLoS One 2015; 10:e0123966. [PMID: 25893406 PMCID: PMC4404103 DOI: 10.1371/journal.pone.0123966] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Second generation antipsychotics (SGAs), like olanzapine, exhibit acute metabolic side effects leading to metabolic inflexibility, hyperglycemia, adiposity and diabetes. Understanding how SGAs affect the skeletal muscle transcriptome could elucidate approaches for mitigating these side effects. Male Sprague-Dawley rats were infused intravenously with vehicle or olanzapine for 24h using a dose leading to a mild hyperglycemia. RNA-Seq was performed on gastrocnemius muscle, followed by alignment of the data with the Rat Genome Assembly 5.0. Olanzapine altered expression of 1347 out of 26407 genes. Genes encoding skeletal muscle fiber-type specific sarcomeric, ion channel, glycolytic, O2- and Ca2+-handling, TCA cycle, vascularization and lipid oxidation proteins and pathways, along with NADH shuttles and LDH isoforms were affected. Bioinformatics analyses indicate that olanzapine decreased the expression of slower and more oxidative fiber type genes (e.g., type 1), while up regulating those for the most glycolytic and least metabolically flexible, fast twitch fiber type, IIb. Protein turnover genes, necessary to bring about transition, were also up regulated. Potential upstream regulators were also identified. Olanzapine appears to be rapidly affecting the muscle transcriptome to bring about a change to a fast-glycolytic fiber type. Such fiber types are more susceptible than slow muscle to atrophy, and such transitions are observed in chronic metabolic diseases. Thus these effects could contribute to the altered body composition and metabolic disease olanzapine causes. A potential interventional strategy is implicated because aerobic exercise, in contrast to resistance exercise, can oppose such slow to fast fiber transitions.
Collapse
|
20
|
Ma X, Zheng C, Hu Y, Wang L, Yang X, Jiang Z. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs. PLoS One 2015; 10:e0117294. [PMID: 25635834 PMCID: PMC4311982 DOI: 10.1371/journal.pone.0117294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/30/2014] [Indexed: 01/07/2023] Open
Abstract
Forty-eight Duroc x Landrace x Large White gilts were used to determine the relationship between proteome changes of longissimus muscle and intramuscular fat (IMF) content in arginine-supplemented pigs. Beginning at 60 kg BW, pigs were fed a corn- and soybean meal-based diet supplemented or not with 1% L-arginine until they reached a BW of 100 kg. Supplementation with 1% L-arginine did not affect the growth performance or carcass traits, while it increased IMF content by 32% (P < 0.01), it also decreased the drip loss at 48 h post-mortem and the b* meat color value at 24 h post-mortem; supplementation with 1% dietary L-arginine did not change the proportion of SFA and MUFA in muscle lipids. The proteome changes in longissimus muscle between the control and supplemented pigs showed that L-arginine significantly influenced the abundance of proteins related to energy metabolism, fiber type and structure. The increase in IMF content was positively correlated with the increased abundance of slow twitch troponin I (TNNI1) protein and negatively correlated with myosin heavy chain IIb (MyHC IIb) protein content. It is suggested that the proteome changes in longissimus muscle contributed to the greater IMF content in L-arginine supplemented pigs.
Collapse
Affiliation(s)
- Xianyong Ma
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Chuntian Zheng
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Youjun Hu
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Li Wang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xuefen Yang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zongyong Jiang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- * E-mail:
| |
Collapse
|
21
|
Temporal expression of TnI fast and slow isoforms in biceps femoris and masseter muscle during pig growth. Animal 2012; 4:1541-6. [PMID: 22444701 DOI: 10.1017/s1751731110000649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biceps femoris (BF) and masseter muscle (MM) are the mixture of slow oxidative and fast-twitch fibres. Compared with MM, BF had the significantly higher expression of myosin heavy chain (MyHC) fast IIx and IIb isoforms (MyHCIIx and MyHCIIb), but lower expression of MyHC slow isoform (MyHCI) and fast IIa isoform (MyHCIIa). The objective of this study was to investigate the expression pattern of troponin I (TnI) slow-twitch isoform (TNNI1) and fast-twitch isoform (TNNI2) in BF and MM of Yorkshire and Meishan pigs which differed significantly in the growth rate. The expression of the TNNI1 and TNNI2 peaked at the postnatal 35 days in Yorkshire pigs and postnatal 60 days in Meishan pigs. The expression of TNNI1 and TNNI2 in Meishan pigs was significantly higher than that in Yorkshire pigs at the foetal 60 days, while the opposite occurred at postnatal 35 days. The expression ratio of TNNI1 relative to TNNI2 favoured TNNI2 expression in BF and MM regardless of Yorkshire and Meishan pigs. TNNI1 expression in MM was significantly higher than that in BF at 60, 120 and 180 days in Meishan pigs and at 120 and 180 days in Yorkshire pigs. On the contrary, no significant difference of TNNI2 expression in BF and MM was found except for Yorkshire pigs of 180 days. This study provided the foundation for future research on TnI isoforms as the model gene to study mechanisms of muscle fibre-specific gene regulation in pigs.
Collapse
|
22
|
Kwon AT, Chou AY, Arenillas DJ, Wasserman WW. Validation of skeletal muscle cis-regulatory module predictions reveals nucleotide composition bias in functional enhancers. PLoS Comput Biol 2011; 7:e1002256. [PMID: 22144875 PMCID: PMC3228787 DOI: 10.1371/journal.pcbi.1002256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 09/16/2011] [Indexed: 11/19/2022] Open
Abstract
We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. For efficient identification of genomic sequences responsible for regulating gene expression, a number of computer programs have been developed for automatic annotation of these regulatory regions. We searched for potential regulatory regions responsible for controlling the expression of skeletal muscle-specific genes using these programs, and validated the predictions in a popular cell culture model for muscle. We were able to identify 19 previously uncharacterized regulatory regions for muscle genes. The accuracy of the predictions made by these programs leaves much to be desired, leading us to conclude that other signals in addition to the sequence information will be required to achieve sufficient predictive power for genome annotation. Genomic regions with confirmed regulatory function were compared against non-functional sequences, revealing sequence conservation, composition and chromatin modification properties as important signals in determining regulatory region functionality.
Collapse
Affiliation(s)
- Andrew T. Kwon
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Yi Chou
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J. Arenillas
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Genetics Graduate Program, and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
23
|
Yang H, Xu ZY, Lei MG, Li FE, Deng CY, Xiong YZ, Zuo B. Real-time reverse transcription-PCR expression profiling of porcine troponin I family in three different types of muscles during development. Mol Biol Rep 2010; 38:827-32. [PMID: 20376701 DOI: 10.1007/s11033-010-0172-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/31/2010] [Indexed: 11/27/2022]
Abstract
In this study, the expression profiling of three troponin I isoforms (TNNI1, TNNI2 and TNNI3) was investigated in two pig breeds differing in muscularity (Yorkshire and Meishan) at six stages (fetal 60 days and postnatal 3, 35, 60, 120, and 180 days) and three types of muscles (longissimus dorsi muscle, LD; semitendinosus, ST; cardiac muscle, CM) using relative real-time quantitative PCR. Significant differences of troponin I expression in three muscles were found between Yorkshire and Meishan breeds at some stages. The expression peak of TNNI1 and TNNI2 in LD and ST was at postnatal 35 or 60 days in Yorkshire and at postnatal 120 or 180 days in Meishan pigs, while it occurred in CM at postnatal 3 days in two pig breeds. The relative expression values of TNNI1 and TNNI2 were significantly higher in LD than ST at most of stages after birth. The expression ratio of TNNI2 versus TNNI1 favoured TNNI2 expression in ST and LD, but on the contrary in CM. The expression peak of TNNI3 occurred at postnatal 60 and 120 days in Yorkshire and Meishan pigs, respectively. TNNI1 and TNNI3 were co-expressed in CM during the fetal and earlier stages after birth.
Collapse
Affiliation(s)
- H Yang
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Yang H, Xu ZY, Lei MG, Li FE, Deng CY, Xiong YZ, Zuo B. Association of 3 polymorphisms in porcine troponin I genes (TNNI1 andTNNI2) with meat quality traits. J Appl Genet 2010; 51:51-7. [DOI: 10.1007/bf03195710] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Xu ZY, Yang H, Xiong YZ, Deng CY, Li FE, Lei MG, Zuo B. Identification of three novel SNPs and association with carcass traits in porcine TNNI1 and TNNI2. Mol Biol Rep 2010; 37:3609-13. [PMID: 20182806 DOI: 10.1007/s11033-010-0010-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
In this study, two novel SNPs (EU743939:g.5174T>C in intron 4 and EU743939:g.8350C>A in intron 7) in TNNI1 and one SNP (EU696779:g.1167C>T in intron 3) in TNNI2 were identified by PCR-RFLP (PCR restriction fragment length polymorphism) using XbaI, MspI and SmaI restriction enzyme, respectively. The allele frequencies of three novel SNPs were determined in the genetically diverse pig breeds including ten Chinese indigenous pigs and three Western commercial pig breeds. Association analysis of the SNPs with the carcass traits were conducted in a Large White × Meishan F(2) pig population. The linkage of two SNPs (g.5174T>C and g.8350C>A) in TNNI1 gene had significant effect on fat percentage. Besides these, the g.5174T>C polymorphism was also significantly associated with skin percentage (P < 0.05), shoulder fat thickness (P < 0.05) and backfat thickness between sixth and seventh ribs (P < 0.05). The significant effects of g.1167C>T polymorphism in TNNI2 gene on fat percentage (P < 0.01), lean meat percentage (P < 0.05), lion eye area (P < 0.05), thorax-waist backfat thickness (P < 0.01) and average backfat thickness (P < 0.05) were also found.
Collapse
Affiliation(s)
- Z Y Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Yang H, Xu Z, Ma Z, Xiong Y, Deng C, Zuo B. Molecular cloning and comparative characterization of the porcine troponin I family. Anim Biotechnol 2010; 21:64-76. [PMID: 20024788 DOI: 10.1080/10495390903385983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Troponin I (TnI) is a family of three muscle-specific myofibrillar proteins involved in calcium-sensitive regulation of contraction in cardiac and skeletal muscle. In this study, the full-length cDNA and genomic sequence of three genes of porcine TnI family were cloned and sequenced. The full-length cDNA of TNNI1, TNNI2, and TNNI3 genes were 989 bp, 734 bp, and 831 bp in length, which contained an open reading frame of 564, 549, and 636 nucleotides, respectively. Three Troponin I shared 54.4 approximately 58.3% similarity with each other in their predicted amino acid sequences. The TNNI1, TNNI2, and TNNI3 displayed the same genomic structure as other vertebrates and spanned over 9785 bp, 2373 bp, and 3648 bp genomic regions, respectively. The regulatory elements in the proximal promoter of TNNI2 and TNNI3 were conserved among human, mouse, and pig, but regulatory element differences existed in the TNNI1 promoter among them. Expression profiling showed that TnI genes were widely expressed in the tissues studied, with the highest expression level of TNNI1 and TNNI2 in skeletal muscle, and TNNI3 in cardiac muscle.
Collapse
Affiliation(s)
- Hua Yang
- Key Laboratory of Swine Genetic and Breeding, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
27
|
Jeyasingham MD, Artigues A, Nadeau OW, Carlson GM. Structural evidence for co-evolution of the regulation of contraction and energy production in skeletal muscle. J Mol Biol 2008; 377:623-9. [PMID: 18281058 PMCID: PMC2293304 DOI: 10.1016/j.jmb.2007.12.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 12/21/2007] [Indexed: 11/18/2022]
Abstract
Skeletal muscle phosphorylase kinase (PhK) is a Ca(2+)-dependent enzyme complex, (alpha beta gamma delta)(4), with the delta subunit being tightly bound endogenous calmodulin (CaM). The Ca(2+)-dependent activation of glycogen phosphorylase by PhK couples muscle contraction with glycogen breakdown in the "excitation-contraction-energy production triad." Although the Ca(2+)-dependent protein-protein interactions among the relevant contractile components of muscle are well characterized, such interactions have not been previously examined in the intact PhK complex. Here we show that zero-length cross-linking of the PhK complex produces a covalent dimer of its catalytic gamma and CaM subunits. Utilizing mass spectrometry, we determined the residues cross-linked to be in an EF hand of CaM and in a region of the gamma subunit sharing high sequence similarity with the Ca(2+)-sensitive molecular switch of troponin I that is known to bind actin and troponin C, a homolog of CaM. Our findings represent an unusual binding of CaM to a target protein and supply an explanation for the low Ca(2+) stoichiometry of PhK that has been reported. They also provide direct structural evidence supporting co-evolution of the coordinate regulation by Ca(2+) of contraction and energy production in muscle through the sharing of a common structural motif in troponin I and the catalytic subunit of PhK for their respective interactions with the homologous Ca(2+)-binding proteins troponin C and CaM.
Collapse
Affiliation(s)
- Marina D. Jeyasingham
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160
| | - Antonio Artigues
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160
| | - Owen W. Nadeau
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160
| | - Gerald M. Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160
| |
Collapse
|
28
|
Zhao B, Koon D, Curtis AL, Soper J, Bethin KE. Identification of 9 uterine genes that are regulated during mouse pregnancy and exhibit abnormal levels in the cyclooxygenase-1 knockout mouse. Reprod Biol Endocrinol 2007; 5:28. [PMID: 17617897 PMCID: PMC1941732 DOI: 10.1186/1477-7827-5-28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 07/06/2007] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Preterm birth is the leading cause of all infant mortality. In 2004, 12.5% of all births were preterm. In order to understand preterm labor, we must first understand normal labor. Since many of the myometrial changes that occur during pregnancy are similar in mice and humans and mouse gestation is short, we have studied the uterine genes that change in the mouse during pregnancy. Here, we used microarray analysis to identify uterine genes in the gravid mouse that are differentially regulated in the cyclooxygenase-1 knockout mouse model of delayed parturition. METHODS Gestational d18.0 uteri (n = 4) were collected from pregnant wild-type and cyclooxygenase-1 knockout mice. Part of the uterus was used for frozen sections and RNA was isolated from the remainder. Microarray analysis was performed at the Indiana University School of Medicine Genomic Core and analyzed using the Microarray Data Portal. Northern analysis was performed to confirm microarray data and the genes localized in the gravid uterus by in situ hybridization. RESULTS We identified 277 genes that are abnormally expressed in the gravid d18.0 cyclooxygenase-1 knockout mouse. Nine of these genes are also regulated in the normal murine uterus during the last half of gestation. Many of these genes are involved in the immune response, consistent with an important role of the immune system in parturition. Expression of 4 of these genes; arginase I, IgJ, Tnfrsf9 and troponin; was confirmed by Northern analysis to be mis-regulated during pregnancy in the knockout mouse. In situ hybridization of these genes demonstrated a similar location in the gravid wild-type and Cox-1 knockout mouse uteri. CONCLUSION To our knowledge, this is the first work to demonstrate the uterine location of these 4 genes in the mouse during late pregnancy. There are several putative transcription factor binding sites that are shared by many of the 9 genes identified here including; estrogen and progesterone response elements and Ets binding sites. In summary, this work identifies 9 uterine murine genes that may play a role in parturition. The function of these genes is consistent with an important role of the immune system in parturition.
Collapse
Affiliation(s)
- Baohui Zhao
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Deanna Koon
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Allyson L Curtis
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Jessica Soper
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Kathleen E Bethin
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Riley Hospital for Children, Indianapolis, IN 46202, USA
| |
Collapse
|
29
|
Wang H, Hertlein E, Bakkar N, Sun H, Acharyya S, Wang J, Carathers M, Davuluri R, Guttridge DC. NF-kappaB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol Cell Biol 2007; 27:4374-87. [PMID: 17438126 PMCID: PMC1900043 DOI: 10.1128/mcb.02020-06] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 12/11/2006] [Accepted: 03/20/2007] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB signaling is implicated as an important regulator of skeletal muscle homeostasis, but the mechanisms by which this transcription factor contributes to muscle maturation and turnover remain unclear. To gain insight into these mechanisms, gene expression profiling was examined in C2C12 myoblasts devoid of NF-kappaB activity. Interestingly, even in proliferating myoblasts, the absence of NF-kappaB caused the pronounced induction of several myofibrillar genes, suggesting that NF-kappaB functions as a negative regulator of late-stage muscle differentiation. Although several myofibrillar promoters contain predicted NF-kappaB binding sites, functional analysis using the troponin-I2 gene as a model revealed that NF-kappaB-mediated repression does not occur through direct DNA binding. In the search for an indirect mediator, the transcriptional repressor YinYang1 (YY1) was identified. While inducers of NF-kappaB stimulated YY1 expression in multiple cell types, genetic ablation of the RelA/p65 subunit of NF-kappaB in both cultured cells and adult skeletal muscle correlated with reduced YY1 transcripts and protein. NF-kappaB regulation of YY1 occurred at the transcriptional level, mediated by direct binding of the p50/p65 heterodimer complex to the YY1 promoter. Furthermore, YY1 was found associated with multiple myofibrillar promoters in C2C12 myoblasts containing NF-kappaB activity. Based on these results, we propose that NF-kappaB regulation of YY1 and transcriptional silencing of myofibrillar genes represent a new mechanism by which NF-kappaB functions in myoblasts to modulate skeletal muscle differentiation.
Collapse
Affiliation(s)
- Huating Wang
- Human Cancer Genetics Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fu J, Menzies K, Freeman RS, Taubman MB. EGLN3 Prolyl Hydroxylase Regulates Skeletal Muscle Differentiation and Myogenin Protein Stability. J Biol Chem 2007; 282:12410-8. [PMID: 17344222 DOI: 10.1074/jbc.m608748200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EGLN3, a member of the EGLN family of prolyl hydroxylases, has been shown to catalyze hydroxylation of the alpha subunit of hypoxia-inducible factor-alpha, which targets hypoxia-inducible factor-alpha for ubiquitination by a ubiquitin ligase complex containing the von Hippel-Lindau (VHL) tumor suppressor. We now report that EGLN3 levels increase during C2C12 skeletal myoblast differentiation. EGLN3 small interference RNAs and EGLN3 antisense oligonucleotides blocked C2C12 differentiation and decreased levels of myogenin, a member of the MyoD family of myogenic regulatory factors, which plays a critical role in myogenic differentiation. We also report that EGLN3 interacts with and stabilizes myogenin protein, whereas VHL associates with and destabilizes myogenin via the ubiquitin-proteasome system. The effect of VHL on myogenin stability and ubiquitination can be reversed, at least in part, by overexpression of EGLN3, suggesting that its binding to myogenin may prevent VHL-mediated degradation. These data demonstrate a novel role for EGLN3 in regulating skeletal muscle differentiation and gene expression. In addition, this report provides evidence for a novel pathway that regulates myogenin expression and skeletal muscle differentiation.
Collapse
Affiliation(s)
- Jian Fu
- Cardiovascular Research Institute and Department of Medicine, Univeristy of Rochester Medical Center, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
31
|
Drera B, Zoppi N, Barlati S, Colombi M. Recurrence of the p.R156X TNNI2 mutation in distal arthrogryposis type 2B. Clin Genet 2006; 70:532-4. [PMID: 17101001 DOI: 10.1111/j.1399-0004.2006.00713.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Comer JE, Galindo CL, Chopra AK, Peterson JW. GeneChip analyses of global transcriptional responses of murine macrophages to the lethal toxin of Bacillus anthracis. Infect Immun 2005; 73:1879-85. [PMID: 15731093 PMCID: PMC1064962 DOI: 10.1128/iai.73.3.1879-1885.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed GeneChip analyses on RNA from Bacillus anthracis lethal toxin (LeTx)-treated RAW 264.7 murine macrophages to investigate global effects of anthrax toxin on host cell gene expression. Stringent analysis of data revealed that the expression of several mitogen-activated protein kinase kinase-regulatory genes was affected within 1.5 h post-exposure to LeTx. By 3.0 h, the expression of 103 genes was altered, including those involved in intracellular signaling, energy production, and protein metabolism.
Collapse
Affiliation(s)
- Jason E Comer
- Department of Microbiology and Immunology, Medical Research Building, 301 University Blvd., Galveston, TX 77555-1070, USA
| | | | | | | |
Collapse
|
33
|
Deng X, Ewton DZ, Pawlikowski B, Maimone M, Friedman E. Mirk/dyrk1B is a Rho-induced kinase active in skeletal muscle differentiation. J Biol Chem 2003; 278:41347-54. [PMID: 12902328 DOI: 10.1074/jbc.m306780200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The Rho family of small GTPases regulates numerous signaling pathways that control the organization of the cytoskeleton, transcription factor activity, and many aspects of the differentiation of skeletal myoblasts. We now demonstrate that the kinase Mirk (minibrain-related kinase)/dyrk1B is induced by members of the Rho-family in myoblasts and that Mirk is active in skeletal muscle differentiation. Mirk is an arginine-directed serine/threonine kinase which is expressed at elevated levels in skeletal muscle compared with other normal tissues. A Mirk promoter construct was activated when C2C12 myoblasts were switched from growth to differentiation medium and was also activated by the Rho family members RhoA, Cdc42, and to a lesser degree Rac1, but not by MyoD or Myf5. Mirk protein levels increased following transient expression of constitutively active Cdc42-QL, RhoA-QL, or Rac1-QL in C2C12 cells. High concentrations of serum mitogens down-regulated Mirk through activation of the Ras-MEK-Erk pathway. As a result, Mirk transcription was induced by the MEK1 inhibitor PD98059 and by the switch from growth to differentiation medium. Mirk was induced with similar kinetics to another Rho-induced differentiation gene, myogenin. Mirk protein levels increased 10-fold within 24-48 h after primary cultured muscle cells; C2C12 mouse myoblasts or L6 rat myoblasts were induced to differentiate. Thus Mirk was induced following the commitment stage of myogenesis. Stable overexpression of Mirk enabled myoblasts to fuse more rapidly when placed in differentiation medium. The function of Mirk in muscle differentiation was established by depletion of endogenous Mirk by small interfering RNA, which prevented myoblast fusion into myotubes and inhibited induction of markers of differentiation, including myogenin, fast twitch troponin T, and muscle myosin heavy chain. Other members of the dyrk/minibrain/HIPK family of kinases in lower organisms have been shown to regulate the transition from growth to differentiation, and Mirk is now shown to participate in skeletal muscle development.
Collapse
Affiliation(s)
- Xiaobing Deng
- Departments of Pathology and Cell & Developmental Biology, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | | | | | |
Collapse
|
34
|
Hall TE, Cole NJ, Johnston IA. Temperature and the expression of seven muscle-specific protein genes during embryogenesis in the Atlantic cod Gadus morhua L. J Exp Biol 2003; 206:3187-200. [PMID: 12909700 DOI: 10.1242/jeb.00535] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Seven cDNA clones coding for different muscle-specific proteins (MSPs) were isolated from the fast muscle tissue of Atlantic cod Gadus morhua L. In situ hybridization using cRNA probes was used to characterize the temporal and spatial patterns of gene expression with respect to somite stage in embryos incubated at 4 degrees C, 7 degrees C and 10 degrees C. MyoD transcripts were first observed in the presomitic mesoderm prior to somite formation, and in the lateral compartment of the forming somites. MyoD expression was not observed in the adaxial cells that give rise to the slow muscle layer, and expression was undetectable by in situ hybridization in the lateral somitic mesoderm after the 35-somite stage, during development of the final approximately 15 somites. RT-PCR analysis, however, confirmed the presence of low levels of the transcript during these later stages. A phylogenetic comparison of the deduced aminoacid sequences of the full-length MyoD cDNA clone and those from other teleosts, and inference from the in situ expression pattern suggested homology with a second paralogue (MyoD2) recently isolated from the gilthead seabream Sparus aurata. Following MyoD expression, alpha-actin was the first structural gene to be switched on at the 16-somite stage, followed by myosin heavy chain, troponin T, troponin I and muscle creatine kinase. The final mRNA in the series to be expressed was troponin C. All genes were switched on prior to myofibril assembly. The troponin C sequence was unusual in that it showed the greatest sequence identity with the rainbow trout Oncorhynchus mykiss cardiac/slow form, but was expressed in the fast myotomal muscle and not in the heart. In addition, the third TnC calcium binding site showed a lower level of sequence conservation than the rest of the sequence. No differences were seen in the timing of appearance or rate of posterior progression (relative to somite stage) of any MSP transcripts between embryos raised at the different temperatures. It was concluded that myofibrillar genes are activated asynchronously in a distinct temporal order prior to myofibrillar assembly and that this process was highly canalized over the temperature range studied.
Collapse
Affiliation(s)
- Thomas E Hall
- Gatty Marine Laboratory, School of Biology, University of St Andrews, Fife, KY16 8LB, UK.
| | | | | |
Collapse
|
35
|
Sung SS, Brassington AME, Grannatt K, Rutherford A, Whitby FG, Krakowiak PA, Jorde LB, Carey JC, Bamshad M. Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes. Am J Hum Genet 2003; 72:681-90. [PMID: 12592607 PMCID: PMC1180243 DOI: 10.1086/368294] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2002] [Accepted: 12/13/2002] [Indexed: 11/04/2022] Open
Abstract
The distal arthrogryposes (DAs) are a group of disorders characterized by multiple congenital contractures of the limbs. We previously mapped a locus for DA type 2B (DA2B), the most common of the DAs, to chromosome 11. We now report that DA2B is caused by mutations in TNNI2 that are predicted to disrupt the carboxy-terminal domain of an isoform of troponin I (TnI) specific to the troponin-tropomyosin (Tc-Tm) complex of fast-twitch myofibers. Because the DAs are genetically heterogeneous, we sought additional candidate genes by examining modifiers of mutant Drosophila isoforms of TnI. One of these modifiers, Tm2, encodes tropomyosin, another component of the Tc-Tm complex. A human homologue of Tm2, TPM2, encodes beta-tropomyosin and maps to the critical interval of DA type 1 (DA1). We discovered that DA1 is caused by substitution of a highly conserved amino acid residue in beta-tropomyosin. These findings suggest that DAs, in general, may be caused by mutations in genes encoding proteins of the contractile apparatus specific to fast-twitch myofibers. This provides a new opportunity to directly study the etiology and pathogenesis of multiple-congenital-contracture syndromes.
Collapse
Affiliation(s)
- Sandy S. Sung
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Anna-Marie E. Brassington
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Kathryn Grannatt
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Ann Rutherford
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Frank G. Whitby
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Patrycja A. Krakowiak
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Lynn B. Jorde
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| | - John C. Carey
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| | - Mike Bamshad
- Departments of Human Genetics, Biochemistry, and Pediatrics, University of Utah Health Sciences Center, and Shriners Hospitals for Children, Intermountain Unit, Salt Lake City; and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock
| |
Collapse
|