1
|
Kounlavong ES, Schauberger CW, Conklin JL, Jones HE. Systematic Review of Obstetric and Child Outcomes of Prenatal Exposure to Inhalants in the Context of a Use Disorder. J Addict Med 2025; 19:121-128. [PMID: 39514890 PMCID: PMC11903197 DOI: 10.1097/adm.0000000000001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Inhalants are often used for their psychoactive effects, producing feelings of euphoria. Inhalant and solvent use is a serious public health concern, yet little is known about their effects on perinatal, fetal, and child outcomes. The aim of our review is to evaluate the impact of inhalant use by pregnant people on maternal, fetal, neonatal, and early childhood outcomes. METHODS A systematic review was conducted on March 1, 2023, in 6 databases using relevant keywords. Bias assessment was performed using JBI Critical Appraisal Tools. Studies were included if they described a prenatal exposure to an inhalant; focused on maternal, fetal, neonatal, or early childhood outcomes; and were published as peer-reviewed reports in English. RESULTS The search yielded 1101 unique references with 22 studies meeting eligibility criteria and representing 205 pregnancies and 171 infants.The most common symptom of inhalant use reported in pregnant people was altered mentation, followed by renal tubular acidosis (RTA) reported with toluene use. Most common fetal outcomes included fetal growth restriction and preterm delivery (<37 weeks), while neonatal outcomes were withdrawal symptoms, such as jitteriness, trouble feeding, and dystonia. Child outcomes included developmental delays, including cognitive and speech impairments, and postnatal growth restriction, including microcephaly. CONCLUSION Perinatal, fetal, and child outcomes associated with inhalant use among pregnant individuals are largely based on case reports and series. Prospective studies are needed to better characterize these outcomes, reduce stigma, increase equitable access to treatment, and identify potential interventions to reduce use and potential harm.
Collapse
Affiliation(s)
| | | | - Jamie L. Conklin
- Health Sciences Library, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7585
| | - Hendree E Jones
- Horizons Division and Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27510 and Departments of Psychiatry and Behavioral Sciences and Obstetrics and Gynecology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224
| |
Collapse
|
2
|
Scala I, Brodosi L, Rovelli V, Noto D, Burlina A. Management of patients with phenylketonuria (PKU) under enzyme replacement therapy: An Italian model (expert opinion). Mol Genet Metab Rep 2024; 39:101065. [PMID: 38425869 PMCID: PMC10899016 DOI: 10.1016/j.ymgmr.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Phenylketonuria (PKU) is a metabolic disorder necessitating lifelong management to prevent severe neurological impairments. This paper synthesises clinical practices from Italian specialist centres to delineate a unified approach for administering pegvaliase, a novel enzyme replacement therapy for PKU. Methods Virtual meetings convened in September 2022, gathering a steering committee (SC) of experts from five Italian centres specialising in PKU. The SC reviewed, and discussed clinical practices, and formulated recommendations for pegvaliase treatment. Results The SC outlined a comprehensive treatment roadmap for PKU management with pegvaliase, emphasising the importance of multidisciplinary care teams, patient selection, pre-treatment evaluation, and education. Recommendations include initial hospital-based pegvaliase administration, regular monitoring of phenylalanine and tyrosine levels, dietary adjustments, and management of adverse events. A consensus was reached on the need for a digital database to manage treatment plans and enhance communication between healthcare professionals and patients. Conclusion The expert panel's consensus highlights the complexity of PKU management and the necessity for a coordinated, patient-centred approach. The recommendations aim to standardise care across Italian centres and provide a framework for integrating pegvaliase therapy into clinical practice, potentially informing international guidelines. Further research is warranted to evaluate the long-term impact of these practices on patient outcomes and quality of life.
Collapse
Affiliation(s)
- Iris Scala
- Clinical Genetics Unit, Department of Maternal and Child Health, “Federico II” University Hospital, Naples, Italy
| | - Lucia Brodosi
- Department of Medical and Surgical Sciences, “Alma Mater” University, Sant'Orsola-Malpighi Hospital, Bologna, Italy
- Clinical Nutrition and Metabolism Unit, IRCCS AOUBO, Bologna, Italy
| | - Valentina Rovelli
- Clinical Department of Pediatrics, University of Milan, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Davide Noto
- Department of Health Promotion, Maternal and Child Health, Internal and Specialized Medicine of Excellence "G. D. Alessandro" (PROMISE), University of Palermo, Italy
| | - Alberto Burlina
- Division of Inborn Metabolic Diseases, Department of Diagnostic Services, University Hospital of Padua, Padua, Italy
| |
Collapse
|
3
|
Calado AM, Seixas F, Pires MDA. Updating an Overview of Teratology. Methods Mol Biol 2024; 2753:1-38. [PMID: 38285332 DOI: 10.1007/978-1-0716-3625-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
In this chapter, the authors aim to update an overview of the principles of teratology, beginning with the definition of teratology, the critical point at which this process occurs, and some of the most common etiological agents that improve our understanding of teratology.Modern teratology has greatly improved in recent years with advances in new methods in molecular biology, toxicology, animal laboratory science, and genetics, increasing our knowledge of ambient influences. Nevertheless, there is a lot to do to reduce the influence of hazardous intervening agents, whether they target our genetics or not, that can negatively affect pregnancy and induce congenital development disorders, including morphological, biochemical, or behavioral defects.Certain agents might indeed be related to certain defects, but we have not been able to identify the cause of most congenital defects, which highlights the importance of finding and testing out new genetics techniques and conducting laboratory animal science to unravel the etiology and pathogenicity of each congenital defect.
Collapse
Affiliation(s)
- Ana Margarida Calado
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Fernanda Seixas
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
| | - Maria Dos Anjos Pires
- Animal and Veterinary Research Centre (CECAV), UTAD, and Associate Laboratory for Animal and Veterinary Science (AL4Animals), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
4
|
Rovelli V, Longo N. Phenylketonuria and the brain. Mol Genet Metab 2023; 139:107583. [PMID: 37105048 DOI: 10.1016/j.ymgme.2023.107583] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Classic phenylketonuria (PKU) is caused by defective activity of phenylalanine hydroxylase (PAH), the enzyme that coverts phenylalanine (Phe) to tyrosine. Toxic accumulation of phenylalanine and its metabolites, left untreated, affects brain development and function depending on the timing of exposure to elevated levels. The specific mechanisms of Phe-induced brain damage are not completely understood, but they correlate to phenylalanine levels and on the stage of brain growth. During fetal life, high levels of phenylalanine such as those seen in maternal PKU can result in microcephaly, neuronal loss and corpus callosum hypoplasia. Elevated phenylalanine levels during the first few years of life can cause acquired microcephaly, severe cognitive impairment and epilepsy, likely due to the impairment of synaptogenesis. During late childhood, elevated phenylalanine can cause alterations in neurological functioning, leading to ADHD, speech delay and mild IQ reduction. In adolescents and adults, executive function and mood are affected, with some of the abnormalities reversed by better control of phenylalanine levels. Altered brain myelination can be present at this stage. In this article, we review the current knowledge about the consequences of high phenylalanine levels in PKU patients and animal models through different stages of brain development and its effect on cognitive, behavioural and neuropsychological function.
Collapse
Affiliation(s)
- Valentina Rovelli
- Clinical Department of Pediatrics, University of Milan, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy.
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Malloul H, Bonzano S, Bennis M, De Marchis S, Ba-M'hamed S. Chronic thinner inhalation alters olfactory behaviors in adult mice. Behav Brain Res 2022; 417:113597. [PMID: 34563601 DOI: 10.1016/j.bbr.2021.113597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/17/2022]
Abstract
Volatile solvents exposure can result in various behavioral impairments that have been partly associated to altered adult hippocampal neurogenesis. Despite recent evidence supporting this association, few studies have been devoted to examine the impact on olfactory functioning and olfactory bulb (OB) neurogenesis, although olfactory system is directly in contact with volatile molecules. Thus, this study was designed to evaluate in adult mice the potential modifications of the olfactory functioning after acute (1 day), subchronic (6 weeks) and chronic (12 weeks) exposure to thinner vapor at both behavioral and cellular levels. Firstly, behavioral evaluations showed that chronic thinner exposure impacts on odor detection ability of treated mice but does not affect mice ability to efficiently discriminate between two different odors. Moreover, chronic thinner exposure produces impairment in the olfactory-mediated associative memory. Secondly, analysis of the effects of thinner exposure in the subventricular zone (SVZ) of the lateral ventricle and in the OB revealed that thinner treatments do not induce apoptosis nor glial activation. Thirdly, immunohistochemical quantification of different markers of adult olfactory neurogenesis showed that inhalant treatments do not change the number of proliferating progenitors in the SVZ and the rostral migratory stream (RMS), as well as the number of newborn cells reaching and integrating in the OB circuitry. Altogether, our data highlight that the impaired olfactory performances in chronically-exposed mice are not associated to an alteration of adult neurogenesis in the SVZ-OB system.
Collapse
Affiliation(s)
- Hanaa Malloul
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco; Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Sara Bonzano
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Mohammed Bennis
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco.
| | - Silvia De Marchis
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
| | - Saadia Ba-M'hamed
- Laboratory of Pharmacology, Neurobiology, Anthropobiology and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
6
|
Bolon B, Dostal LA, Garman RH. Neuropathology Evaluation in Juvenile Toxicity Studies in Rodents: Comparison of Developmental Neurotoxicity Studies for Chemicals With Juvenile Animal Studies for Pediatric Pharmaceuticals. Toxicol Pathol 2021; 49:1405-1415. [PMID: 34620000 DOI: 10.1177/01926233211045321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The developmental neuropathology examination in juvenile toxicity studies depends on the nature of the product candidate, its intended use, and the exposure scenario (eg, dose, duration, and route). Expectations for sampling, processing, and evaluating neural tissues differ for developmental neurotoxicity studies (DNTS) for chemicals and juvenile animal studies (JAS) for pediatric pharmaceuticals. Juvenile toxicity studies typically include macroscopic observations, brain weights, and light microscopic evaluation of routine hematoxylin and eosin (H&E)-stained sections from major neural tissues (brain, spinal cord, and sciatic nerve) as neuropathology endpoints. The DNTS is a focused evaluation of the nervous system, so the study design incorporates perfusion fixation, plastic embedding of at least one nerve, quantitative analysis of selected brain regions, and sometimes special neurohistological stains. In contrast, the JAS examines multiple systems, so neural tissues undergo conventional tissue processing (eg, immersion fixation, paraffin embedding, H&E staining only). An "expanded neurohistopathology" (or "expanded neuropathology") approach may be performed for JAS if warranted, typically by light microscopic evaluation of more neural tissues (usually additional sections of brain, ganglia, and/or more nerves) or/and special neurohistological stains, to investigate specific questions (eg, a more detailed exploration of a potential neuroactive effect) or to fulfill regulatory requests.
Collapse
|
7
|
A brief history of carbon monoxide and its therapeutic origins. Nitric Oxide 2021; 111-112:45-63. [PMID: 33838343 DOI: 10.1016/j.niox.2021.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/03/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
It is estimated that 10% of carbon throughout the cosmos is in the form of carbon monoxide (CO). Earth's earliest prebiotic atmosphere included the trinity of gasotransmitters CO, nitric oxide (NO), and hydrogen sulfide (H2S), for which all of life has co-evolved with. The history of CO can be loosely traced to mythological and prehistoric origins with rudimentary understanding emerging in the middle ages. Ancient literature is focused on CO's deadly toxicity which is understandable in the context of our primitive relationship with coal and fire. Scientific inquiry into CO appears to have emerged throughout the 1700s followed by chemical and toxicological profiling throughout the 1800s. Despite CO's ghastly reputation, several of the 18th and 19th century scientists suggested a therapeutic application of CO. Since 2000, the fundamental understanding of CO as a deadly nuisance has undergone a paradigm shift such that CO is now recognized as a neurotransmitter and viable pharmaceutical candidate. This review is intended to provide a brief history on the trace origins pertaining to endogenous formation and therapeutic application of CO.
Collapse
|
8
|
Lovely C, Rampersad M, Fernandes Y, Eberhart J. Gene-environment interactions in development and disease. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.247. [PMID: 27626243 PMCID: PMC5191946 DOI: 10.1002/wdev.247] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
Developmental geneticists continue to make substantial jumps in our understanding of the genetic pathways that regulate development. This understanding stems predominantly from analyses of genetically tractable model organisms developing in laboratory environments. This environment is vastly different from that in which human development occurs. As such, most causes of developmental defects in humans are thought to involve multifactorial gene-gene and gene-environment interactions. In this review, we discuss how gene-environment interactions with environmental teratogens may predispose embryos to structural malformations. We elaborate on the growing number of gene-ethanol interactions that might underlie susceptibility to fetal alcohol spectrum disorders. WIREs Dev Biol 2017, 6:e247. doi: 10.1002/wdev.247 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- C Lovely
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Mindy Rampersad
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yohaan Fernandes
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Johann Eberhart
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
9
|
Lead Intoxication Synergies of the Ethanol-Induced Toxic Responses in Neuronal Cells--PC12. Mol Neurobiol 2014; 52:1504-1520. [PMID: 25367877 DOI: 10.1007/s12035-014-8928-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/07/2014] [Indexed: 01/05/2023]
Abstract
Lead (Pb)-induced neurodegeneration and its link with widespread neurobehavioral changes are well documented. Experimental evidences suggest that ethanol could enhance the absorption of metals in the body, and alcohol consumption may increase the susceptibility to metal intoxication in the brain. However, the underlying mechanism of ethanol action in affecting metal toxicity in brain cells is poorly understood. Thus, an attempt was made to investigate the modulatory effect of ethanol on Pb intoxication in PC12 cells, a rat pheochromocytoma. Cells were co-exposed to biological safe doses of Pb (10 μM) and ethanol (200 mM), and data were compared to the response of cells which received independent exposure to these chemicals at similar doses. Ethanol (200 mM) exposure significantly aggravated the Pb-induced alterations in the end points associated with oxidative stress and apoptosis. The finding confirms the involvement of reactive oxygen species (ROS)-mediated oxidative stress, and impairment of mitochondrial membrane potential, which subsequently facilitate the translocation of triggering proteins between cytoplasm and mitochondria. We further confirmed the apoptotic changes due to induction of mitochondria-mediated caspase cascade. These cellular changes were found to recover significantly, if the cells are exposed to N-acetyl cysteine (NAC), a known antioxidant. Our data suggest that ethanol may potentiate Pb-induced cellular damage in brain cells, but such damaging effects could be recovered by inhibition of ROS generation. These results open up further possibilities for the design of new therapeutics based on antioxidants to prevent neurodegeneration and associated health problems.
Collapse
|
10
|
Chronic toluene exposure induces cell proliferation in the mice SVZ but not migration through the RMS. Neurosci Lett 2014; 575:101-6. [DOI: 10.1016/j.neulet.2014.05.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 12/24/2022]
|
11
|
Seagraves NJ, McBride KL. Cardiac teratogenicity in mouse maternal phenylketonuria: defining phenotype parameters and genetic background influences. Mol Genet Metab 2012; 107:650-8. [PMID: 22951387 PMCID: PMC3504168 DOI: 10.1016/j.ymgme.2012.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 12/23/2022]
Abstract
Maternal phenylketonuria (MPKU) is a syndrome including cardiovascular malformations (CVMs), microcephaly, intellectual impairment, and small size for gestational age, caused by in-utero exposure to elevated serum phenylalanine (Phe) due to PKU in the mother. It is becoming a public health concern as more women with PKU reach child bearing age. Although a mouse model of PKU, BTBR Pah(enu2), has been available for 20 years, it has not been well utilized for studying MPKU. We used this model to delineate critical parameters in Phe cardiovascular teratogenicity and study the effect of genetic background. Dosing and timing experiments were performed with the BTBR Pah(enu2) mouse. A dose response curve was noted, with CVM rates at maternal serum Phe levels <360 μM (control), 360-600 μM (low), 600-900 μM (mid), and >900 μM (high) of 11.86%, 16.67%, 30.86%, and 46.67% respectively. A variety of CVMs were noted on the BTBR background, including double outlet right ventricle (DORV), aortic arch artery (AAA) abnormalities, and ventricular septal defects (VSDs). Timed exposure experiments identified a teratogenic window from embryonic day 8.5-13.5, with higher rates of conotruncal and valve defects occurring in early exposure time and persistent truncus arteriosus (PTA) and aortic arch branching abnormalities occurring with late exposure. Compared to the BTBR strain, N10+ Pah(enu2) congenics on the C3H/HeJ background had higher rates of CVMs in general and propensity to left ventricular outflow tract (LVOT) malformations, while the C57B/L6 background had similar CVM rates but predominately AAA abnormalities. We have delineated key parameters of Phe cardiovascular teratogenicity, demonstrated the utility of this MPKU model on different mouse strains, and shown how genetic background profoundly affects the phenotype.
Collapse
Affiliation(s)
- Nikki J Seagraves
- Center for Molecular and Human Genetics, Nationwide Children's Hospital, USA
| | | |
Collapse
|
12
|
Abstract
Toluene is an organic solvent that is widely used by industry and is ubiquitous in our environment. As a result, exposure to solvents like toluene in work-related settings (i.e., relatively constant, low-level exposures) or through inhalant abuse (i.e., relatively intermittent, high-level exposures) is increasing for many women of reproductive age. Evidence suggests that the risk for pregnancy problems, as well as developmental delays and neurobehavioral difficulties, is higher for the children of women who have been exposed to high concentrations of organic solvents during pregnancy than for those who have not. These risks appear to be higher in cases of abuse exposure to solvents such as toluene, particularly in comparison to the risk for teratogenic outcomes with occupational solvent exposure. Despite this, the reproductive toxicology and teratology following abuse of toluene and other inhalants remains under-investigated. This brief review describes the current state of our understanding of the reproductive and teratogenic risk of gestational toluene abuse. The data to date suggest that the high levels of toluene exposure typical with inhalant abuse are more detrimental to fetal development than typical occupational exposure, and preclinical paradigms can be beneficial for investigating the processes and risks of prenatal solvent exposure. While substantial research has been done on the reproductive effects of occupational exposures to organic solvents, more research is needed on the outcomes and mechanisms of exposures typical of inhalant abuse.
Collapse
Affiliation(s)
- John H Hannigan
- Merrill Palmer Skillman Institute, Department of Obstetrics & Gynecology, C.S. Mott Center for Human Growth & Development, Wayne State University, Detroit, MI 48202, USA.
| | | |
Collapse
|
13
|
Pascual R, Aedo L, Meneses JC, Vergara D, Reyes A, Bustamante C. Solvent inhalation (toluene and n-hexane) during the brain growth spurt impairs the maturation of frontal, parietal and occipital cerebrocortical neurons in rats. Int J Dev Neurosci 2010; 28:491-5. [PMID: 20600790 DOI: 10.1016/j.ijdevneu.2010.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/30/2010] [Accepted: 06/14/2010] [Indexed: 11/28/2022] Open
Abstract
Solvent abuse during pregnancy may cause "fetal solvent syndrome", which is characterized by mild brain atrophy and associated with behavioral, cognitive, and emotional abnormalities. The present study investigated whether solvent inhalation during the preweaning period (P2-P21) alters the morphological maturation of frontal, parietal, and occipital cortical neurons. Twelve hours after delivery (postnatal day 0, P0), litters were cross-fostered, culled to 8 pups/dam and housed together with a dam in standard laboratory cages. Litters were randomly assigned to the "air-only" group (n=64, 8 litters) and to the "solvent-sniffer" group (n=72, 9 litters). During P2-P21, each animal was exposed daily to either organic solvent vapors (75% toluene and 18% n-hexane, a solvent mixture commonly found in glues and adhesives) or clean air. To determine the impact of early solvent inhalation on cortical neuronal differentiation, brains were stained using the Golgi-Cox-Sholl procedure to quantitatively assess neocortical pyramidal cell dendrogenesis. Preweaning, solvent-exposed animals displayed dramatic impairments in dendritic growth as well as significant reductions in brain weight and size.
Collapse
Affiliation(s)
- Rodrigo Pascual
- Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | | | | | | | | | | |
Collapse
|
14
|
Bowen SE, Hannigan JH, Cooper PB. Abuse pattern of gestational toluene exposure alters behavior in rats in a “waiting-for-reward” task. Neurotoxicol Teratol 2009; 31:89-97. [DOI: 10.1016/j.ntt.2008.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/07/2008] [Accepted: 11/07/2008] [Indexed: 11/27/2022]
|
15
|
Bowen SE, Irtenkauf S, Hannigan JH, Stefanski AL. Alterations in rat fetal morphology following abuse patterns of toluene exposure. Reprod Toxicol 2009; 27:161-9. [PMID: 19429395 DOI: 10.1016/j.reprotox.2009.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/28/2008] [Accepted: 01/09/2009] [Indexed: 11/17/2022]
Abstract
Toluene is a commonly abused organic solvent. Inhalant abusers are increasingly women in their prime childbearing years. Children born to mothers who abused solvents during pregnancy may exhibit characteristics of a "fetal solvent syndrome" which may include dysmorphic features. This study examined the teratological effects of an abuse pattern of binge toluene exposure during gestation on skeletal and soft tissue abnormalities, body weight, and body size in fetal rats. Pregnant Sprague-Dawley rats were exposed for 30 min, twice daily, from gestational day (GD) 8 through GD20 to either air (0 ppm), 8000 ppm, 12,000 ppm, or 16,000 ppm toluene. Two-thirds of each litter was prepared for skeletal examination using Alizarin Red S staining while the remaining third of each litter was fixed in Bouin's solution for Wilson's soft tissue evaluation. Exposure to toluene at all levels significantly reduced growth, including decreases in placental weight, fetal weight, and crown-rump length. In addition, numerous gross morphological anomalies were observed such as short or missing digits and missing limbs. Skeletal examination revealed that ossification of the extremities was significantly reduced as a result of toluene exposure at all levels. Specific skeletal defects included misshapen scapula, missing and supernumerary vertebrae and ribs, and fused digits. Soft tissue anomalies were also observed at all toluene levels and there was a dose-dependent increase in the number of anomalies which included cryptorchidism, displaced abdominal organs, gastromegaly, distended/hypoplastic bladder, and delayed cardiac development, among others. These results indicate that animals exposed prenatally to levels and patterns of toluene typical of inhalant abuse are at increased risk for skeletal and soft tissue abnormalities.
Collapse
Affiliation(s)
- Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| | | | | | | |
Collapse
|
16
|
Lin HM, Liu CY, Jow GM, Tang CY. Toluene disrupts synaptogenesis in cultured hippocampal neurons. Toxicol Lett 2009; 184:90-6. [DOI: 10.1016/j.toxlet.2008.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/22/2008] [Accepted: 10/26/2008] [Indexed: 10/21/2022]
|
17
|
Bowen SE, Hannigan JH, Irtenkauf S. Maternal and fetal blood and organ toluene levels in rats following acute and repeated binge inhalation exposure. Reprod Toxicol 2007; 24:343-52. [PMID: 17669620 PMCID: PMC2137922 DOI: 10.1016/j.reprotox.2007.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/25/2007] [Accepted: 06/11/2007] [Indexed: 11/19/2022]
Abstract
Inhalation of organic solvents is a persistent form of drug abuse with particular concern being the abuse of inhalants by women of child-bearing age. While studies have begun assessing postnatal outcomes of offspring exposed prenatally to inhalants, relatively little is known about the distribution of toluene in blood and body tissues of pregnant, inhalant-abusing women, or in the fetuses. The present study assessed the tissue toluene levels attained following brief toluene exposures using a pre-clinical rat model of maternal inhalant abuse. Timed-pregnant Sprague-Dawley rats were exposed to toluene at 8000 or 12,000 parts per million (ppm) for 15, 30 or 45 min/exposure. Exposures occurred twice each day from gestational day 8 (GD8) through GD20. Immediately following the second exposure on GD8, GD14 and GD20 blood was taken from the saphenous vein of the dams. Following saphenous vein blood collection on GD20, dams were sacrificed and trunk blood was collected along with maternal tissue specimens from cerebellum, heart, lung, kidney and liver. The placenta, amniotic fluid and fetal brain were also collected. Results demonstrated that maternal saphenous blood toluene levels increased as the inhaled concentration of toluene and duration of exposure increased. The maternal cerebellum, heart, kidney and liver appeared to be saturated after 30 min on GD20 such that toluene levels in those organs were equivalent across all ambient concentrations of inhaled toluene. Toluene levels also increased in fetal brain as the inhaled concentration of toluene increased and in placenta and amniotic fluid as the duration of exposure increased. Toluene levels in all tissues at GD20, except maternal lung and amniotic fluid, were higher than in maternal saphenous blood suggesting that toluene concentrated in those organs. Measurement of toluene levels in blood and other tissues following repeated toluene exposure demonstrated that toluene readily reaches a variety of potential sites of action throughout the maternal-placental-fetal unit.
Collapse
Affiliation(s)
- Scott E Bowen
- Department of Psychology, Wayne State University, Detroit, MI 48202, USA.
| | | | | |
Collapse
|
18
|
Xu Y, Li L, Zhang Z, Li Y. Effects of folinic acid and Vitamin B12 on ethanol-induced developmental toxicity in mouse. Toxicol Lett 2006; 167:167-72. [PMID: 17052868 DOI: 10.1016/j.toxlet.2006.07.341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2006] [Revised: 07/11/2006] [Accepted: 07/14/2006] [Indexed: 11/23/2022]
Abstract
The objective of this study was to assess whether combined supplementation of folinic acid (FA) and Vitamin B(12) (VB(12)) could suppress ethanol-induced developmental toxicity better than FA alone in mouse embryos cultured in vitro. In this study, exposure to 4.0mg/ml ethanol for 48 h yielded growth retardation and various malformations of the embryos. FA (10(-5), 10(-4)mol/l) or VB(12) (10(-6), 10(-5)mol/l) alone supplementation improved the growth parameters moderately, however combined supplementation of the two vitamins (10(-5)mol/l FA plus 10(-6)mol/l VB(12), 10(-5)mol/l FA plus 10(-5)mol/l VB(12), 10(-4)mol/l FA plus 10(-6)mol/l VB(12) and 10(-4)mol/l FA plus 10(-5)mol/l VB(12)) showed better protective effects, including both the growth and development parameters of the embryos, than either vitamin alone at the same dosage. The present investigation indicated that combined supplementation of folic acid and VB(12) might be a better choice than folic acid alone in the prevention of ethanol-induced birth defects.
Collapse
Affiliation(s)
- Yajun Xu
- Department of Nutrition & Food Hygiene, School of Public Health, Laboratory of Molecular Toxicology & Developmental Molecular Biology, Peking University, Beijing 100083, China
| | | | | | | |
Collapse
|
19
|
Cortese BM, Moore GJ, Bailey BA, Jacobson SW, Delaney-Black V, Hannigan JH. Magnetic resonance and spectroscopic imaging in prenatal alcohol-exposed children: preliminary findings in the caudate nucleus. Neurotoxicol Teratol 2006; 28:597-606. [PMID: 16996247 DOI: 10.1016/j.ntt.2006.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 07/23/2006] [Accepted: 08/04/2006] [Indexed: 11/28/2022]
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) offer unique, noninvasive methods of measuring, respectively, in vivo quantitative neuroanatomy and neurochemistry. The main purpose of the present study was to identify and compare the neuroanatomical and neurochemical abnormalities that are associated with prenatal exposure to alcohol in both fetal alcohol syndrome (FAS)-diagnosed children and those diagnosed with fetal alcohol effects (FAE). MR data of three age-, gender- and race-balanced groups of children, FAS-diagnosed, FAE-diagnosed and non-exposed controls, were compared. Effects of prenatal alcohol exposure, regardless of diagnosis, were found in the caudate nucleus. Specifically, a significantly smaller caudate nucleus was found for the FAS and FAE participants compared to the controls. In addition, the metabolite ratio of N-acetyl-aspartate to creatine (NAA/Cr), an indicator of neuronal function, in left caudate nucleus of both the FAS and FAE participants was elevated compared to the control group. Analysis of absolute concentrations revealed that the increase in the ratio of NAA/Cr was due to an increase in NAA alone. Although its exact function in the CNS is unknown, NAA is believed to be a neuronal marker due to its exclusive localization to neurons. Some also speculate a role for NAA in myelination. Elevated NAA in the prenatal alcohol-exposed participants could indicate a lack of normal program cell death, dendritic pruning and/or myelination during development. The present study demonstrates that prenatal alcohol-exposed children, with or without facial dysmorphology, have abnormal brain anatomy and chemistry.
Collapse
Affiliation(s)
- Bernadette M Cortese
- Department of Psychiatry, Pennsylvania State University, College of Medicine Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
20
|
Borne J, Riascos R, Cuellar H, Vargas D, Rojas R. Neuroimaging in drug and substance abuse part II: opioids and solvents. Top Magn Reson Imaging 2006; 16:239-45. [PMID: 16340648 DOI: 10.1097/01.rmr.0000192154.34563.6b] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The central nervous system is one of the primary targets for the detrimental effects of drugs of abuse. Diagnostic imaging, especially MRI, plays an important role in the detection of complications associated with drug abuse. We present the imaging findings associated with the abuse of opioids and other morphine derivatives, as well, as solvents. Of the morphine derivatives, heroin is the most commonly abused. Several CNS pathologic effects have been described in association with its abuse. These include neurovascular complications such as microvascular ischemic changes or ischemic stroke. A rare form of leukoencephalopathy has been described in those abusers who inhale heroin vapors. Other neurologic complications include atrophy and various infectious processes. Solvent inhalation is a common practice among adolescents and young adults secondary to its ease of access and low cost. The most important component of industrial solvents is toluene. Complications of toluene abuse may be either acute, showing no neuroradiological changes, or chronic, characterized by cerebral and cerebellar demyelination as well as atrophy.
Collapse
Affiliation(s)
- Jessica Borne
- Neuroradiology Section, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
The developing brain has a distinctive set of characteristics that make it unusually sensitive to damage by toxic agents. Mechanistic understanding of the vulnerability of the immature nervous system to various chemicals is important from a preventive perspective but has also frequently given us new insights into maturation of neural circuitry. This review examines some of the developmental consequences of contact with various exogenous agents, including metals, solvents, pharmaceuticals, and natural products. This review emphasizes how subtle suboptimal brain function rather than acute toxicity can be a consequence of chemical exposures occurring during ontogenesis. The rate of brain aging may be influenced by events taking place in embryogenesis, following a prolonged asymptomatic period. The potential for appearance of adverse effects after prolonged latent periods is underscored.
Collapse
Affiliation(s)
- Stephen C Bondy
- Department of Community and Environmental Medicine, Center for Occupational and Environmental Health, University of California, Irvine, Irvine, California 92967-1820, USA.
| | | |
Collapse
|
22
|
Xu Y, Chen X, Li Y. Ercc6l, a gene of SNF2 family, may play a role in the teratogenic action of alcohol. Toxicol Lett 2005; 157:233-9. [PMID: 15917148 DOI: 10.1016/j.toxlet.2005.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 11/29/2022]
Abstract
The expression profile of a newly identified mouse nucleotide excision repair (NER) gene, Ercc6l, was investigated in a mouse model of fetal alcohol syndrome (FAS). In test 1, whole-mount in situ hybridization showed Ercc6l expressed mainly in the neural tube and heart of 10.5-day embryo. However, the expressions in both of the two organs were significantly down regulated after in uterus alcohol exposure from embryonic day (ED) 6-10, which was in accordance with the result of semi-quantitative RT-PCR. In test 2, the dams were given alcohol intragastrically from ED 6-15, and Northern blot of Ercc6l mRNA was carried out with five major embryo organs on ED 15.5, which were heart, brain, kidney, liver and lung. Ercc6l expression in 15.5-day embryonic brain and heart, which are the most commonly affected organs of FAS, were both decreased by alcohol exposure. The expressions in the other three organs were unaffected. From the results, we considered that Ercc6l might play a role in the teratogenic action of alcohol.
Collapse
Affiliation(s)
- Yajun Xu
- Laboratory of Molecular Toxicology & Developmental Molecular Biology, Department of Nutrition & Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
| | | | | |
Collapse
|
23
|
Abstract
BACKGROUND Prenatal ethanol exposure can cause development retardation and malformations in human offspring. Before the formation of chorioallantoic placenta, yolk sac plays an important role in transporting nutrients from the mother to the embryo. Functional suppression of yolk sac is found to be relevant to the malformations in mammalian embryos. METHODS Female 8.5-day C57BL/6J mouse embryos were cultured in vitro and exposed to different doses of ethanol. The development of visceral yolk sac (VYS) was examined with light and electron microscopes. The expression profiles of some vasculogenesis-related genes were detected with reverse transcription-PCR. RESULTS A dose-dependent toxicity to the VYS was found, including reduced diameter, decreased protein and DNA contents, and suppressed development of vitelline vessels. The hypogenesis of VYS agreed with the retarded development and/or malformations found in the embryos. Histological and functional alterations were found in the ethanol-exposed VYS endodermal cells. The expressions of vasculogenesis-related genes, fetal liver kinase 1 (Flk1) and tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 2 (Tie2), were repressed by ethanol. CONCLUSIONS Impaired structural and functional development of VYS may contribute to the teratogenic action of ethanol in mice, which may also provide a clue to the study of fetal alcohol syndrome in humans.
Collapse
Affiliation(s)
- Yajun Xu
- Department of Nutrition & Food Hygiene, Laboratory of Molecular Toxicology & Developmental Molecular Biology, School of Public Health, Peking University, Beijing, China
| | | | | |
Collapse
|
24
|
Chen HH, Wei CT, Chan MH. Neonatal toluene exposure alters glutamate-induced calcium signaling in developing cerebellar granule neurons. Ann N Y Acad Sci 2005; 1025:556-60. [PMID: 15542762 DOI: 10.1196/annals.1316.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamatergic neurotransmission is critical both for neurogenesis and mature functioning of the central nervous system (CNS), and is thought to be one target for toluene-induced damage. It has been reported that toluene antagonizes the function of N-methyl-D-aspartate (NMDA) receptor. In this study, we examined the effect that neonatal toluene exposure has on NMDA receptor in cerebellar granule neurons. Sprague-Dawley rats were treated with 0, 200, 500, and 1000 mg/kg of toluene by intraperitoneal injection from postnatal day (PN) 4 to 7. After culture under toluene-free condition, Ca2+ signaling in response to glutamate and NMDA was measured using fura-2 Ca2+ imaging for up to 14 days. Toluene exposure dose-dependently reduced glutamate/glycine and NMDA/glycine induced Ca2+ signaling in culture cerebellar granule neurons at DIV5 (day in vitro), and the effects were gradually recovered. The effects of toluene exposure on NMDA-stimulated Ca2+ signals in response to NMDA receptor inhibitors were also compared. The results indicated that neonatal toluene exposure can induce long-term but reversible changes in NMDA-induced Ca2+ signaling pathway. Such changes could be involved in the impairment of CNS function and development observed in fetal solvent syndrome.
Collapse
Affiliation(s)
- Hwei-Hsien Chen
- Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan
| | | | | |
Collapse
|
25
|
Chen HH, Wei CT, Lin YR, Chien TH, Chan MH. Neonatal Toluene Exposure Alters Agonist and Antagonist Sensitivity and NR2B Subunit Expression of NMDA Receptors in Cultured Cerebellar Granule Neurons. Toxicol Sci 2005; 85:666-74. [PMID: 15689418 DOI: 10.1093/toxsci/kfi100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Toluene has been reported to antagonize the function of N-methyl-D-aspartate (NMDA) receptors. In this study, the effects of neonatal toluene exposure on NMDA receptors in primarily cultured cerebellar granule neurons were examined. Sprague-Dawley rats were treated with toluene (0, 200, 500, and 1000 mg/kg, i.p.) from postnatal day (PN) 4 to PN 7. Under toluene-free conditions, Ca2+ signals of cultured neurons in response to glutamate and NMDA were measured for up to 14 days. The expression of NMDA receptor subunits (NR1, NR2A, and NR2B) at 5-14 days in vitro (DIV) were also determined. Neonatal toluene exposure dose-dependently reduced intracellular Ca2+ signals in response to glutamate/glycine and NMDA/glycine in cultured cerebellar granule neurons, and these effects were gradually decreased with time. Such toluene exposure did not influence the inhibition of Mg2+ or MK801 on NMDA-evoked responses, but it decreased the potency of ifenprodil (an NR2B preferring antagonist). The protein levels of NMDA receptor subunit NR2B were consistently reduced by toluene exposure at 5 DIV, but not at 14 DIV. These results demonstrate that neonatal toluene exposure induces long-term but reversible changes in the function and composition of NMDA receptors. Such changes during developmental stages may contribute to the cerebellar dysfunction observed in fetal solvent syndrome.
Collapse
Affiliation(s)
- Hwei-Hsien Chen
- Graduate Institute of Pharmacology and Toxicology, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, 970, Taiwan
| | | | | | | | | |
Collapse
|
26
|
Guizzetti M, Costa LG. Disruption of cholesterol homeostasis in the developing brain as a potential mechanism contributing to the developmental neurotoxicity of ethanol: an hypothesis. Med Hypotheses 2005; 64:563-7. [PMID: 15617867 DOI: 10.1016/j.mehy.2004.05.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 05/19/2004] [Indexed: 11/28/2022]
Abstract
While excess cholesterol may have deleterious consequences, as in the case of atherosclerosis, too little cholesterol may endanger the development of the brain. Different degrees of mental retardation are often observed in inborn errors of cholesterol synthesis, such as the Smith-Lemli-Opitz syndrome or in maternal phenylketonuria, where the metabolite of accumulating phenylalanine, phenylacetate, is an inhibitor of cholesterol synthesis. Lack of cholesterol during brain development as a consequence of these genetic defects leads to severe brain damage, microencephaly and mental retardation, which are also hallmarks of the fetal alcohol syndrome (FAS). The brain relies on the in situ synthesis of cholesterol, which occurs mostly in astrocytes. Astrocyte-produced cholesterol is utilized for cell proliferation, or is released, via astrocyte-secreted high density lipoprotein-like particles containing apolipoprotein E, outside the cell, where it is taken up and utilized by neurons for dendrite outgrowth and to form synapses. We propose the hypothesis that ethanol may disrupt cholesterol homeostasis during brain development, and that this effect may be responsible, at least in part, for the central nervous system dysfunctions observed in the FAS, which include altered astrocyte proliferation, neuronal death and diminished synaptic contacts.
Collapse
Affiliation(s)
- Marina Guizzetti
- Department of Environmental and Occupational Health Sciences, School of Public Health and Community Medicine, Toxicology Program, University of Washington, Seattle, WA 98105, USA.
| | | |
Collapse
|
27
|
Bowen SE, Batis JC, Mohammadi MH, Hannigan JH. Abuse pattern of gestational toluene exposure and early postnatal development in rats. Neurotoxicol Teratol 2005; 27:105-16. [PMID: 15681125 DOI: 10.1016/j.ntt.2004.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 09/08/2004] [Accepted: 09/29/2004] [Indexed: 11/23/2022]
Abstract
Inhalant abuse in the United States trails only alcohol, marijuana and nicotine abuse. Toluene, found in glues and cleaners, is among the most commonly abused inhalants. While teratogenicity due to occupational exposure to organic solvents (i.e., relatively long-term exposure to lower concentrations) has been studied, the teratogenic potential of organic solvent abuse (i.e., brief inhalation exposures to very high concentrations) has not been thoroughly examined. In a preclinical model of abuse patterns of fetal solvent exposure, timed-pregnant rats were exposed to 8000 parts per million (ppm) or 12,000 ppm of toluene, or to air (0 ppm), for 15 min twice daily from gestation day 8 (GD8) through GD20. After parturition, pups were tested from postnatal day 4 (PN4) to PN21 in a developmental test battery including measures of growth (i.e., body weight), maturational milestones (i.e., pinnae unfolding, incisor eruption and eye opening) and biobehavioral development (e.g., negative geotaxis, surface righting and grip strength). Pups exposed in utero to 12,000 ppm toluene weighed significantly less than the control pups at all ages before PN16. There were significant toluene-induced increases in an index of poor perinatal outcome (i.e., a combination of malformations, "runting" and neonatal death) and deficits in negative geotaxis. There were no significant delays in reaching maturational milestones. The results demonstrate that brief, repeated, prenatal exposure to high concentrations of toluene can cause growth restriction, malformation and impairments of biobehavioral development in rats. A comparison of the present outcomes to previous studies of occupational exposure patterns suggests that for a given daily "dose" of toluene, a binge pattern of exposure may pose a greater risk for fetal development. Since the pattern of exposure in this experiment models binge exposure in human solvent abuse, the results imply that abuse of inhaled organic solvents, such as toluene, can cause similar teratogenic outcomes in humans.
Collapse
Affiliation(s)
- Scott E Bowen
- Department of Psychology, Wayne State University, 71 West Warren, Detroit, MI 48202, United States.
| | | | | | | |
Collapse
|
28
|
Alegretti AP, Thiesen FV, Maciel GP. Analytical method for evaluation of exposure to benzene, toluene, xylene in blood by gas chromatography preceded by solid phase microextraction. J Chromatogr B Analyt Technol Biomed Life Sci 2004; 809:183-7. [PMID: 15282110 DOI: 10.1016/j.jchromb.2004.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Revised: 06/07/2004] [Accepted: 06/10/2004] [Indexed: 11/25/2022]
Abstract
Frequency of intentional exposure to organic solvents has been increasing among children and adolescents in Brazil. Analysis of benzene, toluene and xylenes (BTX) in human blood is necessary to diagnose the intentional and accidental exposure to these solvents. A method for BTX determination in blood samples by gas chromatography preceded by solid phase microextration (SPME) from headspace (HS) has been described. SPME has several advantages when compared to other extraction techniques such as simplicity, low cost and solvent-free extraction. The method presents good repeatability (precision was of 2.2-8.0%), accuracy from -4.7 to -9.4%, limit of detection <1.0 ug/mL, linearity from 1.0 to 100 ug/mL for toluene and from 5.0 to 100 ug/mL for the other solvents (R2 > 0.99), which shows to be efficient and adequate for the detection of exposure to BTX in blood samples.
Collapse
Affiliation(s)
- Ana Paula Alegretti
- Institute of Toxicology, Pontifícia Universidade Católica do Rio Grande do Sul, Ipiranga Av, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|
29
|
Filley CM, Halliday W, Kleinschmidt-DeMasters BK. The effects of toluene on the central nervous system. J Neuropathol Exp Neurol 2004; 63:1-12. [PMID: 14748556 DOI: 10.1093/jnen/63.1.1] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent decades the organic solvent toluene (methylbenzene) has emerged as one of the best-studied neurotoxins. Long-term and intense exposure to toluene vapors in humans who abuse spray paint and related substances has led to the recognition that toluene has a severe impact on central nervous system myelin. Chronic toluene abuse produces a devastating neurological disorder, of which dementia is the most disabling component. The clinical syndrome, toluene leukoencephalopathy, can be detected by a combination of characteristic symptoms and signs, detailed neurobehavioral evaluation, and brain magnetic resonance imaging. In this paper, we consider the impact of toluene abuse on our society, describe the specific neurobehavioral deficits in toluene leukoencephalopathy, review the spectrum of neuroimaging findings in patients with this disorder, summarize the teratogenic effects of toluene in both humans and animal models, and offer possible explanations for the range of neuropathological damage seen in brains of individuals who chronically abuse toluene.
Collapse
Affiliation(s)
- Christopher M Filley
- Department of Neurology, University of Colorado School of Medicine, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
30
|
|
31
|
Burry M, Guizzetti M, Oberdoerster J, Costa LG. Developmental neurotoxicity of toluene: in vivo and in vitro effects on astroglial cells. Dev Neurosci 2003; 25:14-9. [PMID: 12876426 DOI: 10.1159/000071463] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 12/18/2002] [Indexed: 11/19/2022] Open
Abstract
Toluene, an inexpensive and available industrial solvent, has become increasingly popular as a drug of abuse. Inhaling toluene leads to a feeling of euphoria and several reports have shown that children born to women who had abused toluene during pregnancy present a syndrome (toluene embryopathy or fetal solvent syndrome) that is characterized by CNS effects (e.g. microencephaly), growth retardation and facial dysmorphologies. The characteristics of the fetal solvent syndrome are very similar to those observed in the fetal alcohol syndrome. As exposure of rats to ethanol during the brain growth spurt has been shown to cause microencephaly and to affect glial cell proliferation and maturation, the present study examines the effects of toluene administration (250, 500 and 750 mg/kg) in neonatal rats from postnatal day 4 to 10. This treatment resulted in a significant decrease in both brain and body weights, and in a significant reduction of levels of glial fibrillary acidic protein, but not of neuron-specific enolase in rat brain. In vitro experiments demonstrate that pharmacologically relevant concentrations of toluene (250-1,000 microM) significantly inhibit proliferation of rat cortical astrocytes without causing overt cytotoxicity. These results indicate that toluene does not cause selective microencephaly; however, it affects brain weight, and appears to target developing astrocytes, possibly by inhibiting their proliferation.
Collapse
Affiliation(s)
- Mark Burry
- Toxicology Program, University of Washington, Seattle, WA 98105, USA
| | | | | | | |
Collapse
|