1
|
Voleti VK, Yusuff I, Abdulkadhar MJ, Al-Sadoon MK. Computational Simulation Study-Based Formulation Development and Characterization of MethylprednisoloneLoaded Nanoparticles Containing Chitosan and Pectin to Treat Nocturnal Asthma. Polymers (Basel) 2024; 17:24. [PMID: 39795428 PMCID: PMC11723144 DOI: 10.3390/polym17010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Nocturnal asthma (NA) is a high-prevalence disease that causes severe respiratory issues, leading to death from early midnight to early morning. In this research, nanoparticulate drug delivery system of methylprednisolone (MP) was developed using chitosan (CH) and pectin (PEC). MP is a synthetic corticosteroid medication widely used for its potent anti-inflammatory activity. Computational simulation study (AI-based blend analysis algorithm) was used to identify a better-mixing polymer with MP. MP nanoparticles were formulated by the ionic gelation method with the combination of CH and PEC. To modify the drug release properties, the formed beads were coated with chitosan succinate (CSSC). The morphological characteristics of the beads were determined by SEM analysis. The X-ray radiographic imaging study was used to observe the intactness of MP beads. Histopathological studies were also carried out to find out the toxicity of the beads in the organs of rats. Pectin and chitosan polymers were selected based on the computational simulation study. SEM analysis revealed that the beads had a spherical shape with a rough outer surface. CSSC-coated beads achieved sustained drug release for up to 24 h. X-ray imaging demonstrated the stability of the beads in acidic pH conditions. In vivo pharmacokinetic studies showed that CSSC-coated beads were more stable in the gastrointestinal tract (GIT) than PEC-CH beads and the pure drug. Histological evaluation confirmed that the beads are nontoxic and safe for use in rats. Based on the findings, it was concluded that CSSC-coated beads of MP exhibited superior release properties, making them suitable for a chronomodulated drug delivery system.
Collapse
Affiliation(s)
- Vijaya Kumar Voleti
- Crescent School of Pharmacy, B. S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai 600048, Tamil Nadu, India;
| | - Ismail Yusuff
- Crescent School of Pharmacy, B. S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai 600048, Tamil Nadu, India;
| | - Mohamed Jalaludeen Abdulkadhar
- Crescent Global Outreach Mission Research and Development, B. S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai 600048, Tamil Nadu, India;
| | - Mohammad Khalid Al-Sadoon
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
2
|
Li Y, Lu L, Androulakis IP. The Physiological and Pharmacological Significance of the Circadian Timing of the HPA Axis: A Mathematical Modeling Approach. J Pharm Sci 2024; 113:33-46. [PMID: 37597751 PMCID: PMC10840710 DOI: 10.1016/j.xphs.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
As a potent endogenous regulator of homeostasis, the circadian time-keeping system synchronizes internal physiology to periodic changes in the external environment to enhance survival. Adapting endogenous rhythms to the external time is accomplished hierarchically with the central pacemaker located in the suprachiasmatic nucleus (SCN) signaling the hypothalamus-pituitary-adrenal (HPA) axis to release hormones, notably cortisol, which help maintain the body's circadian rhythm. Given the essential role of HPA-releasing hormones in regulating physiological functions, including immune response, cell cycle, and energy metabolism, their daily variation is critical for the proper function of the circadian timing system. In this review, we focus on cortisol and key fundamental properties of the HPA axis and highlight their importance in controlling circadian dynamics. We demonstrate how systems-driven, mathematical modeling of the HPA axis complements experimental findings, enhances our understanding of complex physiological systems, helps predict potential mechanisms of action, and elucidates the consequences of circadian disruption. Finally, we outline the implications of circadian regulation in the context of personalized chronotherapy. Focusing on the chrono-pharmacology of synthetic glucocorticoids, we review the challenges and opportunities associated with moving toward personalized therapies that capitalize on circadian rhythms.
Collapse
Affiliation(s)
- Yannuo Li
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Lingjun Lu
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Chemical & Biochemical Engineering Department, Piscataway, NJ 08854, USA; Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08540, USA.
| |
Collapse
|
3
|
Ayyar VS, DuBois DC, Nakamura T, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacokinetics and Pharmacodynamics, Part II: Sex Differences in Methylprednisolone Pharmacokinetics and Corticosterone Suppression. J Pharmacol Exp Ther 2019; 370:327-336. [PMID: 31197019 PMCID: PMC7184193 DOI: 10.1124/jpet.119.257527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 12/23/2022] Open
Abstract
Methylprednisolone (MPL), a corticosteroid of intermediate potency, remains an important immunomodulatory agent for autoimmune diseases. Although sex differences in corticosteroid pharmacokinetics/pharmacodynamics (PK/PD) have been documented in humans, comprehensive preclinical assessments of such differences have not been conducted. Limited in vitro evidence indicates possible sex differences in corticosteroid PK and PD. Therefore, it is hypothesized that comparative PK/PD assessments of MPL disposition and selected PD actions in both sexes will provide insights into factors controlling sex differences in steroid responses. This report focused on the plasma and tissue pharmacokinetics of MPL and its adrenal suppressive effects. Because time-dependent (estrous) regulation of sex hormones in females can influence drug responses, female rats were studied in the proestrus (high estradiol/progesterone) and estrus (low estradiol/progesterone) phases of the reproductive cycle. Cohorts of male and female rats were given a 50 mg/kg bolus dose of MPL intramuscularly. Plasma and liver concentrations of MPL as well as plasma corticosterone concentrations were assayed using high-performance liquid chromatography. An enhanced minimal physiologically-based PK/PD model was developed to characterize MPL kinetics and corticosterone dynamics. The clearance of MPL was ∼3-fold higher in males compared with females, regardless of estrous phase, likely attributable to sex-specific hepatic metabolism in males. Strong inhibitory effects on adrenal suppression were observed in all animals. These temporal steroid profiles in plasma and tissues will be used to drive receptor/gene-mediated PD effects of MPL in both sexes, as described in a companion article (Part III). SIGNIFICANCE STATEMENT: Sex is a relevant factor influencing the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. Few preclinical PK/PD studies, however, include sex as a variable. Sex differences in the PK and adrenal suppressive effects of the synthetic corticosteroid, methylprednisolone, were assessed in male and female rats as a function of the 4-day rodent reproductive cycle. Drug exposure was 3-fold higher in females, regardless of estrous stage, compared with males. An extended minimal physiologically-based PK/PD model utilizing in vitro and in vivo measurements was developed and applied. These studies provide a framework to account for sex-dependent variability in drug and endogenous agonist (corticosterone) exposures, serving as a prelude to more intricate assessments of sex-related variability in receptor/gene-mediated PD corticosteroid actions.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| | - Toshimichi Nakamura
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| | - William J Jusko
- Departments of Pharmaceutical Sciences (V.S.A., D.C.D., T.N., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York; and DMPK Research Department, Teijin Institute for Biomedical Research, Teijin Pharma, Tokyo, Japan (T.N.)
| |
Collapse
|
4
|
Ayyar VS, Song D, DuBois DC, Almon RR, Jusko WJ. Modeling Corticosteroid Pharmacokinetics and Pharmacodynamics, Part I: Determination and Prediction of Dexamethasone and Methylprednisolone Tissue Binding in the Rat. J Pharmacol Exp Ther 2019; 370:318-326. [PMID: 31197020 PMCID: PMC6658919 DOI: 10.1124/jpet.119.257519] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/10/2019] [Indexed: 01/18/2023] Open
Abstract
The plasma and tissue binding properties of two corticosteroids, dexamethasone (DEX) and methylprednisolone (MPL), were assessed in the rat in anticipation of developing physiologically based pharmacokinetic and pharmacokinetic/pharmacodynamic models. The tissue-to-plasma partition coefficients (K P) of DEX and MPL were measured in liver, muscle, and lung in vivo after steady-state infusion and bolus injection in rats. Since K P is often governed by reversible binding to macromolecules in blood and tissue, an attempt was made to assess K P values of DEX and MPL by in vitro binding studies using rat tissue homogenates and to compare these estimates to those obtained from in vivo kinetics after dosing. The K P values of both steroids were also calculated in rat tissues using mechanistic tissue composition-based equations. The plasma binding of DEX and MPL was linear with moderate binding (60.5% and 82.5%) in male and female rats. In vivo estimates of steroid uptake appeared linear across the tested concentrations and K P was highest in liver and lowest in muscle for both steroids. Assessment of hepatic binding of MPL in vitro was severely affected by drug loss at 37°C in male liver homogenates, whereas DEX was stable in both male and female liver homogenates. With the exception of MPL in liver, in vitro-derived K P estimates reasonably agreed with in vivo values. The mechanistic equations modestly underpredicted K P for both drugs. Tissue metabolism, saturable tissue binding, and active uptake are possible factors that can complicate assessments of in vivo tissue binding of steroids when using tissue homogenates. SIGNIFICANCE STATEMENT: Assuming the free hormone hypothesis, the ratio of the unbound drug fraction in plasma and in tissues defines the tissue-to-plasma partition coefficient (K P), an important parameter in physiologically based pharmacokinetic modeling that determines total drug concentrations within tissues and the steady-state volume of distribution. This study assessed the plasma and tissue binding properties of the synthetic corticosteroids, dexamethasone and methylprednisolone, in rats using ultrafiltration and tissue homogenate techniques. In vitro-in vivo and in silico-in vivo extrapolation of K P was assessed for both drugs in liver, muscle, and lung. Although the extrapolation was fairly successful across the tissues, in vitro homogenate studies severely underpredicted the K P of methylprednisolone in liver, partly attributable to the extensive hepatic metabolism.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Dawei Song
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Departments of Pharmaceutical Sciences (V.S.A., D.S., D.C.D., R.R.A., W.J.J.) and Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
5
|
Ayyar VS, Sukumaran S, DuBois DC, Almon RR, Qu J, Jusko WJ. Receptor/gene/protein-mediated signaling connects methylprednisolone exposure to metabolic and immune-related pharmacodynamic actions in liver. J Pharmacokinet Pharmacodyn 2018; 45:557-575. [PMID: 29704219 DOI: 10.1007/s10928-018-9585-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/19/2022]
Abstract
A multiscale pharmacodynamic model was developed to characterize the receptor-mediated, transcriptomic, and proteomic determinants of corticosteroid (CS) effects on clinically relevant hepatic processes following a single dose of methylprednisolone (MPL) given to adrenalectomized (ADX) rats. The enhancement of tyrosine aminotransferase (TAT) mRNA, protein, and enzyme activity were simultaneously described. Mechanisms related to the effects of MPL on glucose homeostasis, including the regulation of CCAAT-enhancer binding protein-beta (C/EBPβ) and phosphoenolpyruvate carboxykinase (PEPCK) as well as insulin dynamics were evaluated. The MPL-induced suppression of circulating lymphocytes was modeled by coupling its effect on cell trafficking with pharmacogenomic effects on cell apoptosis via the hepatic (STAT3-regulated) acute phase response. Transcriptomic and proteomic time-course profiles measured in steroid-treated rat liver were utilized to model the dynamics of mechanistically relevant gene products, which were linked to associated systemic end-points. While time-courses of TAT mRNA, protein, and activity were well described by transcription-mediated changes, additional post-transcriptional processes were included to explain the lack of correlation between PEPCK mRNA and protein. The immune response model quantitatively discerned the relative roles of cell trafficking versus gene-mediated lymphocyte apoptosis by MPL. This systems pharmacodynamic model provides insights into the contributions of selected molecular events occurring in liver and explores mechanistic hypotheses for the multi-factorial control of clinically relevant pharmacodynamic outcomes.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
6
|
Ayyar VS, DuBois DC, Almon RR, Jusko WJ. Mechanistic Multi-Tissue Modeling of Glucocorticoid-Induced Leucine Zipper Regulation: Integrating Circadian Gene Expression with Receptor-Mediated Corticosteroid Pharmacodynamics. J Pharmacol Exp Ther 2017; 363:45-57. [PMID: 28729456 PMCID: PMC5596815 DOI: 10.1124/jpet.117.242990] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/11/2017] [Indexed: 12/15/2022] Open
Abstract
The glucocorticoid-induced leucine zipper (GILZ) is an important mediator of anti-inflammatory corticosteroid action. The pharmacokinetic/pharmacodynamic/pharmacogenomic effects of acute and chronic methylprednisolone (MPL) dosing on the tissue-specific dynamics of GILZ expression were examined in rats. A mechanism-based model was developed to investigate and integrate the role of MPL and circadian rhythms on the transcriptional enhancement of GILZ in multiple tissues. Animals received a single 50-mg/kg intramuscular bolus or a 7-day 0.3-mg/kg/h subcutaneous infusion of MPL and were euthanized at several time points. An additional group of rats were euthanized at several times and served as 24-hour light/dark (circadian) controls. Plasma MPL and corticosterone concentrations were measured by high-performance liquid chromatography. The expression of GILZ and glucocorticoid receptor (GR) mRNA was quantified in tissues using quantitative real-time reverse-transcription polymerase chain reaction. The pharmacokinetics of MPL were described using a two-compartment model. Mild-to-robust circadian oscillations in GR and GILZ mRNA expression were characterized in muscle, lung, and adipose tissues and modeled using Fourier harmonic functions. Acute MPL dosing caused significant down-regulation (40%-80%) in GR mRNA and enhancement of GILZ mRNA expression (500%-1080%) in the tissues examined. While GILZ returned to its rhythmic baseline following acute dosing, a new steady-state was observed upon enhancement by chronic dosing. The model captured the complex dynamics in all tissues for both dosing regimens. The model quantitatively integrates physiologic mechanisms, such as circadian processes and GR tolerance phenomena, which control the tissue-specific regulation of GILZ by corticosteroids. These studies characterize GILZ as a pharmacodynamic marker of corticosteroid actions in several tissues.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (V.S.A., D.C.D., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
7
|
Ayyar VS, Almon RR, DuBois DC, Sukumaran S, Qu J, Jusko WJ. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism. J Proteomics 2017; 160:84-105. [PMID: 28315483 DOI: 10.1016/j.jprot.2017.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 03/10/2017] [Indexed: 02/07/2023]
Abstract
Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. SIGNIFICANCE Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and other tissues is sparse. While transcriptomic regulation following methylprednisolone (MPL) dosing has been temporally examined in rat liver, proteomic assessments are needed to better characterize the tissue-specific functional aspects of MPL actions. This study describes a functional pharmacoproteomic analysis of dynamic changes in MPL-regulated proteins in liver and provides biological insight into how steroid-induced perturbations on a molecular level may relate to both adverse and therapeutic responses presented clinically.
Collapse
Affiliation(s)
- Vivaswath S Ayyar
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - Richard R Almon
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Debra C DuBois
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States; Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, NY, United States.
| |
Collapse
|
8
|
Fang J, Sukumaran S, DuBois DC, Almon RR, Jusko WJ. Meta-modeling of methylprednisolone effects on glucose regulation in rats. PLoS One 2013; 8:e81679. [PMID: 24312573 PMCID: PMC3847111 DOI: 10.1371/journal.pone.0081679] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/15/2013] [Indexed: 01/01/2023] Open
Abstract
A retrospective meta-modeling analysis was performed to integrate previously reported data of glucocorticoid (GC) effects on glucose regulation following a single intramuscular dose (50 mg/kg), single intravenous doses (10, 50 mg/kg), and intravenous infusions (0.1, 0.2, 0.3 and 0.4 mg/kg/h) of methylprednisolone (MPL) in normal and adrenalectomized (ADX) male Wistar rats. A mechanistic pharmacodynamic (PD) model was developed based on the receptor/gene/protein-mediated GC effects on glucose regulation. Three major target organs (liver, white adipose tissue and skeletal muscle) together with some selected intermediate controlling factors were designated as important regulators involved in the pathogenesis of GC-induced glucose dysregulation. Assessed were dynamic changes of food intake and systemic factors (plasma glucose, insulin, free fatty acids (FFA) and leptin) and tissue-specific biomarkers (cAMP, phosphoenolpyruvate carboxykinase (PEPCK) mRNA and enzyme activity, leptin mRNA, interleukin 6 receptor type 1 (IL6R1) mRNA and Insulin receptor substrate-1 (IRS-1) mRNA) after acute and chronic dosing with MPL along with the GC receptor (GR) dynamics in each target organ. Upon binding to GR in liver, MPL dosing caused increased glucose production by stimulating hepatic cAMP and PEPCK activity. In adipose tissue, the rise in leptin mRNA and plasma leptin caused reduction of food intake, the exogenous source of glucose input. Down-regulation of IRS-1 mRNA expression in skeletal muscle inhibited the stimulatory effect of insulin on glucose utilization further contributing to hyperglycemia. The nuclear drug-receptor complex served as the driving force for stimulation or inhibition of downstream target gene expression within different tissues. Incorporating information such as receptor dynamics, as well as the gene and protein induction, allowed us to describe the receptor-mediated effects of MPL on glucose regulation in each important tissue. This advanced mechanistic model provides unique insights into the contributions of major tissues and quantitative hypotheses for the multi-factor control of a complex metabolic system.
Collapse
Affiliation(s)
- Jing Fang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Siddharth Sukumaran
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
9
|
Sukumaran S, Lepist EI, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling of methylprednisolone effects on iNOS mRNA expression and nitric oxide during LPS-induced inflammation in rats. Pharm Res 2012; 29:2060-9. [PMID: 22422321 DOI: 10.1007/s11095-012-0733-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/05/2012] [Indexed: 12/20/2022]
Abstract
PURPOSE Increased expression of inducible nitric oxide synthase (iNOS) resulting in nitric oxide elevation represents an important component of inflammatory responses. We assess the effects of methylprednisolone (MPL) on these processes during endotoxin-induced acute inflammation and provide a mechanism-based model to quantitatively describe them. METHODS Male Lewis rats were dosed with lipopolysaccharide (50 μg/kg LPS) alone or with methylprednisolone (10 and 50 mg/kg) and sacrificed at different time points. Plasma MPL, lung iNOS mRNA expression, plasma nitric oxide (NO) and other physiological factors were measured. Sodium nitrate (750 μmole/kg) was given to a separate cohort of rats to assess NO disposition kinetics. PK-PD modeling was performed with ADAPT 5. RESULTS Disposition kinetics of plasma MPL and NO showed bi-exponential decline and were described by two-compartment models. LPS increased expression of iNOS mRNA in lung and increased plasma NO, while MPL dosing palliated this increase in a dose-dependent manner. These effects were well captured using tandem indirect response and precursor-pool models. CONCLUSION The model provides a quantitative assessment of the suppression of NO production by MPL and shows that the major effects are at the transcriptional level by reducing expression of iNOS mRNA.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Department of Pharmaceutical Sciences School of Pharmacy & Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, New York 14260, USA
| | | | | | | | | |
Collapse
|
10
|
Fang J, DuBois DC, He Y, Almon RR, Jusko WJ. Dynamic modeling of methylprednisolone effects on body weight and glucose regulation in rats. J Pharmacokinet Pharmacodyn 2011; 38:293-316. [PMID: 21394487 DOI: 10.1007/s10928-011-9194-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 02/14/2011] [Indexed: 12/21/2022]
Abstract
Influences of methylprednisolone (MPL) and food consumption on body weight (BW), and the effects of MPL on glycemic control including food consumption and the dynamic interactions among glucose, insulin, and free fatty acids (FFA) were evaluated in normal male Wistar rats. Six groups of animals received either saline or MPL via subcutaneous infusions at the rate of 0.03, 0.1, 0.2, 0.3 and 0.4 mg/kg/h for different treatment periods. BW and food consumption were measured twice a week. Plasma concentrations of MPL and corticosterone (CST) were determined at animal sacrifice. Plasma glucose, insulin, and FFA were measured at various times after infusion. Plasma MPL concentrations were simulated by a two-compartment model and used as the driving force in the pharmacodynamic (PD) analysis. All data were modeled using ADAPT 5. The MPL treatments caused reduction of food consumption and body weights in all dosing groups. The steroid also caused changes in plasma glucose, insulin, and FFA concentrations. Hyperinsulinemia was achieved rapidly at the first sampling time of 6 h; significant elevations of FFA were observed in all drug treatment groups; whereas only modest increases in plasma glucose were observed in the low dosing groups (0.03 and 0.1 mg/kg/h). Body weight changes were modeled by dual actions of MPL: inhibition of food consumption and stimulation of weight loss, with food consumption accounting for the input of energy for body weight. Dynamic models of glucose and insulin feedback interactions were extended to capture the major metabolic effects of FFA: stimulation of insulin secretion and inhibition of insulin-stimulated glucose utilization. These models of body weight and glucose regulation adequately captured the experimental data and reflect significant physiological interactions among glucose, insulin, and FFA. These mechanism-based PD models provide further insights into the multi-factor control of this essential metabolic system.
Collapse
Affiliation(s)
- Jing Fang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
11
|
Panusa A, Aldini G, Orioli M, Vistoli G, Rossoni G, Carini M. A sensitive and specific precursor ion scanning approach in liquid chromatography/electrospray ionization tandem mass spectrometry to detect methylprednisolone acetate and its metabolites in rat urine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:1583-1594. [PMID: 20486254 DOI: 10.1002/rcm.4555] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A new, simple, sensitive and specific liquid chromatography/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method in precursor ion scanning (PIS) mode has been developed for the rapid detection of methylprednisolone acetate (MPA) and its metabolites in rat urine. A suitable product ion specific for methylprednisolone (MP) and MPA was selected after a fragmentation study on 20 (cortico)steroids at different collision energies (5-40 eV). Urine samples were simply treated with acetonitrile then dried in a SpeedVac system. The method was validated and compared with other PIS methods for detecting corticosteroids in human urine. It was more sensitive, with limit of detection (LOD) and lower limit of quantitation (LLOQ), respectively, of 5 and 10 ng mL(-1). The method was applied for the analysis of rat urine collected before and after (24, 48, 72 h) intra-articular (IA) injection of a marketed formulation of MPA (Depo-Medrol(R)). MS/MS acquisitions were taken at different collision energies for the precursor ions of interest, detected in PIS mode, to verify the MP-related structure. Six different metabolites were detected in rat urine, and their chemical structures were assigned with a computational study.
Collapse
Affiliation(s)
- Alessia Panusa
- Dipartimento di Scienze Farmaceutiche Pietro Pratesi, Universita' degli Studi di Milano, Via L. Mangiagalli 25, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Jin JY, Jusko WJ. Pharmacodynamics of glucose regulation by methylprednisolone. II. normal rats. Biopharm Drug Dispos 2009; 30:35-48. [PMID: 19156669 DOI: 10.1002/bdd.642] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A physiologic pharmacodynamic model was developed to jointly describe the effects of methylprednisolone (MPL) on adrenal suppression and glycemic control in normal rats. Six groups of animals were given MPL intravenously at 0, 10 and 50 mg/kg, or by subcutaneous 7 day infusion at rates of 0, 0.1 and 0.3 mg/kg/h. Plasma concentrations of MPL, corticosterone (CST), glucose and insulin were determined at various times up to 72 h after injection and 336 h after infusion. The pharmacokinetics of MPL was described by a two-compartment model. A circadian rhythm for CST was found in untreated rats with a stress-altered baseline caused by handling, which was captured by a circadian harmonic secretion rate with an increasing mesor. All drug treatments caused CST suppression. Injection of MPL caused temporary increases in glucose over 4 h. Insulin secretion was thereby stimulated yielding a later peak around 6 h. In turn, insulin can normalize glucose. However, long-term dosing caused continuous hyperglycemia during and after infusion. Hyperinsulinemia was achieved during infusion, but diminished immediately after dosing despite the high glucose concentration. The effects of CST and MPL on glucose production were described with a competitive stimulation function. A disease progression model incorporating reduced endogenous glucose uptake/utilization was used to describe glucose metabolism under different treatments. The results exemplify the roles of endogenous and exogenous hormones in mediating glucose dynamics. The pharmacokinetic/pharmacodynamic model is valuable for quantitating diabetogenic effects of corticosteroid treatments and provides mechanistic insights into the hormonal control of the metabolic system.
Collapse
Affiliation(s)
- Jin Y Jin
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
13
|
Jin JY, Jusko WJ. Pharmacodynamics of glucose regulation by methylprednisolone. I. Adrenalectomized rats. Biopharm Drug Dispos 2009; 30:21-34. [PMID: 19156931 DOI: 10.1002/bdd.643] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanisms related to the adverse effects of corticosteroids on glucose homeostasis were studied. Five groups of adrenalectomized (ADX) rats were given methylprednisolone (MPL) intravenously at 10 and 50 mg/kg, or a continuous 7 day infusion at rates of 0, 0.1, 0.3 mg/kg/h via subcutaneously implanted Alzet mini-pumps. Plasma concentrations of MPL, glucose and insulin were determined at various time points up to 72 h after injection or 336 h after infusion. The pharmacokinetics of MPL was captured with a two-compartment model. The Adapt II software was used in modeling. Injection of MPL caused a temporary glucose increase over 6 h by stimulating gluconeogenesis. The glucose changes stimulated pancreatic beta-cell secretion yielding a later insulin peak at around 10 h. In turn, insulin can stimulate glucose disposition. However, long-term MPL treatment caused continuous hyperglycemia during and after infusion. Insulin was increased during infusion, and immediately returned to baseline after the infusion was terminated, despite the almost doubled glucose concentration. A disease progression model incorporating the reduced endogenous glucose disposition was included to capture glucose homeostasis under different treatments. The results exemplify the importance of the steroid dosing regimen in mediating pharmacological and adverse metabolic effects. This mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model quantitatively describes the induction of hyperglycemia and provides additional insights into metabolic disorders such as diabetes.
Collapse
Affiliation(s)
- Jin Y Jin
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
14
|
Hamdan II, Qurani H. Development and Validation of a HPLC Method for Determination of Potential Residual Cortisone Compounds in Timolol Maleate Eye Drops. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070802634679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Imad I. Hamdan
- a Faculty of Pharmacy, University of Jordan , Amman, Jordan
| | - Huda Qurani
- b Drug Quality Control Laboratory , JFDA, Amman, Jordan
| |
Collapse
|
15
|
Earp JC, Pyszczynski NA, Molano DS, Jusko WJ. Pharmacokinetics of dexamethasone in a rat model of rheumatoid arthritis. Biopharm Drug Dispos 2008; 29:366-72. [PMID: 18613033 DOI: 10.1002/bdd.626] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dexamethasone (DEX) is often given for the treatment of rheumatoid arthritis and clinical dosing regimens of DEX have often been based empirically. This study tests whether the inflammation processes in a rat model of rheumatoid arthritis alters the clearance and volume of distribution of DEX when compared with healthy controls. Groups of healthy and arthritic male Lewis rats received either a low (0.225 mg/kg) or high (2.25 mg/kg) intramuscular dose of DEX. Arthritis was induced by intradermal injection of type II porcine collagen in incomplete Freund's adjuvant emulsion at the base of the tail. DEX was dosed in the arthritic animals 22 days post arthritis induction. Plasma DEX concentrations were determined by HPLC. Plasma concentration versus time data were analysed by non-compartmental analysis and pharmacokinetic model fitting using the population pharmacokinetic software NONMEM V. A linear bi-exponential pharmacokinetic model with extravascular input described the data for both healthy and arthritic animals. Clearance was the only parameter determined statistically different between both groups (healthy=1.05 l/h/kg, arthritic=1.19 l/h/kg). The steady-state volume of distribution for both groups was 4.85 l/kg. The slight difference in clearance was visibly undetectable and unlikely to produce meaningful changes in DEX disposition in arthritic rats.
Collapse
Affiliation(s)
- Justin C Earp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|
16
|
Yao Z, Dubois DC, Almon RR, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling of corticosterone suppression and lymphocytopenia by methylprednisolone in rats. J Pharm Sci 2008; 97:2820-32. [PMID: 17828751 PMCID: PMC3726057 DOI: 10.1002/jps.21167] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adrenal suppression and lymphocytopenia are commonly monitored pharmacological responses during systemic exposure to exogenously administered corticosteroids. The pharmacodynamics of plasma corticosterone (CS) and blood lymphocytes were investigated in 60 normal rats which received either 50 mg/kg methylprednisolone (MPL) or vehicle intramuscularly. Blood samples were collected between 0.5 and 96 h following treatment. Plasma CS displayed a transient suppression with re-establishment of a normal circadian rhythm 24 h following drug treatment. An indirect response model with suppression of production well captured plasma CS profiles. An early stress-induced rise in CS was also factored into the model. Blood lymphocyte numbers exhibited a sharp decline and then returned to a new circadian rhythm which was half of the original baseline level. An integrated pharmacodynamic (PD) model with inhibition of lymphocyte trafficking from tissue to blood by both MPL and CS and induction of cell apoptosis by MPL reasonably captured this lymphocytopenia. Rats and humans differ in lymphocyte responses with humans showing full recovery of baselines. Modeling provides a valuable tool in quantitative assessment of dual, complex drug responses.
Collapse
Affiliation(s)
- Zhenling Yao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260
| | - Debra C. Dubois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260
| |
Collapse
|
17
|
Almon RR, Yang E, Lai W, Androulakis IP, DuBois DC, Jusko WJ. Circadian variations in rat liver gene expression: relationships to drug actions. J Pharmacol Exp Ther 2008; 326:700-16. [PMID: 18562560 PMCID: PMC2561907 DOI: 10.1124/jpet.108.140186] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chronopharmacology is an important but under-explored aspect of therapeutics. Rhythmic variations in biological processes can influence drug action, including pharmacodynamic responses, due to circadian variations in the availability or functioning of drug targets. We hypothesized that global gene expression analysis can be useful in the identification of circadian-regulated genes involved in drug action. Circadian variations in gene expression in rat liver were explored using Affymetrix gene arrays. A rich time series involving animals analyzed at 18 time points within the 24-h cycle was generated. Of the more than 15,000 probe sets on these arrays, 265 exhibited oscillations with a 24-h frequency. Cluster analysis yielded five distinct circadian clusters, with approximately two thirds of the transcripts reaching maximal expression during the dark/active period of the animal. Of the 265 probe sets, 107 were identified as having potential therapeutic importance. The expression levels of clock genes were also investigated in this study. Five clock genes exhibited circadian variation in the liver, and data suggest that these genes may also be regulated by corticosteroids.
Collapse
Affiliation(s)
- Richard R Almon
- Department of Biological Sciences, 107 Hochstetter Hall, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Earp JC, Dubois DC, Molano DS, Pyszczynski NA, Keller CE, Almon RR, Jusko WJ. Modeling corticosteroid effects in a rat model of rheumatoid arthritis I: mechanistic disease progression model for the time course of collagen-induced arthritis in Lewis rats. J Pharmacol Exp Ther 2008; 326:532-45. [PMID: 18448865 PMCID: PMC2574807 DOI: 10.1124/jpet.108.137372] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A mechanism-based model was developed to describe the time course of arthritis progression in the rat. Arthritis was induced in male Lewis rats with type II porcine collagen into the base of the tail. Disease progression was monitored by paw swelling, bone mineral density (BMD), body weights, plasma corticosterone (CST) concentrations, and tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, IL-6, and glucocorticoid receptor (GR) mRNA expression in paw tissue. Bone mineral density was determined by PIXImus II dual energy X-ray densitometry. Plasma CST was assayed by high-performance liquid chromatography. Cytokine and GR mRNA were determined by quantitative real-time polymerase chain reaction. Disease progression models were constructed from transduction and indirect response models and applied using S-ADAPT software. A delay in the onset of increased paw TNF-alpha and IL-6 mRNA concentrations was successfully characterized by simple transduction. This rise was closely followed by an up-regulation of GR mRNA and CST concentrations. Paw swelling and body weight responses peaked approximately 21 days after induction, whereas bone mineral density changes were greatest at 23 days after induction. After peak response, the time course in IL-1beta, IL-6 mRNA, and paw edema slowly declined toward a disease steady state. Model parameters indicate TNF-alpha and IL-1beta mRNA most significantly induce paw edema, whereas IL-6 mRNA exerted the most influence on BMD. The model for bone mineral density captures rates of turnover of cancellous and cortical bone and the fraction of each in the different regions analyzed. This small systems model integrates and quantitates multiple factors contributing to arthritis in rats.
Collapse
Affiliation(s)
- Justin C Earp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Almon RR, Yang E, Lai W, Androulakis IP, Ghimbovschi S, Hoffman EP, Jusko WJ, Dubois DC. Relationships between circadian rhythms and modulation of gene expression by glucocorticoids in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1031-47. [PMID: 18667713 DOI: 10.1152/ajpregu.90399.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The existence and maintenance of biological rhythms linked to the 24-h light-dark cycle are essential to the health and functioning of an organism. Although much is known concerning central clock mechanisms, much less is known about control in peripheral tissues. In this study, circadian regulation of gene expression was examined in rat skeletal muscle. A rich time series involving 54 animals euthanized at 18 distinct time points within the 24-h cycle was performed, and mRNA expression in gastrocnemius muscles was examined using Affymetrix gene arrays. Data mining identified 109 genes that were expressed rhythmically, which could be grouped into eight distinct temporal clusters within the 24-h cycle. These genes were placed into 11 functional categories, which were examined within the context of temporal expression. Transcription factors involved in the regulation of central rhythms were examined, and eight were found to be rhythmically expressed in muscle. Because endogenous glucocorticoids are a major effector of circadian rhythms, genes identified here were compared with those identified in previous studies as glucocorticoid regulated. Of the 109 genes identified here as circadian rhythm regulated, only 55 were also glucocorticoid regulated. Examination of transcription factors involved in circadian control suggests that corticosterone may be the initiator of their rhythmic expression patterns in skeletal muscle.
Collapse
Affiliation(s)
- Richard R Almon
- Dept. of Biological Sciences, State Univ. of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yao Z, Hoffman EP, Ghimbovschi S, DuBois DC, Almon RR, Jusko WJ. Pharmacodynamic/pharmacogenomic modeling of insulin resistance genes in rat muscle after methylprednisolone treatment: exploring regulatory signaling cascades. GENE REGULATION AND SYSTEMS BIOLOGY 2008; 2:141-61. [PMID: 19787081 PMCID: PMC2733097 DOI: 10.4137/grsb.s613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Corticosteroids (CS) effects on insulin resistance related genes in rat skeletal muscle were studied. In our acute study, adrenalectomized (ADX) rats were given single doses of 50 mg/kg methylprednisolone (MPL) intravenously. In our chronic study, ADX rats were implanted with Alzet mini-pumps giving zero-order release rates of 0.3 mg/kg/h MPL and sacrificed at various times up to 7 days. Total RNA was extracted from gastrocnemius muscles and hybridized to Affymetrix GeneChips. Data mining and literature searches identified 6 insulin resistance related genes which exhibited complex regulatory pathways. Insulin receptor substrate-1 (IRS-1), uncoupling protein 3 (UCP3), pyruvate dehydrogenase kinase isoenzyme 4 (PDK4), fatty acid translocase (FAT) and glycerol-3-phosphate acyltransferase (GPAT) dynamic profiles were modeled with mutual effects by calculated nuclear drug-receptor complex (DR(N)) and transcription factors. The oscillatory feature of endothelin-1 (ET-1) expression was depicted by a negative feedback loop. These integrated models provide testable quantitative hypotheses for these regulatory cascades.
Collapse
Affiliation(s)
- Zhenling Yao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | | | | | |
Collapse
|
21
|
Goyal N, El Achchabi A, Goldberg E, Hochhaus G. Simultaneous Determination of Dexamethasone, Dexamethasone 21‐Acetate, and Paclitaxel in a Simulated Biological Matrix by RP‐HPLC: Assay Development and Validation. J LIQ CHROMATOGR R T 2008. [DOI: 10.1080/10826070802039515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Navin Goyal
- a Department of Pharmaceutics, College of Pharmacy , University of Florida , Gainesville, Florida, USA
| | - Amin El Achchabi
- b Department of Material Sciences, College of Engineering , University of Florida , Gainesville, Florida, USA
| | - Eugene Goldberg
- b Department of Material Sciences, College of Engineering , University of Florida , Gainesville, Florida, USA
| | - Guenther Hochhaus
- a Department of Pharmaceutics, College of Pharmacy , University of Florida , Gainesville, Florida, USA
| |
Collapse
|
22
|
Hazra A, DuBois DC, Almon RR, Snyder GH, Jusko WJ. Pharmacodynamic Modeling of Acute and Chronic Effects of Methylprednisolone on Hepatic Urea Cycle Genes in Rats. GENE REGULATION AND SYSTEMS BIOLOGY 2008. [DOI: 10.1177/117762500800200001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Corticosteroids (CS) regulate many enzymes at both mRNA and protein levels. This study used microarrays to broadly assess regulation of various genes related to the greater urea cycle and employs pharmacokinetic/pharmacodynamic (PK/PD) modeling to quantitatively analyze and compare the temporal profiles of these genes during acute and chronic exposure to methylprednisolone (MPL). One group of adrenalectomized male Wistar rats received an intravenous bolus dose (50 mg/kg) of MPL, whereas a second group received MPL by a subcutaneous infusion (Alzet osmotic pumps) at a rate of 0.3 mg/kg/hr for seven days. The rats were sacrificed at various time points over 72 hours (acute) or 168 hours (chronic) and livers were harvested. Total RNA was extracted and Affymetrix® gene chips (RGU34A for acute and RAE 230A for chronic) were used to identify genes regulated by CS. Besides five primary urea cycle enzymes, many other genes related to the urea cycle showed substantial changes in mRNA expression. Some genes that were simply up- or down-regulated after acute MPL showed complex biphasic patterns upon chronic infusion indicating involvement of secondary regulation. For the simplest patterns, indirect response models were used to describe the nuclear steroid-bound receptor mediated increase or decrease in gene transcription (e.g. tyrosine aminotransferase, glucocorticoid receptor). For the biphasic profiles, involvement of a secondary biosignal was assumed (e.g. ornithine decarboxylase, CCAAT/enhancer binding protein) and more complex models were derived. Microarrays were used successfully to explore CS effects on various urea cycle enzyme genes. PD models presented in this report describe testable hypotheses regarding molecular mechanisms and quantitatively characterize the direct or indirect regulation of various genes by CS.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences
- Clinical Pharmacology (Infectious Diseases), Pfizer Inc, New London, CT 06380, U.S.A
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences
- Department of Biological Sciences, University at Buffalo, NY 14260
| | - Richard R. Almon
- Department of Pharmaceutical Sciences
- Department of Biological Sciences, University at Buffalo, NY 14260
| | | | | |
Collapse
|
23
|
Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetics of methylprednisolone after intravenous and intramuscular administration in rats. Biopharm Drug Dispos 2007; 28:263-73. [PMID: 17569107 PMCID: PMC4181331 DOI: 10.1002/bdd.551] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Methylprednisolone (MPL) pharmacokinetics was examined in adrenalectomized (ADX) and normal rats to assess the feasibility of intramuscular (i.m.) dosing for use in pharmacodynamic studies. Several study phases were pursued. Parallel group studies were performed in normal and ADX rats given 50 mg/kg MPL (i.v. or i.m.) and blood samples were collected up to 6 h. Data from studies where normal rats were dosed with 50 mg/kg MPL i.m. and killed over either 6 or 96 h were combined to determine muscle site and plasma MPL concentrations. Lastly, ADX rats were dosed with 50 mg/kg MPL i.m. and killed over 18 h to assess hepatic tyrosine aminotransferase (TAT) dynamics. MPL exhibited bi-exponential kinetics after i.v. dosing with a terminal slope of 2.1 h(-1). The i.m. drug was absorbed slowly with two first-order absorption rate constants, 1.26 and 0.219 h(-1) indicating flip-flop kinetics with overall 50% bioavailability. The kinetics of MPL at the injection site exhibited slow, dual absorption rates. Although i.m. MPL showed lower bioavailability compared with other corticosteroids in rats, TAT dynamics revealed similar i.m. and i.v. response profiles. The more convenient intramuscular dosing can replace the i.v. route without causing marked differences in pharmacodynamics.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Nancy Pyszczynski
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, University at Buffalo, State University of NY, Buffalo, NY 14260, USA
- Correspondence to: 565 Hochstetter Hall, Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
24
|
Hazra A, Pyszczynski NA, DuBois DC, Almon RR, Jusko WJ. Modeling of corticosteroid effects on hepatic low-density lipoprotein receptors and plasma lipid dynamics in rats. Pharm Res 2007; 25:769-80. [PMID: 17674160 PMCID: PMC4196440 DOI: 10.1007/s11095-007-9371-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/04/2007] [Indexed: 02/07/2023]
Abstract
PURPOSE This study examines methylprednisolone (MPL) effects on the dynamics of hepatic low-density lipoprotein receptor (LDLR) mRNA and plasma lipids associated with increased risks for atherosclerosis. MATERIALS AND METHODS Normal male Wistar rats were given 50 mg/kg MPL intramuscularly (IM) and sacrificed at various times. Measurements included plasma MPL and CST, hepatic glucocorticoid receptor (GR) mRNA, cytosolic GR density and hepatic LDLR mRNA, and plasma total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), high density lipoprotein cholesterol (HDLC), and triglycerides (TG). RESULTS MPL showed bi-exponential disposition with two first-order absorption components. Hepatic GR and LDLR mRNA exhibited circadian patterns which were disrupted by MPL. Down-regulation in GR mRNA (40-50%) was followed by a delayed rebound phase. LDLR mRNA exhibited transient down-regulation (60-70%). Cytosolic GR density was significantly suppressed but returned to baseline by 72 h. Plasma TC and LDLC showed increases (55 and 142%) at 12 h. A mechanistic receptor/gene pharmacokinetic/pharmacodynamic model was developed to describe CS effects on hepatic LDLR mRNA and plasma cholesterols. CONCLUSIONS Our PK/PD model was able to satisfactorily capture the MPL effects on hepatic LDLR, its relationship to various plasma cholesterols, and builds the foundation to explore this area in the future.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, 565 Hochstetter Hall, State University of New York at Buffalo, Buffalo, New York, 14260, USA
| | | | | | | | | |
Collapse
|
25
|
Hazra A, Pyszczynski N, DuBois DC, Almon RR, Jusko WJ. Modeling receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase dynamics in rats: dual regulation by endogenous and exogenous corticosteroids. J Pharmacokinet Pharmacodyn 2007; 34:643-67. [PMID: 17593325 PMCID: PMC4180077 DOI: 10.1007/s10928-007-9063-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Receptor/gene-mediated effects of corticosteroids on hepatic tyrosine aminotransferase (TAT) were evaluated in normal rats. A group of normal male Wistar rats were injected with 50 mg/kg methylprednisolone (MPL) intramuscularly at the nadir of their plasma corticosterone (CST) rhythm (early light cycle) and sacrificed at various time points up to 96 h post-treatment. Blood and livers were collected to measure plasma MPL, CST, hepatic glucocorticoid receptor (GR) mRNA, cytosolic GR density, TAT mRNA, and TAT activity. The pharmacokinetics of MPL showed bi-exponential disposition with two first-order absorption components from the injection site and bioavailability was 21%. Plasma CST was reduced after MPL dosing, but resumed its daily circadian pattern within 36 h. Cytosolic receptor density was significantly suppressed (90%) and returned to baseline by 72 h resuming its biphasic pattern. Hepatic GR mRNA follows a circadian pattern which was disrupted by MPL and did not return during the study. MPL caused significant down-regulation (50%) in GR mRNA which was followed by a delayed rebound phase (60-70 h). Hepatic TAT mRNA and activity showed up-regulation as a consequence of MPL, and returned to their circadian baseline within 72 and 24 h of treatment. A mechanistic receptor/gene-mediated pharmacokinetic/pharmacodynamic model was able to satisfactorily describe the complex interplay of exogenous and endogenous corticosteroid effects on hepatic GR mRNA, cytosolic free GR, TAT mRNA, and TAT activity in normal rats.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Clinical Pharmacology, Pfizer Inc., Groton, CT 06340, USA
| | - Nancy Pyszczynski
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| |
Collapse
|
26
|
Hazra A, DuBois DC, Almon RR, Jusko WJ. Assessing the dynamics of nuclear glucocorticoid-receptor complex: adding flexibility to gene expression modeling. J Pharmacokinet Pharmacodyn 2007; 34:333-54. [PMID: 17285360 PMCID: PMC4184272 DOI: 10.1007/s10928-007-9049-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 01/02/2007] [Indexed: 10/23/2022]
Abstract
A retrospective analysis was performed to modify our fourth-generation pharmacodynamic model for glucocorticoid receptor (GR) dynamics with incorporation of more physiological features. This modified model was developed by integrating previously reported free cytosolic GR and GR mRNA data following single (10, 50 mg/kg) and dual (50 mg/kg at 0 and 24 hr) intravenous doses of methylprednisolone (MPL) in adrenalectomized (ADX) male Wistar rats with several in vitro studies describing real-time kinetics of the transfer of rat steroid-receptor complex from the cell cytosol to the nucleus. Additionally, free hepatic cytosolic GR and its mRNA data from a chronic infusion dosing study of MPL (0.1 and 0.3 mg/kg/hr) in male ADX Wistar rats were used to verify the predictability of the model. Incorporation of information regarding in vitro receptor kinetics allowed us to describe the receptor-mediated pharmacogenomic effects of MPL for a larger variety of genes in rat liver from microarray studies. These included early responsive gene like CCAAT/enhancer binding protein-beta (CEBP-beta), a transcription factor, as well as the later responsive gene for tyrosine aminotransferase (TAT), a classical biomarker of glucocorticoid (GC) genomic effects. This more mechanistic model of GR dynamics can be applied to characterize profiles for a greater number of genes in liver.
Collapse
Affiliation(s)
- Anasuya Hazra
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, NY 14260, USA
| |
Collapse
|
27
|
Yao Z, DuBois DC, Almon RR, Jusko WJ. Modeling circadian rhythms of glucocorticoid receptor and glutamine synthetase expression in rat skeletal muscle. Pharm Res 2006; 23:670-9. [PMID: 16673181 PMCID: PMC4178542 DOI: 10.1007/s11095-005-9608-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE The circadian rhythm of endogenous corticosterone (CS) may produce fluctuations of downstream gene expression in normal rats. This study examined changes in glucocorticoid receptor (GR) and glutamine synthetase (GS) expression in rat skeletal muscle in relation to plasma CS over a 24-h period. METHODS Fifty-four normal male Wistar rats were sacrificed at 18 time points (n = 3) over 24 h. Plasma CS concentrations and gastrocnemius muscle GR and GS mRNA and GS activity were measured. RESULTS The circadian rhythm of plasma CS was captured by a two-harmonic function. The expression of GR and GS mRNA and GS activity follow a circadian rhythm in normal rat skeletal muscle. GR mRNA reaches a trough at 4 h after the peak of plasma CS and it fluctuates between 0.55 and 0.9 fmol g tissue(-1). GS mRNA and activity reach peaks at 6 and 12 h after the endogenous CS peak. GS mRNA oscillates between 3 and 6 fmol g tissue(-1), whereas GS activity fluctuates between 17 and 23 micromol min(-1) g protein(-1). Mechanistic receptor/gene-mediated pharmacodynamic models were applied to describe the temporal patterns of GR mRNA, GS mRNA, and GS activity within the circadian cycle. CONCLUSIONS The integrated models were able to capture the circadian expression patterns of plasma CS, and GR and GS in normal rat skeletal muscle showing a dependence of tissue gene expression on plasma CS.
Collapse
Affiliation(s)
- Zhenling Yao
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, New York 14260, USA
| | - Debra C. DuBois
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, New York 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - Richard R. Almon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, New York 14260, USA
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York 14260, USA
| | - William J. Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, New York 14260, USA
- To whom correspondence should be addressed. ()
| |
Collapse
|
28
|
Samtani MN, Jusko WJ. Comparison of dexamethasone pharmacokinetics in female rats after intravenous and intramuscular administration. Biopharm Drug Dispos 2005; 26:85-91. [PMID: 15654687 PMCID: PMC4178533 DOI: 10.1002/bdd.435] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study seeks a route of drug administration that would produce a pharmacokinetic profile for dexamethasone not significantly different from the intravenous route in female rats and would offer reproducible drug input with minimal stress to the animals. The intramuscular (i.m.) route of drug administration vs intravenous (i.v.) injection were compared in three female Wistar rats administered 1 mg/kg dexamethasone phosphate. Dexamethasone plasma concentrations were measured by a normal phase HPLC assay for 12 h after drug administration. Dexamethasone exhibited monoexponential behavior after intravenous dosing and was absorbed rapidly after intramuscular dosing (absorption half-life of 14 min) with 86% bioavailability. Dexamethasone had a terminal half-life of 2.3 h after drug administration by either route. The volume of distribution of 0.78 l/kg and the clearance of 0.23 l/h/kg are in good agreement with reported pharmacokinetic parameters in male rats. Intravenous dosing can be replaced by intramuscular dosing without causing any marked difference in dexamethasone pharmacokinetics.
Collapse
Affiliation(s)
| | - William J. Jusko
- Correspondence to: Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, 565 Hochstetter Hall, Buffalo, New York 14260, USA.
| |
Collapse
|
29
|
Jin JY, DuBois DC, Almon RR, Jusko WJ. Receptor/gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J Pharmacol Exp Ther 2004; 309:328-39. [PMID: 14722324 DOI: 10.1124/jpet.103.061515] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is the rate-limiting enzyme for gluconeogenesis. To investigate underlying mechanisms of corticosteroid (CS) action in regulating glucose, temporal patterns of hepatic PEPCK gene expression, enzyme activity, and cAMP content were examined in adrenalectomized rats receiving acute and chronic methylprednisolone (MPL) treatments. After single MPL intravenous doses, PEPCK mRNA showed a fast increase, reaching a maximum at around 0.75 h, which was followed by an immediate decline to below baseline after 4 h, an apparent acute tolerance/rebound phenomenon. However, PEPCK enzyme showed continuous hyperactivity for over 72 h. This may be the result of generation of cAMP, an important inducer of PEPCK activity, which peaked at around 6 h. During 7-day subcutaneous infusion of MPL, PEPCK mRNA showed profiles consistent with single-dose results, whereas PEPCK activity increased to a comparable maximum followed by a slow decline. However, the extent of cAMP induction was markedly higher during infusion, which could be attributed to amplification of cAMP synthesis and/or a stabilizing effect of MPL on cAMP degradation. A pharmacokinetic/pharmacodynamic model was developed based on receptor/gene mechanisms of CS action. It successfully described the dual effects of MPL on regulating PEPCK message and the post-transcriptional control by cAMP. Our results exemplify the importance of the extent and duration of steroid exposure in mediating pharmacological effects. The model provides quantitation of multiple controlling factors regulating PEPCK and presents insights into its function in glucose metabolism.
Collapse
Affiliation(s)
- Jin Y Jin
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | | | | | | |
Collapse
|
30
|
Tamvakopoulos CS, Neugebauer JM, Donnelly M, Griffin PR. Analysis of betamethasone in rat plasma using automated solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry. Determination of plasma concentrations in rat following oral and intravenous administration. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 776:161-8. [PMID: 12137997 DOI: 10.1016/s1570-0232(02)00271-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A method is described for the determination of betamethasone in rat plasma by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The analyte was recovered from plasma by solid-phase extraction and subsequently analyzed by LC-MS-MS. A Packard Multiprobe II, an automated liquid handling system, was employed for the preparation and extraction of a 96-well plate containing unknown plasma samples, standards and quality control samples in an automated fashion. Prednisolone, a structurally related steroid, was used as an internal standard. Using the described approach, a limit of quantitation of 2 ng/ml was achieved with a 50 microl aliquot of rat plasma. The described level of sensitivity allowed the determination of betamethasone concentrations and subsequent measurement of kinetic parameters of betamethasone in rat. Combination of automated plasma extraction and the sensitivity and selectivity of LC-MS-MS offers a valuable alternative to the methodologies currently used for the quantitation of steroids in biological fluids.
Collapse
|
31
|
Zuideveld KP, van Gestel A, Peletier LA, Van der Graaf PH, Danhof M. Pharmacokinetic-pharmacodynamic modelling of the hypothermic and corticosterone effects of the 5-HT1A receptor agonist flesinoxan. Eur J Pharmacol 2002; 445:43-54. [PMID: 12065193 DOI: 10.1016/s0014-2999(02)01665-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The current investigation describes the pharmacokinetic-pharmacodynamic correlation of the hypothermic and the corticosterone effect of flesinoxan in the rat simultaneously. A specific objective was to determine the influence of handling the animal. The pharmacokinetic-pharmacodynamic correlation was determined following intravenous administration of 3 and 10 mg/kg flesinoxan in 5 or 15 min. Serial blood samples were obtained for determination of the time course of the flesinoxan and corticosterone concentrations by high performance liquid chromatography. Body temperature was monitored using a telemetric probe. The pharmacokinetics of flesinoxan were described using a three-compartment model. Both the hypothermic and the corticosterone response were successfully described using a physiological indirect response model. It is shown that customizing the animal prior to the experiment has no influence on the pharmacokinetic-pharmacodynamic parameter estimates. Furthermore, the similarity in potency between the hypothermic and corticosterone effects suggests that both are mediated via tissues with a similar receptor-effector coupling efficiency.
Collapse
Affiliation(s)
- Klaas P Zuideveld
- Division of Pharmacology, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratory, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
32
|
Zhang X, Mehvar R. Dextran-methylprednisolone succinate as a prodrug of methylprednisolone: plasma and tissue disposition. J Pharm Sci 2001; 90:2078-87. [PMID: 11745766 DOI: 10.1002/jps.1158] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Plasma and tissue disposition of a macromolecular prodrug of methylprednisolone (MP), dextran (70 kDa)-methylprednisolone succinate (DMP), was studied in rats. Single 5-mg/kg doses of DMP or unconjugated MP were administered into the tail veins of different groups of rats (n = 4/group/time point). Blood (cardiac puncture) and tissues (liver, spleen, kidney, heart, lung, thymus, and brain) were collected at various times after DMP (0-96 h) or MP (0-2 h) injections. Concentrations of DMP and MP in samples were analyzed by size-exclusion chromatography (SEC) and reversed-phase high-performance liquid chromatography (HPLC), respectively. Conjugation of MP with 70-kDa dextran resulted in 22-, 300-, and 30-fold decreases in the steady-state volume of distribution, clearance, and terminal plasma rate constant of the steroid, respectively. As for tissue distribution, the conjugate delivered the steroid primarily to the spleen and liver as indicated by 19- and 3-fold increases, respectively, in the tissue/plasma area under the curve (AUC) ratios of the steroid. On the other hand, the tissue/plasma AUC ratios of the prodrug in other organs were negligible. Active MP was released from DMP slowly in the spleen and liver, and AUCs of the regenerated MP in these tissues were 55- and 4.8-fold, respectively, higher than those after the administration of the parent drug. In contrast, no parent drug was detected in the plasma of DMP-injected rats. These results indicate that DMP may be useful for the targeted delivery of MP to the spleen and liver where the active drug is slowly released.
Collapse
Affiliation(s)
- X Zhang
- School of Pharmacy, Texas Tech University Health Science Center, 1300 Coulter, Amarillo, Texas 79106, USA
| | | |
Collapse
|
33
|
Mehvar R, Dann RO, Hoganson DA. Simultaneous analysis of methylprednisolone, methylprednisolone succinate, and endogenous corticosterone in rat plasma. J Pharm Biomed Anal 2000; 22:1015-22. [PMID: 10857570 DOI: 10.1016/s0731-7085(00)00253-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A reversed-phase HPLC method is reported for simultaneous quantitation of methylprednisolone (MP), MP succinate (MPS), and endogenous corticosterone (CST) in plasma of rats. Additionally, the 11-keto metabolite of MP (methylprednisone, MPN) is resolved from the other analytes. After addition of internal standard (triamcinolone acetonide: IS) and an initial clean up step, the analytes of interest are extracted into methylene chloride. The steroids are then resolved on a reversed-phase polymer column using a mobile phase of 0.1 M acetate buffer (pH 5.7): acetonitrile (77:23) which is pumped at a flow rate of 1.5 ml min-1. Sample detection was accomplished using an UV detector at a wavelength of 250 nm. All the five components (MPS, MP, MPN, CST and IS) were baseline resolved from each other and other components of plasma. Linear relationships were found between the steroids: IS peak area ratios and plasma concentrations in the range of 0.1-4 mircog ml-1 for MP and MPS and 0.1-1.0 microg ml-1 for MPN and CST. The assay is accurate as intra- and inter-run error values were < +/- 8% for all the components. Further, the intra- and inter-run CVs of the assay were < 16% at all the concentrations and for all the components. The application of the assay was demonstrated after the injection of a single 5 mg kg-1 (MP equivalent) dose of MPS or a macromolecular prodrug of MP to rats.
Collapse
Affiliation(s)
- R Mehvar
- School of Pharmacy, Texas Tech University Health Sciences Center, Anmarillo 79106, USA.
| | | | | |
Collapse
|
34
|
Vendeira P, Neves D, Magalhães MM, Magalhães MC. Modulation of autotransplanted adrenal gland by endothelin-1: a morphological and biochemical study. Anat Rec (Hoboken) 1996; 246:98-106. [PMID: 8876828 DOI: 10.1002/(sici)1097-0185(199609)246:1<98::aid-ar11>3.0.co;2-#] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Adrenal gland autotransplantation, a model of cortical tissue regeneration, provides the reconstruction of distinct functional and morphological zonae. A morphological and biochemical study of the adrenal gland of adult male rats after autotransplantation and endothelin-1 (ET-1) administration was made. METHODS The technique involved bilateral adrenalectomy and placement of pieces of the adrenal gland in a dorsal plane between the skin and muscle. The animals were killed 90 days after the autotransplantation and 1 hr after intravenous ET-1 administration (0.5 microgram/kg body weight). The autotransplanted pieces were removed, fixed, and processed for light and electron microscopic morphologic studies. Trunk blood was collected for steroid assay. RESULTS Saline-treated control autotransplanted animals showed no remarkable differences in adrenal organization; grafts exhibiting a mass of regenerated cortical tissue were arranged in nests of glandular cells surrounded by a fibrous capsule and intersected by layers of connective tissue. The adrenal medulla was systematically absent. Ultrastructure of ET-1-treated animals revealed an inner area in the graft, consisting mainly of fasciculatalike cells. Cytoplasmic changes were evident, with high variations in mitochondrial size and arrangement. Profiles of smooth endoplasmic reticulum sometimes exhibited evidence of hypertrophy. Glandular cells in the graft outer area (subcapsular) were almost invariably like glomerulosa; however, some of them showed mitochondria with a peculiar arrangement of the cristae. "Hybrid" cells with mitochondria resembling those of the zona reticularis were also observed in the subcapsular environment. ET-1-stimulated animals showed significant increases in plasma corticosterone and aldosterone concentrations. CONCLUSIONS Endothelin-1, previously reported to stimulate acutely the aldosterone secretion by the adrenal zona glomerulosa in the rat, seems to exert a modulator role on the physiology of adrenal autotransplants, their regeneration and secretion.
Collapse
Affiliation(s)
- P Vendeira
- Department of Histology and Embryology, Faculty of Medicine, University of Oporto, Porto, Portugal
| | | | | | | |
Collapse
|
35
|
Rosenberg LJ, Jordan RS, Gross GW, Emery DG, Lucas JH. Effects of methylprednisolone on lesioned and uninjured mammalian spinal neurons: viability, ultrastructure, and network electrophysiology. J Neurotrauma 1996; 13:417-37. [PMID: 8880607 DOI: 10.1089/neu.1996.13.417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An in vitro investigation was undertaken to provide information regarding the effectiveness of methylprednisolone sodium succinate (MPSS) as a treatment for the primary mechanical injury of spinal cord (SC) trauma. Exposure of uninjured mouse SC cells to MPSS for 24 h caused neuronal stress when the concentration exceeded 150 micrograms/mL; neuronal death occurred at concentrations above 600 micrograms/mL. The concentration range for MPSS protection of SC neurons subjected to a defined physical injury (laser microbeam transection of a primary dendrite 100 microns from the perikaryon) was very narrow: survival in the 30 micrograms/mL group differed significantly from the untreated control group (68.5% +/- 14.1 vs. 47.1% +/- 14.1), treatment with 20 or 60 micrograms/mL MPSS did not increase survival, and treatment with 100 micrograms/mL MPSS accelerated ultrastructural deterioration and increased the likelihood of death. Enhanced survival of lesioned neurons was observed when 30 micrograms/mL MPSS was applied within 15 min of dendrotomy but not when MPSS was administered 2 h after lesioning. Multimicroelectrode plate (MMEP) studies of SC network electrical activity indicated that MPSS associated readily with neuronal membranes. This finding was consistent with the hypothesis that MPSS may protect lesioned neurons by stabilizing damaged membranes, enhancing lesion resealing, and limiting the spread of ion-mediated damage. However, comparisons of neurite die-back 24 h after dendrotomy found no significant difference between MPSS-treated and control neurons. Application of 30 or 100 micrograms/mL MPSS increased the spontaneous burst activity of SC networks grown on MMEPs, however, there was no evidence that the increased excitability at these concentrations was the result of specific actions of MPSS on GABA or NMDA synapses.
Collapse
Affiliation(s)
- L J Rosenberg
- Department of Physiology, Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
36
|
Mishina EV, Jusko WJ. Liposomal methylprednisolone in rats: dose-proportionality and chronic-dose pharmacokinetics/pharmacodynamics. Pharm Res 1996; 13:141-5. [PMID: 8668664 DOI: 10.1023/a:1016054022750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Methylprednisolone (MPL) encapsulated in liposomes (L-MPL) targets the immune system and enhances immunosuppressive activity of the steroid. We performed dose-dependent and chronic dose studies of L-MPL versus MPL. METHODS Male Lewis rats received 10 mg/kg i.v. bolus doses of L-MPL (Solu-Medrol). Plasma samples were obtained over an 8 day period and MPL concentrations were assayed by HPLC. Immunosuppressive effects were measured as inhibition of ex vivo splenocyte proliferation induced with PHA. RESULTS Drug concentrations declined in a similar manner over the first few hours following MPL or L-MPL. Free MPL was cleared from plasma by 6 hr, while the same dose of L-MPL resulted in persistence over an 8-day period. Dose-dependent changes in pharmacokinetic parameters were observed for both free and liposomal drug. Increasing the dose from 2 to 10 mg/kg led to increased clearance from 5.9 to 10.5 (MPL) and from 1.8 to 2.3 L/hr/kg (L-MPL). Blastogenesis was suppressed over 5 days with return to the baseline at day 8 (L-MPL); free MPL produced immunosuppression only over 10 hr. Multiple 2 mg/kg i.v. doses of L-MPL versus MPL twice a week produce plasma drug profiles similar to those obtained after single doses, indicating that neither free nor liposomal steroid accumulates in tissues. Liposomes without drug simultaneously administered with MPL caused partial prolongation of plasma steroid half-life (8.4 hr). CONCLUSIONS These studies clarify factors causing prolonged drug persistence and immunosuppression with L-MPL. Nonlinear disposition, irregular pharmacokinetics, and secondary effects of the liposomes are complicating factors in use of L-MPL.
Collapse
Affiliation(s)
- E V Mishina
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo 14260, USA
| | | |
Collapse
|
37
|
Ko HC, Almon RR, Jusko WJ. Effect of corticosteroid binding globulin on the pharmacokinetics of prednisolone in rats. Pharm Res 1995; 12:902-4. [PMID: 7667198 DOI: 10.1023/a:1016225423795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE The effect of exogenous corticosteroid binding globulin (CBG) on the pharmacokinetics of intravenous prednisolone was determined in rats to test the "free hormone hypothesis." METHODS A dose of CBG to yield 95% binding with 1000 ng/ml of prednisolone in vitro in rat plasma or saline was administered before dosing 2 mg/kg of prednisolone hemisuccinate or methylprednisolone intravenously. Drug concentrations in plasma samples were assayed by HPLC. RESULTS Single administration of CBG decreased apparent prednisolone clearance by 56% (155 to 66 ml/min/kg) and reduced apparent VSS by 35% (4.1 to 2.7 L/kg) (p < 0.001). Methylprednisolone pharmacokinetics, studied as a negative control because the drug does not bind to CBG, did not change. CONCLUSIONS The corticosteroid bound to CBG does not appear to be available for removal by clearance organs.
Collapse
Affiliation(s)
- H C Ko
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo, New York 14260, USA
| | | | | |
Collapse
|
38
|
Wong YN, Chien BM, D'mello AP. Analysis of corticosterone in rat plasma by high-performance liquid chromatography. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 661:211-8. [PMID: 7894660 DOI: 10.1016/0378-4347(94)00346-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A sensitive and specific high-performance liquid chromatographic assay for the determination of corticosterone in rat plasma using dexamethasone as the internal standard is reported. Rat plasma (0.5 ml) is extracted with methylene chloride, washed with 0.1 M sodium hydroxide and then with water. The extract is analyzed by HPLC on a C18 column with ultraviolet absorbance detection at 254 nm. Pooled rat plasma was treated with activated decolorizing carbon to remove endogenous corticosterone, and was then used to prepare standards for the assay. Using 0.5 ml plasma for extraction, the detection limit of the assay is 10 ng/ml. The standard curve is linear over the concentration range 10-500 ng/ml. The recovery of corticosterone after extraction was independent of concentration and ranged from 87 to 95%. The coefficient of variation for intra-day and inter-day precision ranged from 2.4 to 7.4% and 2.1 to 8.7%, respectively. In addition, for concentrations ranging from 10 to 500 ng/ml the accuracy is within 5% of the spiked standards. The assay was utilized to examine the circadian rhythm of plasma corticosterone, and to examine the effect of immobilization stress on corticosterone levels in rats.
Collapse
Affiliation(s)
- Y N Wong
- Department of Pharmaceutics, Philadelphia College of Pharmacy and Science, PA 19104
| | | | | |
Collapse
|
39
|
Jusko WJ, Pyszczynski NA, Bushway MS, D'Ambrosio R, Mis SM. Fifteen years of operation of a high-performance liquid chromatographic assay for prednisolone, cortisol and prednisone in plasma. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1994; 658:47-54. [PMID: 7952131 DOI: 10.1016/0378-4347(94)00218-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A high-performance liquid chromatographic (HPLC) assay first described in 1979 has been modified and revalidated for the simultaneous determination of prednisone, cortisol and prednisolone in human plasma using betamethasone as an internal standard. Revisions include: mobile phase composition; use of a precolumn, automated injector, integrator, and computer software; improved sensitivity and quantitation; thorough investigation of stability, variation, and specimen type; and inclusion of suggested quality control criteria. Plasma-based drug standards are extracted with methylene chloride and washed with sodium hydroxide followed by a water wash. After evaporation of solvent and reconstitution with mobile phase, the extracts are then injected onto a silica gel column (Zorbax SIL) for chromatography with UV absorbance at 254 nm. Calculated limits of quantitation are 10 ng/ml and limits of detection are less than 5 ng/ml. Intra- and inter-day coefficients of variation for quality control samples for all three corticosteroids are less than 11.2%. Recovery and stability data are also provided. Several drugs that may be coadministered do not interfere with the analysis.
Collapse
Affiliation(s)
- W J Jusko
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo 14260
| | | | | | | | | |
Collapse
|
40
|
Mishina EV, Jusko WJ. Inhibition of rat splenocyte proliferation with methylprednisolone: in vivo effect of liposomal formulation. Pharm Res 1994; 11:848-54. [PMID: 7937524 DOI: 10.1023/a:1018929824798] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of a liposomal formulation of methylprednisolone (MPL) on the inhibition of lymphocyte proliferation in spleen cells was investigated following IV dosing in rats. Liposomes do not alter the suppressive action of MPL when placed in lymphocyte culture. Rat splenocytes were found to have greater sensitivity to MPL (EC50 = 7.9 nM) than do human peripheral blood lymphocytes (EC50 = 28 nM). In vivo studies in rats utilized 2 mg/kg IV bolus doses of liposomal MPL compared to drug in solution. Animals were sacrificed at various times post-dosing until 120 h, spleen was excised and, after incubation of lymphocytes with PHA, splenocyte blastogenic responses were assessed by measuring cellular incorporation of 3H-thymidine. The suppressive effect of liposomal MPL in comparison with free drug was significantly prolonged (> 120 h vs < 18 h). Inhibition effects versus time were described by a pharmacodynamic model using MPL concentrations in plasma as an input function. A nonlinear relationship was found between suppression of splenocyte proliferation and the concentration of bound glucocorticoid receptors in spleen. Only partial receptor occupancy accompanied complete lymphocyte suppression. The suppression of endogenous corticosterone in plasma for both treatments was similar with values from L-MPL rats returning to baseline after 24 h. These results demonstrate enhanced efficacy of local immunosuppression by targeting spleen with liposomal MPL.
Collapse
Affiliation(s)
- E V Mishina
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo 14260
| | | |
Collapse
|
41
|
Affiliation(s)
- H Cheng
- Department of Drug Metabolism, Merck Research Laboratories, West Point, PA 19486
| | | |
Collapse
|
42
|
Mishina EV, Straubinger RM, Pyszczynski NA, Jusko WJ. Enhancement of tissue delivery and receptor occupancy of methylprednisolone in rats by a liposomal formulation. Pharm Res 1993; 10:1402-10. [PMID: 8272400 DOI: 10.1023/a:1018954704886] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A liposomal formulation of methylprednisolone (L-MPL) was developed to improve localization of this immunosuppressant in lymphatic tissues. Liposomes containing MPL were formulated from a mixture of phosphatydylcholine and phosphatydylglycerol (molar ratio, 9:1) and sized by extrusion through a 0.1-micron membrane. Male Sprague-Dawley rats received a bolus dose of 2 mg/kg of L-MPL or free MPL in solution (control). Samples of blood, spleen, liver, thymus, and bone marrow were collected at intervals over a 66-hr period. Concentrations of MPL in plasma and organs and free cytosolic glucocorticoid receptors (GCR) in spleen and liver were determined. The plasma MPL profiles for free and L-MPL were bi- and triexponential. Although the alpha phase kinetics of both dosage forms were similar, L-MPL showed a substantially slower elimination phase than did free drug. Incorporation of MPL into liposomes caused the following increases: terminal half-life, from 0.48 (MPL) to 30.13 hr (L-MPL); MRT, from 0.42 to 11.95 hr, Vss, from 2.10 to 21.87 L/kg; and AUC, from 339 to 1093 ng x hr/mL. Uptake of liposomes enhanced significantly the delivery of drug to lymphatic tissues and liver; AUC tissue:plasma ratios for spleen increased 77-fold; for liver, 9-fold; and for thymus, 27-fold. The duration of GCR occupancy was extended 10-fold in spleen and 13-fold in liver by the liposomal formulation. Lymphatic tissue selectivity and extended receptor binding of liposome-delivered MPL offer promise for enhanced immunosuppression.
Collapse
Affiliation(s)
- E V Mishina
- Department of Pharmaceutics, School of Pharmacy, State University of New York at Buffalo 14260
| | | | | | | |
Collapse
|
43
|
Rosenberg-Schaffer LJ, Lucas JH. An in vitro study of the effects of methylprednisolone on lesioned and uninjured mammalian spinal neurons. Brain Res 1993; 605:327-31. [PMID: 8481783 DOI: 10.1016/0006-8993(93)91760-p] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cultured spinal neurons were subjected to dendrite amputation 100 microns from the perikaryon and treated with methylprednisolone (MP). Survival was significantly increased by 30 micrograms/ml MP but not by 10, 20 or 60 micrograms/ml. Survival was reduced by 100 micrograms/ml MP. These results suggest: (1) MP protects neurons subjected to physical trauma, and (2) the effective dose range is very narrow. These findings may have implications for MP's observed bimodal effects in spinal cord injury.
Collapse
|
44
|
Haughey DB, Jusko WJ. Receptor-mediated methylprednisolone pharmacodynamics in rats: Steroid-induced receptor down-regulation. ACTA ACUST UNITED AC 1992; 20:333-55. [PMID: 1362219 DOI: 10.1007/bf01062462] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several approaches to receptor down-regulation were examined to extend previous receptor/gene-mediated pharmacokinetic/dynamic models of corticosteroids. Down-regulation of the glucocorticoid receptor was considered as an instantaneous event or as a gradual steroid-receptor-mediated process. Concentrations of plasma methylprednisolone, free hepatic cytosolic receptors, and the activity of hepatic tyrosine aminotransferase (TAT) enzyme were measured for 16 hr following administration of 0, 10, and 50 mg/kg methylprednisolone sodium succinate to 93 adrenalectomized rats. Receptor down-regulation was best described by a fractional decrement in the rate of return of free cytosolic glucocorticoid receptor. Predicted values for free receptor, bound receptor, nuclear bound receptor, and transfer compartments were in accord with the expected rank order values based on the high and low steroid doses. Model parameter estimates were independent of dose and described the rapid depletion of free cytosolic receptor, late-phase return of cytosolic receptor to a new baseline level that was 20-40% lower than control, and the TAT induction/dissipation pattern following steroid dosing. The microscopic association and dissociation constants describing the steroid-receptor interaction were 0.23 L/nmole per hr (k(on)) and 4.74 hr-1 (k(off)) for methylprednisolone compared to previously obtained values of 0.20 L/nmole per hr and 15.7 hr-1 for the related steroid prednisolone. The time course of TAT induction was similar to that observed previously for prednisolone. Efficiency of TAT induction was more closely related to steroid receptor occupancy than plasma methylprednisolone concentrations due to receptor saturability and receptor recycling.
Collapse
Affiliation(s)
- D B Haughey
- Department of Pharmaceutics, School of Pharmacy, State University of New York, Buffalo 14260
| | | |
Collapse
|
45
|
Haughey DB, Jusko WJ. Bioavailability and nonlinear disposition of methylprednisolone and methylprednisone in the rat. J Pharm Sci 1992; 81:117-21. [PMID: 1545348 DOI: 10.1002/jps.2600810203] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bioavailability of low (10 mg/kg) and high (50 mg/kg) doses of methylprednisolone was determined after oral administration of the free alcohol of methylprednisolone and iv administration of methylprednisolone sodium succinate. Plasma concentrations of methylprednisolone and methylprednisone (reversible metabolite) were measured by HPLC. Methylprednisolone systemic availability (F) was 49-57% after iv administration and approximately 35% after oral administration. Solubilization of steroids with PEG:ethanol had no effect on their disposition. Apparent systemic clearance (CL) of methylprednisolone was 21 mL/min (low dose), approximately twice the liver blood flow. Dose-dependent changes in steady-state volume of distribution (Vdss) and central volume of distribution (Vdc), volumes, and apparent CL were observed. The methylprednisolone-to-methylprednisone AUC ratio decreased with dose due to saturation of methylprednisone formation clearance (CL12), but this is a minor metabolic pathway. The mean residence time (MRT) increased threefold with dose. Graphical estimates of the Michaelis-Menten capacity (Vmax) and affinity (Km) constants were in reasonable agreement with CL values for the low-dose experimental data. Low systemic availability of iv methylprednisolone sodium succinate was in part due to sequential first-pass hepatic metabolism of the methylprednisolone formed. Methylprednisolone disposition is complex in the rat due to extensive first-pass effects, nonlinear elimination, nonlinear distribution, and reversible metabolism.
Collapse
Affiliation(s)
- D B Haughey
- Department of Pharmaceutics, School of Pharmacy, State University of New York, Buffalo 14260
| | | |
Collapse
|