1
|
Cheng J, Kandimalla KK. Intracellular Trafficking of Cationic Bicelles and siRNA Cargo in an In Vitro Blood-Brain Barrier Model. Mol Pharm 2025. [PMID: 40489701 DOI: 10.1021/acs.molpharmaceut.5c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Blood-brain barrier dysfunction (BBB), triggered by inflammatory changes in the periphery and the brain, is an early event in the pathogenesis of Alzheimer's disease (AD). Therapeutic strategies that restore BBB integrity and function by targeting inflammatory signaling hold great promise for halting the progression of AD. siRNA-based therapeutics offer a precise means of silencing proinflammatory targets, but the efficient and targeted delivery of siRNA to the brain endothelium remains a significant challenge. To address this, we formulated cationic bicelles (DPPC/DC7PC/DOTAP, molar ratio 63.8/25.0/11.2) to deliver siRNA to the BBB. In this study, we investigated the pathways of endocytic uptake and intracellular trafficking for siRNA-loaded bicelles in a human in vitro BBB model. Using pharmacological inhibitors and targeted siRNA knockdowns, we demonstrated that bicelles are internalized via multiple endocytic mechanisms, including clathrin-mediated, caveolin-mediated, dynamin-independent, and lipid raft-associated mechanisms. Using fluorescence microscopy, we showed that the bicelles and siRNA are internalized together and then trafficked into distinct intracellular compartments. Bicelles accumulated in the early and late endosomes while siRNA accumulated outside of the endolysosomal system. A three-compartmental model was used to quantitatively describe bicelle uptake and trafficking over the course of 12 h. These findings significantly advance our understanding of how the cationic bicelles deliver siRNA to the BBB endothelium and provide a mechanistic foundation for developing next-generation siRNA therapeutics aimed at restoring neurovascular health in Alzheimer's patients.
Collapse
Affiliation(s)
- Joan Cheng
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Karunya K Kandimalla
- Department of Pharmaceutics and Brain Barriers Research Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Parmal S, Subbappa P, Nikam V, Tarwate Y, Barhate K, Wagh S, Gholap AD, Dua K, Singh SK, Parikh D, Shaikh M, Khan TK, Rajput A. Hyaluronic acid based approaches for wound healing: A comprehensive review. Int J Biol Macromol 2025; 306:141625. [PMID: 40049471 DOI: 10.1016/j.ijbiomac.2025.141625] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 05/11/2025]
Abstract
Wound healing is a natural, however complex, tissue repair and regeneration mechanism. Understanding the cascade of biological events associated with wound healing facilitates scientists in designing topical skin formulations with enhanced therapeutic outcomes. In recent years, several innovative approaches have been utilized to treat wounds. Hyaluronic acid (HA)-based formulations have shown promising results. The current manuscript provides a systematic review of various aspects of HA, including its structure, synthesis, mechanism involved in wound healing, and various formulations developed using HA to treat wounds. Covered are innovative treatment strategies explicitly emphasizing nanocarrier-based approaches. Various patents wherein HA has been used to treat wounds are also summarized with the help of a Google patent search. Diving deep, clinical perspectives, toxicity aspects, and application of computational chemistry in HA research are also discussed.
Collapse
Affiliation(s)
- Samay Parmal
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Praveen Subbappa
- Alliance Management and Supply Chain, Azurity Pharmaceuticals, Inc., 8 Cabot Road, Suite 2000, Woburn, MA 01801, USA
| | - Vaidehi Nikam
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Yash Tarwate
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Kunika Barhate
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Shrutika Wagh
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India; Department of Pharmaceutics, Amrutvahini College of Pharmacy, Sangamner 422608, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, S.G. Highway, Ahmedabad 382481, Gujarat, India
| | - Mushtaque Shaikh
- Department of Pharmaceutical Chemistry, Vivekanand Education Society's College of Pharmacy, Chembur (East), Mumbai 400074, Maharashtra, India
| | - Tamanna K Khan
- Department of Chemistry, Guru Nanak Khalsa College of Art Science and Commerce (Autonomus), Matunga (East), Mumbai 400019, Maharashtra, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India.
| |
Collapse
|
3
|
Bridges CA, Fu L, Yeow J, Huang X, Jackson M, Kuchel RP, Sterling JD, Baker SM, Lord MS. The interplay between endothelial glycocalyx maturity and both the toxicity and intracellular uptake of charged nanoparticles. Acta Biomater 2025; 196:293-306. [PMID: 40058617 DOI: 10.1016/j.actbio.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Nanoparticles are widely studied for delivering treatments to target tissues, but few have reached clinical use. Most nanoparticles encounter blood vessels on their way to target tissues. The inner surface of these vessels is lined with endothelial cells covered by a glycocalyx, an extracellular matrix rich in anionic glycans. The role of the glycocalyx in nanoparticle interactions is not well understood. Here, we demonstrate that endothelial cells need extended culture times to synthesize a mature glycocalyx. Our research shows that branched polyethyleneimine functionalized gold nanoparticles bind to endothelial cells expressing either a developing or mature glycocalyx, with the interaction involving hyaluronan and heparan sulfate. These nanoparticles are subsequently internalized. Similar results were seen with poly(L-arginine). A mature glycocalyx protects cells by reducing the toxicity of these cationic nanoparticles. In contrast, lipoic acid-functionalized gold nanoparticles are internalized by cells with a developing glycocalyx, but not a mature one. Poly(L-glutamic acid) only interacts with cells when major glycans in the glycocalyx are degraded. These findings highlight the complex relationship between nanoparticle charge and structure, and their effects on toxicity, binding, and uptake by endothelial cells. This offers important insights for improving nanoparticle interactions with blood vessels in health and disease. STATEMENT OF SIGNIFICANCE: Endothelial cells lining blood vessels form a barrier through which nanoparticles must cross to reach target tissues. These cells are covered with a layer called the glycocalyx, which is rich in anionic glycans. However, the role of the glycocalyx in how nanoparticles interact with cells remains underexplored. Our research revealed that cells with a mature glycocalyx internalize cationic nanoparticles and experience reduced cytotoxicity. Conversely, a mature glycocalyx prevents anionic nanoparticles from entering cells. These results suggest that the structure of both the nanoparticles and the glycocalyx should be considered in future studies to improve the use of nanoparticles for medical applications.
Collapse
Affiliation(s)
- Claire A Bridges
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaojing Huang
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Miriam Jackson
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James D Sterling
- College of Innovation, Entrepreneurship, and Economic Development, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | | | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
4
|
Islam P, Abosalha A, Schaly S, Boyajian JL, Santos M, Makhlouf S, Renesteen E, Kassab A, Shum-Tim C, Shum-Tim D, Prakash S. Baculovirus Expressing Tumor Growth Factor-β1 (TGFβ1) Nanoshuttle Augments Therapeutic Effects for Vascular Wound Healing: Design and In Vitro Analysis. ACS Pharmacol Transl Sci 2024; 7:3419-3428. [PMID: 39539270 PMCID: PMC11555499 DOI: 10.1021/acsptsci.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
One of the major challenges in vascular tissue regeneration is effective wound healing that can be resolved by an innovative targeted nanoshuttle that delivers growth factors to blood vessels. This study investigates the production and efficacy of transforming growth factor-β1 (TGFβ1) gene delivery using poly(lactic-co-glycolic acid) (PLGA) baculovirus (BV) nanoshuttles (NSs). They exhibited an encapsulation efficiency of 86.23% ± 0.65% and a negative zeta potential of -29.57 ± 1.27 mV. In vitro studies in human umbilical vein endothelial cells (HUVECs) revealed that a 12 h incubation period optimized virus transduction. The safety and superior intracellular uptake of NSs and BVs in HUVECs were observed. The NSs carrying 100 and 400 MOI exhibited the highest cell proliferation rates in HUVECs. These sustained-release NSs significantly improved vascular cell migration and wound closure compared to free TGFβ1 carrying BV and can be a groundbreaking find in regenerative medicine, cardiovascular diseases, and chronic ulcer conditions.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ahmed Abosalha
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
- Pharmaceutical
Technology Department, Faculty of Pharmacy, Tanta University, Tanta
Al-Geish St., the Medical Campus, Tanta 31527, Egypt
| | - Sabrina Schaly
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jacqueline L. Boyajian
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Madison Santos
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Stephanie Makhlouf
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Editha Renesteen
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Amal Kassab
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Cedrique Shum-Tim
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
- Mila−Quebec
AI Institute, McGill University, 6666 Saint-Urbain Street, Montreal, Quebec H2S 3H1, Canada
| | - Dominique Shum-Tim
- Division
of Cardiac Surgery, Royal Victoria Hospital, McGill University Health
Centre, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Satya Prakash
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
5
|
Kaczmarek-Szczepańska B, Zasada L, D'Amora U, Pałubicka A, Michno A, Ronowska A, Wekwejt M. Bioactivation of Konjac Glucomannan Films by Tannic Acid and Gluconolactone Addition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46102-46112. [PMID: 39163280 PMCID: PMC11378156 DOI: 10.1021/acsami.4c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Wound healing is a dynamic process that requires an optimal extracellular environment, as well as an accurate synchronization between various cell types. Over the past few years, great efforts have been devoted to developing novel approaches for treating and managing burn injuries, sepsis, and chronic or accidental skin injuries. Multifunctional smart-polymer-based dressings represent a promising approach to support natural healing and address several problems plaguing partially healed injuries, including severe inflammation, scarring, and wound infection. Naturally derived compounds offer unique advantages such as minimal toxicity, cost-effectiveness, and outstanding biocompatibility along with potential anti-inflammatory and antimicrobial activity. Herein, the main driving idea of the work was the design and development of konjac glucomannan d-glucono-1,5-lactone (KG) films bioactivated by tannic acid and d-glucono-1,5-lactone (GL) addition. Our analysis, using attenuated total reflectance-Fourier transform infrared, atomic force microscopy, and surface energy measurements demonstrated that tannic acid (TA) clearly interacted with the KG matrix, acting as its cross-linker, whereas GL was embedded within the polymer structure. All developed films maintained a moist environment, which represents a pivotal property for wound dressing. Hemocompatibility experiments showed that all tested films exhibited no hemolytic impact on human erythrocytes. Moreover, the presence of TA and GL enhanced the metabolic and energetic activity in human dermal fibroblasts, as indicated by the MTT assay, showing results exceeding 150%. Finally, all films demonstrated high antibacterial properties as they significantly reduced the multiplication rate of both Staphylococcus aureus and Escherichia coli in bacterial broth and created the inhibition zones for S. aureus in agar plates. These remarkable outcomes make the KG/TA/GL film promising candidates for wound healing applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d'OLtremare Pad. 20, 80125 Naples, Italy
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
- Laboratory for Biomaterials and Bioengineering (CRC-Tier I), Dept Min-Met-Materials Eng & Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, Quebec G1 V 0A6, Canada
| |
Collapse
|
6
|
Mahato A, Chatterjee PN, Sarkar S, Sen AR, Pal A, Roy S, Patra AK. Effects of Chemically and Green Synthesized Zinc Oxide Nanoparticles on Shelf Life and Sensory Quality of Minced Fish ( Pangasius hypophthalmus). Foods 2024; 13:2810. [PMID: 39272575 PMCID: PMC11394675 DOI: 10.3390/foods13172810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
The purpose of this study was to investigate the effect of chemically and green synthesized zinc oxide nanoparticles (ZnO-NPs) on the shelf life and sensory quality of fish meat. In this study, ZnO-NPs were synthesized by employing the colloidal chemistry (CZnO-NPs) and green synthesis (GZnO-NPs) methods, and they were also characterized to assess their morphology. The synthesized ZnO-NPs, ZnO, and zinc acetate (ZnA) were used for the preservation and fortification of fish (Pangasius hypophthalmus) meat at 20 mg/kg of Zn. In a six-day storage study at 4 °C, the fish samples were evaluated for their sensory attributes (color and odor), physicochemical quality (pH and total volatile base nitrogen), oxidative changes (thiobarbituric acid-reactive substances and peroxide value), and microbial loads at 0, 3, and 6 days of storage. The fortification of raw fish with the synthesized CZnO-NPs produced better sensory attributes (color and odor) and maintained a pH non-conducive to microbial growth throughout the entire storage period compared with the control, ZnO, and ZnA-fortified samples. The GZnO-NPs largely did not provide any added advantage over CZnO-NPs but sometimes responded better than the control, ZnO, and ZnA samples. Oxidative status and total volatile base nitrogen were lower for CZnO-NPs in refrigerated fish compared with the other treatments. The ZnO-NP-fortified fish had the lowest counts of total viable bacteria, coliforms, Staphylococcus spp., and Vibrio spp. Hence, the fortification of fish with synthesized CZnO-NPs is promising as a food additive to reduce microbial spoilage and lipid peroxidation of fish in storage.
Collapse
Affiliation(s)
- Achinta Mahato
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 730037, India
| | - Paresh Nath Chatterjee
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 730037, India
- Department of Fish Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 700094, India
| | - Sougata Sarkar
- Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha 700118, India
| | - Arup Ratan Sen
- ICAR-Central Institute of Fisheries Education, Kolkata 700091, India
| | - Aruna Pal
- Department of Livestock Farm Complex, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Sovan Roy
- West Bengal State Council of Science and Technology, Department of Science & Technology and Biotechnology, Vigyan Chetna Bhavan, Salt Lake, Kolkata 700064, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 730037, India
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| |
Collapse
|
7
|
Li L, Jing L, Tang Z, Du J, Zhong Y, Liu X, Yuan M. Dual-targeting liposomes modified with BTP-7 and pHA for combined delivery of TCPP and TMZ to enhance the anti-tumour effect in glioblastoma cells. J Microencapsul 2024; 41:419-433. [PMID: 38989705 DOI: 10.1080/02652048.2024.2376114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
AIM To construct a novel nano-carrier with dual ligands to achieve superior anti-tumour efficacy and lower toxic side effects. METHODS Liposomes were prepared by thin film hydration method. Ultraviolet, high performance liquid chromatography, nano-size analyser, ultrafiltration centrifugation, dialysis, transmission electron microscope, flow cytometry, Cell Counting Kit-8, confocal laser scanning microscopy, transwell, and tumorsphere assay were used to study the characterisations, cytotoxicity, and in vitro targeting of dg-Bcan targeting peptide (BTP-7)/pHA-temozolomide (TMZ)/tetra(4-carboxyphenyl)porphyrin (TCPP)-Lip. RESULTS BTP-7/pHA-TMZ/TCPP-Lip was a spheroid with a mean diameters of 143 ± 3.214 nm, a polydispersity index of 0.203 ± 0.025 and a surface charge of -22.8 ± 0.425 mV. The drug loadings (TMZ and TCPP) are 7.40 ± 0.23% and 2.05 ± 0.03% (mg/mg); and the encapsulation efficiencies are 81.43 ± 0.51% and 84.28 ± 1.64% (mg/mg). The results showed that BTP-7/pHA-TMZ/TCPP-Lip presented enhanced targeting and cytotoxicity. CONCLUSION BTP-7/pHA-TMZ/TCPP-Lip can specifically target the tumour cells to achieve efficient drug delivery, and improve the anti-tumour efficacy and reduces the systemic toxicity.
Collapse
Affiliation(s)
- Lili Li
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Lin Jing
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Zijun Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Jingguo Du
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Yonglong Zhong
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Xu Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| | - Mingqing Yuan
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Yau J, Chukwu P, Jedlicka SS, Ramamurthi A. Assessing trans-endothelial transport of nanoparticles for delivery to abdominal aortic aneurysms. J Biomed Mater Res A 2024; 112:881-894. [PMID: 38192169 DOI: 10.1002/jbm.a.37667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
Abdominal aortic aneurysms (AAAs) are localized, rupture-prone expansions of the abdominal aorta wall. In this condition, structural extracellular matrix (ECM) proteins of the aorta wall, elastic fibers and collagen fibers, that impart elasticity and stiffness respectively, are slowly degraded by overexpressed matrix metalloproteinases (MMPs) following an injury stimulus. We are seeking to deliver therapeutics to the AAA wall using polymer nanoparticles (NPs) that are capable of stimulating on-site matrix regeneration and repair. This study aimed to determine how NP shape and size impacts endocytosis and transmigration past the endothelial cell (EC) layer from circulation into the medial layer of the AAA wall. First, rod-shaped NPs were shown to be created based mechanical stretching of PLGA NPs while embedded in a PVA film with longer rod-shaped NPs created based of the degree in which the PVA films are stretched. Live/dead assay reveals that our PLGA NPs are safe and do not cause cell death. Immunofluorescence staining reveal cytokine activation causes endothelial dysfunction in ECs by increasing expression of inflammatory marker Integrin αVβ3 and decreasing expression of adhesion protein vascular endothelial (VE)-cadherin. We showed this disruption enable greater EC uptake and translocation of NPs. Fluorescence studies demonstrate high endothelial transmigration and endocytosis with rod-shaped NPs in cytokine activated ECs compared to healthy control cells, arguing for the benefits of using higher aspect ratio (AR) NPs for accumulation at the aneurysm site. We also demonstrated that the mechanisms of NP transmigration across an activated EC layer depend on NP AR. These results show the potential of using shape as a modality for enhancing permeation of NPs into the aneurysm wall. These studies are also significance to understanding the mechanisms that are likely engaged by NPs for penetrating the endothelial lining of aneurysmal wall segments.
Collapse
Affiliation(s)
- Jimmy Yau
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Patience Chukwu
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Sabrina S Jedlicka
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
9
|
Li X, Zou J, He Z, Sun Y, Song X, He W. The interaction between particles and vascular endothelium in blood flow. Adv Drug Deliv Rev 2024; 207:115216. [PMID: 38387770 DOI: 10.1016/j.addr.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/25/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Particle-based drug delivery systems have shown promising application potential to treat human diseases; however, an incomplete understanding of their interactions with vascular endothelium in blood flow prevents their inclusion into mainstream clinical applications. The flow performance of nano/micro-sized particles in the blood are disturbed by many external/internal factors, including blood constituents, particle properties, and endothelium bioactivities, affecting the fate of particles in vivo and therapeutic effects for diseases. This review highlights how the blood constituents, hemodynamic environment and particle properties influence the interactions and particle activities in vivo. Moreover, we briefly summarized the structure and functions of endothelium and simulated devices for studying particle performance under blood flow conditions. Finally, based on particle-endothelium interactions, we propose future opportunities for novel therapeutic strategies and provide solutions to challenges in particle delivery systems for accelerating their clinical translation. This review helps provoke an increasing in-depth understanding of particle-endothelium interactions and inspires more strategies that may benefit the development of particle medicine.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongshan He
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co., LtD., Jinan 250000, PR China
| | - Xiangrong Song
- Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610000, PR China.
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China.
| |
Collapse
|
10
|
Wekwejt M, Małek M, Ronowska A, Michno A, Pałubicka A, Zasada L, Klimek A, Kaczmarek-Szczepańska B. Hyaluronic acid/tannic acid films for wound healing application. Int J Biol Macromol 2024; 254:128101. [PMID: 37972843 DOI: 10.1016/j.ijbiomac.2023.128101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In this study, thin films based on hyaluronic acid (HA) with tannic acid (TA) were investigated in three different weight ratios (80HA/20TA, 50HA/50TA, 20HA/80TA) for their application as materials for wound healing. Surface free energy, as well as their roughness, mechanical properties, water vapor permeability rate, and antioxidant activity were determined. Moreover, their compatibility with blood and osteoblast cells was investigated. The irritation effect caused by hyaluronic acid/tannic acid films was also considered with the use of are constructed human epidermis model. The irritation effect for hyaluronic acid/tannic acid films by the in vitro method was also studied. The low surface free energy, surface roughness, and antioxidant activity presented by the obtained films were examined. All the tested compositions of hyaluronic acid/tannic acid films were hemocompatible, but only films based on 50HA/50TA were fully cytocompatible. Regarding the potential implantation, all the films except 80HA/20TA showed appropriate mechanical properties. The specimens did not exert the irritation effect during the studies involving reconstructed human epidermis.
Collapse
Affiliation(s)
- Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
| | - Marcin Małek
- Faculty of Civil Engineering and Geodesy, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
| | - Agnieszka Klimek
- Faculty of Mechanical Engineering, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
| | - Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland.
| |
Collapse
|
11
|
Kumari R, Syeda S, Shrivastava A. Nature's Elixir for Cancer Treatment: Targeting Tumor-induced Neovascularization. Curr Med Chem 2024; 31:5281-5304. [PMID: 38425113 DOI: 10.2174/0109298673282525240222050051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Angiogenesis, a multistep process, involves sprouting of new vessels from the pre-existing vessels in response to a stimulus in its microenvironment. Normally, angiogenesis is important for tissue maintenance and homeostasis, however it is also known to be associated with various pathologies, including cancer. Importantly, neovascularization is very crucial for tumors to grow and metastasize since it allows delivery of oxygen and nutrients as well as promotes tumor cell dissemination to distant sites. Activation of angiogenic switch is a consequence of imbalance in pro- as well as anti-angiogenic factors, that are immensely impacted by reactive oxygen species and epigenetic regulation. Several reports have suggested that angiogenic inhibitors significantly inhibit tumor growth. Therefore, anti-angiogenic therapy has gained substantial attention and has been considered a rational approach in cancer therapeutics. In this line, several anti- angiogenic drugs have been approved, however, their long term usage caused several side effects. In view of this, researchers switched to plant-based natural compounds for identifying safe and cost-effective anti-angiogenic drugs. Of note, various phytochemicals have been evaluated to reduce tumor growth by inhibiting tumor-induced angiogenesis. Moreover, the implication of nano-carriers to enhance the bioavailability of phytochemicals has proven to be more efficient anti-cancer agents. The present review highlights the existing knowledge on tumor-induced neovascularization and its regulation at the epigenetic level. Further, we emphasize the inhibitory effect of phytochemicals on tumor- induced angiogenesis that will open up new avenues in cancer therapeutics.
Collapse
Affiliation(s)
- Rani Kumari
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Saima Syeda
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Anju Shrivastava
- Department of Zoology, University of Delhi, Delhi, 110007, India
| |
Collapse
|
12
|
Muscetti O, Blal N, Mollo V, Netti PA, Guarnieri D. Intracellular Localization during Blood-Brain Barrier Crossing Influences Extracellular Release and Uptake of Fluorescent Nanoprobes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1999. [PMID: 37446515 DOI: 10.3390/nano13131999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
To improve the efficacy of nanoparticles (NPs) and boost their theragnostic potential for brain diseases, it is key to understand the mechanisms controlling blood-brain barrier (BBB) crossing. Here, the capability of 100 nm carboxylated polystyrene NPs, used as a nanoprobe model, to cross the human brain endothelial hCMEC/D3 cell layer, as well as to be consequently internalized by human brain tumor U87 cells, is investigated as a function of NPs' different intracellular localization. We compared NPs confined in the endo-lysosomal compartment, delivered to the cells through endocytosis, with free NPs in the cytoplasm, delivered by the gene gun method. The results indicate that the intracellular behavior of NPs changed as a function of their entrance mechanism. Moreover, by bypassing endo-lysosomal accumulation, free NPs were released from cells more efficiently than endocytosed NPs. Most importantly, once excreted by the endothelial cells, free NPs were released in the cell culture medium as aggregates smaller than endocytosed NPs and, consequently, they entered the human glioblastoma U87 cells more efficiently. These findings prove that intracellular localization influences NPs' long-term fate, improving their cellular release and consequent cellular uptake once in the brain parenchyma. This study represents a step forward in designing nanomaterials that are able to reach the brain effectively.
Collapse
Affiliation(s)
- Ornella Muscetti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Naym Blal
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| | - Valentina Mollo
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, (CRIB), University of Naples Federico II, 80125 Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Daniela Guarnieri
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Dipartimento di Chimica e Biologia "Adolfo Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy
| |
Collapse
|
13
|
Ebrahimnejad P, Rezaeiroshan A, Babaei A, Khanali A, Aghajanshakeri S, Farmoudeh A, Nokhodchi A. Hyaluronic Acid-Coated Chitosan/Gelatin Nanoparticles as a New Strategy for Topical Delivery of Metformin in Melanoma. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3304105. [PMID: 37313551 PMCID: PMC10260318 DOI: 10.1155/2023/3304105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/14/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Metformin is a multipotential compound for treating diabetes II and controlling hormonal acne and skin cancer. This study was designed to enhance metformin skin penetration in melanoma using nanoparticles containing biocompatible polymers. Formulations with various concentrations of chitosan, hyaluronic acid, and sodium tripolyphosphate were fabricated using an ionic gelation technique tailored by the Box-Behnken design. The optimal formulation was selected based on the smallest particle size and the highest entrapment efficiency (EE%) and used in ex vivo skin penetration study. In vitro antiproliferation activity and apoptotic effects of formulations were evaluated using MTT and flow cytometric assays, respectively. The optimized formulation had an average size, zeta potential, EE%, and polydispersity index of 329 ± 6.30 nm, 21.94 ± 0.05 mV, 64.71 ± 6.12%, and 0.272 ± 0.010, respectively. The release profile of the optimized formulation displayed a biphasic trend, characterized by an early burst release, continued by a slow and sustained release compared to free metformin. The ex vivo skin absorption exhibited 1142.5 ± 156.3 μg/cm2 of metformin deposited in the skin layers for the optimized formulation compared to 603.2 ± 93.1 μg/cm2 for the free metformin. Differential scanning calorimetry confirmed the deformation of the drug from the crystal structure to an amorphous state. The attenuated total reflection Fourier transform infrared results approved no chemical interaction between the drug and other ingredients of the formulations. According to the MTT assay, metformin in nanoformulation exhibited a higher cytotoxic effect against melanoma cancer cells than free metformin (IC50: 3.94 ± 0.57 mM vs. 7.63 ± 0.26 mM, respectively, P < 0.001). The results proved that the optimized formulation of metformin could efficiently decrease cell proliferation by promoting apoptosis, thus providing a promising strategy for melanoma therapy.
Collapse
Affiliation(s)
- Pedram Ebrahimnejad
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Azin Khanali
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shaghayegh Aghajanshakeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Farmoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
- Lupin Research Center, Coral Springs, FL, USA
| |
Collapse
|
14
|
Srivastava V, Chary PS, Rajana N, Pardhi ER, Singh V, Khatri D, Singh SB, Mehra NK. Complex ophthalmic formulation technologies: Advancement and future perspectives. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
16
|
Shakiba S, Shariati S, Wu H, Astete CE, Cueto R, Fini EH, Rodrigues DF, Sabliov CM, Louie SM. Distinguishing nanoparticle drug release mechanisms by asymmetric flow field-flow fractionation. J Control Release 2022; 352:485-496. [PMID: 36280154 DOI: 10.1016/j.jconrel.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
This research demonstrates the development, application, and mechanistic value of a multi-detector asymmetric flow field-flow fractionation (AF4) approach to acquire size-resolved drug loading and release profiles from polymeric nanoparticles (NPs). AF4 was hyphenated with multiple online detectors, including dynamic and multi-angle light scattering for NP size and shape factor analysis, fluorescence for drug detection, and total organic carbon (TOC) to quantify the NPs and dissolved polymer in nanoformulations. The method was demonstrated on poly(lactic-co-glycolic acid) (PLGA) NPs loaded with coumarin 6 (C6) as a lipophilic drug surrogate. The bulk C6 release profile using AF4 was validated against conventional analysis of drug extracted from the NPs and complemented with high performance liquid chromatography - quadrupole time-of-flight (HPLC-QTOF) mass spectrometry analysis of oligomeric PLGA species. Interpretation of the bulk drug release profile was ambiguous, with several release models yielding reasonable fits. In contrast, the size-resolved release profiles from AF4 provided critical information to confidently establish the release mechanism. Specifically, the C6-loaded NPs exhibited size-independent release rate constants and no significant NP size or shape transformations, suggesting surface desorption rather than diffusion through the PLGA matrix or erosion. This conclusion was supported through comparative experimental evaluation of PLGA NPs carrying a fully entrapped drug, enrofloxacin, which showed size-dependent diffusive release, along with density functional theory (DFT) calculations indicating a higher adsorption affinity of C6 onto PLGA. In summary, the development of the size-resolved AF4 method and data analysis framework fulfills salient analytical gaps to determine drug localization and release mechanisms from nanomedicines.
Collapse
Affiliation(s)
- Sheyda Shakiba
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Saba Shariati
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Haoran Wu
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Rafael Cueto
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Elham H Fini
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Debora F Rodrigues
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803, United States
| | - Stacey M Louie
- Department of Civil & Environmental Engineering, University of Houston, Houston, TX 77004, United States.
| |
Collapse
|
17
|
Huang WC, Lin CC, Chiu TW, Chen SY. 3D Gradient and Linearly Aligned Magnetic Microcapsules in Nerve Guidance Conduits with Remotely Spatiotemporally Controlled Release to Enhance Peripheral Nerve Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46188-46200. [PMID: 36198117 DOI: 10.1021/acsami.2c11362] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although numerous strategies have been implemented to develop nerve guidance conduits (NGCs) to treat peripheral nerve injury (PNI), functionalization of an NGC to make it remotely controllable for providing spatiotemporal modulation on in situ nerve tissues remains a challenge. In this study, a gelatin/silk (GS) hydrogel was used to develop an NGC based on its self-owned reversible thermoresponsive sol-to-gel phase transformation ability that permitted rapid three-dimensional (3D) micropatterning of the incorporated nerve growth factor (NGF)-loaded magnetic poly(lactic-co-glycolic acid) (PLGA) microcapsules (called NGF@MPs) via multiple magnetic guidance. The thermally controllable viscosity of GS enabled the rapid formation of a 3D gradient and linearly aligned distribution of NGF@MPs, leading to magnetically controlled 3D gradient release of NGF to enhance topographical nerve guidance and wound healing in PNIs. Particularly, the as-formed micropatterned hydrogel, called NGF@MPs-GS, showed corrugation topography with a pattern height H of 15 μm, which resulted in the linear axon alignment of more than 90% of cells. In addition, by an external magnetic field, spatiotemporal controllability of NGF release was obtained and permitted neurite elongation that was almost 2-fold longer than that in the group with external addition of NGF. Finally, an NGC prototype was fabricated and implanted into the injured sciatic nerve. The patterned implant, assisted by magnetic stimulation, demonstrated accelerated restoration of motor function within 14 days after implantation. It further contributed to the enhancement of axon outgrowth and remyelination after 28 days. This NGC, with controllable mechanical, biochemical, and topographical cues, is a promising platform for the enhancement of nerve regeneration.
Collapse
Affiliation(s)
- Wei-Chen Huang
- Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - Chun-Chang Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - Tzai-Wen Chiu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, No. 1001 Ta-Hsueh Road, Hsinchu300093, Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu300044, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Kaohsiung80708, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, No. 91, Hsueh-Shih Road, Taichung40402, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Yangming Campus, No. 155, Section 2, Linong Street, Beitou District, Taipei112304, Taiwan
| |
Collapse
|
18
|
Lung cancer targeting efficiency of Silibinin loaded Poly Caprolactone /Pluronic F68 Inhalable nanoparticles: In vitro and In vivo study. PLoS One 2022; 17:e0267257. [PMID: 35560136 PMCID: PMC9106168 DOI: 10.1371/journal.pone.0267257] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/05/2022] [Indexed: 11/19/2022] Open
Abstract
Silibinin (SB) is shown to have an anticancer properties. However, its clinical therapeutic effects have been restricted due to its low water solubility and poor absorption after oral administration. The aim of this study was to develop SB-loaded PCL/Pluronic F68 nanoparticles for pulmonary delivery in the treatment of lung cancer. A modified solvent displacement process was used to make nanoparticles, which were then lyophilized to make inhalation powder, Nanoparticles were characterized with DSC, FTIR,SEM and In vitro release study. Further, a validated HPLC method was developed to investigate the Biodistribution study, pharmacokinetic parameters. Poly Caprolactone PCL / Pluronic F68 NPs showed the sustained release effect up to 48 h with an emitted (Mass median Aerodynamic diameter)MMAD and (Geometric size distribution)GSD were found to be 4.235 ±0.124 and 1.958±1.23 respectively. More specifically, the SB Loaded PCL/Pluronic F 68 NPs demonstrated long circulation and successful lung tumor-targeting potential due to their cancer-targeting capabilities. SB Loaded PCL/Pluronic F68 NPs significantly inhibited tumour growth in lung cancer-induced rats after inhalable administration. In a pharmacokinetics study, PCL/ Pluronic F68 NPs substantially improved SB bioavailability, with a more than 4-fold rise in AUC when compared to IV administration. These findings indicate that SB-loaded PCL/PluronicF68 nanoparticles may be a successful lung cancer therapy delivery system.
Collapse
|
19
|
Forest V, Pourchez J. Nano-delivery to the lung - by inhalation or other routes and why nano when micro is largely sufficient? Adv Drug Deliv Rev 2022; 183:114173. [PMID: 35217112 DOI: 10.1016/j.addr.2022.114173] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
Respiratory diseases gather a wide range of disorders which are generally difficult to treat, partly due to a poor delivery of drugs to the lung with adequate dose and minimum side effects. With the recent developments of nanotechnology, nano-delivery systems have raised interest. In this review, we detail the main types of nanocarriers that have been developed presenting their respective advantages and limitations. We also discuss the route of administration (systemic versus by inhalation), also considering technical aspects (different types of aerosol devices) with concrete examples of applications. Finally, we propose some perspectives of development in the field such as the nano-in-micro approaches, the emergence of drug vaping to generate airborne carriers in the submicron size range, the development of innovative respiratory models to assess regional aerosol deposition of nanoparticles or the application of nano-delivery to the lung in the treatment of other diseases.
Collapse
|
20
|
Oh HJ, Kim MH, Yun W, Lee JH, An JS, Kim YJ, Kim MJ, Kim HB, Cho JH. Effect of nano zinc oxide or chelated zinc as alternatives to medical zinc oxide on growth performance, faecal scores, nutrient digestibility, blood profiles and faecal Escherichia coli and Lactobacillus concentrations in weaned piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2057875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Han Jin Oh
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Myung Hoo Kim
- Department of Animal Science, Pusan National University, Miryang, Republic of Korea
| | - Won Yun
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Hwan Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Seon An
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Yong Ju Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Min Ji Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| | - Hyeun bum Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan, Republic of Korea
| | - Jin Ho Cho
- Department of Animal Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
21
|
Nano-Architectonics of Antibiotic-Loaded Polymer Particles as Vehicles for Active Molecules. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently, nanotechnology research studies have been proven that use of various nanoparticles as drug delivery systems to target and to annihilate pathogenic microorganisms may be a good solution for prevention and treatment of severe infection. In the last few years, antimicrobial drug encapsulation into nano-sized systems has materialized as a promising alternative that increased drug efficacy and minimized adverse effects. Physicochemical properties of erythromycin-loaded polymer nanoparticles were assessed using particle size distribution, HPLC, FTIR, TG/DTA, and SEM characterization techniques. The as-prepared samples exhibited an average particle size of 340 and 270 nm, respectively, with erythromycin content of 99.7% in both samples. From the release profile of erythromycin from PLA/PLGA, a prolonged drug release can be observed from both Ery-PLA and Ery-PLGA nanostructures. Morphology images exhibited spherical, rigid, and ring-shaped nanoparticles. Thermal analytical study in the case of Ery-PLA and Ery-PLGA samples showed that pure drug has an endothermic peak at around 150 °C assigned to a melting point. The antibiotic melting peak disappeared for both antibiotic-loaded PLA and PLGA nanoparticles thermographs, denoting the presence of erythromycin. This indicates that the antibiotic is uniformly dispensed throughout the host polymer matrix at nanometer scale. FTIR spectra of Ery-PLA and Ery-PLGA nano-architectures with almost similar peaks indicated no alteration in chemical structure of drug-loaded polymer nanoparticles.
Collapse
|
22
|
Lujan H, Mulenos MR, Carrasco D, Zechmann B, Hussain SM, Sayes CM. Engineered aluminum nanoparticle induces mitochondrial deformation and is predicated on cell phenotype. Nanotoxicology 2022; 15:1215-1232. [PMID: 35077653 DOI: 10.1080/17435390.2021.2011974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The main role of mitochondria is to generate the energy necessary for the cell to survive and adapt to different environmental stresses. Energy demand varies depending on the phenotype of the cell. To efficiently meet metabolic demands, mitochondria require a specific proton homeostasis and defined membrane structures to facilitate adenosine triphosphate production. This homeostatic environment is constantly challenged as mitochondria are a major target for damage after exposure to environmental contaminants. Here we report changes in mitochondrial structure profiles in different cell types using electron microscopy in response to particle stress exposure in three different representative lung cell types. Endpoint analyses include nanoparticle intracellular uptake; quantitation of mitochondrial size, shape, and ultrastructure; and confirmation of autophagosome formation. Results show that low-dose aluminum nanoparticles exposure (1 ppm; 1 µg/mL; 1.6 × 1 0-7 µg/cell)) to primary and asthma cells incurred significant mitochondrial deformation and increases in mitophagy, while cancer cells exhibited only slight changes in mitochondrial morphology and an increase in lipid body formation. These results show low-dose aluminum nanoparticle exposure induces subtle changes in the mitochondria of specific lung cells that can be quantified with microscopy techniques. Furthermore, within the lung, cell type by the nature of origin (i.e. primary vs. cancer vs. asthma) dictates mitochondrial morphology, metabolic health, and the metabolic stress response of the cell.
Collapse
Affiliation(s)
- Henry Lujan
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Marina R Mulenos
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Desirae Carrasco
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, Waco, TX, USA
| | - Saber M Hussain
- Biotechnology Branch, Airman Biosciences Division, 711th Human Performance Wing, Air Force Research Laboratory, Dayton, OH, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
23
|
Guo X, Mo W, Zhang D, Wang Y, Cao F, Zhai T, Rao W, Guan X, Xu L, Pan X. Design of a Controlled-Release Delivery Composite of Antibacterial Agent Gatifloxacin by Spherical Silica Nanocarrier. Front Chem 2022; 9:821040. [PMID: 35096778 PMCID: PMC8792944 DOI: 10.3389/fchem.2021.821040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, a spherical silica nanoparticle was explored as a gatifloxacin carrier synthesized by the chemical precipitation method. It was found that there was no new chemical bond formation during the loading process between gatifloxacin and silica, which implies that the binding was driven by physical interaction. In addition, the drug loading and encapsulation efficiency could be improved by appropriately increasing nano-silica content in the loading process. Meanwhile, the release rate of gatifloxacin after loading nano-silica was also improved, suggesting the successful design of a controlled-release delivery composite. The silica nanocarrier could significantly improve the antibacterial performance of Escherichia coli by 2.1 times, which was higher than the pure gatifloxacin. The 24 h bacteriostatic rate was higher than that of a simple mixture of silica nanoparticles and gatifloxacin. Strong reactive oxygen species (ROS) in GAT-SiO2 NPs suggests that ROS might be associated with bactericidal activity. The synergy between the physicochemical effect and ROS production of this material is proposed as the mechanism of its antibacterial activity, which can also be confirmed by the cell membrane damage observed under electron microscopy and DNA damage experiments. Collectively, our finding indicates that nano-silica microspheres could serve as a promising carrier for the sustained release of gatifloxacin, thereby providing a new carrier design scheme for the improvement of the antibacterial effect.
Collapse
Affiliation(s)
- Xueping Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Mo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dingyang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yurong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyun Zhai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhua Rao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lei Xu, ; Xiaohong Pan,
| | - Xiaohong Pan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Key Lab of Biopesticide and Chemical Biology, Ministry of Education and College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Lei Xu, ; Xiaohong Pan,
| |
Collapse
|
24
|
Development and Characterization of 5-Fluorouracil Solid Lipid Nanoparticles for Treatment of Colorectal Cancer. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Hussan F, Krishna D, Preetam VC, Reddy PB, Gurram S. Dietary Supplementation of Nano Zinc Oxide on Performance, Carcass, Serum and Meat Quality Parameters of Commercial Broilers. Biol Trace Elem Res 2022; 200:348-353. [PMID: 33580353 DOI: 10.1007/s12011-021-02635-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022]
Abstract
An experiment was conducted to evaluate the effect of supplementation of zinc in the diet in the form of nano zinc oxide (nano ZnO) on the performance of broilers. A total of 240 day-old commercial broiler chicks were distributed in a completely randomized design into 6 treatments with 8 replicates of 5 chicks each. Treatments comprised of T1- basal diet (BD) without ZnO supplementation, T2- 2.5 ppm ZnO, T3- 5 ppm ZnO, T4- 10 ppm ZnO, T5- 20 ppm ZnO, and T6- 40 ppm inorganic ZnO. The results revealed that supplementation of nano ZnO at 2.5 ppm recorded significantly (P < 0.05) higher body weight gain, feed intake, and better feed conversion ratio (FCR) compared to control and other treatment groups at 42 days of age. All dietary treatments failed to exert any significant (P > 0.05) effect on various carcass parameters (dressing percentage, abdominal fat, giblet yields), serum protein and cholesterol concentrations, and meat quality parameters (water holding capacity and pH) of broiler chicken at 42 days of age. Finally, it could be concluded that supplementation of nano ZnO at 2.5 ppm improved the performance of broilers.
Collapse
Affiliation(s)
- F Hussan
- Department of Poultry Science, College of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana, India
| | | | - V Chinni Preetam
- Department of Poultry Science, College of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana, India
| | - P B Reddy
- ICAR-NRC on Meat, Hyderabad, 500 030, India
| | - Srinivas Gurram
- Department of Poultry Science, College of Veterinary Science, P.V. Narsimha Rao Telangana Veterinary University, Rajendranagar, Hyderabad, Telangana, India.
| |
Collapse
|
26
|
Nair SC, Vinayan KP, Mangalathillam S. Nose to Brain Delivery of Phenytoin Sodium Loaded Nano Lipid Carriers: Formulation, Drug Release, Permeation and In Vivo Pharmacokinetic Studies. Pharmaceutics 2021; 13:1640. [PMID: 34683933 PMCID: PMC8540129 DOI: 10.3390/pharmaceutics13101640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
An acute epileptic seizure is a seizure emergency fatal condition that requires immediate medical attention. IV phenytoin sodium remains the second line therapeutic agent for the immediate treatment of status epilepticus. Phenytoin sodium formulated as nanolipid carriers (NLCs) seems to be promising as an intranasal delivery system for controlling acute seizures. Three different nanosized phenytoin sodium loaded NLCs (<50 nm, 50-100 nm and >100 nm) were prepared by melt emulsification and was further characterised. In vitro drug release studies showed immediate drug release from phenytoin sodium loaded NLCs of <50 nm size, which is highly essential for acute seizure control. The ex vivo permeation study indicated greater permeation from <50 nm sized NLC through the olfactory epithelium compared to thecontrol drug solution. Invivo pharmacokinetic studies revealed higher drug concentration in CSF/brain within 5 min upon intranasal administration of <50 nm sized phenytoin sodium NLCs than the control drug solution and marketed IV phenytoin sodium, indicating direct and rapid nose to brain drug transport through the olfactory epithelium. The study has shown that formulation strategies can enhance olfactory uptake, and phenytoin sodium NLCs of desired particle sizes (<50 nm) offer promising potential for nose to brain direct delivery of phenytoin sodium in treating acute epileptic seizures.
Collapse
Affiliation(s)
- Sreeja C. Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi 682041, India;
| | | | | |
Collapse
|
27
|
Lima AC, Reis RL, Ferreira H, Neves NM. Cellular Uptake of Three Different Nanoparticles in an Inflammatory Arthritis Scenario versus Normal Conditions. Mol Pharm 2021; 18:3235-3246. [PMID: 34387081 DOI: 10.1021/acs.molpharmaceut.1c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanoparticles (NPs) have wide potential applications in the biomedical field. To promote targeted and controlled delivery of encapsulated drugs, it is fundamentally important to understand the factors regulating NP uptake by different cells. Thus, the goal of the present study is to assess the internalization rates of different NPs under normal and proinflammatory states in primary human articular chondrocytes (hACs), human umbilical vein endothelial cells (EA), and human monocytes (THP-1). Here, we compared chitosan-hyaluronic acid (Ch-HA) polymeric NPs, methoxypolyethylene glycol amine-glutathione-palmitic acid (mPEG-GSHn-PA) micelles, and cholesterol/l-α-phosphatidylcholine/DSPE-PEG-Mal (Chol/EPC/DSPE-PEG-Mal) unilamellar liposomes (LUVs). Our results reveal the importance of surface charge and chemistry in determining the levels of NP internalization. Under normal conditions, the cellular uptake was ≈30% for Ch-HA NPs and ≈100% for mPEG-GSHn-PA micelles and Chol/EPC/DSPE-PEG-Mal LUVs. A proinflammatory cell state promoted a higher uptake of the Ch-HA NPs by EA cells (93% after 24 h). Since the therapeutic efficacy of the NP-loaded cargo is dependent on trafficking routes after cellular internalization, we tested their internalization pathways. Accordingly, caveolae-mediated endocytosis or energy-independent non-endocytic pathways, which circumvent lysosomal degradation, were accomplished in hACs and EA by LUVs and in M1 polarized macrophages by micelles. The present outcomes highlight the importance of considering cellular uptake and internalization pathways by the target cell when designing functional NPs for therapeutic applications.
Collapse
Affiliation(s)
- Ana Cláudia Lima
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
28
|
Suner SS, Sahiner M, Mohapatra S, Ayyala RS, Bhethanabotla VR, Sahiner N. Degradable poly(catechin) nanoparticles as a versatile therapeutic agent. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1941957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Selin S. Suner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Mehtap Sahiner
- Department of Fashion Design, Canakkale Applied Science, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Ramesh S. Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, Tampa, Florida, USA
| | - Venkat R. Bhethanabotla
- Department of Chemical, Biological, and Materials Science and Engineering Program, University of South Florida, Tampa, Florida, USA
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Sciences & Arts, and Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Canakkale, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida Eye Institute, Tampa, Florida, USA
- Department of Chemical, Biological, and Materials Science and Engineering Program, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
29
|
Metal-based nanoparticles: Promising tools for the management of cardiovascular diseases. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 36:102433. [PMID: 34171467 DOI: 10.1016/j.nano.2021.102433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/05/2021] [Accepted: 06/03/2021] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. A search for more effective treatments of CVD is increasingly needed. Major advances in nanotechnology opened new avenues in CVD therapeutics. Owing to their special properties, iron oxide, gold and silver nanoparticles (NPs) could exert various effects in the management and treatment of CVD. The role of iron oxide NPs in the detection and identification of atherosclerotic plaques is receiving increased attention. Moreover, these NPs enhance targeted stem cell delivery, thereby potentiating the regenerative capacity at the injured sites. In addition to their antioxidative and antihypertrophic capacities, gold NPs have also been shown to be useful in the identification of plaques and recognition of inflammatory markers. Contrary to first reports suggestive of their cardio-vasculoprotective role, silver NPs now appear to exert negative effects on the cardiovascular system. Indeed, these NPs appear to negatively modulate inflammation and cholesterol uptake, both of which exacerbate atherosclerosis. Moreover, silver NPs may precipitate bradycardia, conduction block and sudden cardiac death. In this review, we dissect the cellular responses and toxicity profiles of these NPs from various perspectives including cellular and molecular ones.
Collapse
|
30
|
Oh HJ, Park YJ, Cho JH, Song MH, Gu BH, Yun W, Lee JH, An JS, Kim YJ, Lee JS, Kim S, Kim H, Kim ES, Lee BK, Kim BW, Kim HB, Cho JH, Kim MH. Changes in Diarrhea Score, Nutrient Digestibility, Zinc Utilization, Intestinal Immune Profiles, and Fecal Microbiome in Weaned Piglets by Different Forms of Zinc. Animals (Basel) 2021; 11:ani11051356. [PMID: 34064626 PMCID: PMC8151337 DOI: 10.3390/ani11051356] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Piglets, especially at the weaning stage, are highly susceptible to various diseases due to an incomplete immune system development and stress responses. Post-weaning diarrhea has a significant impact on piglet growth rate and mortality, resulting in economic losses to the swine industry. Zinc oxide (ZnO) is widely used as a weaning diet supplement in the swine industry to prevent diarrheal diseases and promote immune system development. Despite the recently demonstrated beneficial effects of ZnO, many efforts have been made to reduce its excessive use in piglets owing to environmental pollution and toxic effects on tissues; thus, the need for an effective alternative ZnO form, which promotes zinc utilization, has been gaining attention. However, we do not completely understand the mode of action of ZnO alternatives or the amount required to exert positive effects on weaned piglets. Therefore, we conducted this study to evaluate the effects of different forms of ZnO alternatives (ZnO chelate with glycine (chelate-ZnO) and nanoparticle-sized ZnO (nano-ZnO)) on diarrhea score, nutrient digestibility, zinc utilization, intestinal immune profiles, and fecal microflora on piglets, together with a comparison of the standard ZnO treatment. We found that 200 ppm Nano-ZnO had similar positive effects on weaned piglets compared with 2500 ppm ZnO and therefore is a promising alternative to ZnO. Abstract Twenty weaned piglets with initial body weight of 6.83 ± 0.33 kg (21 day of age, LYD) were randomly assigned to four treatments for a two-week feeding trial to determine the effects of different dietary zinc on nutrient digestibility, intestinal health, and microbiome of weaned piglets. The dietary treatments included a negative control (CON), standard ZnO (ZnO, 2500 ppm), zinc chelate with glycine (Chelate-ZnO, 200 ppm), and nanoparticle-sized ZnO (Nano-ZnO, 200 ppm). At 0 to 1 week, the diarrhea score was decreased in the CON group compared with the ZnO, Chelate-ZnO, and Nano-ZnO group. In overall period, the ZnO and Nano-ZnO groups exhibited improved diarrhea scores compared to the CON group. The apparent total tract digestibility of dry matter and gross energy was the lowest in the CON group after one week. Compared to the ZnO group, the chelate-ZnO group exhibited higher proportion of T-bet+ and FoxP3+ T cells and the nano-ZnO group had higher numbers of RORgt+ and GATA3+ T cells in the mesenteric lymph nodes. ZnO group increased IL-6 and IL-8 levels in the colon tissues and these positive effects were observed in both chelate ZnO and nano-ZnO groups with lower level. The 16S rRNA gene analysis showed that the relative abundance of Prevotella was higher in the ZnO-treated groups than in the CON group and that of Succinivibrio was the highest in the nano-ZnO group. The relative abundance of Lactobacillus increased in the ZnO group. In conclusion, low nano-ZnO levels have similar effects on nutrient digestibility, fecal microflora, and intestinal immune profiles in weaning pigs; thus, nano-ZnO could be used as a ZnO alternative for promoting ZnO utilization and intestinal immunity.
Collapse
Affiliation(s)
- Han-Jin Oh
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Yei-Ju Park
- Department of Animal Sciences, Pusan National University, Miryang 50463, Korea; (Y.-J.P.); (B.-W.K.)
| | - Jae Hyoung Cho
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
| | - Min-Ho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 341-34, Korea;
| | - Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
| | - Won Yun
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Ji-Hwan Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Ji-Seon An
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Yong-Ju Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Jun-Soeng Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Sheena Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
| | - Hyeri Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
| | - Eun Sol Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
| | - Byoung-Kon Lee
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
| | - Byeong-Woo Kim
- Department of Animal Sciences, Pusan National University, Miryang 50463, Korea; (Y.-J.P.); (B.-W.K.)
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
| | - Hyeun Bum Kim
- Department of Animal Resource, and Science, Dankook University, Cheonan 311-16, Korea; (J.H.C.); (S.K.); (H.K.); (E.S.K.)
- Correspondence: (H.B.K.); (J.-H.C.); (M.-H.K.); Tel.: +82-043-261-2544 (H.B.K.); +82-041-550-3652 (J.-H.C.); +82-55-350-5516 (M.-H.K.); Fax: +82-043-273-2240 (H.B.K.); +82-041-550-3604 (J.-H.C.); +82-55-350-5519 (M.-H.K.)
| | - Jin-Ho Cho
- Department of Animal Sciences, Chungbuk National University, Cheongju 286-44, Korea; (H.-J.O.); (W.Y.); (J.-H.L.); (J.-S.A.); (Y.-J.K.); (J.-S.L.); (B.-K.L.)
- Correspondence: (H.B.K.); (J.-H.C.); (M.-H.K.); Tel.: +82-043-261-2544 (H.B.K.); +82-041-550-3652 (J.-H.C.); +82-55-350-5516 (M.-H.K.); Fax: +82-043-273-2240 (H.B.K.); +82-041-550-3604 (J.-H.C.); +82-55-350-5519 (M.-H.K.)
| | - Myung-Hoo Kim
- Department of Animal Sciences, Pusan National University, Miryang 50463, Korea; (Y.-J.P.); (B.-W.K.)
- Life and Industry Convergence Research Institute, Pusan National University, Mirayng 50463, Korea;
- Correspondence: (H.B.K.); (J.-H.C.); (M.-H.K.); Tel.: +82-043-261-2544 (H.B.K.); +82-041-550-3652 (J.-H.C.); +82-55-350-5516 (M.-H.K.); Fax: +82-043-273-2240 (H.B.K.); +82-041-550-3604 (J.-H.C.); +82-55-350-5519 (M.-H.K.)
| |
Collapse
|
31
|
Sousa de Almeida M, Susnik E, Drasler B, Taladriz-Blanco P, Petri-Fink A, Rothen-Rutishauser B. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev 2021; 50:5397-5434. [PMID: 33666625 PMCID: PMC8111542 DOI: 10.1039/d0cs01127d] [Citation(s) in RCA: 489] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 12/19/2022]
Abstract
Nanoparticles (NPs) have attracted considerable attention in various fields, such as cosmetics, the food industry, material design, and nanomedicine. In particular, the fast-moving field of nanomedicine takes advantage of features of NPs for the detection and treatment of different types of cancer, fibrosis, inflammation, arthritis as well as neurodegenerative and gastrointestinal diseases. To this end, a detailed understanding of the NP uptake mechanisms by cells and intracellular localization is essential for safe and efficient therapeutic applications. In the first part of this review, we describe the several endocytic pathways involved in the internalization of NPs and we discuss the impact of the physicochemical properties of NPs on this process. In addition, the potential challenges of using various inhibitors, endocytic markers and genetic approaches to study endocytosis are addressed along with the principal (semi) quantification methods of NP uptake. The second part focuses on synthetic and bio-inspired substances, which can stimulate or decrease the cellular uptake of NPs. This approach could be interesting in nanomedicine where a high accumulation of drugs in the target cells is desirable and clearance by immune cells is to be avoided. This review contributes to an improved understanding of NP endocytic pathways and reveals potential substances, which can be used in nanomedicine to improve NP delivery.
Collapse
Affiliation(s)
- Mauro Sousa de Almeida
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Eva Susnik
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of FribourgChemin des Verdiers 41700 FribourgSwitzerland
- Department of Chemistry, University of FribourgChemin du Musée 91700 FribourgSwitzerland
| | | |
Collapse
|
32
|
Dahdouh A, Kati DE, Bachir-Bey M, Aksas A, Rezgui F. Deployment of response surface methodology to optimize microencapsulation of peroxidases from turnip roots (Brassica rapa L.) by double emulsion in PLA polymer. J Food Sci 2021; 86:1893-1906. [PMID: 33895995 DOI: 10.1111/1750-3841.15721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 11/27/2022]
Abstract
In order to improve the preservation conditions and stability of peroxidase catalytic properties, a number of immobilization techniques have been widely developed. In this context, we set as objective, the optimization of synthesis and stability of microcapsules of peroxidases (POD) from turnip using polylactic acid (PLA) polymer with the double emulsion technique. The surfactant, polymer, and peroxidase concentrations were the optimized parameters. According to the results obtained using the Box-Behnken design, the optimal parameters found were 1.55% of PVA, 55 mg/mL of peroxidases, and 30 mg/mL of PLA polymer with an encapsulation efficiency of 57.29%. The scanning electron microscopy morphological characterization of the optimized microcapsules showed a regular spherical structure. Fourier transform infrared spectroscopy identified the specific functional groups and chemical bonds before and after microencapsulation. The elaborated microcapsules were characterized by an average size of 200 µm (mainly from 150 to 500 µm) with a low residual moisture content (2.26%) and the encapsulated peroxidases showed better thermal stability. The in vitro release of peroxidases confirmed that the microcapsules have an excellent sustained release in simulated gastric digestion. Encapsulated peroxidases' storage under 25 and 4 °C displays a good residual POD activity with about 60% of initial activities during 80 days of storage, whereas free POD losses its initial activity within 15 and 30 days, respectively. The obtained results are promising for the development of effective therapeutic treatment of some intestinal troubles due to oxidative stress. PRACTICAL APPLICATION: Brassica rapa L. root is well known for its richness on peroxidases and thus presents an interesting potential for developing high added value products. In order to preserve the activity of extracted peroxidases (POD) from turnip roots, microencapsulation was optimized using a polylactic acid polymer. The encapsulated POD showed the maintenance of its activity under the effect of different storage conditions (time and temperature) and demonstrated resistance to gastric acidity. According to the obtained results, the encapsulation of peroxidases opens up medicine and pharmaceutical applications such as intestinal and colic protection against inflammations.
Collapse
Affiliation(s)
- Amel Dahdouh
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Djamel Edine Kati
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Mostapha Bachir-Bey
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Ali Aksas
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia, Algeria
| | - Farouk Rezgui
- Laboratoire des Matériaux organiques, Département de Génie des Procèdes, Faculté de Technologie, Université de Bejaia, Bejaia, Algeria
| |
Collapse
|
33
|
Pretorius D, Serpooshan V, Zhang J. Nano-Medicine in the Cardiovascular System. Front Pharmacol 2021; 12:640182. [PMID: 33746761 PMCID: PMC7969876 DOI: 10.3389/fphar.2021.640182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 01/19/2023] Open
Abstract
Nano-medicines that include nanoparticles, nanocomposites, small molecules, and exosomes represent new viable sources for future therapies for the dysfunction of cardiovascular system, as well as the other important organ systems. Nanomaterials possess special properties ranging from their intrinsic physicochemical properties, surface energy and surface topographies which can illicit advantageous cellular responses within the cardiovascular system, making them exceptionally valuable in future clinical translation applications. The success of nano-medicines as future cardiovascular theranostic agents requires a comprehensive understanding of the intersection between nanomaterial and the biomedical fields. In this review, we highlight some of the major types of nano-medicine systems that are currently being explored in the cardiac field. This review focusses on the major differences between the systems, and how these differences affect the specific therapeutic or diagnostic applications. The important concerns relevant to cardiac nano-medicines, including cellular responses, toxicity of the different nanomaterials, as well as cardio-protective and regenerative capabilities are discussed. In this review an overview of the current development of nano-medicines specific to the cardiac field is provided, discussing the diverse nature and applications of nanomaterials as therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Emory Children's Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Piscatelli JA, Ban J, Lucas AT, Zamboni WC. Complex Factors and Challenges that Affect the Pharmacology, Safety and Efficacy of Nanocarrier Drug Delivery Systems. Pharmaceutics 2021; 13:114. [PMID: 33477395 PMCID: PMC7830329 DOI: 10.3390/pharmaceutics13010114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Major developments in nanomedicines, such as nanoparticles (NPs), nanosomes, and conjugates, have revolutionized drug delivery capabilities over the past four decades. Although nanocarrier agents provide numerous advantages (e.g., greater solubility and duration of systemic exposure) compared to their small-molecule counterparts, there is considerable inter-patient variability seen in the systemic disposition, tumor delivery and overall pharmacological effects (i.e., anti-tumor efficacy and unwanted toxicity) of NP agents. This review aims to provide a summary of fundamental factors that affect the disposition of NPs in the treatment of cancer and why they should be evaluated during preclinical and clinical development. Furthermore, this chapter will highlight some of the translational challenges associated with elements of NPs and how these issues can only be addressed by detailed and novel pharmacology studies.
Collapse
Affiliation(s)
- Joseph A. Piscatelli
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
| | - Jisun Ban
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
| | - Andrew T. Lucas
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (J.A.P.); (J.B.); (W.C.Z.)
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
35
|
Gendron A, Lan Linh Tran N, Laloy J, Brusini R, Rachet A, Gobeaux F, Nicolas V, Chaminade P, Abreu S, Desmaële D, Varna M. New Nanoparticle Formulation for Cyclosporin A: In Vitro Assessment. Pharmaceutics 2021; 13:pharmaceutics13010091. [PMID: 33445646 PMCID: PMC7828155 DOI: 10.3390/pharmaceutics13010091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
Cyclosporin A (CsA) is a molecule with well-known immunosuppressive properties. As it also acts on the opening of mitochondrial permeability transition pore (mPTP), CsA has been evaluated for ischemic heart diseases (IHD). However, its distribution throughout the body and its physicochemical characteristics strongly limit the use of CsA for intravenous administration. In this context, nanoparticles (NPs) have emerged as an opportunity to circumvent the above-mentioned limitations. We have developed in our laboratory an innovative nanoformulation based on the covalent bond between squalene (Sq) and cyclosporin A to avoid burst release phenomena and increase drug loading. After a thorough characterization of the bioconjugate, we proceeded with a nanoprecipitation in aqueous medium in order to obtain SqCsA NPs of well-defined size. The SqCsA NPs were further characterized using dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryoTEM), and high-performance liquid chromatography (HPLC), and their cytotoxicity was evaluated. As the goal is to employ them for IHD, we evaluated the cardioprotective capacity on two cardiac cell lines. A strong cardioprotective effect was observed on cardiomyoblasts subjected to experimental hypoxia/reoxygenation. Further research is needed in order to understand the mechanisms of action of SqCsA NPs in cells. This new formulation of CsA could pave the way for possible medical application.
Collapse
Affiliation(s)
- Amandine Gendron
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Natalie Lan Linh Tran
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 5000 Namur, Belgium;
| | - Romain Brusini
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Aurélie Rachet
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Frédéric Gobeaux
- CEA, CNRS, NIMBE, Université Paris-Saclay, CEA-Saclay, 91191 Gif sur Yvette, France;
| | - Valérie Nicolas
- Ingénierie et Plateformes au Service de l’Innovation (IPSIT), UMS IPSIT Université Paris-Saclay—US 31 INSERM—UMS 3679 CNRS, Plate-forme d’imagerie cellulaire MIPSIT, 92290 Châtenay-Malabry, France;
| | - Pierre Chaminade
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (P.C.); (S.A.)
| | - Sonia Abreu
- Lipides: Systèmes Analytiques et Biologiques, Université Paris-Saclay, 92296 Châtenay-Malabry, France; (P.C.); (S.A.)
| | - Didier Desmaële
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
| | - Mariana Varna
- Institut Galien Paris-Saclay, Université Paris-Saclay, CNRS UMR 8612, 92296 Châtenay-Malabry, France; (A.G.); (N.L.L.T.); (R.B.); (A.R.); (D.D.)
- Correspondence: ; Tel.: +33-0146835721
| |
Collapse
|
36
|
Skibba M, Drelich A, Poellmann M, Hong S, Brasier AR. Nanoapproaches to Modifying Epigenetics of Epithelial Mesenchymal Transition for Treatment of Pulmonary Fibrosis. Front Pharmacol 2020; 11:607689. [PMID: 33384604 PMCID: PMC7770469 DOI: 10.3389/fphar.2020.607689] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronically progressive interstitial lung that affects over 3 M people worldwide and rising in incidence. With a median survival of 2-3 years, IPF is consequently associated with high morbidity, mortality, and healthcare burden. Although two antifibrotic therapies, pirfenidone and nintedanib, are approved for human use, these agents reduce the rate of decline of pulmonary function but are not curative and do not reverse established fibrosis. In this review, we discuss the prevailing epithelial injury hypothesis, wherein pathogenic airway epithelial cell-state changes known as Epithelial Mesenchymal Transition (EMT) promotes the expansion of myofibroblast populations. Myofibroblasts are principal components of extracellular matrix production that result in airspace loss and mortality. We review the epigenetic transition driving EMT, a process produced by changes in histone acetylation regulating mesenchymal gene expression programs. This mechanistic work has focused on the central role of bromodomain-containing protein 4 in mediating EMT and myofibroblast transition and initial preclinical work has provided evidence of efficacy. As nanomedicine presents a promising approach to enhancing the efficacy of such anti-IPF agents, we then focus on the state of nanomedicine formulations for inhalable delivery in the treatment of pulmonary diseases, including liposomes, polymeric nanoparticles (NPs), inorganic NPs, and exosomes. These nanoscale agents potentially provide unique properties to existing pulmonary therapeutics, including controlled release, reduced systemic toxicity, and combination delivery. NP-based approaches for pulmonary delivery thus offer substantial promise to modify epigenetic regulators of EMT and advance treatments for IPF.
Collapse
Affiliation(s)
- Melissa Skibba
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Adam Drelich
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael Poellmann
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
| | - Seungpyo Hong
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Yonsei Frontier Lab, Department of Pharmacy, Yonsei University, Seoul, South Korea
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
37
|
Saadeldin IM, Khalil WA, Alharbi MG, Lee SH. The Current Trends in Using Nanoparticles, Liposomes, and Exosomes for Semen Cryopreservation. Animals (Basel) 2020; 10:E2281. [PMID: 33287256 PMCID: PMC7761754 DOI: 10.3390/ani10122281] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023] Open
Abstract
Cryopreservation is an essential tool to preserve sperm cells for zootechnical management and artificial insemination purposes. Cryopreservation is associated with sperm damage via different levels of plasma membrane injury and oxidative stress. Nanoparticles are often used to defend against free radicals and oxidative stress generated through the entire process of cryopreservation. Recently, artificial or natural nanovesicles including liposomes and exosomes, respectively, have shown regenerative capabilities to repair damaged sperm during the freeze-thaw process. Exosomes possess a potential pleiotropic effect because they contain antioxidants, lipids, and other bioactive molecules regulating and repairing spermatozoa. In this review, we highlight the current strategies of using nanoparticles and nanovesicles (liposomes and exosomes) to combat the cryoinjuries associated with semen cryopreservation.
Collapse
Affiliation(s)
- Islam M. Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Wael A. Khalil
- Department of Animal Production, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Mona G. Alharbi
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Seok Hee Lee
- Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
38
|
The remarkable role of emulsifier and chitosan, dextran and PEG as capping agents in the enhanced delivery of curcumin by nanoparticles in breast cancer cells. Int J Biol Macromol 2020; 162:748-761. [DOI: 10.1016/j.ijbiomac.2020.06.188] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022]
|
39
|
Nose to brain delivery of eletriptan hydrobromide nanoparticles: Preparation, in vitro/in vivo evaluation and effect on trigeminal activation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Leya T, Ahmad I, Sharma R, Tripathi G, Kurcheti PP, Rajendran KV, Bedekar MK. Bicistronic DNA vaccine macromolecule complexed with poly lactic-co-glycolic acid-chitosan nanoparticles enhanced the mucosal immunity of Labeo rohita against Edwardsiella tarda infection. Int J Biol Macromol 2020; 156:928-937. [DOI: 10.1016/j.ijbiomac.2020.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/10/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022]
|
41
|
Abstract
Nanoparticle-based drug delivery system (DDS) is considered promising for cancer treatment. Compared with traditional DDS, the nanoparticle-based DDS shows improved efficacy by: 1) increasing half-life of vulnerable drugs and proteins, 2) improving the solubility of hydrophobic drugs, and 3) allowing controlled and targeted release of drugs in diseased site. This review mainly focuses on nanoparticle-based DDS fabricated from chitosan, silica, and poly (lactic-co-glycolic acid). Their fabrication methods and applications in cancer treatment are introduced. The current limitations and future perspectives of the nanoparticle-based DDS are discussed.
Collapse
Affiliation(s)
- Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
42
|
Resveratrol Nanoparticles: A Promising Therapeutic Advancement over Native Resveratrol. Processes (Basel) 2020. [DOI: 10.3390/pr8040458] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The importance of fruit-derived resveratrol (RES) in the treatment of various diseases has been discussed in various research publications. Those research findings have indicated the ability of the molecule as therapeutic in the context of in vitro and in vivo conditions. Mostly, the application of RES in in vivo conditions, encapsulation processes have been carried out using various nanoparticles that are made of biocompatible biomaterials, which are easily digested or metabolized, and RES is absorbed effectively. These biomaterials are non-toxic and are safe to be used as components in the biotherapeutics. They are made from naturally available by-products of food materials like zein or corn or components of the physiological system as with lipids. The versatility of the RES nanoparticles in their different materials, working range sizes, specificity in their targeting in various human diseases, and the mechanisms associated with them are discussed in this review.
Collapse
|
43
|
Byrne CE, Astete CE, Vaithiyanathan M, Melvin AT, Moradipour M, Rankin SE, Knutson BL, Sabliov CM, Martin EC. Lignin-graft-PLGA drug-delivery system improves efficacy of MEK1/2 inhibitors in triple-negative breast cancer cell line. Nanomedicine (Lond) 2020; 15:981-1000. [DOI: 10.2217/nnm-2020-0010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: Few targeted therapies are available for triple-negative breast cancer (TNBC) patients. Here, we propose a novel alkaline-lignin-conjugated-poly(lactic- co-glycolic acid) (L-PLGA) nanoparticle drug delivery system to improve the efficacy of targeted therapies. Materials & methods: L-PLGA nanoparticles (NPs) loaded with the MEK1/2 inhibitor GDC-0623 were characterized, tested in vitro on MDA-MB-231 TNBC cell line and compared with loaded PLGA NPs. Results: Loaded L-PLGA NPs were less than half the size of PLGA NPs, had slower drug release and improved the efficacy of GDC-0623 when tested in vitro. We demonstrated that GDC-0623 reversed epithelial-to-mesenchymal transition in TNBC. Conclusion: Our findings indicate that L-PLGA NPs are superior to PLGA NPs in delivering GDC-0623 to cancer cells for improved efficacy in vitro.
Collapse
Affiliation(s)
- C Ethan Byrne
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | - Carlos E Astete
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | | | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, LA 70803, USA
| | - Mahsa Moradipour
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Stephen E Rankin
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Barbara L Knutson
- Department of Chemical & Materials Engineering, University of Kentucky, KY 40506, USA
| | - Cristina M Sabliov
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| | - Elizabeth C Martin
- Department of Biological & Agricultural Engineering, Louisiana State University, LA 70803, USA
| |
Collapse
|
44
|
Ribeiro RSA, Bojorge N, Pereira N. Statistical analysis of the crystallinity index of nanocellulose produced from Kraft pulp via controlled enzymatic hydrolysis. Biotechnol Appl Biochem 2020; 67:366-374. [PMID: 31943376 DOI: 10.1002/bab.1873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/06/2019] [Indexed: 11/06/2022]
Abstract
Enzymatic hydrolysis processes can change the physical characteristics of nanocellulose derived from Kraft pulp. Among these attributes are its crystallinity index and dimensions. In this study, we determined the optimal conditions under which nanocellulose could be produced enzymatically with the greatest increase of the crystallinity index relative to its initial state. Application of Central Composite Rotatable Design statistical analysis to the experiments was employed to direct an increase the crystallinity index in 10% at the 24-H hydrolysis time. Upon establishment of ideal levels of starting material and enzyme, reactions were carried out at hydrolysis times of 24, 48, and 72 H under these ideal parameters. The effectiveness of deagglomeration was demonstrated by measuring the hydrodynamic diameter of the particles by dynamic light scattering. Scanning electron microscopy was performed on four samples, the original material, kraft pulp, and hydrolyzed biomaterials at 72 H in the ideal parameters. The hydrolyzed material with the best statistical data, revealing a fiber diameter of 180 nm, disclosing to be biomaterial with nanocellulose dimensions.
Collapse
Affiliation(s)
| | - Ninoska Bojorge
- Department of Chemical and Petroleum Engineering, Fluminense Federal University, Niterói, RJ, Brazil
| | - Nei Pereira
- School of Chemistry, Center of Technology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
45
|
Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int J Pharm 2019; 575:119002. [PMID: 31893546 DOI: 10.1016/j.ijpharm.2019.119002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022]
Abstract
Itraconazole (ITZ) can be used for the treatment of cryptococcus neoformans meningitis and aspergillus brain abscess. While, the inherent hydrophobicity of ITZ and the existence of blood brain barrier (BBB) limit its applications as a central nervous system drug. In this study, a novel brain targeting drug delivery system based on bovine serum albumin (BSA) was constructed for enhancing ITZ distribution in brain. Firstly, ITZ was loaded into BSA nanoparticles (ITZ-NPs) with 11.6% of drug loading. Subsequently, the nanoparticles were modified with borneol (BO) and polyethylene glycol (PEG) (PEG/BO-ITZ-NPs). The resulting nanoparticles retained their nanosize (186.3 nm), uniform and spherical morphology, and negative surface charge (-21.03 mV). Cell uptake studies showed that compared with ITZ-NPs, PEG/BO-ITZ-NPs had significantly increased uptake in bEnd.3 cells, and the increase in BO concentration was beneficial for the cellular uptake of NPs. Moreover, PEG/BO-ITZ-NPs displayed an approximately 3.5-fold higher area under the curve in rats and about 2-fold higher brain distribution in mice than that of Sporanox®, i.e. ITZ solubilized by hydroxylpropyl-β-cyclodetrin, after i.v. administration. In a word, BO and PEG dual modified BSA nanoparticles may potentially serve as an ITZ vehicle for brain targeting.
Collapse
|
46
|
Wu L, Zhao L, Su X, Zhang P, Ling G. Repaglinide-loaded nanostructured lipid carriers with different particle sizes for improving oral absorption: preparation, characterization, pharmacokinetics, and in situ intestinal perfusion. Drug Deliv 2019; 27:400-409. [PMID: 31729898 PMCID: PMC8216444 DOI: 10.1080/10717544.2019.1689313] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Repaglinide-loaded nanostructured lipid carriers (REP-NLCs) with different particle sizes were successfully designed and prepared to investigate the permeation and absorption ability by in situ single-pass intestinal perfusion (SPIP) study and pharmacokinetics. Both of the formulations prepared by solvent diffusion method exhibited a spherical shape under transmission electron microscopy (TEM) and similar zeta potential value of –11 mV. The particles size, encapsulation efficiency (EE), drug loading (DL) of REP-NLCs-Small and REP-NLCs-Large size preparations were about 79 nm and 325 nm, 96.83% and 98.60%, 4.41% and 3.05%, respectively. Besides, both REP-NLCs showed good colloidal stability and had no burst release phenomenon compared with REP-Sol. SPIP demonstrated the improved membrane permeability for NLCs compared with REP-Sol, especially NLCs-Small size preparation. The bioavailability increased sequentially in REP-Sol, REP-NLCs-Large, and REP-NLCs-Small, and the difference between each other was statistical significant. Our investigations demonstrate that NLCs with small particles size of 50–100 nm, such as 79 nm, are able to enhance absorption performance of a poorly soluble repaglinide compared with large particles size, such as 325 nm, by significantly improving the absorption in jejunum, and colon of rats and thus well improving oral bioavailability.
Collapse
Affiliation(s)
- Lei Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Xitong Su
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
47
|
O’Dwyer J, Murphy R, Dolan EB, Kovarova L, Pravda M, Velebny V, Heise A, Duffy GP, Cryan SA. Development of a nanomedicine-loaded hydrogel for sustained delivery of an angiogenic growth factor to the ischaemic myocardium. Drug Deliv Transl Res 2019; 10:440-454. [DOI: 10.1007/s13346-019-00684-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Kachuee R, Abdi-Benemar H, Mansoori Y, Sánchez-Aparicio P, Seifdavati J, Elghandour MMMY, Guillén RJ, Salem AZM. Effects of Sodium Selenite, L-Selenomethionine, and Selenium Nanoparticles During Late Pregnancy on Selenium, Zinc, Copper, and Iron Concentrations in Khalkhali Goats and Their Kids. Biol Trace Elem Res 2019; 191:389-402. [PMID: 30600505 DOI: 10.1007/s12011-018-1618-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/16/2018] [Indexed: 01/02/2023]
Abstract
The objective of this study was to evaluate the effect of organic, inorganic, and selenium nanoparticle supplements at the final stage of pregnancy on selenium, zinc, copper, and iron concentrations of goats and placental, colostrum, and milk transfer of these trace minerals from goats to their kids. Forty pregnant Khalkhali goats (30 ± 5 kg) were randomly allocated to four treatments including (1) no supplement (control), 0.6 mg Se head-1 day-1 of selenomethionine (SM), 0.6 mg Se head-1 day-1 of selenium nanoparticles (SN), and 0.6 mg Se head-1 day-1 of sodium selenite (SS), from 4 weeks before the expected day of delivery to delivery day. Blood samples were taken from the goats 4 weeks before the expected day of delivery and on the kidding day. Colostrum samples were collected from the goats immediately after kidding. Instantly after delivery, newborn kids were taken apart from their dams and their blood samples were collected from the jugular vein, before they drank their first colostrums and at 7, 14, 21, and 28 after birthday. The results demonstrated that the whole blood and serum Se concentration was greater in Se-supplemented goats compared with the control (P < 0.05). The total Se content of the whole blood and serum was higher in SN than in SM (P < 0.05) and SS goats (P < 0.05). At birth, the whole blood and serum concentration of Se was decreased (P < 0.05) in kids of SN-treated goats contrasted with the control ones (P < 0.05). The copper content of goats and their kids in treated goats was greater compared with control goats except for SN treated, which was decreased (P < 0.05). It was totally vice versa with Zn content trend in the whole blood, serum, and colostrum (P < 0.05), which was also concomitant with an increase in Fe content of kids of supplemented goats at birth and first week of life (P < 0.05). These results seem to indicate a higher efficacy of placental and colostral transfer of Se into kids of SM-treated goats when contrasted with either receiving comparable doses of SN or SS. It could be concluded that Se supplementation can affect and correlate with Cu, Zn, and Fe levels, and this effect depends a lot on the chemical or physical variety of Se supplementation.
Collapse
Affiliation(s)
- Rasool Kachuee
- Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Abdi-Benemar
- Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Yaghoub Mansoori
- Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Pedro Sánchez-Aparicio
- Department of Pharmacology, Anesthesia and Analgesia, Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, State of Mexico, Mexico
| | - Jamal Seifdavati
- Department of Animal Science, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mona M M Y Elghandour
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, State of Mexico, Mexico
| | | | - Abdelfattah Z M Salem
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Autonomous University of the State of Mexico, Toluca, State of Mexico, Mexico.
| |
Collapse
|
49
|
Anti-Inflammatory Effect of Cherry Extract Loaded in Polymeric Nanoparticles: Relevance of Particle Internalization in Endothelial Cells. Pharmaceutics 2019; 11:pharmaceutics11100500. [PMID: 31569594 PMCID: PMC6835553 DOI: 10.3390/pharmaceutics11100500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023] Open
Abstract
This study aimed at evaluating the anti-inflammatory effect of natural cherry extract (CE), either free or encapsulated in nanoparticles (NPs) based on chitosan derivatives (Ch-der) or poly(lactic-co-glycolic acid) (PLGA), on human umbilical vein endothelial cells (HUVEC). CE from Prunus avium L. was characterized for total polyphenols, flavonoids, and anthocyanins content. CE and CE-loaded NP cytotoxicity and protective effect on lipopolysaccharide (LPS)-stressed HUVEC were tested by water-soluble tetrazolium salt (WST-1) assay. Pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10, and PGE2) released by HUVEC were quantified by enzyme-linked immunosorbent assay (ELISA). All NP types were internalized into HUVEC after 2 h incubation and promoted the anti-inflammatory effect of free CE at the concentration of 2 µg gallic acid equivalents (GAE)/mL. CE-loaded Ch-der NPs showed the highest in vitro uptake and anti-inflammatory activity, blunting the secretion of IL-6, TNF-α, and PGE2 cytokines. Moreover, all NPs reduced the production of nitric oxide and NLRP3 inflammasome, and had a stronger anti-inflammatory effect than the major corticosteroid dexamethasone. In particular, the results demonstrate that natural CE protects endothelial cells from inflammatory stress when encapsulated in NPs based on quaternary ammonium chitosan. The CE beneficial effects were directly related with in vitro internalization of CE-loaded NPs.
Collapse
|
50
|
Walia N, Chen L. Pea protein based vitamin D nanoemulsions: Fabrication, stability and in vitro study using Caco-2 cells. Food Chem 2019; 305:125475. [PMID: 31518841 DOI: 10.1016/j.foodchem.2019.125475] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
Abstract
Pea protein-stabilized nanoemulsions were prepared to encapsulate vitamin D with the aim to develop novel non-dairy functional foods for vitamin D fortifications. Homogenization conditions of 20 kpsi and two homogenization cycles were identified as optimal conditions for producing stable nanoemulsions. The nanoemulsions exhibited controllable sizes (170-350 nm), good stability with zeta-potential of -25 mV, and high vitamin encapsulation efficiency (94-96%). Cellular uptake efficiency of small sized nanoemulsions (233 nm) was ~2.5 times higher than large sized nanoemulsions (350 nm). Interestingly, protein-based nanoemulsions exhibited significantly higher cellular uptake than emulsions prepared using a combination of protein and lecithin. The vitamin D transport efficiency across Caco-2 cells for small sized nanoemulsions (233 nm) was ~5.3 times greater than free vitamin D suspension. This research demonstrated that pea protein can be used as an effective emulsifier for preparing food nanoemulsions, which may enhance vitamin D bioavailability and improve vitamin deficiency status in aged population.
Collapse
Affiliation(s)
- Niharika Walia
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB T6G 2P5, Canada.
| | - Lingyun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|