1
|
Ying R, Hamlette L, Nikoobakht L, Balaji R, Miko N, Caras ML. Organization of orbitofrontal-auditory pathways in the Mongolian gerbil. J Comp Neurol 2023; 531:1459-1481. [PMID: 37477903 PMCID: PMC10529810 DOI: 10.1002/cne.25525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Sound perception is highly malleable, rapidly adjusting to the acoustic environment and behavioral demands. This flexibility is the result of ongoing changes in auditory cortical activity driven by fluctuations in attention, arousal, or prior expectations. Recent work suggests that the orbitofrontal cortex (OFC) may mediate some of these rapid changes, but the anatomical connections between the OFC and the auditory system are not well characterized. Here, we used virally mediated fluorescent tracers to map the projection from OFC to the auditory midbrain, thalamus, and cortex in a classic animal model for auditory research, the Mongolian gerbil (Meriones unguiculatus). We observed no connectivity between the OFC and the auditory midbrain, and an extremely sparse connection between the dorsolateral OFC and higher order auditory thalamic regions. In contrast, we observed a robust connection between the ventral and medial subdivisions of the OFC and the auditory cortex, with a clear bias for secondary auditory cortical regions. OFC axon terminals were found in all auditory cortical lamina but were significantly more concentrated in the infragranular layers. Tissue-clearing and lightsheet microscopy further revealed that auditory cortical-projecting OFC neurons send extensive axon collaterals throughout the brain, targeting both sensory and non-sensory regions involved in learning, decision-making, and memory. These findings provide a more detailed map of orbitofrontal-auditory connections and shed light on the possible role of the OFC in supporting auditory cognition.
Collapse
Affiliation(s)
- Rose Ying
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| | - Lashaka Hamlette
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Laudan Nikoobakht
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Rakshita Balaji
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Nicole Miko
- Department of Biology, University of Maryland, College Park, Maryland, 20742
| | - Melissa L. Caras
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland, 20742
- Department of Biology, University of Maryland, College Park, Maryland, 20742
- Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
2
|
Saldeitis K, Jeschke M, Budinger E, Ohl FW, Happel MFK. Laser-Induced Apoptosis of Corticothalamic Neurons in Layer VI of Auditory Cortex Impact on Cortical Frequency Processing. Front Neural Circuits 2021; 15:659280. [PMID: 34322001 PMCID: PMC8311662 DOI: 10.3389/fncir.2021.659280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.
Collapse
Affiliation(s)
- Katja Saldeitis
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Lab, German Primate Center, Göttingen, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany
| | - Marcus Jeschke
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Lab, German Primate Center, Göttingen, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany
| | - Eike Budinger
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany.,Institute of Biology (IBIO), University Magdeburg, Magdeburg, Germany
| | - Max F K Happel
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Medical School Berlin, Berlin, Germany
| |
Collapse
|
3
|
Brunk MGK, Deane KE, Kisse M, Deliano M, Vieweg S, Ohl FW, Lippert MT, Happel MFK. Optogenetic stimulation of the VTA modulates a frequency-specific gain of thalamocortical inputs in infragranular layers of the auditory cortex. Sci Rep 2019; 9:20385. [PMID: 31892726 PMCID: PMC6938496 DOI: 10.1038/s41598-019-56926-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
Reward associations during auditory learning induce cortical plasticity in the primary auditory cortex. A prominent source of such influence is the ventral tegmental area (VTA), which conveys a dopaminergic teaching signal to the primary auditory cortex. Yet, it is unknown, how the VTA influences cortical frequency processing and spectral integration. Therefore, we investigated the temporal effects of direct optogenetic stimulation of the VTA onto spectral integration in the auditory cortex on a synaptic circuit level by current-source-density analysis in anesthetized Mongolian gerbils. While auditory lemniscal input predominantly terminates in the granular input layers III/IV, we found that VTA-mediated modulation of spectral processing is relayed by a different circuit, namely enhanced thalamic inputs to the infragranular layers Vb/VIa. Activation of this circuit yields a frequency-specific gain amplification of local sensory input and enhances corticocortical information transfer, especially in supragranular layers I/II. This effects persisted over more than 30 minutes after VTA stimulation. Altogether, we demonstrate that the VTA exhibits a long-lasting influence on sensory cortical processing via infragranular layers transcending the signaling of a mere reward-prediction error. We thereby demonstrate a cellular and circuit substrate for the influence of reinforcement-evaluating brain systems on sensory processing in the auditory cortex.
Collapse
Affiliation(s)
- Michael G K Brunk
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
| | - Katrina E Deane
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Martin Kisse
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Matthias Deliano
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Silvia Vieweg
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Frank W Ohl
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
- Institute for Biology, Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Michael T Lippert
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106, Magdeburg, Germany
| | - Max F K Happel
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.
- Institute for Biology, Otto-von-Guericke-University, 39120, Magdeburg, Germany.
| |
Collapse
|
4
|
Macias S, Bakshi K, Smotherman M. Laminar Organization of FM Direction Selectivity in the Primary Auditory Cortex of the Free-Tailed Bat. Front Neural Circuits 2019; 13:76. [PMID: 31827425 PMCID: PMC6890848 DOI: 10.3389/fncir.2019.00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 01/18/2023] Open
Abstract
We studied the columnar and layer-specific response properties of neurons in the primary auditory cortex (A1) of six (four females, two males) anesthetized free-tailed bats, Tadarida brasiliensis, in response to pure tones and down and upward frequency modulated (FM; 50 kHz bandwidth) sweeps. In addition, we calculated current source density (CSD) to test whether lateral intracortical projections facilitate neuronal activation in response to FM echoes containing spectrally distant frequencies from the excitatory frequency response area (FRA). Auditory responses to a set of stimuli changing in frequency and level were recorded along 64 penetrations in the left A1 of six free-tailed bats. FRA shapes were consistent across the cortical depth within a column and there were no obvious differences in tuning properties. Generally, response latencies were shorter (<10 ms) for cortical depths between 500 and 600 μm, which might correspond to thalamocortical input layers IIIb-IV. Most units showed a stronger response to downward FM sweeps, and direction selectivity did not vary across cortical depth. CSD profiles calculated in response to the CF showed a current sink located at depths between 500 and 600 μm. Frequencies lower than the frequency range eliciting a spike response failed to evoke any visible current sink. Frequencies higher than the frequency range producing a spike response evoked layer IV sinks at longer latencies that increased with spectral distance. These data support the hypothesis that a progressive downward relay of spectral information spreads along the tonotopic axis of A1 via lateral connections, contributing to the neural processing of FM down sweeps used in biosonar.
Collapse
Affiliation(s)
- Silvio Macias
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Kushal Bakshi
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Zurita H, Rock C, Perkins J, Apicella AJ. A Layer-specific Corticofugal Input to the Mouse Superior Colliculus. Cereb Cortex 2019; 28:2817-2833. [PMID: 29077796 DOI: 10.1093/cercor/bhx161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
In the auditory cortex (AC), corticofugal projections arise from each level of the auditory system and are considered to provide feedback "loops" important to modulate the flow of ascending information. It is well established that the cortex can influence the response of neurons in the superior colliculus (SC) via descending corticofugal projections. However, little is known about the relative contribution of different pyramidal neurons to these projections in the SC. We addressed this question by taking advantage of anterograde and retrograde neuronal tracing to directly examine the laminar distribution, long-range projections, and electrophysiological properties of pyramidal neurons projecting from the AC to the SC of the mouse brain. Here we show that layer 5 cortico-superior-collicular pyramidal neurons act as bandpass filters, resonating with a broad peak at ∼3 Hz, whereas layer 6 neurons act as low-pass filters. The dissimilar subthreshold properties of layer 5 and layer 6 cortico-superior-collicular pyramidal neurons can be described by differences in the hyperpolarization-activated cyclic nucleotide-gated cation h-current (Ih). Ih also reduced the summation of short trains of artificial excitatory postsynaptic potentials injected at the soma of layer 5, but not layer 6, cortico-superior-collicular pyramidal neurons, indicating a differential dampening effect of Ih on these neurons.
Collapse
Affiliation(s)
- Hector Zurita
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Crystal Rock
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jessica Perkins
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| | - Alfonso Junior Apicella
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Casanova MF, Casanova EL. The modular organization of the cerebral cortex: Evolutionary significance and possible links to neurodevelopmental conditions. J Comp Neurol 2019; 527:1720-1730. [PMID: 30303529 PMCID: PMC6784310 DOI: 10.1002/cne.24554] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/22/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
The recognition of discernible anatomical regularities that appear to self-organize during development makes apparent the modular organization of the cerebral cortex. The metabolic cost engendered in sustaining interneuronal communications has emphasized the viability of short connections among neighboring neurons. This pattern of connectivity establishes a microcircuit which is repeated in parallel throughout the cerebral cortex. This canonical circuit is contained within the smallest module of information processing of the cerebral cortex; one which Vernon Mountcastle called the minicolumn. Plasticity within the brain is accounted, in part, by the presence of weak linkages that allow minicolumns to process information from a variety of sources and to quickly adapt to environmental exigencies without a need for genetic change. Recent research suggests that interlaminar correlated firing between minicolumns during the decision phase of target selection provides for the emergence of some executive functions. Bottlenecks of information processing within this modular minicolumnar organization may account for a variety of mental disorders observed in neurodevelopmental conditions.
Collapse
Affiliation(s)
- Manuel F Casanova
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina
| | - Emily L Casanova
- Department of Pediatrics, Greenville Health System, Greenville, South Carolina
| |
Collapse
|
7
|
Xie F, You L, Cai D, Liu M, Yue Y, Wang Y, Yuan K. Fast Inhibitory Decay Facilitates Adult-like Temporal Processing in Layer 5 of Developing Primary Auditory Cortex. Cereb Cortex 2018; 28:4319-4335. [PMID: 29121216 DOI: 10.1093/cercor/bhx284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 11/12/2022] Open
Abstract
The protracted maturational process of temporal processing in layer 4 (L4) of primary auditory cortex (A1) has been extensively studied. Accumulating evidences show that layer 5 (L5) receives direct thalamic inputs as well. How the temporal responses in L5 may developmentally emerge remains unclear. Using in vivo loose-patch recordings in rat A1, we found that putative pyramidal (Pyr) neurons in developing L5 exhibited adult-like stimulus-following ability but less bursting shortly after hearing onset. L5 Pyr neurons in adult A1 exhibited phase-locking similar to L4 neurons, while L5 fast-spiking (FS) neurons showed greater phase-locking at 7 and 12.5 pps. In developing L5, whole-cell recordings revealed inhibition with decay constant comparable to that in adult L5, thereby avoiding the summation of inhibition that contributed to the strong adaptation in L4. Given the targets of L5 outputs, the relatively precocious temporal processing in L5 might contribute to temporal response maturation in connected cortical and subcortical areas. Our findings were in agreement with the idea that L5 may be a "hub" for processing cortical inputs and outputs that can operate independently of L4.
Collapse
Affiliation(s)
- Fenghua Xie
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ling You
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Dongqin Cai
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Miaomiao Liu
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yin Yue
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Yiwei Wang
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Kexin Yuan
- Department of Biomedical Engineering, School of Medicine, IDG/McGovern Institute for Brain Research, Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Moerel M, De Martino F, Uğurbil K, Formisano E, Yacoub E. Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex. J Neurosci 2018; 38:7822-7832. [PMID: 30185539 PMCID: PMC6125808 DOI: 10.1523/jneurosci.3576-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/27/2022] Open
Abstract
Using ultra-high field fMRI, we explored the cortical depth-dependent stability of acoustic feature preference in human auditory cortex. We collected responses from human auditory cortex (subjects from either sex) to a large number of natural sounds at submillimeter spatial resolution, and observed that these responses were well explained by a model that assumes neuronal population tuning to frequency-specific spectrotemporal modulations. We observed a relatively stable (columnar) tuning to frequency and temporal modulations. However, spectral modulation tuning was variable throughout the cortical depth. This difference in columnar stability between feature maps could not be explained by a difference in map smoothness, as the preference along the cortical sheet varied in a similar manner for the different feature maps. Furthermore, tuning to all three features was more columnar in primary than nonprimary auditory cortex. The observed overall lack of overlapping columnar regions across acoustic feature maps suggests, especially for primary auditory cortex, a coding strategy in which across cortical depths tuning to some features is kept stable, whereas tuning to other features systematically varies.SIGNIFICANCE STATEMENT In the human auditory cortex, sound aspects are processed in large-scale maps. Invasive animal studies show that an additional processing organization may be implemented orthogonal to the cortical sheet (i.e., in the columnar direction), but it is unknown whether observed organizational principles apply to the human auditory cortex. Combining ultra-high field fMRI with natural sounds, we explore the columnar organization of various sound aspects. Our results suggest that the human auditory cortex contains a modular coding strategy, where, for each module, several sound aspects act as an anchor along which computations are performed while the processing of another sound aspect undergoes a transformation. This strategy may serve to optimally represent the content of our complex acoustic natural environment.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology and
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Elia Formisano
- Maastricht Centre for Systems Biology and
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, 6200 MD Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Center, 6200 MD Maastricht, The Netherlands, and
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
9
|
Wu PY, Chu YH, Lin JFL, Kuo WJ, Lin FH. Feature-dependent intrinsic functional connectivity across cortical depths in the human auditory cortex. Sci Rep 2018; 8:13287. [PMID: 30185951 PMCID: PMC6125583 DOI: 10.1038/s41598-018-31292-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
Frequency preference and spectral tuning are two cardinal features of information processing in the auditory cortex. However, sounds should not only be processed in separate frequency bands because information needs to be integrated to be meaningful. One way to better understand the integration of acoustic information is to examine the functional connectivity across cortical depths, as neurons are already connected differently across laminar layers. Using a tailored receiver array and surface-based cortical depth analysis, we revealed the frequency-preference as well as tuning-width dependent intrinsic functional connectivity (iFC) across cortical depths in the human auditory cortex using functional magnetic resonance imaging (fMRI). We demonstrated feature-dependent iFC in both core and noncore regions at all cortical depths. The selectivity of frequency-preference dependent iFC was higher at deeper depths than at intermediate and superficial depths in the core region. Both the selectivity of frequency-preference and tuning-width dependent iFC were stronger in the core than in the noncore region at deep cortical depths. Taken together, our findings provide evidence for a cortical depth-specific feature-dependent functional connectivity in the human auditory cortex.
Collapse
Affiliation(s)
- Pu-Yeh Wu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Ying-Hua Chu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Jo-Fu Lotus Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan
| | - Wen-Jui Kuo
- Institute of Neuroscience, National Yang-Ming University, Taipei, 112, Taiwan
| | - Fa-Hsuan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 106, Taiwan.
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, 02150, Finland.
| |
Collapse
|
10
|
Schaefer MK, Kössl M, Hechavarría JC. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils. PLoS One 2017; 12:e0182514. [PMID: 28771568 PMCID: PMC5542772 DOI: 10.1371/journal.pone.0182514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
In mammals, acoustic communication plays an important role during social behaviors. Despite their ethological relevance, the mechanisms by which the auditory cortex represents different communication call properties remain elusive. Recent studies have pointed out that communication-sound encoding could be based on discharge patterns of neuronal populations. Following this idea, we investigated whether the activity of local neuronal networks, such as those occurring within individual cortical columns, is sufficient for distinguishing between sounds that differed in their spectro-temporal properties. To accomplish this aim, we analyzed simple pure-tone and complex communication call elicited multi-unit activity (MUA) as well as local field potentials (LFP), and current source density (CSD) waveforms at the single-layer and columnar level from the primary auditory cortex of anesthetized Mongolian gerbils. Multi-dimensional scaling analysis was used to evaluate the degree of "call-specificity" in the evoked activity. The results showed that whole laminar profiles segregated 1.8-2.6 times better across calls than single-layer activity. Also, laminar LFP and CSD profiles segregated better than MUA profiles. Significant differences between CSD profiles evoked by different sounds were more pronounced at mid and late latencies in the granular and infragranular layers and these differences were based on the absence and/or presence of current sinks and on sink timing. The stimulus-specific activity patterns observed within cortical columns suggests that the joint activity of local cortical populations (as local as single columns) could indeed be important for encoding sounds that differ in their acoustic attributes.
Collapse
Affiliation(s)
- Markus K. Schaefer
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
| | - Julio C. Hechavarría
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensorics, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
11
|
Tao C, Zhang G, Zhou C, Wang L, Yan S, Tao HW, Zhang LI, Zhou Y, Xiong Y. Diversity in Excitation-Inhibition Mismatch Underlies Local Functional Heterogeneity in the Rat Auditory Cortex. Cell Rep 2017; 19:521-531. [PMID: 28423316 DOI: 10.1016/j.celrep.2017.03.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/09/2017] [Accepted: 03/21/2017] [Indexed: 11/29/2022] Open
Abstract
Cortical neurons are heterogeneous in their functional properties. This heterogeneity is fundamental for the processing of different features of sensory information. However, functional diversity within a local group of neurons is poorly understood. Here, we demonstrate that neighboring cortical neurons in layer 5 but not those of layer 4 of the rat anterior auditory field (AAF) exhibited a surprisingly high level of diversity in tonal receptive fields. In vivo whole-cell voltage-clamp recordings revealed that the diversity of frequency representation was due to a spectral mismatch between synaptic excitation and inhibition to varying degrees. The spectral distribution of excitation was skewed at different levels, whereas inhibition was homogeneous and non-skewed, similar to the summed spiking activity of local neuronal ensembles, which further enhanced diversity. Our results indicate that AAF in the auditory cortex is involved in processing auditory information in a highly refined manner that is important for complex pattern recognition.
Collapse
Affiliation(s)
- Can Tao
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Guangwei Zhang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Chang Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Lijuan Wang
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Sumei Yan
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yi Zhou
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
12
|
Moerel M, De Martino F, Kemper VG, Schmitter S, Vu AT, Uğurbil K, Formisano E, Yacoub E. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. Neuroimage 2017; 164:18-31. [PMID: 28373123 DOI: 10.1016/j.neuroimage.2017.03.063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 12/18/2016] [Accepted: 03/29/2017] [Indexed: 01/05/2023] Open
Abstract
Following rapid technological advances, ultra-high field functional MRI (fMRI) enables exploring correlates of neuronal population activity at an increasing spatial resolution. However, as the fMRI blood-oxygenation-level-dependent (BOLD) contrast is a vascular signal, the spatial specificity of fMRI data is ultimately determined by the characteristics of the underlying vasculature. At 7T, fMRI measurement parameters determine the relative contribution of the macro- and microvasculature to the acquired signal. Here we investigate how these parameters affect relevant high-end fMRI analyses such as encoding, decoding, and submillimeter mapping of voxel preferences in the human auditory cortex. Specifically, we compare a T2* weighted fMRI dataset, obtained with 2D gradient echo (GE) EPI, to a predominantly T2 weighted dataset obtained with 3D GRASE. We first investigated the decoding accuracy based on two encoding models that represented different hypotheses about auditory cortical processing. This encoding/decoding analysis profited from the large spatial coverage and sensitivity of the T2* weighted acquisitions, as evidenced by a significantly higher prediction accuracy in the GE-EPI dataset compared to the 3D GRASE dataset for both encoding models. The main disadvantage of the T2* weighted GE-EPI dataset for encoding/decoding analyses was that the prediction accuracy exhibited cortical depth dependent vascular biases. However, we propose that the comparison of prediction accuracy across the different encoding models may be used as a post processing technique to salvage the spatial interpretability of the GE-EPI cortical depth-dependent prediction accuracy. Second, we explored the mapping of voxel preferences. Large-scale maps of frequency preference (i.e., tonotopy) were similar across datasets, yet the GE-EPI dataset was preferable due to its larger spatial coverage and sensitivity. However, submillimeter tonotopy maps revealed biases in assigned frequency preference and selectivity for the GE-EPI dataset, but not for the 3D GRASE dataset. Thus, a T2 weighted acquisition is recommended if high specificity in tonotopic maps is required. In conclusion, different fMRI acquisitions were better suited for different analyses. It is therefore critical that any sequence parameter optimization considers the eventual intended fMRI analyses and the nature of the neuroscience questions being asked.
Collapse
Affiliation(s)
- Michelle Moerel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, The Netherlands.
| | - Federico De Martino
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, The Netherlands.
| | - Valentin G Kemper
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, The Netherlands.
| | - Sebastian Schmitter
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Department of Biomedical Magnetic Resonance, Physikalisch-Technische Bundesanstalt, Berlin, Germany.
| | - An T Vu
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA; Advanced MRI Technologies, Sebastopol, CA, USA.
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| | - Elia Formisano
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, The Netherlands.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
13
|
Frequency preference and attention effects across cortical depths in the human primary auditory cortex. Proc Natl Acad Sci U S A 2015; 112:16036-41. [PMID: 26668397 DOI: 10.1073/pnas.1507552112] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Columnar arrangements of neurons with similar preference have been suggested as the fundamental processing units of the cerebral cortex. Within these columnar arrangements, feed-forward information enters at middle cortical layers whereas feedback information arrives at superficial and deep layers. This interplay of feed-forward and feedback processing is at the core of perception and behavior. Here we provide in vivo evidence consistent with a columnar organization of the processing of sound frequency in the human auditory cortex. We measure submillimeter functional responses to sound frequency sweeps at high magnetic fields (7 tesla) and show that frequency preference is stable through cortical depth in primary auditory cortex. Furthermore, we demonstrate that-in this highly columnar cortex-task demands sharpen the frequency tuning in superficial cortical layers more than in middle or deep layers. These findings are pivotal to understanding mechanisms of neural information processing and flow during the active perception of sounds.
Collapse
|
14
|
Jäger K, Kössl M. Corticofugal Modulation of DPOAEs in Gerbils. Hear Res 2015; 332:61-72. [PMID: 26619750 DOI: 10.1016/j.heares.2015.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/20/2015] [Accepted: 11/09/2015] [Indexed: 01/13/2023]
Abstract
Efferent auditory feedback on cochlear hair cells is well studied regarding olivocochlear brainstem mechanisms. Less is known about how the descending corticofugal system may shape efferent feedback and modulate cochlear mechanics. Distortion-product otoacoustic emissions (DPOAEs) are a suitable tool to assess outer hair cell function, as they are by-products of the nonlinear cochlear amplification process. The present project investigates the effects of cortical activity on cubic and quadratic DPOAEs in mongolian gerbils, Meriones unguiculatus, through cortical deactivation using the sodium-channel blocker lidocaine. Contralateral cortical microinjections of lidocaine can lead to either an increase or decrease of median DPOAE levels of up to 10.95 dB. The effects are reversible and comparable at all tested frequencies (0.5-40 kHz). They are not restricted to the preferred frequency of the cortical site of injection. Recovery times are between 20 and 120 min depending on stimulation levels and emission type. When the injection is performed in the ipsilateral hemisphere, DPOAE level shifts are lower in amplitude compared to those after injection in the contralateral hemisphere. No significant changes in DPOAE levels are obtained after saline microinjections. Results indicate that deactivation of auditory cortex activity through lidocaine has a considerable impact on peripheral auditory responses in form of DPOAEs, probably through cortico-olivocochlear pathways.
Collapse
Affiliation(s)
- K Jäger
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue Str. 13, 60438 Frankfurt, Germany.
| | - M Kössl
- Institute for Cell Biology and Neuroscience, Goethe University Frankfurt, Max-von-Laue Str. 13, 60438 Frankfurt, Germany.
| |
Collapse
|
15
|
Schaefer MK, Hechavarría JC, Kössl M. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex. Front Neural Circuits 2015; 9:52. [PMID: 26557058 PMCID: PMC4617414 DOI: 10.3389/fncir.2015.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/14/2015] [Indexed: 11/18/2022] Open
Abstract
Current source density (CSD) analysis assesses spatiotemporal synaptic activations at somatic and/or dendritic levels in the form of depolarizing current sinks. Whereas many studies have focused on the short (<50 ms) latency sinks, associated with thalamocortical projections, sinks with longer latencies have received less attention. Here, we analyzed laminar CSD patterns for the first 600 ms after stimulus onset in the primary auditory cortex of Mongolian gerbils. By applying an algorithm for contour calculation, three distinct mid and four late evoked sinks were identified in layers I, III, Va, VIa, and VIb. Our results further showed that the patterns of intracortical information-flow remained qualitatively similar for low and for high sound pressure level stimuli at the characteristic frequency (CF) as well as for stimuli ± 1 octave from CF. There were, however, differences associated with the strength, vertical extent, onset latency, and duration of the sinks for the four stimulation paradigms used. Stimuli one octave above the most sensitive frequency evoked a new, and quite reliable, sink in layer Va whereas low level stimulation led to the disappearance of the layer VIb sink. These data indicate the presence of input sources specifically activated in response to level and/or frequency parameters. Furthermore, spectral integration above vs. below the CF of neurons is asymmetric as illustrated by CSD profiles. These results are important because synaptic feedback associated with mid and late sinks—beginning at 50 ms post stimulus latency—is likely crucial for response modulation resulting from higher order processes like memory, learning or cognitive control.
Collapse
Affiliation(s)
- Markus K Schaefer
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensors, Goethe University Frankfurt/Main, Germany
| | - Julio C Hechavarría
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensors, Goethe University Frankfurt/Main, Germany
| | - Manfred Kössl
- Institute for Cell Biology and Neuroscience, AK Neurobiology and Biosensors, Goethe University Frankfurt/Main, Germany
| |
Collapse
|
16
|
Tan AYY. Spatial diversity of spontaneous activity in the cortex. Front Neural Circuits 2015; 9:48. [PMID: 26441547 PMCID: PMC4585302 DOI: 10.3389/fncir.2015.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 08/24/2015] [Indexed: 12/05/2022] Open
Abstract
The neocortex is a layered sheet across which a basic organization is thought to widely apply. The variety of spontaneous activity patterns is similar throughout the cortex, consistent with the notion of a basic cortical organization. However, the basic organization is only an outline which needs adjustments and additions to account for the structural and functional diversity across cortical layers and areas. Such diversity suggests that spontaneous activity is spatially diverse in any particular behavioral state. Accordingly, this review summarizes the laminar and areal diversity in cortical activity during fixation and slow oscillations, and the effects of attention, anesthesia and plasticity on the cortical distribution of spontaneous activity. Among questions that remain open, characterizing the spatial diversity in spontaneous membrane potential may help elucidate how differences in circuitry among cortical regions supports their varied functions. More work is also needed to understand whether cortical spontaneous activity not only reflects cortical circuitry, but also contributes to determining the outcome of plasticity, so that it is itself a factor shaping the functional diversity of the cortex.
Collapse
Affiliation(s)
- Andrew Y Y Tan
- Center for Perceptual Systems and Department of Neuroscience, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
17
|
Honey C, Schnupp J. Neural Resolution of Formant Frequencies in the Primary Auditory Cortex of Rats. PLoS One 2015; 10:e0134078. [PMID: 26252382 PMCID: PMC4529216 DOI: 10.1371/journal.pone.0134078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/06/2015] [Indexed: 11/18/2022] Open
Abstract
Pulse-resonance sounds play an important role in animal communication and auditory object recognition, yet very little is known about the cortical representation of this class of sounds. In this study we shine light on one simple aspect: how well does the firing rate of cortical neurons resolve resonant ("formant") frequencies of vowel-like pulse-resonance sounds. We recorded neural responses in the primary auditory cortex (A1) of anesthetized rats to two-formant pulse-resonance sounds, and estimated their formant resolving power using a statistical kernel smoothing method which takes into account the natural variability of cortical responses. While formant-tuning functions were diverse in structure across different penetrations, most were sensitive to changes in formant frequency, with a frequency resolution comparable to that reported for rat cochlear filters.
Collapse
Affiliation(s)
| | - Jan Schnupp
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Affiliation(s)
- Gideon Rothschild
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, California 94158;
| | - Adi Mizrahi
- Department of Neurobiology, Institute of Life Sciences, The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904 Givat Ram Jerusalem, Israel;
| |
Collapse
|
19
|
Carrasco A, Brown TA, Lomber SG. Spectral and Temporal Acoustic Features Modulate Response Irregularities within Primary Auditory Cortex Columns. PLoS One 2014; 9:e114550. [PMID: 25494365 PMCID: PMC4262427 DOI: 10.1371/journal.pone.0114550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
Assemblies of vertically connected neurons in the cerebral cortex form information processing units (columns) that participate in the distribution and segregation of sensory signals. Despite well-accepted models of columnar architecture, functional mechanisms of inter-laminar communication remain poorly understood. Hence, the purpose of the present investigation was to examine the effects of sensory information features on columnar response properties. Using acute recording techniques, extracellular response activity was collected from the right hemisphere of eight mature cats (felis catus). Recordings were conducted with multichannel electrodes that permitted the simultaneous acquisition of neuronal activity within primary auditory cortex columns. Neuronal responses to simple (pure tones), complex (noise burst and frequency modulated sweeps), and ecologically relevant (con-specific vocalizations) acoustic signals were measured. Collectively, the present investigation demonstrates that despite consistencies in neuronal tuning (characteristic frequency), irregularities in discharge activity between neurons of individual A1 columns increase as a function of spectral (signal complexity) and temporal (duration) acoustic variations.
Collapse
Affiliation(s)
- Andres Carrasco
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Trecia A. Brown
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, University of Western Ontario, London, Ontario, Canada
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
- Department of Psychology, University of Western Ontario, London, Ontario, Canada
- National Centre for Audiology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Krause BM, Raz A, Uhlrich DJ, Smith PH, Banks MI. Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity. Front Syst Neurosci 2014; 8:170. [PMID: 25285071 PMCID: PMC4168681 DOI: 10.3389/fnsys.2014.00170] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 08/31/2014] [Indexed: 12/23/2022] Open
Abstract
The state of the sensory cortical network can have a profound impact on neural responses and perception. In rodent auditory cortex, sensory responses are reported to occur in the context of network events, similar to brief UP states, that produce "packets" of spikes and are associated with synchronized synaptic input (Bathellier et al., 2012; Hromadka et al., 2013; Luczak et al., 2013). However, traditional models based on data from visual and somatosensory cortex predict that ascending sensory thalamocortical (TC) pathways sequentially activate cells in layers 4 (L4), L2/3, and L5. The relationship between these two spatio-temporal activity patterns is unclear. Here, we used calcium imaging and electrophysiological recordings in murine auditory TC brain slices to investigate the laminar response pattern to stimulation of TC afferents. We show that although monosynaptically driven spiking in response to TC afferents occurs, the vast majority of spikes fired following TC stimulation occurs during brief UP states and outside the context of the L4>L2/3>L5 activation sequence. Specifically, monosynaptic subthreshold TC responses with similar latencies were observed throughout layers 2-6, presumably via synapses onto dendritic processes located in L3 and L4. However, monosynaptic spiking was rare, and occurred primarily in L4 and L5 non-pyramidal cells. By contrast, during brief, TC-induced UP states, spiking was dense and occurred primarily in pyramidal cells. These network events always involved infragranular layers, whereas involvement of supragranular layers was variable. During UP states, spike latencies were comparable between infragranular and supragranular cells. These data are consistent with a model in which activation of auditory cortex, especially supragranular layers, depends on internally generated network events that represent a non-linear amplification process, are initiated by infragranular cells and tightly regulated by feed-forward inhibitory cells.
Collapse
Affiliation(s)
- Bryan M Krause
- Neuroscience Training Program, University of Wisconsin Madison, WI, USA
| | - Aeyal Raz
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Anesthesiology, Rabin Medical Center, Petah-Tikva, Israel, affiliated with Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | - Daniel J Uhlrich
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Philip H Smith
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| | - Matthew I Banks
- Department of Anesthesiology, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA ; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin Madison, WI, USA
| |
Collapse
|
21
|
Saldeitis K, Happel MF, Ohl FW, Scheich H, Budinger E. Anatomy of the auditory thalamocortical system in the mongolian gerbil: Nuclear origins and cortical field-, layer-, and frequency-specificities. J Comp Neurol 2014; 522:2397-430. [DOI: 10.1002/cne.23540] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 01/03/2014] [Accepted: 01/10/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Katja Saldeitis
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
| | - Max F.K. Happel
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Institute of Biology, Otto-von-Guericke University; D-39120 Magdeburg Germany
| | - Frank W. Ohl
- Department of Systems Physiology of Learning; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Institute of Biology, Otto-von-Guericke University; D-39120 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| | - Henning Scheich
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| | - Eike Budinger
- Department of Auditory Learning & Speech; Leibniz Institute for Neurobiology; D-39118 Magdeburg Germany
- Clinic of Neurology; Otto-von-Guericke-University Magdeburg; D-39120 Magdeburg Germany
- Center for Behavioral Brain Sciences; Magdeburg Universitätsplatz 2, D-39106 Germany
| |
Collapse
|
22
|
Profant O, Burianová J, Syka J. The response properties of neurons in different fields of the auditory cortex in the rat. Hear Res 2013; 296:51-9. [DOI: 10.1016/j.heares.2012.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/19/2012] [Accepted: 11/18/2012] [Indexed: 10/27/2022]
|
23
|
Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates. Proc Natl Acad Sci U S A 2012; 109:18168-73. [PMID: 23074251 DOI: 10.1073/pnas.1206387109] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory systems across the brain are specialized for their input, yet some principles of neural organization are conserved across modalities. The pattern of anatomical connections from the primate auditory cortex to the temporal, parietal, and prefrontal lobes suggests a possible division into dorsal and ventral auditory processing streams, with the dorsal stream originating from more caudal areas of the auditory cortex, and the ventral stream originating from more rostral areas. These streams are hypothesized to be analogous to the well-established dorsal and ventral streams of visual processing. In the visual system, the dorsal processing stream shows substantially faster neural response latencies than does the ventral stream. However, the relative timing of putative dorsal and ventral stream processing has yet to be explored in other sensory modalities. Here, we compare distributions of neural response latencies from 10 different areas of macaque auditory cortex, confirmed by individual anatomical reconstructions, to determine whether a similar timing advantage is found for the hypothesized dorsal auditory stream. Across three varieties of auditory stimuli (clicks, noise, and pure tones), we find that latencies increase with hierarchical level, as predicted by anatomical connectivity. Critically, we also find a pronounced timing differential along the caudal-to-rostral axis within the same hierarchical level, with caudal (dorsal stream) latencies being faster than rostral (ventral stream) latencies. This observed timing differential mirrors that found for the dorsal stream of the visual system, suggestive of a common timing advantage for the dorsal stream across sensory modalities.
Collapse
|
24
|
|
25
|
Szymanski FD, Rabinowitz NC, Magri C, Panzeri S, Schnupp JWH. The laminar and temporal structure of stimulus information in the phase of field potentials of auditory cortex. J Neurosci 2011; 31:15787-801. [PMID: 22049422 PMCID: PMC6623019 DOI: 10.1523/jneurosci.1416-11.2011] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 08/26/2011] [Accepted: 09/06/2011] [Indexed: 11/21/2022] Open
Abstract
Recent studies have shown that the phase of low-frequency local field potentials (LFPs) in sensory cortices carries a significant amount of information about complex naturalistic stimuli, yet the laminar circuit mechanisms and the aspects of stimulus dynamics responsible for generating this phase information remain essentially unknown. Here we investigated these issues by means of an information theoretic analysis of LFPs and current source densities (CSDs) recorded with laminar multi-electrode arrays in the primary auditory area of anesthetized rats during complex acoustic stimulation (music and broadband 1/f stimuli). We found that most LFP phase information originated from discrete "CSD events" consisting of granular-superficial layer dipoles of short duration and large amplitude, which we hypothesize to be triggered by transient thalamocortical activation. These CSD events occurred at rates of 2-4 Hz during both stimulation with complex sounds and silence. During stimulation with complex sounds, these events reliably reset the LFP phases at specific times during the stimulation history. These facts suggest that the informativeness of LFP phase in rat auditory cortex is the result of transient, large-amplitude events, of the "evoked" or "driving" type, reflecting strong depolarization in thalamo-recipient layers of cortex. Finally, the CSD events were characterized by a small number of discrete types of infragranular activation. The extent to which infragranular regions were activated was stimulus dependent. These patterns of infragranular activations may reflect a categorical evaluation of stimulus episodes by the local circuit to determine whether to pass on stimulus information through the output layers.
Collapse
Affiliation(s)
- Francois D. Szymanski
- Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genova, Italy
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom, and
| | - Neil C. Rabinowitz
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom, and
| | - Cesare Magri
- Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genova, Italy
- Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Stefano Panzeri
- Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genova, Italy
| | - Jan W. H. Schnupp
- Department of Robotics, Brain, and Cognitive Sciences, Italian Institute of Technology, 16163 Genova, Italy
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom, and
| |
Collapse
|
26
|
Abstract
The computational role of cortical layers within auditory cortex has proven difficult to establish. One hypothesis is that interlaminar cortical processing might be dedicated to analyzing temporal properties of sounds; if so, then there should be systematic depth-dependent changes in cortical sensitivity to the temporal context in which a stimulus occurs. We recorded neural responses simultaneously across cortical depth in primary auditory cortex and anterior auditory field of CBA/Ca mice, and found systematic depth dependencies in responses to second-and-later noise bursts in slow (1-10 bursts/s) trains of noise bursts. At all depths, responses to noise bursts within a train usually decreased with increasing train rate; however, the rolloff with increasing train rate occurred at faster rates in more superficial layers. Moreover, in some recordings from mid-to-superficial layers, responses to noise bursts within a 3-4 bursts/s train were stronger than responses to noise bursts in slower trains. This non-monotonicity with train rate was especially pronounced in more superficial layers of the anterior auditory field, where responses to noise bursts within the context of a slow train were sometimes even stronger than responses to the noise burst at train onset. These findings may reflect depth dependence in suppression and recovery of cortical activity following a stimulus, which we suggest could arise from laminar differences in synaptic depression at feedforward and recurrent synapses.
Collapse
|
27
|
Columnar and layer-specific representation of spatial sensitivity in mouse primary auditory cortex. Neuroreport 2011; 22:530-4. [PMID: 21666517 DOI: 10.1097/wnr.0b013e328348aae5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The primary auditory cortex (AI) is implicated in coding sound location, as revealed by behavior-lesion experiments, but our knowledge about the functional organization and laminar specificity of neural spatial sensitivity is still very limited. Using single-unit recordings in mouse AI, we show that (i) an inverse relationship between onset latency and spike count is consistently observed when all the azimuthal points are taken; (ii) a substantial proportion of penetrations perpendicular to the AI surface showed columnar organization of best azimuths; (iii) the preferred azimuth range of AI neurons demonstrated layer-specific distribution pattern. Our findings suggest that similar to other response properties, the manner of sound space information processing in the auditory cortex is also layer dependent.
Collapse
|
28
|
Atencio CA, Schreiner CE. Laminar diversity of dynamic sound processing in cat primary auditory cortex. J Neurophysiol 2010; 103:192-205. [PMID: 19864440 PMCID: PMC2807218 DOI: 10.1152/jn.00624.2009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/24/2009] [Indexed: 11/22/2022] Open
Abstract
For primary auditory cortex (AI) laminae, there is little evidence of functional specificity despite clearly expressed cellular and connectional differences. Natural sounds are dominated by dynamic temporal and spectral modulations and we used these properties to evaluate local functional differences or constancies across laminae. To examine the layer-specific processing of acoustic modulation information, we simultaneously recorded from multiple AI laminae in the anesthetized cat. Neurons were challenged with dynamic moving ripple stimuli and we subsequently computed spectrotemporal receptive fields (STRFs). From the STRFs, temporal and spectral modulation transfer functions (tMTFs, sMTFs) were calculated and compared across layers. Temporal and spectral modulation properties often differed between layers. On average, layer II/III and VI neurons responded to lower temporal modulations than those in layer IV. tMTFs were mainly band-pass in granular layer IV and became more low-pass in infragranular layers. Compared with layer IV, spectral MTFs were broader and their upper cutoff frequencies higher in layers V and VI. In individual penetrations, temporal modulation preference was similar across layers for roughly 70% of the penetrations, suggesting a common, columnar functional characteristic. By contrast, only about 30% of penetrations showed consistent spectral modulation preferences across layers, indicative of functional laminar diversity or specialization. Since local laminar differences in stimulus preference do not always parallel the main flow of information in the columnar cortical microcircuit, this indicates the influence of additional horizontal or thalamocortical inputs. AI layers that express differing modulation properties may serve distinct roles in the extraction of dynamic sound information, with the differing information specific to the targeted stations of each layer.
Collapse
Affiliation(s)
- Craig A Atencio
- University of California-Berkeley and San Francisco Joint Graduate Group in Bioengineering, University of California-San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0732, USA.
| | | |
Collapse
|
29
|
Hierarchical computation in the canonical auditory cortical circuit. Proc Natl Acad Sci U S A 2009; 106:21894-9. [PMID: 19918079 DOI: 10.1073/pnas.0908383106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensory cortical anatomy has identified a canonical microcircuit underlying computations between and within layers. This feed-forward circuit processes information serially from granular to supragranular and to infragranular layers. How this substrate correlates with an auditory cortical processing hierarchy is unclear. We recorded simultaneously from all layers in cat primary auditory cortex (AI) and estimated spectrotemporal receptive fields (STRFs) and associated nonlinearities. Spike-triggered averaged STRFs revealed that temporal precision, spectrotemporal separability, and feature selectivity varied with layer according to a hierarchical processing model. STRFs from maximally informative dimension (MID) analysis confirmed hierarchical processing. Of two cooperative MIDs identified for each neuron, the first comprised the majority of stimulus information in granular layers. Second MID contributions and nonlinear cooperativity increased in supragranular and infragranular layers. The AI microcircuit provides a valid template for three independent hierarchical computation principles. Increases in processing complexity, STRF cooperativity, and nonlinearity correlate with the synaptic distance from granular layers.
Collapse
|
30
|
Functional subdivisions in low-frequency primary auditory cortex (AI). Exp Brain Res 2009; 194:395-408. [DOI: 10.1007/s00221-009-1714-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 01/13/2009] [Indexed: 12/19/2022]
|
31
|
Abstract
Adult cortical circuits possess considerable plasticity, which can be induced by modifying their inputs. One mechanism proposed to underlie changes in neuronal responses is spike-timing-dependent plasticity (STDP), an up- or downregulation of synaptic efficacy contingent upon the order and timing of presynaptic and postsynaptic activity. The repetitive and asynchronous pairing of a sensory stimulus with either another sensory stimulus or current injection can alter the response properties of visual and somatosensory neurons in a manner consistent with STDP. To examine whether such plasticity also exists in the auditory system, we recorded from neurons in the primary auditory cortex of anesthetized and awake adult ferrets. The repetitive pairing of pure tones of different frequencies induced shifts in neuronal frequency selectivity, which exhibited a temporal specificity akin to STDP. Only pairs with stimulus onset asynchronies of 8 or 12 ms were effective and the direction of the shifts depended upon the order in which the tones within a pair were presented. Six hundred stimulus pairs (lasting approximately 70 s) were enough to produce a significant shift in frequency tuning and the changes persisted for several minutes. The magnitude of the observed shifts was largest when the frequency separation of the conditioning stimuli was < approximately 1 octave. Moreover, significant shifts were found only in the upper cortical layers. Our findings highlight the importance of millisecond-scale timing of sensory input in shaping neural function and strongly suggest STDP as a relevant mechanism for plasticity in the mature auditory system.
Collapse
|
32
|
Schofield BR. Projections to the inferior colliculus from layer VI cells of auditory cortex. Neuroscience 2008; 159:246-58. [PMID: 19084579 DOI: 10.1016/j.neuroscience.2008.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/07/2008] [Accepted: 11/08/2008] [Indexed: 10/21/2022]
Abstract
A large injection of a retrograde tracer into the inferior colliculus of guinea pigs labeled two bands of cells in the ipsilateral auditory cortex: a dense band of cells in layer V and a second band of cells in layer VI. On the contralateral side, labeled cells were restricted to layer V. The ipsilateral layer VI cells were distributed throughout temporal cortex, suggesting projections from multiple auditory areas. The layer VI cells included pyramidal cells as well as several varieties of non-pyramidal cells. Small tracer injections restricted to the dorsal cortex or external cortex of the inferior colliculus consistently labeled cells in layer VI. Injections restricted to the central nucleus of the inferior colliculus labeled layer VI cells only rarely. Overall, 10% of the cells in temporal cortex that project to the ipsilateral inferior colliculus were located in layer VI, suggesting that layer VI cells make a significant contribution to the corticocollicular pathway.
Collapse
Affiliation(s)
- B R Schofield
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA.
| |
Collapse
|
33
|
Wallace MN, Palmer AR. Laminar differences in the response properties of cells in the primary auditory cortex. Exp Brain Res 2007; 184:179-91. [PMID: 17828392 DOI: 10.1007/s00221-007-1092-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/31/2007] [Indexed: 11/25/2022]
Abstract
In visual and somatosensory cortex there are important functional differences between layers. Although it is difficult to identify laminar borders in the primary auditory cortex (AI) laminar differences in functional processing are still present. We have used electrodes inserted orthogonal to the cortical surface to compare the response properties of cells in all six layers of AI in anaesthetised guinea pigs. Cells were stimulated with short tone pips and two conspecific vocalizations. When frequency response areas were measured for 248 units the tuning bandwidth was broader for units in the deep layers. The mean Q (10) value for tuning in layers IV-VI was significantly smaller (Mann-Whitney test P < 0.001) than for layers I-III. When response latencies were measured, the shortest latencies were found in layer V and the mean latency in this layer was shorter than in any of the more superficial layers (I-IV) when compared with a Tukey analysis of variance (P < 0.005). There were also laminar differences in the best threshold with layer V having the highest mean value. The mean best threshold for layer V (32.7 dB SPL) was significantly different from the means for layers II (25.5 dB SPL) and III (26.3 dB SPL). The responses to two vocalizations also varied between layers: the response to the first phrase of a chutter was smaller and about 10 ms later in the deep layers than in layers II and III. By contrast, the response to an example of whistle was stronger in the deep layers. These results are consistent with a model of AI that involves separate inputs to different layers and descending outputs from layers V/VI (to thalamus and brainstem) that are different from the output from layers II/III (to ipsilateral cortex).
Collapse
Affiliation(s)
- M N Wallace
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
34
|
Suzurikawa J, Nakao M, Takahashi H. Penetration-Type Microelectrode Array with a Silicone-Rubber Substrate. ACTA ACUST UNITED AC 2007. [DOI: 10.1541/ieejeiss.127.1549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jun Suzurikawa
- Graduate School of Information Science and Technology, The University of Tokyo
| | | | - Hirokazu Takahashi
- Graduate School of Information Science and Technology, The University of Tokyo
| |
Collapse
|
35
|
Atzori M, Flores Hernández J, Pineda JC. Interlaminar differences of spike activation threshold in the auditory cortex of the rat. Hear Res 2004; 189:101-6. [PMID: 14987757 DOI: 10.1016/s0378-5955(03)00301-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 09/08/2003] [Indexed: 11/21/2022]
Abstract
The neural circuits of the auditory cortex are a substrate for the dual purpose of representing and storing the auditory signal on one hand, and sending its relevant features to other cortical and subcortical areas on the other hand. The ability to process and transform the signal crucially depends on achievement of the neuronal spike threshold following spatiotemporal summation of the synaptic signals. We used patch-clamp recording in a thin slice preparation to compare neuronal responses to current injection of layer II/III and layer V neurons. We found that while the two classes of neurons do not differ in passive neuronal properties, layer II/III neurons possess a lower firing threshold relative to layer V neurons (-44.8 +/- 2.4 mV vs. -34.3 +/- 4.0 mV). We speculate that a lower spiking threshold in layer II/III neurons might favor local intracolumnar activation for representation and storage of the auditory information whereas a more positive spiking threshold for layer V neurons may prevent unnecessary cortical spread of a scarcely processed signal.
Collapse
Affiliation(s)
- Marco Atzori
- Laboratory of Cellular and Synaptic Physiology, BRNI, Rockville, MD 20850, USA
| | | | | |
Collapse
|
36
|
Abstract
At the level of the brainstem, precise temporal information is essential for some aspects of binaural processing, while at the level of the cortex, rate and place mechanisms for neural coding seem to predominate. However, we now show that precise timing of steady-state responses to pure tones occurs in the primary auditory cortex (AI). Recordings were made from 163 multi-units in guinea pig AI. All units increased their firing rate in response to pure tones at 100 Hz and 46 (28%) gave sustained responses which were synchronised with the stimulus waveform (phase-locking). The phase-locking units were clustered together in columns. Phase-locking was generally strongest in layers III and IV but was also recorded in layers I, II and V. Good phase-locking was observed over a range of 60-250 Hz: some units (30%) were narrow band while others (37%) were low-pass (33% were not determined). Phase-locking strength was also influenced by sound level: some units showed monotonic increases in strength with level and others were non-monotonic. Ten of the units provided a good temporal representation of the fundamental frequency (270 Hz) of a guinea pig vocalisation (rumble) and may be involved in analysing communication calls.
Collapse
Affiliation(s)
- Mark N Wallace
- MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK.
| | | | | |
Collapse
|
37
|
Abstract
The minicolumn is a continuing source of research and debate more than half a century after it was identified as a component of brain organization. The minicolumn is a sophisticated local network that contains within it the elements for redundancy and plasticity. Although it is sometimes compared to subcortical nuclei, the design of the minicolumn is a distinctive form of module that has evolved specifically in the neocortex. It unites the horizontal and vertical components of cortex within the same cortical space. Minicolumns are often considered highly repetitive, even clone-like, units. However, they display considerable heterogeneity between areas and species, perhaps even within a given macrocolumn. Despite a growing recognition of the anatomical basis of the cortical minicolumn, as well as its physiological properties, the potential of the minicolumn has not been exploited in fields such as comparative neuroanatomy, abnormalities of the brain and mind, and evolution.
Collapse
|
38
|
Kral A, Hartmann R, Tillein J, Heid S, Klinke R. Congenital auditory deprivation reduces synaptic activity within the auditory cortex in a layer-specific manner. Cereb Cortex 2000; 10:714-26. [PMID: 10906318 DOI: 10.1093/cercor/10.7.714] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The present study investigates the functional deficits of naive auditory cortices in adult congenitally deaf cats. For this purpose, their auditory system was stimulated electrically using cochlear implants. Synaptic currents in cortical layers were revealed using current source density analyses. They were compared with synaptic currents found in electrically stimulated hearing cats. The naive auditory cortex showed significant deficits in synaptic activity in infragranular cortical layers. Furthermore, there was also a deficit of synaptic activities at longer latencies (>30 ms). The 'cortical column' was not activated in the well-defined sequence found in normal hearing cats. These results demonstrate functional deficits as a consequence of congenital auditory deprivation. Similar deficits are likely in congenitally deaf children.
Collapse
Affiliation(s)
- A Kral
- Physiologisches Institut III, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
39
|
Budinger E, Heil P, Scheich H. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. Eur J Neurosci 2000; 12:2425-51. [PMID: 10947821 DOI: 10.1046/j.1460-9568.2000.00142.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The auditory cortex of the Mongolian gerbil comprises several physiologically identified fields, including the primary (AI), anterior (AAF), dorsal (D), ventral (V), dorsoposterior (DP) and ventroposterior (VP) fields, as established previously with electrophysiological [Thomas et al. (1993) Eur. J. Neurosci., 5, 882] and functional metabolic techniques [Scheich et al. (1993) Eur. J. Neurosci., 5, 898]. Here we describe the cyto-, myelo- and chemoarchitecture and the corticocortical connections of the auditory cortex in this species. A central area of temporal cortex corresponding to AI and the rostrally adjacent AAF is distinguished from surrounding cortical areas by its koniocortical cytoarchitecture, by a higher density of myelinated fibres, predominantly in granular and infragranular layers, and by characteristic patterns of immunoreactivity for the calcium-binding protein parvalbumin (most intense staining in layers III/IV and VIa) and for the cytoskeletal neurofilament protein (antibody SMI-32; most intense staining in layers III, V and VI). Concerning the cortical connections, injections of the predominantly anterograde tracer biocytin into the four tonotopically organized fields AI, AAF, DP and VP yielded the following labelling patterns. (i) Labelled axons and terminals were seen within each injected field itself. (ii) Following injections into AI, labelled axons and terminals were also seen in the ipsilateral AAF, DP, VP, D and V, and in a hitherto undescribed possible auditory field, termed the ventromedial field (VM). Similarly, following injections into AAF, DP and VP, labelling was also seen in each of the noninjected fields, except in VM. (iii) Each field projects to its homotopic counterpart in the contralateral hemisphere. In addition, field AI projects to contralateral AAF, DP and VP, field DP to contralateral AI and VP, and field VP to contralateral AI and DP. (iv) Some retrogradely filled pyramidal neurons within the areas of terminal labelling indicate reciprocal connections between most fields, both ipsilateral and contralateral. (v) The labelled fibres within the injected and the target fields, both ipsilateral and contralateral, were arranged in continuous dorsoventral bands parallel to isofrequency contours. The more caudal the injection site in AI the more rostral was the label in AAF. This suggests divergent but frequency-specific connections within and, at least for AI and AAF, also across fields, both ipsilateral and contralateral. (vi) Projections to associative cortices (perirhinal, entorhinal, cingulate) and to other sensory cortices (olfactory, somatosensory, visual) from AAF, DP and VP appeared stronger than those from AI. These data support the differentiation of auditory cortical fields in the gerbil into at least 'core' (AI and AAF) and 'noncore' fields. They further reveal a complex pattern of interconnections within and between auditory cortical fields and other cortical areas, such that each field of auditory cortex has its unique set of connections.
Collapse
Affiliation(s)
- E Budinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | | | | |
Collapse
|
40
|
Budinger E, Heil P, Scheich H. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). IV. Connections with anatomically characterized subcortical structures. Eur J Neurosci 2000; 12:2452-74. [PMID: 10947822 DOI: 10.1046/j.1460-9568.2000.00143.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The subcortical connections of the four tonotopically organized fields of the auditory cortex of the Mongolian gerbil, namely the primary (AI), the anterior (AAF), the dorsoposterior (DP) and the ventroposterior field (VP), were studied predominantly by anterograde transport of biocytin injected into these fields. In order to allow the localization of connections with respect to subdivisions of subcortical auditory structures, their cyto-, fibre- and chemoarchitecture was characterized using staining methods for cell bodies, myelin and the calcium-binding protein parvalbumin. Each injected auditory cortical field has substantial and reciprocal connections with each of the three subdivision of the medial geniculate body (MGB), namely the ventral (MGv), dorsal (MGd) and medial division (MGm). However, the relative strengths of these connections vary: AI is predominantly connected with MGv, AAF with MGm and MGv, and DP and VP with MGd and MGv. The connections of at least AI and MGv are topographic: injections into caudal low-frequency AI label laterorostral portions of MGv, whereas injections into rostral high-frequency AI label mediocaudal portions of MGv. All investigated auditory fields send axons to the suprageniculate, posterior limitans, laterodorsal and lateral posterior thalamic nuclei, with strongest projections from DP and VP, as well as to the reticular and subgeniculate thalamic nuclei. AI, AAF, DP and VP project to all three subdivisions of the inferior colliculus, namely the dorsal cortex, external cortex and central nucleus ipsilaterally and to the dorsal and external cortex contralaterally. They also project to the deep and intermediate layers of the ipsilateral superior colliculus, with strongest projections from DP and VP to the lateral and basolateral amygdaloid nuclei, the caudate putamen, globus pallidus and the pontine nuclei. In addition, AAF and particularly DP and VP project to paralemniscal regions around the dorsal nucleus of the lateral lemniscus (DNLL), to the DNLL itself and to the rostroventral aspect of the superior olivary complex. Moreover, DP and VP send axons to the dorsal lateral geniculate nucleus. The differences with respect to the existence and/or relative strengths of subcortical connections of the examined auditory cortical fields suggest a somewhat different function of each of these fields in auditory processing.
Collapse
Affiliation(s)
- E Budinger
- Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | | | | |
Collapse
|
41
|
Ohl FW, Scheich H, Freeman WJ. Topographic analysis of epidural pure-tone-evoked potentials in gerbil auditory cortex. J Neurophysiol 2000; 83:3123-32. [PMID: 10805706 DOI: 10.1152/jn.2000.83.5.3123] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the tonotopic organization of pure-tone-evoked middle latency auditory evoked potentials (MAEPs) recorded at the auditory cortical surface in unanesthetized gerbils. Multielectrode array recording and multiple linear regression analysis of the MAEP demonstrated different degrees of tonotopic organization of early and late MAEP components. The early MAEP components P1 and N1 showed focal topography and clear dependence in location and size of cortical area covered on pure-tone frequency. The later components P2 and N2 showed a widespread topography which was largely unaffected in location and size of cortical area covered by pure-tone frequency. These results allow delimitation of the neural generators of the early and late MAEP components in terms of the spectral properties of functionally defined neural populations.
Collapse
Affiliation(s)
- F W Ohl
- Department of Molecular and Cell Biology, Division of Neurobiology, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
42
|
Ohl FW, Wetzel W, Wagner T, Rech A, Scheich H. Bilateral Ablation of Auditory Cortex in Mongolian Gerbil Affects Discrimination of Frequency Modulated Tones but not of Pure Tones. Learn Mem 1999. [DOI: 10.1101/lm.6.4.347] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study examines the role of auditory cortex in the Mongolian gerbil in differential conditioning to pure tones and to linearly frequency-modulated (FM) tones by analyzing the effects of bilateral auditory cortex ablation. Learning behavior and performance were studied in a GO/NO-GO task aiming at avoidance of a mild foot shock by crossing a hurdle in a two-way shuttle box. Hurdle crossing as the conditioned response to the reinforced stimulus (CR+), as false alarm in response to the unreinforced stimulus (CR−), intertrial activity, and reaction times were monitored. The analysis revealed no effects of lesion on pure tone discrimination but impairment of FM tone discrimination. In the latter case lesion effects were dependent on timing of lesion relative to FM tone discrimination training. Lesions before training in naive animals led to a reduced CR+ rate and had no effect on CR− rate. Lesions in pretrained animals led to an increased CR− rate without effects on the CR+ rate. The results suggest that auditory cortex plays a more critical role in discrimination of FM tones than in discrimination of pure tones. The different lesion effects on FM tone discrimination before and after training are compatible with both the hypothesis of a purely sensory deficit in FM tone processing and the hypothesis of a differential involvement of auditory cortex in acquisition and retention, respectively.
Collapse
|