1
|
Zhou LY, Jin CX, Wang WX, Song L, Shin JB, Du TT, Wu H. Differential regulation of hair cell actin cytoskeleton mediated by SRF and MRTFB. eLife 2023; 12:e90155. [PMID: 37982489 PMCID: PMC10703445 DOI: 10.7554/elife.90155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/17/2023] [Indexed: 11/21/2023] Open
Abstract
The MRTF-SRF pathway has been extensively studied for its crucial role in driving the expression of a large number of genes involved in actin cytoskeleton of various cell types. However, the specific contribution of MRTF-SRF in hair cells remains unknown. In this study, we showed that hair cell-specific deletion of Srf or Mrtfb, but not Mrtfa, leads to similar defects in the development of stereocilia dimensions and the maintenance of cuticular plate integrity. We used fluorescence-activated cell sorting-based hair cell RNA-Seq analysis to investigate the mechanistic underpinnings of the changes observed in Srf and Mrtfb mutants, respectively. Interestingly, the transcriptome analysis revealed distinct profiles of genes regulated by Srf and Mrtfb, suggesting different transcriptional regulation mechanisms of actin cytoskeleton activities mediated by Srf and Mrtfb. Exogenous delivery of calponin 2 using Adeno-associated virus transduction in Srf mutants partially rescued the impairments of stereocilia dimensions and the F-actin intensity of cuticular plate, suggesting the involvement of Cnn2, as an Srf downstream target, in regulating the hair bundle morphology and cuticular plate actin cytoskeleton organization. Our study uncovers, for the first time, the unexpected differential transcriptional regulation of actin cytoskeleton mediated by Srf and Mrtfb in hair cells, and also demonstrates the critical role of SRF-CNN2 in modulating actin dynamics of the stereocilia and cuticular plate, providing new insights into the molecular mechanism underlying hair cell development and maintenance.
Collapse
Affiliation(s)
- Ling-Yun Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Chen-Xi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Wen-Xiao Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Jung-Bum Shin
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Ting-Ting Du
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear Institute, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose DiseasesShanghaiChina
| |
Collapse
|
2
|
Essential Role of Sptan1 in Cochlear Hair Cell Morphology and Function Via Focal Adhesion Signaling. Mol Neurobiol 2021; 59:386-404. [PMID: 34708331 PMCID: PMC8786805 DOI: 10.1007/s12035-021-02551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 12/05/2022]
Abstract
Hearing loss is the most common human sensory deficit. Hearing relies on stereocilia, inserted into the cuticular plate of hair cells (HCs), where they play an important role in the perception of sound and its transmission. Although numerous genes have been associated with hearing loss, the function of many hair cell genes has yet to be elucidated. Herein, we focused on nonerythroid spectrin αII (SPTAN1), abundant in the cuticular plate, surrounding the rootlets of stereocilia and along the plasma membrane. Interestingly, mice with HC-specific Sptan1 knockout exhibited rapid deafness, abnormal formation of stereocilia and cuticular plates, and loss of HCs from middle and apical turns of the cochlea during early postnatal stages. Additionally, Sptan1 deficiency led to the decreased spreading of House Ear Institute-Organ of Corti 1 cells, and induced abnormal formation of focal adhesions and integrin signaling in mouse HCs. Altogether, our findings highlight SPTAN1 as a critical molecule for HC stereocilia morphology and auditory function via regulation of focal adhesion signaling.
Collapse
|
3
|
Liu W, Glueckert R, Schrott-Fischer A, Rask-Andersen H. Human cochlear microanatomy – an electron microscopy and super-resolution structured illumination study and review. HEARING BALANCE AND COMMUNICATION 2020. [DOI: 10.1080/21695717.2020.1807259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Head and Neck Surgery, section of Otolaryngology, Uppsala University Hospital, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, section of Otolaryngology, Uppsala University Hospital, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
Du TT, Dewey JB, Wagner EL, Cui R, Heo J, Park JJ, Francis SP, Perez-Reyes E, Guillot SJ, Sherman NE, Xu W, Oghalai JS, Kachar B, Shin JB. LMO7 deficiency reveals the significance of the cuticular plate for hearing function. Nat Commun 2019; 10:1117. [PMID: 30850599 PMCID: PMC6408450 DOI: 10.1038/s41467-019-09074-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/15/2019] [Indexed: 12/25/2022] Open
Abstract
Sensory hair cells, the mechanoreceptors of the auditory and vestibular systems, harbor two specialized elaborations of the apical surface, the hair bundle and the cuticular plate. In contrast to the extensively studied mechanosensory hair bundle, the cuticular plate is not as well understood. It is believed to provide a rigid foundation for stereocilia motion, but specifics about its function, especially the significance of its integrity for long-term maintenance of hair cell mechanotransduction, are not known. We discovered that a hair cell protein called LIM only protein 7 (LMO7) is specifically localized in the cuticular plate and the cell junction. Lmo7 KO mice suffer multiple cuticular plate deficiencies, including reduced filamentous actin density and abnormal stereociliar rootlets. In addition to the cuticular plate defects, older Lmo7 KO mice develop abnormalities in inner hair cell stereocilia. Together, these defects affect cochlear tuning and sensitivity and give rise to late-onset progressive hearing loss.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Cochlea/physiology
- Disease Models, Animal
- Hair Cells, Auditory/physiology
- Hair Cells, Auditory/ultrastructure
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Inner/ultrastructure
- Hearing/genetics
- Hearing/physiology
- Hearing Loss/etiology
- Hearing Loss/genetics
- Hearing Loss/physiopathology
- LIM Domain Proteins/deficiency
- LIM Domain Proteins/genetics
- LIM Domain Proteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Knockout
- Microscopy, Electron, Scanning
- Stereocilia/genetics
- Stereocilia/physiology
- Stereocilia/ultrastructure
- Transcription Factors/deficiency
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Ting-Ting Du
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - James B Dewey
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Runjia Cui
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, 20892, USA
| | - Jinho Heo
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jeong-Jin Park
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, 22908, USA
| | - Shimon P Francis
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA
| | - Edward Perez-Reyes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Stacey J Guillot
- Advanced Microscopy core, University of Virginia, Charlottesville, VA, 22908, USA
| | - Nicholas E Sherman
- Biomolecular Analysis Facility, University of Virginia, Charlottesville, VA, 22908, USA
| | - Wenhao Xu
- Genetically Engineered Murine Model (GEMM) core, University of Virginia, Charlottesville, VA, 22908, USA
| | - John S Oghalai
- Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bechara Kachar
- National Institute for Deafness and Communications Disorders, National Institute of Health, Bethesda, MD, 20892, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
5
|
Zheng J, Furness D, Duan C, Miller KK, Edge RM, Chen J, Homma K, Hackney CM, Dallos P, Cheatham MA. Marshalin, a microtubule minus-end binding protein, regulates cytoskeletal structure in the organ of Corti. Biol Open 2013; 2:1192-202. [PMID: 24244856 PMCID: PMC3828766 DOI: 10.1242/bio.20135603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/01/2013] [Indexed: 12/30/2022] Open
Abstract
Dramatic structural changes in microtubules (MT) and the assembly of complicated intercellular connections are seen during the development of the cellular matrix of the sense organ for hearing, the organ of Corti. This report examines the expression of marshalin, a minus-end binding protein, during this process of cochlear development. We discovered that marshalin is abundantly expressed in both sensory hair cells and supporting cells. In the adult, prominent marshalin expression is observed in the cuticular plates of hair cells and in the noncentrosomal MT organization centers (MTOC) of Deiters' and pillar cells. Based upon differences in marshalin expression patterns seen in the organ of Corti, we identified eight isoforms ranging from 863 to 1280 amino acids. mRNAs/proteins associated with marshalin's isoforms are detected at different times during development. These isoforms carry various protein-protein interacting domains, including coiled-coil (CC), calponin homology (CH), proline-rich (PR), and MT-binding domains, referred to as CKK. We, therefore, examined membranous organelles and structural changes in the cytoskeleton induced by expressing two of these marshalin isoforms in vitro. Long forms containing CC and PR domains induce thick, spindle-shaped bundles, whereas short isoforms lacking CC and PR induce more slender variants that develop into densely woven networks. Together, these data suggest that marshalin is closely associated with noncentrosomal MTOCs, and may be involved in MT bundle formation in supporting cells. As a scaffolding protein with multiple isoforms, marshalin is capable of modifying cytoskeletal networks, and consequently organelle positioning, through interactions with various protein partners present in different cells.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University , Chicago, IL 60611 , USA ; Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern University , Evanston, IL 60208 , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Legendre K, Safieddine S, Küssel-Andermann P, Petit C, El-Amraoui A. alphaII-betaV spectrin bridges the plasma membrane and cortical lattice in the lateral wall of the auditory outer hair cells. J Cell Sci 2008; 121:3347-56. [PMID: 18796539 DOI: 10.1242/jcs.028134] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The sensitivity and frequency selectivity of the mammalian cochlea involves a mechanical amplification process called electromotility, which requires prestin-dependent length changes of the outer hair cell (OHC) lateral wall in response to changes in membrane electric potential. The cortical lattice, the highly organized cytoskeleton underlying the OHC lateral plasma membrane, is made up of F-actin and spectrin. Here, we show that alphaII and two of the five beta-spectrin subunits, betaII and betaV, are present in OHCs. betaII spectrin is restricted to the cuticular plate, a dense apical network of actin filaments, whereas betaV spectrin is concentrated at the cortical lattice. Moreover, we show that alphaII-betaV spectrin directly interacts with F-actin and band 4.1, two components of the OHC cortical lattice. betaV spectrin is progressively recruited into the cortical lattice between postnatal day 2 (P2) and P10 in the mouse, in parallel with prestin membrane insertion, which itself parallels the maturation of cell electromotility. Although betaV spectrin does not directly interact with prestin, we found that addition of lysates derived from mature auditory organs, but not from the brain or liver, enables betaV spectrin-prestin interaction. Using this assay, betaV spectrin, via its PH domain, indirectly interacts with the C-terminal cytodomain of prestin. We conclude that the cortical network involved in the sound-induced electromotility of OHCs contains alphaII-betaV spectrin, and not the conventional alphaII-betaII spectrin.
Collapse
Affiliation(s)
- Kirian Legendre
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, 25 rue du Dr Roux, 75015 Paris, France
| | | | | | | | | |
Collapse
|
7
|
The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J Neurosci 2008; 28:6342-53. [PMID: 18562604 DOI: 10.1523/jneurosci.1154-08.2008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sensory bundle of vertebrate cochlear hair cells consists of actin-containing stereocilia that are thought to bend at their ankle during mechanical stimulation. Stereocilia have dense rootlets that extend through the ankle region to anchor them into the cuticular plate. Because this region may be important in bundle stiffness and durability during prolonged stimulation at high frequencies, we investigated the structure and dimensions of rootlets relative to the stereocilia in apical (low-frequency) and basal (high-frequency) regions of rodent cochleae using light and electron microscopy. Their composition was investigated using postembedding immunogold labeling of tropomyosin, spectrin, beta-actin, gamma-actin, espin, and prestin. The rootlets have a thick central core that widens at the ankle, and are embedded in a filamentous meshwork in the cuticular plate. Within a particular frequency region, rootlet length correlates with stereociliary height but between regions it changes disproportionately; apical stereocilia are, thus, approximately twice the height of basal stereocilia in equivalent rows, but rootlet lengths increase much less. Some rootlets contact the tight junctions that underlie the ends of the bundle. Rootlets contain spectrin, tropomyosin, and beta- and gamma-actin, but espin was not detected; spectrin is also evident near the apical and junctional membranes, whereas prestin is confined to the basolateral membrane below the junctions. These data suggest that rootlets strengthen the ankle region to provide durability and may contact with the lateral wall either to give additional anchoring of the stereocilia or to provide a route for interactions between the bundle and the lateral wall.
Collapse
|
8
|
Wang J, Pignol B, Chabrier PE, Saido T, Lloyd R, Tang Y, Lenoir M, Puel JL. A novel dual inhibitor of calpains and lipid peroxidation (BN82270) rescues the cochlea from sound trauma. Neuropharmacology 2007; 52:1426-37. [PMID: 17449343 DOI: 10.1016/j.neuropharm.2007.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 01/24/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Free radical and calcium buffering mechanisms are implicated in cochlear cell damage that has been induced by sound trauma. Thus in this study we evaluated the therapeutic effect of a novel dual inhibitor of calpains and of lipid peroxidation (BN 82270) on the permanent hearing and hair cell loss induced by sound trauma. Perfusion of BN 82270 into the scala tympani of the guinea pig cochlea prevented the formation of calpain-cleaved fodrin, translocation of cytochrome c, DNA fragmentation and hair cell degeneration caused by sound trauma. This was confirmed by functional tests in vivo, showing a clear dose-dependent reduction of permanent hearing loss (ED50 = 4.07 microM) with almost complete protection at 100 microM. Furthermore, BN82270 still remained effective even when applied onto the round window membrane after sound trauma had occurred, within a therapeutic window of 24 h. This indicates that BN 82270 may be of potential therapeutic value in treating the cochlea after sound trauma.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Apoptosis/drug effects
- Calpain/antagonists & inhibitors
- Carrier Proteins/metabolism
- Cochlea/enzymology
- Cochlea/injuries
- Cochlea/pathology
- Cysteine Proteinase Inhibitors/pharmacology
- Cytochromes c/metabolism
- DNA Fragmentation/drug effects
- Dipeptides/pharmacology
- Electrophysiology
- Female
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory/physiology
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/prevention & control
- Immunohistochemistry
- Lipid Peroxidation/drug effects
- Microfilament Proteins/metabolism
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Round Window, Ear/pathology
- Tympanic Membrane/drug effects
Collapse
Affiliation(s)
- Jing Wang
- INSERM U583, Laboratoire de Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Furness DN, Katori Y, Mahendrasingam S, Hackney CM. Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells. Hear Res 2006; 207:22-34. [PMID: 16024192 DOI: 10.1016/j.heares.2005.05.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/15/2022]
Abstract
Sensory and supporting cells of the mammalian organ of Corti have cytoskeletons containing beta- and gamma-actin isoforms which have been described as having differing intracellular distributions in chick cochlear hair cells. Here, we have used post-embedding immunogold labelling for beta- and gamma-actin to investigate semiquantitatively how they are distributed in the guinea-pig cochlea and to compare different frequency locations. Amounts of beta-actin decrease and gamma-actin increase in the order, outer pillar cells, inner pillar cells, Deiters' cells and hair cells. There is also more beta-actin and less gamma-actin in outer pillar cells in higher than lower frequency regions. In hair cells, beta-actin is present in the cuticular plate but is more concentrated in the stereocilia, especially in the rootlets and towards the periphery of their shafts; labelling densities for gamma-actin differ less between these locations and it is the predominant isoform of the hair-cell lateral wall. Alignments of immunogold particles suggest beta-actin and gamma-actin form homomeric filaments. These data confirm differential distribution of these actin isoforms in the mammalian cochlea and reveal systematic differences between sensory and supporting cells. Increased expression of beta-actin in outer pillar cells towards the cochlear base may contribute to the greater stiffness of this region.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Sugawara M, Ishida Y, Wada H. Mechanical properties of sensory and supporting cells in the organ of Corti of the guinea pig cochlea--study by atomic force microscopy. Hear Res 2004; 192:57-64. [PMID: 15157963 DOI: 10.1016/j.heares.2004.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Mammalian hearing is refined by amplification of the motion of the cochlear partition. To understand the cochlear amplification, mechanical models of the cochlea have been used. When the dynamic behavior of the cochlea is analyzed by a model, elastic properties of the cells in the organ of Corti must be determined in advance. Recently, elastic properties of outer hair cells (OHCs) and pillar cells have been elucidated. However, those of other cells have not yet been clarified. Therefore, in this study, using an atomic force microscope (AFM), elastic properties of Hensen's cells, Deiters' cells and inner hair cells (IHCs) in the apical turn and those in the basal and second turns were estimated. As a result, slopes indicative of cell elastic properties were (8.9 +/- 5.8) x 10(3) m(-1) for Hensen's cells (n = 30), (5.5 +/- 5.3) x 10(3) m(-1) for Deiters' cells (n = 20) and (3.8 +/- 2.6) x 10(3) m(-1) for IHCs (n = 20), and Young's modulus were 0.69 +/- 0.45 kPa for Hensen's cells and 0.29 +/- 0.20 kPa for IHCs. There was no significant difference between elastic properties of each type of cell in the apical turn and those in the basal and second turns. However, it was found that there is a significant difference between Young's moduli of cells estimated in this study and those of the OHCs and pillar cells reported previously.
Collapse
Affiliation(s)
- Michiko Sugawara
- Department of Bioengineering and Robotics, Tohoku University, Aoba-yama 01, Sendai 980-8579, Japan
| | | | | |
Collapse
|
11
|
Ladrech S, Guitton M, Saido T, Lenoir M. Calpain activity in the amikacin-damaged rat cochlea. J Comp Neurol 2004; 477:149-60. [PMID: 15300786 DOI: 10.1002/cne.20252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The principal aim of this study was to investigate the involvement of calpain in the degeneration of hair cells and ganglion neurons in the amikacin-poisoned rat cochlea. An antibody designed against fodrin-breakdown products (FBDP), which result exclusively from cleavage by calpain, was used. In addition, the involvement of both caspases and protein kinase C (PKC) was studied using, respectively, antibodies against activated caspase 3 and PKCgamma. The results demonstrate the accumulation of FBDP in the degenerating hair cells, in some supporting cells such as Deiters cells, and, later, in the affected ganglion neurons that had been deprived of their sensory targets. Activated caspase 3 was evidenced in a few dying hair cells and ganglion neurons. PKCgamma was highly expressed in all ganglion neurons, sometimes after the loss of hair cells. We conclude that calpain plays a role in the degradation of both the sensory cells and neurons after amikacin ototoxicity. In the poisoned hair cells, calpain and caspase 3 may have synergistic effects in the process of apoptosis. In the ganglion neurons deprived of their sensory elements, calpain may have a prominent role in cell degradation. By contrast, in these ganglion neurons PKCgamma may be implicated in a survival process. Finally, we suggest that calpain is involved in the remodeling of Deiters cells during the scarring process that follows hair cell loss.
Collapse
Affiliation(s)
- Sabine Ladrech
- Institut National de la Santé et de la Recherche Médicale U583 et Université Montpellier I, Laboratoire de Physiopathologie et Thérapie des Déficits Sensoriels et Moteurs, 34295 Montpellier, France
| | | | | | | |
Collapse
|
12
|
Abstract
Hair cells of the inner ear contain high concentrations of calcium-binding proteins that limit calcium signals and prevent cross talk between different signaling pathways during auditory transduction. Using light microscope immunofluorescence and post-embedding immunogold labeling in the electron microscope, we characterized the distribution of three calcium-buffering proteins in the turtle cochlea. Both calbindin-D28k and parvalbumin-beta were confined to hair cells in which they showed a similar distribution, whereas calretinin was present mainly in hair-cell nuclei but also occurred in supporting cells and nerve fibers. The hair-cell concentration of calbindin-D28k but not of parvalbumin-beta increased from the low- to high-frequency end of the cochlea. Calibration against standards containing known amounts of calcium-buffering protein processed in the same fluid drop as the cochlear sections gave cytoplasmic concentrations of calbindin-D28k as 0.13-0.63 mm and parvalbumin-beta as approximately 0.25 mm, but calretinin was an order of magnitude less. Total amount of Ca 2+-binding sites on the proteins is at least 1.0 mm in low-frequency hair cells and 3.0 mm in high-frequency cells. Reverse transcription-PCR showed that mRNA for all three proteins was expressed in turtle hair cells. We suggest that calbindin-D28k and parvalbumin-beta may serve as endogenous mobile calcium buffers, but the predominantly nuclear location of calretinin argues for another role in calcium signaling. The results support conclusions from electrophysiological measurements that millimolar concentrations of endogenous calcium buffers are present in turtle hair cells. Parvalbumin-beta was also found in both inner and outer hair cells of the guinea pig cochlea.
Collapse
|
13
|
Furness DN, Karkanevatos A, West B, Hackney CM. An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells. Hear Res 2002; 173:10-20. [PMID: 12372631 DOI: 10.1016/s0378-5955(02)00584-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calmodulin is found in the mechanosensitive stereociliary bundle of hair cells where it plays a role in various calcium-sensitive events associated with mechanoelectrical transduction. In this study, we have investigated the ultrastructural distribution of calmodulin in the apex of guinea-pig cochlear hair cells, using post-embedding immunogold labelling, in order to determine in more detail where calmodulin-dependent processes may be occurring. Labelling was found in the cuticular plate as well as the hair bundle, the rootlets of the stereocilia being more densely labelled than the surrounding filamentous matrix. In the bundle, labelling was found almost exclusively at the periphery rather than over the centre of the actin core of the stereocilia, and was clearly associated with the attachments of the lateral links that connect them to their nearest neighbours. It was also found to be denser towards the tips of stereocilia compared to other stereociliary regions and occurred consistently at either end of the tip link that connects stereocilia of adjacent rows. The contact region between stereocilia that is found just below the tip link was also clearly labelled. These concentrations of labelling in the bundle are likely to indicate sites where calmodulin is associated with calcium/calmodulin-sensitive proteins such as the various myosin isoforms and the plasma membrane ATPase (PMCA2a) that are known to occur there, and possibly with the transduction channels themselves. At least one of the myosin isoforms, myosin 1c, is thought to be associated with slow adaptation, and PMCA2a with control of calcium levels in the bundle. The concentration of calmodulin in the contact region further supports the suggestion that this is a functionally distinct region rather than a simple geometrical association between adjacent stereocilia.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | |
Collapse
|