1
|
Aguirre-Garrido JF, Ramírez-Saad HC, Toro N, Martínez-Abarca F. Bacterial Diversity in the Soda Saline Crater Lake from Isabel Island, Mexico. MICROBIAL ECOLOGY 2016; 71:68-77. [PMID: 26391805 DOI: 10.1007/s00248-015-0676-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Isabel Lake is a moderate saline soda crater lake located in Isabel Island in the eastern tropical Pacific coast of Mexico. Lake is mainly formed by rainfall and is strongly affected by evaporation and high input of nutrients derived from excretions of a large bird community inhabiting the island. So far, only the island macrobiota has been studied. The knowledge of the prokaryotic biota inhabiting the upper layers of this meromictic lake can give clues for the maintenance of this ecosystem. We assessed the diversity and composition of prokaryotic community in sediments and water of the lake by DGGE profiling, 16S rRNA gene amplicon pyrosequencing, and cultivation techniques. The bacterial community is largely dominated by halophilic and halotolerant microorganisms. Alpha diversity estimations reveal higher value in sediments than in water (P > 0.005). The lake water is dominated by γ-Proteobacteria belonging to four main families where Halomonadaceae presents the highest abundance. Aerobic, phototrophic, and halotolerant prokaryotes such as Cyanobacteria GPIIa, Halomonas, Alcanivorax, Idiomarina, and Cyclobacterium genera are commonly found. However, in sediment samples, Formosa, Muricauda, and Salegentibacter genera corresponding to Flavobacteriaceae family accounted for 15-20 % of the diversity. Heterotrophs like those involved in sulfur cycle, Desulfotignum, Desulfuromonas, Desulfofustis, and Desulfopila, appear to play an important role in sediments. Finally, a collection of aerobic halophilic bacterial isolates was created from these samples; members of the genus Halomonas were predominantly isolated from lake water. This study contributes to state the bacterial diversity present in this particular soda saline crater lake.
Collapse
Affiliation(s)
- José Félix Aguirre-Garrido
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1110, CP 14310, DF México, Mexico
| | - Hugo César Ramírez-Saad
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1110, CP 14310, DF México, Mexico
| | - Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain
| | - Francisco Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
2
|
Jacquiod S, Franqueville L, Cécillon S, M. Vogel T, Simonet P. Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS One 2013; 8:e79699. [PMID: 24278158 PMCID: PMC3835784 DOI: 10.1371/journal.pone.0079699] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
- Microbial Molecular Ecology Group, Section of Microbiology, København Universitat, København, Denmark
| | - Laure Franqueville
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Sébastien Cécillon
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Timothy M. Vogel
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
- * E-mail:
| |
Collapse
|
3
|
Aguirre-Garrido JF, Montiel-Lugo D, Hernández-Rodríguez C, Torres-Cortes G, Millán V, Toro N, Martínez-Abarca F, Ramírez-Saad HC. Bacterial community structure in the rhizosphere of three cactus species from semi-arid highlands in central Mexico. Antonie van Leeuwenhoek 2012; 101:891-904. [DOI: 10.1007/s10482-012-9705-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/23/2012] [Indexed: 11/28/2022]
|
4
|
Morimoto S, Ogawa N, Hasebe A, Fujii T. Isolation of effective 3-chlorobenzoate-degraders in soil using community analyses by PCR-DGGE. Microbes Environ 2011; 23:285-92. [PMID: 21558720 DOI: 10.1264/jsme2.me08526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The screening of pollutant degraders by relying solely on cultivation techniques such as liquid enrichment often fails to isolate the actual degraders in the environment. Community analyses by PCR-denaturing gradient gel electrophoresis (DGGE) were performed to isolate bacteria that can degrade 3-chlorobenzoate (3CB) effectively in soil. A forest soil sample was repeatedly dosed with 3CB (500 mg kg(-1)) to enrich it with indigenous 3CB-degraders, and changes in the bacterial community were monitored by PCR-DGGE of the 16S rRNA gene and benzoate 1,2-dioxygenase alpha subunit gene (benA). Initially, it required about 3 weeks to degrade 3CB in the soil, whereas it took only 3 days after the third dose. With this accelerated degradation, several intensified bands appeared in the DGGE profiles of both 16S rRNA gene and benA. We succeeded in isolating five 3CB-degrading Burkholderia strains corresponding to these bands by direct plating, while most of them were eliminated by liquid enrichment. Inoculation of the strains into the soil demonstrated that the five strains could degrade 3CB effectively in the soil. This study clearly shows significant bias during the liquid enrichment process and the advantage of using PCR-DGGE in screening effective degraders under environmental conditions.
Collapse
Affiliation(s)
- Sho Morimoto
- National Institute for Agro-Environmental Sciences, 3-1-3 Kannodai, Tsukuba, Ibaraki 305-9604, Japan
| | | | | | | |
Collapse
|
5
|
Yrjälä K, Keskinen AK, Akerman ML, Fortelius C, Sipilä TP. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1680-1688. [PMID: 20022155 DOI: 10.1016/j.envpol.2009.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 11/24/2009] [Accepted: 11/29/2009] [Indexed: 05/28/2023]
Abstract
To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation.
Collapse
Affiliation(s)
- Kim Yrjälä
- Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
6
|
Mathur J, Bizzoco RW, Ellis DG, Lipson DA, Poole AW, Levine R, Kelley ST. Effects of abiotic factors on the phylogenetic diversity of bacterial communities in acidic thermal springs. Appl Environ Microbiol 2007; 73:2612-23. [PMID: 17220248 PMCID: PMC1855587 DOI: 10.1128/aem.02567-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 01/04/2007] [Indexed: 11/20/2022] Open
Abstract
Acidic thermal springs offer ideal environments for studying processes underlying extremophile microbial diversity. We used a carefully designed comparative analysis of acidic thermal springs in Yellowstone National Park to determine how abiotic factors (chemistry and temperature) shape acidophile microbial communities. Small-subunit rRNA gene sequences were PCR amplified, cloned, and sequenced, by using evolutionarily conserved bacterium-specific primers, directly from environmental DNA extracted from Amphitheater Springs and Roaring Mountain sediment samples. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and colorimetric assays were used to analyze sediment chemistry, while an optical emission spectrometer was used to evaluate water chemistry and electronic probes were used to measure the pH, temperature, and E(h) of the spring waters. Phylogenetic-statistical analyses found exceptionally strong correlations between bacterial community composition and sediment mineral chemistry, followed by weaker but significant correlations with temperature gradients. For example, sulfur-rich sediment samples contained a high diversity of uncultured organisms related to Hydrogenobaculum spp., while iron-rich sediments were dominated by uncultured organisms related to a diverse array of gram-positive iron oxidizers. A detailed analysis of redox chemistry indicated that the available energy sources and electron acceptors were sufficient to support the metabolic potential of Hydrogenobaculum spp. and iron oxidizers, respectively. Principal-component analysis found that two factors explained 95% of the genetic diversity, with most of the variance attributable to mineral chemistry and a smaller fraction attributable to temperature.
Collapse
MESH Headings
- Bacteria/classification
- Bacteria/drug effects
- Bacteria/genetics
- Bacterial Physiological Phenomena
- Biodiversity
- Colorimetry
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Geologic Sediments/microbiology
- Hot Springs/chemistry
- Hot Springs/microbiology
- Microscopy, Electron, Scanning
- Minerals/analysis
- Minerals/chemistry
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Spectrometry, X-Ray Emission
- Temperature
- United States
- Water Microbiology
- X-Ray Diffraction
Collapse
Affiliation(s)
- Jayanti Mathur
- Department of Biology, San Diego State University, San Diego, CA 92182-4614, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Joynt J, Bischoff M, Turco R, Konopka A, Nakatsu CH. Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. MICROBIAL ECOLOGY 2006; 51:209-19. [PMID: 16463132 DOI: 10.1007/s00248-005-0205-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 04/25/2005] [Indexed: 05/06/2023]
Abstract
The impact on the microbial community of long-term environmental exposure to metal and organic contamination was investigated. Twenty-four soil samples were collected along a transect dug in soils contaminated with road paint and paint solvents, mainly toluene. Chemical analysis along the transect revealed a range from high to low concentrations of metals (lead and chromium) and organic solvent compounds. Principal components analysis of microbial community structure based on denaturing gradient gel electrophoresis of the V3 region of the 16S rRNA gene and fatty acid methyl esters derived from phospholipids (phospholipid fatty acid analysis) showing samples with similar fingerprints also had similar contaminant concentrations. There was also a weak positive correlation between microbial biomass and the organic carbon concentration. Results indicated that microbial populations are present despite some extreme contaminant levels in this mixed-waste contaminated site. Nucleotide sequence determination of the 16S rRNA gene indicated the presence of phylogenetically diverse bacteria belonging to the alpha-, beta-, gamma-, and delta-Proteobacteria, the high and low G + C Gram-positive bacteria, green nonsulfur, OP8, and others that did not group within a described division. This indicates that soils contaminated with both heavy metals and hydrocarbons for several decades have undergone changes in community composition, but still contain a phylogenetically diverse group of bacteria (including novel phylotypes) that warrant further investigation.
Collapse
Affiliation(s)
- Janet Joynt
- Department of Agronomy, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | |
Collapse
|
8
|
Morimoto S, Togami K, Ogawa N, Hasebe A, Fujii T. Analysis of a Bacterial Community in 3-Chlorobenzoate-Contaminated Soil by PCR-DGGE Targeting the 16S rRNA Gene and Benzoate 1,2-Dioxygenase Gene (benA). Microbes Environ 2005. [DOI: 10.1264/jsme2.20.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sho Morimoto
- National Institute for Agro-Environmental Sciences
| | | | - Naoto Ogawa
- National Institute for Agro-Environmental Sciences
| | - Akira Hasebe
- National Institute for Agro-Environmental Sciences
| | | |
Collapse
|
9
|
Gentry TJ, Wang G, Rensing C, Pepper IL. Chlorobenzoate-degrading bacteria in similar pristine soils exhibit different community structures and population dynamics in response to anthropogenic 2-, 3-, and 4-chlorobenzoate levels. MICROBIAL ECOLOGY 2004; 48:90-102. [PMID: 15085300 DOI: 10.1007/s00248-003-1048-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 09/21/2003] [Indexed: 05/24/2023]
Abstract
A study was conducted to determine the diversity of 2-, 3-, and 4-chlorobenzoate (CB) degraders in two pristine soils with similar physical and chemical characteristics. Surface soils were collected from forested sites and amended with 500 microg of 2-, 3-, or 4-CB g(-1) soil. The CB levels and degrader numbers were monitored throughout the study. Degraders were isolated, grouped by DNA fingerprints, identified via 16S rDNA sequences, and screened for plasmids. The CB genes in selected degraders were isolated and/or sequenced. In the Madera soil, 2-CB and 4-CB degraded within 11 and 42 d, respectively, but 3-CB did not degrade. In contrast, 3-CB and 4-CB degraded in the Oversite soil within 14 and 28 d, respectively, while 2-CB did not degrade. Approximately 10(7) CFU g(-1) of degraders were detected in the Madera soil with 2-CB, and the Oversite soil with 3- and 4-CB. No degraders were detected in the Madera soil with 4-CB even though the 4-CB degraded. Nearly all of the 2-CB degraders isolated from the Madera soil were identified as a Burkholderia sp. containing chromosomally encoded degradative genes. In contrast, several different 3- and 4-CB degraders were isolated from the Oversite soil, and their populations changed as CB degradation progressed. Most of these 3-CB degraders were identified as Burkholderia spp. while the majority of 4-CB degraders were identified as Bradyrhizobium spp. Several of the 3-CB degraders contained the degradative genes on large plasmids, and there was variation between the plasmids in different isolates. When a fresh sample of Madera soil was amended with 50, 100, or 200 microg 3-CB g(-1), 3-CB degradation occurred, suggesting that 500 microg 3-CB g(-1) was toxic to the degraders. Also, different 3-CB degraders were isolated from the Madera soil at each of the three lower levels of 3-CB. No 2-CB degradation was detected in the Oversite soil even at lower 2-CB levels. These results indicate that the development of 2-, 3-, and 4-CB degrader populations is site-specific and that 2-, 3-, and 4-CB are degraded by different bacterial populations in pristine soils. These results also imply that the microbial ecology of two soils that develop under similar biotic and abiotic environments can be quite different.
Collapse
Affiliation(s)
- T J Gentry
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
10
|
Ramírez-Saad HC, Sessitsch A, Akkermans ADL. Molecular diversity in the bacterial community and the fluorescent pseudomonads group in natural and chlorobenzoate-stressed peat-forest soil. Microbiol Res 2003; 158:47-54. [PMID: 12608579 DOI: 10.1078/0944-5013-00175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial community shifts in a soil microcosm spiked with 3-chlorobenzoate or 2,5-dichlorobenzoate were monitored. The V6-V8 variable regions of soil bacterial 16S rRNA and rDNA were amplified and separated by temperature gradient gel electrophoresis (TGGE) profiling. Culturing in the presence of 2.5 mM chlorinated benzoates suppressed 10 to 100 fold the total aerobic bacterial community but had no effect on the diversity within the group of fluorescent pseudomonads. In contrast, the uncultured bacterial community showed a decrease in the number of bands in the TGGE profiles of the chlorobenzoate-spiked treatments. Accordingly, the Shannon's diversity and equitability indices of these treatments reflected a decreasing trend in time. The approach allowed a direct assessment of community shifts upon contamination of soil.
Collapse
Affiliation(s)
- Hugo C Ramírez-Saad
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands
| | | | | |
Collapse
|
11
|
Abstract
Since the first estimate of prokaryotic abundance in soil was published, researchers have attempted to assess the abundance and distribution of species and relate this information on community structure to ecosystem function. Culture-based methods were found to be inadequate to the task, and as a consequence a number of culture-independent approaches have been applied to the study of microbial diversity in soil. Applications of various culture-independent methods to descriptions of soil and rhizosphere microbial communities are reviewed. Culture-independent analyses have been used to catalog the species present in various environmental samples and also to assess the impact of human activity and interactions with plants or other microbes on natural microbial communities. Recent work has investigated the linkage of specific organisms to ecosystem function. Prospects for increased understanding of the ecological significance of particular populations through the use of genomics and microarrays are discussed.
Collapse
Affiliation(s)
- Angela D Kent
- Center for Limnology University of Wisconsin-Madison, 53706, USA.
| | | |
Collapse
|
12
|
Sessitsch A, Gyamfi S, Stralis-Pavese N, Weilharter A, Pfeifer U. RNA isolation from soil for bacterial community and functional analysis: evaluation of different extraction and soil conservation protocols. J Microbiol Methods 2002; 51:171-9. [PMID: 12133609 DOI: 10.1016/s0167-7012(02)00065-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The impact of three different RNA isolation methods on the community analysis of metabolically active bacteria was determined by reverse transcription (RT) and PCR amplification of 16S rRNA genes and subsequent terminal restriction fragment length polymorphism (T-RFLP) analysis. Furthermore, soil samples were stored at different conditions in order to evaluate the effect of soil conservation methods on the outcome of the population analysis. The quality of mRNA was assessed by reverse transcription and PCR amplification of eubacterial glutamine synthetase genes. Our results indicated that the community composition as well as the abundance of individual members were affected by the kind of RNA isolation method. Furthermore, the extraction method influenced the recovery of mRNA. Lyophilization, storage at -20 degrees C as well as storage in glycerol stocks at -80 degrees C proved to be equally appropriate for the storage of soils and subsequent RNA isolation.
Collapse
Affiliation(s)
- Angela Sessitsch
- Division of Life and Environmental Sciences, ARC Seibersdorf Research GmbH, A-2444 Seibersdorf, Austria.
| | | | | | | | | |
Collapse
|
13
|
Gyamfi S, Pfeifer U, Stierschneider M, Sessitsch A. Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol Ecol 2002; 41:181-90. [DOI: 10.1111/j.1574-6941.2002.tb00979.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
14
|
Park W, Padmanabhan P, Padmanabhan S, Zylstra GJ, Madsen EL. nahR, encoding a LysR-type transcriptional regulator, is highly conserved among naphthalene-degrading bacteria isolated from a coal tar waste-contaminated site and in extracted community DNA. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2319-2329. [PMID: 12177326 DOI: 10.1099/00221287-148-8-2319] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Pseudomonas putida strain G7, a LysR-type positive transcriptional activator protein encoded by nahR is necessary for activation of two operons involved in naphthalene catabolism [Schell, M. A. & Poser, E. F. (1989). J Bacteriol 171, 837-846]. The role of an nahR homologue, NCIB-nahR, in another naphthalene-metabolizing bacterium, P. putida NCIB 9816-4 was verified. Targeted disruption of NCIB-nahR by homologous recombination resulted in a growth defect in the presence of naphthalene or salicylate as sole carbon and energy source. The nahR homologues and intergenic regions between nahR-like and nahG-like genes from P. putida NCIB 9816-4 and seven bacteria native to a naphthalene-rich coal tar contaminated site were amplified by PCR using degenerate primers. The amplified nahR homologues and the intergenic regions were cloned and sequenced. Alignment of the deduced amino acid sequences from NahR homologues revealed that NahR-like proteins showed only minor variations in all investigated naphthalene-degrading isolates. The intergenic regions, together with known NahR-binding sites showed the consensus NahR-protein-binding sites (5'-ATTCACGCTN(2)TGAT-3'). Surprisingly, amplified intergenic regions from naphthalene-degrading micro-organisms native to this study site were 100% identical to that of the pDTG1 plasmid (an archetypal naphthalene-catabolic plasmid from Pseudomonas putida NCIB 9816-4), but the nahR coding regions were not. DNA representing the uncultured microbial community was extracted from six sediment samples with varying coal tar exposure histories. PCR amplification of nahR from sediment DNA was observed in contaminated samples, but in uncontaminated samples only following laboratory incubation with naphthalene. The sediment-derived PCR products were sequenced and also found to be almost identical to known nahR genes. Thus, the structure and function of nahR-nahG regulatory genes appear to be highly conserved.
Collapse
Affiliation(s)
- Woojun Park
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA1
| | | | | | - Gerben J Zylstra
- Biotechnology Center For Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, NJ, 08901-8520, USA2
| | - Eugene L Madsen
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101, USA1
| |
Collapse
|
15
|
Von Canstein H, Kelly S, Li Y, Wagner-Döbler I. Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 2002; 68:2829-37. [PMID: 12039739 PMCID: PMC123942 DOI: 10.1128/aem.68.6.2829-2837.2002] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2001] [Accepted: 02/28/2002] [Indexed: 11/20/2022] Open
Abstract
Six mercury-resistant environmental proteobacterial isolates and one genetically modified mercury-resistant Pseudomonas putida strain were analyzed for physiological traits of adaptive relevance in an environment of packed-bed bioreactors designed for the decontamination of mercury-polluted chlor-alkali wastewater. The strains displayed characteristic differences in each trait (i.e., biofilm formation capability, growth rate in mercury contaminated wastewaters, and mercury reduction efficiency). Subsequently, they were immobilized either as a monoculture or as a mixed culture on porous carrier material in packed-bed bioreactors through which different batches of filter-sterilized industrial chlor-alkali wastewater were pumped. In monospecies bioreactors, the mercury retention efficiency was sensitive to rapidly increasing mercury concentrations in the wastewater. Mixed culture biofilms displayed a high mercury retention efficiency that was not affected by rapid increases in mercury or continuously high mercury concentrations. The dynamic in the community composition of the mixed culture bioreactors was determined by ribosomal intergenic spacer polymorphism analysis. Mercury-mediated selective pressure decreased the number of prevalent strains. Microbial diversity was completely restored after easing of the selective pressure. Microbial diversity provides a reservoir of strains with complementary ecological niches that results in a superior bioreactor performance under changing environmental conditions.
Collapse
Affiliation(s)
- Harald Von Canstein
- Division of Microbiology. Division of Biochemical Engineering, German Research Centre for Biotechnology, D-38124 Braunschweig, Germany.
| | | | | | | |
Collapse
|
16
|
Satsuma K, Tanaka H, Sato K, Kato Y. Role and Behavior of Benthic Microbes Able to Degrade Herbicide Atrazine in Naturally Derived Water/sediment Microcosm. Microbes Environ 2002. [DOI: 10.1264/jsme2.17.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Koji Satsuma
- Chemistry Division, The Institute of Environmental Toxicology
| | - Hiromi Tanaka
- Chemistry Division, The Institute of Environmental Toxicology
| | - Kiyoshi Sato
- Chemistry Division, The Institute of Environmental Toxicology
| | - Yasuhiro Kato
- Chemistry Division, The Institute of Environmental Toxicology
| |
Collapse
|
17
|
Sessitsch A, Weilharter A, Gerzabek MH, Kirchmann H, Kandeler E. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment. Appl Environ Microbiol 2001; 67:4215-24. [PMID: 11526026 PMCID: PMC93150 DOI: 10.1128/aem.67.9.4215-4224.2001] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil structure depends on the association between mineral soil particles (sand, silt, and clay) and organic matter, in which aggregates of different size and stability are formed. Although the chemistry of organic materials, total microbial biomass, and different enzyme activities in different soil particle size fractions have been well studied, little information is available on the structure of microbial populations in microhabitats. In this study, topsoil samples of different fertilizer treatments of a long-term field experiment were analyzed. Size fractions of 200 to 63 microm (fine sand fraction), 63 to 2 microm (silt fraction), and 2 to 0.1 microm (clay fraction) were obtained by a combination of low-energy sonication, wet sieving, and repeated centrifugation. Terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes were used to compare bacterial community structures in different particle size fractions. The microbial community structure was significantly affected by particle size, yielding higher diversity of microbes in small size fractions than in coarse size fractions. The higher biomass previously found in silt and clay fractions could be attributed to higher diversity rather than to better colonization of particular species. Low nutrient availability, protozoan grazing, and competition with fungal organisms may have been responsible for reduced diversities in larger size fractions. Furthermore, larger particle sizes were dominated by alpha-Proteobacteria, whereas high abundance and diversity of bacteria belonging to the Holophaga/Acidobacterium division were found in smaller size fractions. Although very contrasting organic amendments (green manure, animal manure, sewage sludge, and peat) were examined, our results demonstrated that the bacterial community structure was affected to a greater extent by the particle size fraction than by the kind of fertilizer applied. Therefore, our results demonstrate specific microbe-particle associations that are affected to only a small extent by external factors.
Collapse
Affiliation(s)
- A Sessitsch
- Austrian Research Centers, Division of Life and Environmental Sciences, A-2444 Seibersdorf, Austria.
| | | | | | | | | |
Collapse
|