1
|
Rajpoot A, Sharma V. Protective effects of Allium sativum essential oil against lead nitrate-induced cardiotoxicity: Modulation of lipid metabolism, nitric oxide dynamics, inflammatory mediators, and histological profiles in Swiss albino mice. Toxicol Rep 2025; 14:101950. [PMID: 40026478 PMCID: PMC11869988 DOI: 10.1016/j.toxrep.2025.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Background Lead (Pb²⁺) is a toxic metal known to induce oxidative stress and inflammation, contributing to cardiovascular diseases such as hypertension and atherosclerosis. Natural compounds like Allium sativum essential oil (ASEO) offer potential therapeutic benefits against lead-induced damage, but their cardioprotective effects remain underexplored. This study investigates the efficacy of ASEO in mitigating cardiovascular toxicity induced by lead nitrate in male Swiss albino mice. Methods Thirty-six male mice were divided into six groups: Control, Lead Nitrate (50 mg/kg), Lead Nitrate + Low-dose ASEO (50 mg/kg), Lead Nitrate + High-dose ASEO (80 mg/kg), Lead Nitrate + Silymarin (25 mg/kg), and Lead Nitrate + Olive Oil. After 12 days of lead exposure, treatments were administered for 30 days. Key cardiovascular parameters such as lipid profiles (total cholesterol, LDL, HDL), nitric oxide (NO), and inflammatory markers (TNF-α, IL-6, IFN-γ, IL-10, NF-κB) were evaluated alongside histological analysis of cardiac tissue. Results Lead nitrate exposure significantly increased total cholesterol (88.27 µg/mL) and LDL (93.78 µg/mL) while reducing HDL (17.51 µg/mL) compared to controls (P < 0.001). High-dose ASEO lowered total cholesterol (66.07 µg/mL) and LDL (49.62 µg/mL) while increased HDL (27.2 µg/mL) (P < 0.001). NO levels, reduced by lead exposure, were significantly restored by high-dose ASEO (P < 0.001). Inflammatory markers, including TNF-α, NF-kB, and IL-6, were elevated in the lead group but decreased significantly following ASEO treatment (P < 0.001). Histological analysis showed that ASEO markedly preserved myocardial architecture, reducing degeneration and inflammation. Conclusion High-dose ASEO demonstrated significant cardioprotective effects against lead-induced toxicity by improving lipid profiles, enhancing NO levels, and modulating inflammatory markers. Further studies are warranted to validate these results.
Collapse
Affiliation(s)
| | - Veena Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| |
Collapse
|
2
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Telesca M, De Angelis A, Donniacuo M, Bellocchio G, Riemma MA, Mele E, Canonico F, Cianflone E, Torella D, D'Amario D, Patti G, Liantonio A, Imbrici P, De Luca A, Castaldo G, Rossi F, Cappetta D, Urbanek K, Berrino L. Effects of sacubitril-valsartan on aging-related cardiac dysfunction. Eur J Pharmacol 2024; 978:176794. [PMID: 38968980 DOI: 10.1016/j.ejphar.2024.176794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.
Collapse
Affiliation(s)
- Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Francesco Canonico
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100, Catanzaro, Italy
| | - Domenico D'Amario
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Giuseppe Patti
- Department of Translational Medicine, Università del Piemonte Orientale, via Solaroli, 17, 28100, Novara, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125, Bari, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Via Lecce-Monteroni, 73047, Lecce, Italy.
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131, Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138, Naples, Italy
| |
Collapse
|
4
|
Kitasato L, Yamaoka-Tojo M, Suzuki M, Nakahara S, Iwaya T, Ogiso S, Murayama Y, Hashikata T, Misawa N, Kawashima R, Oikawa J, Nakamura M, Tokui Y, Naraba J, Nishii M, Kitasato H, Ako J. Fibroblasts activation by embryonic signal switching: A novel mechanism of placental growth factor-induced cardiac remodeling. Placenta 2024; 154:129-136. [PMID: 38971073 DOI: 10.1016/j.placenta.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
INTRODUCTION Cardiac remodeling is defined as cellular interstitial changes that lead dysfunction of the heart after injury. Placental growth factor (PlGF), a member of the VEGF family, has been reported to regulate cardiac hypertrophy in hemodynamic state. We therefore analyze the function of PlGF during cardiac remodeling using cardiac cells and fibroblasts, under Angiotensin II (AngII) stimulation. METHODS PlGF overexpressed mouse embryonic fibroblasts derived from C57BL/6 mice, were made by deficient retrovirus vector, designated as C57/PlGF. Only retrovirus vector introduced C57 cells (C57/EV) were used as control. After AngII stimulation, wound scratching assay and MTT proliferation assay with or without p38 MAPK inhibitor, SB205580 were performed in retrovirally-introduced C57 cells. Reactive oxygen species (ROS) production, NF-kB activation, IL-6 and TNF-α production were also measured. Then we assessed AngII-induced cell proliferation of mouse cardiac fibroblasts (CFs) and rat primary cardiomyocytes incubating with C57/PlGF conditioned-medium. RESULTS The PlGF production in C57/PlGF were confirmed by ELISA (1093.48 ± 3.5 pg/ml, ±SE). AngII-induced cell migration, proliferation and H2O2 production were increased in C57/PlGF compared with C57/EV. SB205580 inhibited the AngII-induced cell proliferation in C57/PlGF. In C57/PlGF cells, NF-kB activation was higher, followed by up-regulation of IL-6 and TNF-α production. CFs and cardiomyocytes proliferation increased when stimulated with C57/PlGF conditioned-medium. DISCUSSION The activation of fibroblast is stimulated by PlGF signaling via p38 MAPK/NF-kB pathway accompanied by elevation of ROS and inflammatory response. Furthermore, these signals stimulate the activation of CFs and cardiomyocytes, indicating that high circulating level of PlGF have a potential to regulate cardiac remodeling.
Collapse
Affiliation(s)
- Lisa Kitasato
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan.
| | - Minako Yamaoka-Tojo
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Machika Suzuki
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Shohei Nakahara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Toshiyuki Iwaya
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Sho Ogiso
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Yusuke Murayama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Takehiro Hashikata
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Nonoka Misawa
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Rei Kawashima
- Department of Regulation Biochemistry, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Oikawa
- Department of Kitasato Clinical Research Center, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Masaki Nakamura
- Department of Laboratory Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| | - Yumi Tokui
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Naraba
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mototsugu Nishii
- Department of Emergency Medicine, Yokohama City University, School of Medicine, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minamiku Sagamihara, Kanagawa, 252-0373, Japan; Department Environmental Microbiology, Kitasato University Graduate School of Medical Science, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0373, Japan; Shibasaburo Kitasato Memorial Museum, 3199 Kitazato, Oguni, Aso, Kumamoto, 869-2505, Japan
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minamiku, Sagamihara, Kanagawa, 252-0374 Japan
| |
Collapse
|
5
|
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother 2024; 178:117177. [PMID: 39053423 DOI: 10.1016/j.biopha.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.
Collapse
Affiliation(s)
- Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | | | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Umesh Chandra Dash
- Environmental Biotechnology Laboratory, KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rakesh Ranjan Ojha
- Department of Bioinformatics, BJB (A) College, Bhubaneswar, Odisha-751014, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
6
|
Marques Antunes M, Nunes-Ferreira A, Duarte GS, Gouveia E Melo R, Sucena Rodrigues B, Guerra NC, Nobre A, Pinto FJ, Costa J, Caldeira D. Preoperative statin therapy for adults undergoing cardiac surgery. Cochrane Database Syst Rev 2024; 7:CD008493. [PMID: 39037762 PMCID: PMC11262559 DOI: 10.1002/14651858.cd008493.pub5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND Despite significant advances in surgical techniques and perioperative care, people undertaking cardiac surgery due to cardiovascular disease are more prone to the development of postoperative adverse events. Statins (5-hydroxy-3-methylglutaryl-co-enzyme A (HMG-CoA) reductase inhibitors) are well-known for their anti-inflammatory and antioxidant effects and are established for primary and secondary prevention of coronary artery disease. In addition, statins are thought to have clinical benefits in perioperative outcomes in people undergoing cardiac surgery. This review is an update of a review that was first published in 2012 and updated in 2015. OBJECTIVES To evaluate the benefits and harms of preoperative statin therapy in adults undergoing cardiac surgery compared to standard of care or placebo. SEARCH METHODS We performed a search of the Cochrane Central Register of Controlled Trials (CENTRAL) (Issue 9, 2023), Ovid MEDLINE (1980 to 14 September 2023), and Ovid Embase (1980 to 2023 (week 36)). We applied no language restrictions. SELECTION CRITERIA We included all randomised controlled trials (RCTs) comparing any statin treatment before cardiac surgery, for any given duration and dose, versus no preoperative statin therapy (standard of care) or placebo. We excluded trials without a registered trial protocol and trials without approval by an institutional ethics committee. DATA COLLECTION AND ANALYSIS We used standard Cochrane methodology. Primary outcomes were short-term mortality and major adverse cardiovascular events. Secondary outcomes were myocardial infarction, atrial fibrillation, stroke, renal failure, length of intensive care unit (ICU) stay, length of hospital stay and adverse effects related to statin therapy. We reported effect measures as risk ratios (RRs) or mean differences (MDs) with corresponding 95% confidence intervals (CIs). We used the RoB 1 tool to assess the risk of bias in included trials, and GRADE to assess the certainty of the evidence. MAIN RESULTS We identified eight RCTs (five new to this review) including 5592 participants. Pooled analysis showed that statin treatment before surgery may result in little to no difference in the risk of postoperative short-term mortality (RR 1.36, 95% CI 0.72 to 2.59; I2 = 0%; 6 RCTs, 5260 participants; low-certainty evidence; note 2 RCTs reported 0 events in both groups so RR calculated from 4 RCTs with 5143 participants). We are very uncertain about the effect of statins on major adverse cardiovascular events (RR 0.93, 95% CI 0.77 to 1.13; 1 RCT, 2406 participants; very low-certainty evidence). Statins probably result in little to no difference in myocardial infarction (RR 0.88, 95% CI 0.73 to 1.06; I2 = 0%; 5 RCTs, 4645 participants; moderate-certainty evidence), may result in little to no difference in atrial fibrillation (RR 0.87, 95% CI 0.72 to 1.05; I2 = 60%; 8 RCTs, 5592 participants; low-certainty evidence), and may result in little to no difference in stroke (RR 1.47, 95% CI 0.90 to 2.40; I2 = 0%; 4 RCTs, 5143 participants; low-certainty evidence). We are very uncertain about the effect of statins on renal failure (RR 1.04, 95% CI 0.80 to 1.34; I2 = 57%; 4 RCTs, 4728 participants; very low-certainty evidence). Additionally, statins probably result in little to no difference in length of ICU stay (MD 1.40 hours, 95% CI -1.62 to 4.41; I2 = 43%; 3 RCTs, 4528 participants; moderate-certainty evidence) and overall hospital stay (MD -0.31 days, 95% CI -0.64 to 0.03; I2 = 84%; 5 RCTs, 4788 participants; moderate-certainty evidence). No study had any individual risk of bias domain classified as high. However, two studies were at high risk of bias overall given the classification of unclear risk of bias in three domains. AUTHORS' CONCLUSIONS In this updated Cochrane review, we found no evidence that statin use in the perioperative period of elective cardiac surgery was associated with any clinical benefit or worsening, when compared with placebo or standard of care. Compared with placebo or standard of care, statin use probably results in little to no difference in MIs, length of ICU stay and overall hospital stay; and may make little to no difference to mortality, atrial fibrillation and stroke. We are very uncertain about the effects of statins on major harmful cardiac events and renal failure. The certainty of the evidence validating this finding varied from moderate to very low, depending on the outcome. Future trials should focus on assessing the impact of statin therapy on mortality and major adverse cardiovascular events.
Collapse
Affiliation(s)
- Miguel Marques Antunes
- Centro Cardiovascular da Universidade de Lisboa - CCUL@RISE, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário Lisboa Central (CHULC), Centro Clínico Académico de Lisboa (CCAL), Lisbon, Portugal
| | - Afonso Nunes-Ferreira
- Department of Cardiology/Heart and Vessels, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo S Duarte
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Hospital da Luz Lisboa, Lisbon, Portugal
| | - Ryan Gouveia E Melo
- Centro Cardiovascular da Universidade de Lisboa - CCUL@RISE, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Department of Vascular Surgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal, Lisbon, Portugal
| | | | - Nuno C Guerra
- Department of Cardiothoracic Surgery, Hospital Universitário de Santa Maria (CHLN), CAML, Centro Cardiovascular da Universidade de Lisboa - CCUL@RISE, Lisbon, Portugal
| | - Angelo Nobre
- Department of Cardiothoracic Surgery, Hospital Universitário de Santa Maria (CHLN), CAML, Centro Cardiovascular da Universidade de Lisboa - CCUL@RISE, Lisbon, Portugal
| | - Fausto J Pinto
- Department of Cardiology/Heart and Vessels, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Costa
- Laboratory of Clinical Pharmacology and Therapeutics, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Daniel Caldeira
- Department of Cardiology/Heart and Vessels, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), CAML, CCUL@RISE, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Laboratório de Farmacologia Clínica e Terapêutica / Centro Cardiovascular da Universidade de Lisboa - CCUL@RISE / CEMBE - Centro de Estudos de Medicina Baseada na Evidência, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Shi LX, Liu XR, Zhou LY, Zhu ZQ, Yuan Q, Zou T. Nanocarriers for gene delivery to the cardiovascular system. Biomater Sci 2023; 11:7709-7729. [PMID: 37877418 DOI: 10.1039/d3bm01275a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Cardiovascular diseases have posed a great threat to human health. Fortunately, gene therapy holds great promise in the fight against cardiovascular disease (CVD). In gene therapy, it is necessary to select the appropriate carriers to deliver the genes to the target cells of the target organs. There are usually two types of carriers, viral carriers and non-viral carriers. However, problems such as high immunogenicity, inflammatory response, and limited loading capacity have arisen with the use of viral carriers. Therefore, scholars turned their attention to non-viral carriers. Among them, nanocarriers are highly valued because of their easy modification, targeting, and low toxicity. Despite the many successes of gene therapy in the treatment of human diseases, it is worth noting that there are still many problems to be solved in the field of gene therapy for the treatment of cardiovascular diseases. In this review, we give a brief introduction to the common nanocarriers and several common cardiovascular diseases (arteriosclerosis, myocardial infarction, myocardial hypertrophy). On this basis, the application of gene delivery nanocarriers in the treatment of these diseases is introduced in detail.
Collapse
Affiliation(s)
- Ling-Xin Shi
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiu-Ran Liu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Ling-Yue Zhou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Zi-Qi Zhu
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Qiong Yuan
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou 646000, China
| | - Tao Zou
- State Key Laboratory of Refractories and Metallurgy, Key Laboratory of Coal Conversion & New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| |
Collapse
|
8
|
Deng RM, Zhou J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int Immunopharmacol 2023; 123:110714. [PMID: 37523969 DOI: 10.1016/j.intimp.2023.110714] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Myocardial ischemia has a high incidence and mortality rate, and reperfusion is currently the standard intervention. However, reperfusion may lead to further myocardial damage, known as myocardial ischemia/reperfusion injury (MIRI). There are currently no effective clinical treatments for MIRI. The PI3K/Akt signaling pathway is involved in cardiovascular health and disease and plays an important role in reducing myocardial infarct size and restoring cardiac function after MIRI. Activation of the PI3K/Akt pathway provides myocardial protection through synergistic upregulation of antioxidant, anti-inflammatory, and autophagy activities and inhibition of mitochondrial dysfunction and cardiomyocyte apoptosis. Many studies have shown that PI3K/Akt has a significant protective effect against MIRI. Here, we reviewed the molecular regulation of PI3K/Akt in MIRI and summarized the molecular mechanism by which PI3K/Akt affects MIRI, the effects of ischemic preconditioning and ischemic postconditioning, and the role of related drugs or activators targeting PI3K/Akt in MIRI, providing novel insights for the formulation of myocardial protection strategies. This review provides evidence of the role of PI3K/Akt activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Rui-Ming Deng
- Department of Anesthesiology, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China
| | - Juan Zhou
- Department of thyroid and Breast Surgery, Ganzhou People's Hospital, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China; The Affiliated Ganzhou Hospital of Nanchang University, 16 Meiguan Avenue, Ganzhou, Jiangxi Province 341000, PR China.
| |
Collapse
|
9
|
Zhuang L, Zong X, Yang Q, Fan Q, Tao R. Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization. EBioMedicine 2023; 95:104744. [PMID: 37556943 PMCID: PMC10433018 DOI: 10.1016/j.ebiom.2023.104744] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Macrophage infiltration and polarization are integral to the progression of heart failure and cardiac fibrosis after ischemia/reperfusion (IR). Interleukin 34 (IL-34) is an inflammatory regulator related to a series of autoimmune diseases. Whether IL-34 mediates inflammatory responses and contributes to cardiac remodeling and heart failure post-IR remains unclear. METHODS IL-34 knock-out mice were used to determine the role of IL-34 on cardiac remodeling after IR surgery. Then, immunofluorescence, flow cytometry assays, and RNA-seq analysis were performed to explore the underlying mechanisms of IL-34-induced macrophage recruitment and polarization, and further heart failure after IR. FINDINGS By re-analyzing single-cell RNA-seq and single-nucleus RNA-seq data of murine and human ischemic hearts, we showed that IL-34 expression was upregulated after IR. IL-34 knockout mitigated cardiac remodeling, cardiac dysfunction, and fibrosis after IR and vice versa. RNA-seq analysis revealed that IL-34 deletion correlated negatively with immune responses and chemotaxis after IR injury. Consistently, immunofluorescence and flow cytometry assays demonstrated that IL-34 deletion attenuated macrophage recruitment and CCR2+ macrophage polarization. Mechanistically, IL-34 deficiency repressed both the canonical and noncanonical NF-κB signaling pathway, leading to marked reduction of P-IKKβ and P-IκBα kinase levels; downregulation of NF-κB p65, RelB, and p52 expression, which drove the decline in chemokine CCL2 expression. Finally, IL-34 and CCL2 levels were increased in the serum of acute coronary syndrome patients, with a positive correlation between circulating IL-34 and CCL2 levels in clinical patients. INTERPRETATION In conclusion, IL-34 sustains NF-κB pathway activation to elicit increased CCL2 expression, which contributes to macrophage recruitment and polarization, and subsequently exacerbates cardiac remodeling and heart failure post-IR. Strategies targeting IL-34-centered immunomodulation may provide new therapeutic approaches to prevent and reverse cardiac remodeling and heart failure in clinical MI patients after percutaneous coronary intervention. FUNDING This study was supported by the National Nature Science Foundation of China (81670352 and 81970327 to R T, 82000368 to Q F).
Collapse
Affiliation(s)
- Lingfang Zhuang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xiao Zong
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qian Yang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Qin Fan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Rong Tao
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
10
|
Fandl HK, Garcia VP, Treuth JW, Brewster LM, Greiner JJ, Davy KP, Stauffer BL, Desouza CA. Endothelial-derived extracellular vesicles from obese/hypertensive adults increase factors associated with hypertrophy and fibrosis in cardiomyocytes. Am J Physiol Heart Circ Physiol 2023; 324:H675-H685. [PMID: 36930654 PMCID: PMC10085555 DOI: 10.1152/ajpheart.00035.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Obesity and hypertension, independently and combined, are associated with increased risk of heart failure and heart failure-related morbidity and mortality. Interest in circulating endothelial cell-derived microvesicles (EMVs) has intensified because of their involvement in the development and progression of endothelial dysfunction, atherosclerosis, and cardiomyopathy. The experimental aim of this study was to determine, in vitro, the effects of EMVs isolated from obese/hypertensive adults on key proteins regulating cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF)-β, collagen1-α1], as well as endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were isolated from plasma by flow cytometry in 12 normal weight/normotensive [8 males/4 females; age: 56 ± 5 yr; body mass index (BMI): 23.3 ± 2.0 kg/m2; blood pressure (BP): 117/74 ± 4/5 mmHg] and 12 obese/hypertensive (8 males/4 females; 57 ± 5 yr; 31.7 ± 1.8 kg/m2; 138/83 ± 8/7 mmHg) adults. Human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were cultured and treated with EMVs from either normal weight/normotensive or obese/hypertensive adults for 24 h. Expression of cTnT (64.1 ± 13.9 vs. 29.5 ± 7.8 AU), α-actinin (66.0 ± 14.7 vs. 36.2 ± 10.3 AU), NF-kB (166.3 ± 13.3 vs. 149.5 ± 8.8 AU), phosphorylated-NF-kB (226.1 ± 25.2 vs. 179.1 ± 25.5 AU), and TGF-β (62.1 ± 13.3 vs. 23.5 ± 8.8 AU) were significantly higher and eNOS activation (16.4 ± 4.3 vs. 24.8 ± 3.7 AU) and nitric oxide production (6.8 ± 1.2 vs. 9.6 ± 1.3 µmol/L) were significantly lower in iPSC-CMs treated with EMVs from obese/hypertensive compared with normal weight/normotensive adults. These data indicate that EMVs from obese/hypertensive adults induce a cardiomyocyte phenotype prone to hypertrophy, fibrosis, and reduced nitric oxide production, central factors associated with heart failure risk and development.NEW & NOTEWORTHY In the present study we determined the effect of endothelial microvesicles (EMVs) isolated from obese/hypertensive adults on mediators of cardiomyocyte hypertrophy [cardiac troponin T (cTnT), α-actinin, nuclear factor-kB (NF-kB)] and fibrosis [transforming growth factor (TGF-β), collagen1-α1] as well as endothelial nitric oxide synthase (eNOS) expression and NO production. EMVs from obese/hypertensive induced significantly higher expression of hypertrophic (cTnT, α-actinin, NF-kB) and fibrotic (TGF-β) proteins as well as significantly lower eNOS activation and NO production in cardiomyocytes than EMVs from normal weight/normotensive adults. EMVs are a potential mediating factor in the increased risk of cardiomyopathy and heart failure with obesity/hypertension.
Collapse
Affiliation(s)
- Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - John W Treuth
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Lillian M Brewster
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Kevin P Davy
- Human Integrative Physiology Laboratory, Department of Human Nutrition, Foods, and Exercise, Virginia Tech University, Blacksburg, Virginia, United States
| | - Brian L Stauffer
- Division of Cardiology, Denver Health Medical Center, Denver, Colorado, United States
- Division of Cardiology, Anschutz Medical Center, University of Colorado, Denver, Colorado, United States
| | - Christopher A Desouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
- Division of Cardiology, Anschutz Medical Center, University of Colorado, Denver, Colorado, United States
| |
Collapse
|
11
|
Marwarha G, Slagsvold KH, Høydal MA. NF-κB Transcriptional Activity Indispensably Mediates Hypoxia–Reoxygenation Stress-Induced microRNA-210 Expression. Int J Mol Sci 2023; 24:ijms24076618. [PMID: 37047592 PMCID: PMC10095479 DOI: 10.3390/ijms24076618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemia–reperfusion (I-R) injury is a cardinal pathophysiological hallmark of ischemic heart disease (IHD). Despite significant advances in the understanding of what causes I-R injury and hypoxia–reoxygenation (H-R) stress, viable molecular strategies that could be targeted for the treatment of the deleterious biochemical pathways activated during I-R remain elusive. The master hypoxamiR, microRNA-210 (miR-210), is a major determinant of protective cellular adaptation to hypoxia stress but exacerbates apoptotic cell death during cellular reoxygenation. While the hypoxia-induced transcriptional up-regulation of miR-210 is well delineated, the cellular mechanisms and molecular entities that regulate the transcriptional induction of miR-210 during the cellular reoxygenation phase have not been elucidated yet. Herein, in immortalized AC-16 cardiomyocytes, we delineated the indispensable role of the ubiquitously expressed transcription factor, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) in H-R-induced miR-210 expression during cellular reoxygenation. Using dominant negative and dominant active expression vectors encoding kinases to competitively inhibit NF-κB activation, we elucidated NF-κB activation as a significant mediator of H-R-induced miR-210 expression. Ensuing molecular assays revealed a direct NF-κB-mediated transcriptional up-regulation of miR-210 expression in response to the H-R challenge that is characterized by the NF-κB-mediated reorchestration of the entire repertoire of histone modification changes that are a signatory of a permissive actively transcribed miR-210 promoter. Our study confers a novel insight identifying NF-κB as a potential novel molecular target to combat H-R-elicited miR-210 expression that fosters augmented cardiomyocyte cell death.
Collapse
Affiliation(s)
- Gurdeep Marwarha
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| | - Katrine Hordnes Slagsvold
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
- Department of Cardiothoracic Surgery, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Morten Andre Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Faculty of Medicine and Health, Norwegian University of Science and Technology (NTNU), 7034 Trondheim, Norway
| |
Collapse
|
12
|
Duan L, Tang H, Lan Y, Shi H, Pu P, He Q. Ring finger protein 10 improves pirarubicin-induced cardiac inflammation by regulating the AP-1/Meox2 signaling pathway. Toxicol Appl Pharmacol 2023; 462:116411. [PMID: 36740146 DOI: 10.1016/j.taap.2023.116411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Pirarubicin (THP) is widely used in clinical antitumor therapy, but its cardiotoxicity seriously affects the therapeutic effect in patients. In the study, we investigated the role of ring finger protein 10 (RNF10) in cardiotoxicity induced by THP. MATERIALS AND METHODS A cardiac toxicity model in Sprague-Dawley (SD) rats induced by THP was established. Changes in diet, weight, electrocardiogram (ECG), and echocardiography were observed. Serum levels of brain natriuretic peptide (BNP), creatine kinase MB (CK-MB), cardiac troponin T (cTnT), and lactate dehydrogenase (LDH) were measured. The expression of RNF10 in myocardium was observed by immunohistochemistry. The expressions of RNF10, activator protein-1 (AP-1), mesenchyme homeobox 2 (Meox2), total nuclear factor (NF)-κB p65 (T-P65), phosphorylated NF-κB p65 (PP65), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and mature IL-1β were detected by Western blot. A THP-induced H9c2 myocardial cell injury model was established. RNF10 was downregulated or overexpressed by RNF10 siRNA and a RNF10 lentiviral vector, respectively. Then, cell viability was measured. The expression of RNF10 in H9c2 cells was observed by immunofluorescence. All of the above signaling pathways were verified by Western blots. FINDINGS THP caused a series of cardiotoxic manifestations in SD rats. Our studies suggested that THP caused cardiac inflammation by inhibiting the expression of RNF10, while overexpression of RNF10 antagonized the cardiotoxicity induced by THP. SIGNIFICANCE Our study showed RNF10 improved THP-induced cardiac inflammation by regulating the AP-1/Meox2 signaling pathway. RNF10 may be a new target to treat THP-induced cardiotoxicity.
Collapse
Affiliation(s)
- Liang Duan
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Lan
- Department of Critical Care Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Hongwei Shi
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Peng Pu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Quan He
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Wang A, Li Z, Sun Z, Liu Y, Zhang D, Ma X. Potential Mechanisms Between HF and COPD: New Insights From Bioinformatics. Curr Probl Cardiol 2023; 48:101539. [PMID: 36528207 DOI: 10.1016/j.cpcardiol.2022.101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Heart failure (HF) and chronic obstructive pulmonary disease (COPD) are closely related in clinical practice. This study aimed to investigate the co-genetic characteristics and potential molecular mechanisms of HF and COPD. HF and COPD datasets were downloaded from gene expression omnibus database. After identifying common differentially expressed genes (DEGs), the functional analysis highlighted the critical role of extracellular matrix and ribosomal signaling pathways in both diseases. In addition, GeneMANIA's results suggested that the 2 diseases were related to immune infiltration, and CIBERSORT suggested the role of macrophages. We also discovered 4 TFs and 1408 miRNAs linked to both diseases, and salbutamol may positively affect them.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Zhuo Sun
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Yicheng Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China.
| |
Collapse
|
14
|
Xia W, Li X, Wu Q, Xu A, Zhang L, Xia Z. The importance of caveolin as a target in the prevention and treatment of diabetic cardiomyopathy. Front Immunol 2022; 13:951381. [PMID: 36405687 PMCID: PMC9666770 DOI: 10.3389/fimmu.2022.951381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
The diabetic population has been increasing in the past decades and diabetic cardiomyopathy (DCM), a pathology that is defined by the presence of cardiac remodeling and dysfunction without conventional cardiac risk factors such as hypertension and coronary heart diseases, would eventually lead to fatal heart failure in the absence of effective treatment. Impaired insulin signaling, commonly known as insulin resistance, plays an important role in the development of DCM. A family of integral membrane proteins named caveolins (mainly caveolin-1 and caveolin-3 in the myocardium) and a protein hormone adiponectin (APN) have all been shown to be important for maintaining normal insulin signaling. Abnormalities in caveolins and APN have respectively been demonstrated to cause DCM. This review aims to summarize recent research findings of the roles and mechanisms of caveolins and APN in the development of DCM, and also explore the possible interplay between caveolins and APN.
Collapse
Affiliation(s)
- Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xia Li
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Guangdong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
de Paula LJC, Uchida AH, Rezende PC, Soares P, Scudeler TL. Protective or Inhibitory Effect of Pharmacological Therapy on Cardiac Ischemic Preconditioning: A Literature Review. Curr Vasc Pharmacol 2022; 20:409-428. [PMID: 35986546 DOI: 10.2174/1570161120666220819163025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 01/25/2023]
Abstract
Ischemic preconditioning (IP) is an innate phenomenon, triggered by brief, non-lethal cycles of ischemia/reperfusion applied to a tissue or organ that confers tolerance to a subsequent more prolonged ischemic event. Once started, it can reduce the severity of myocardial ischemia associated with some clinical situations, such as percutaneous coronary intervention (PCI) and intermittent aortic clamping during coronary artery bypass graft surgery (CABG). Although the mechanisms underlying IP have not been completely elucidated, several studies have shown that this phenomenon involves the participation of cell triggers, intracellular signaling pathways, and end-effectors. Understanding this mechanism enables the development of preconditioning mimetic agents. It is known that a range of medications that activate the signaling cascades at different cellular levels can interfere with both the stimulation and the blockade of IP. Investigations of signaling pathways underlying ischemic conditioning have identified a number of therapeutic targets for pharmacological manipulation. This review aims to present and discuss the effects of several medications on myocardial IP.
Collapse
Affiliation(s)
| | | | - Paulo Cury Rezende
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Paulo Soares
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Luis Scudeler
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Sucajtys-Szulc E, Debska-Slizien A, Rutkowski B, Szolkiewicz M, Swierczynski J, Smolenski RT. Hepatocyte Nuclear Factor 1α Proinflammatory Effect Linked to the Overexpression of Liver Nuclear Factor–κB in Experimental Model of Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23168883. [PMID: 36012158 PMCID: PMC9408856 DOI: 10.3390/ijms23168883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with low-grade inflammation that activates nuclear factor–κB (NF–κB), which upregulates the expression of numerous NF–κB responsive genes, including the genes encoding IL-6, ICAM-1, VCAM-1, and MCP-1. Herein, we found the coordinated overexpression of genes encoding RelA/p65 (a subunit of NF–κB) and HNF1α in the livers of chronic renal failure (CRF) rats—an experimental model of CKD. The coordinated overexpression of RelA/p65 and HNF1α was associated with a significant increase in IL-6, ICAM-1, VCAM-1, and MCP-1 gene expressions. A positive correlation between liver RelA/p65 mRNA levels and a serum concentration of creatinine and BUN suggest that RelA/p65 gene transcription is tightly related to the progression of renal failure. The knockdown of HNF1α in the HepG2 cell line by siRNA led to a decrease in Rel A/p65 mRNA levels. This was associated with a decrease in IL-6, ICAM-1, VCAM-1, and MCP-1 gene expressions. The simultaneous repression of HNF-1α and RelA/p65 by clofibrate is tightly associated with the downregulation of IL-6, ICAM-1, VCAM-1, and MCP-1 gene expression. In conclusion, our findings suggest that NF–κB could be a downstream component of the HNF1α-initiated signaling pathway in the livers of CRF rats.
Collapse
Affiliation(s)
- Elzbieta Sucajtys-Szulc
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Alicja Debska-Slizien
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Boleslaw Rutkowski
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Marek Szolkiewicz
- Department of Nephrology, Transplantology, and Internal Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
- Department of Cardiology and Interventional Angiology, Kashubian Center for Heart and Vascular Diseases in Wejherowo, Pomeranian Hospitals, 84-200 Wejherowo, Poland
| | - Julian Swierczynski
- Koszalin State Higher Vocational School, Lesna 1, 75-582 Koszalin, Poland
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Ryszard Tomasz Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
- Correspondence: ; Tel.: +48-58-3491460
| |
Collapse
|
17
|
α-Lipoic acid ameliorates inflammation state and oxidative stress by reducing the content of bioactive lipid derivatives in the left ventricle of rats fed a high-fat diet. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166440. [PMID: 35569738 DOI: 10.1016/j.bbadis.2022.166440] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
Lipid mediators derived from arachidonic acid (AA) are implicated with the occurrence of inflammation and oxidative stress. The current knowledge of AA metabolism focuses on searching for the therapeutic strategy to subvert affected AA metabolism. The aim of our study was to evaluate the potential protective effect of chronic α-lipoic acid (α-LA) supplementation on myocardial inflammation state and oxidative stress in obesity-related cardiovascular dysfunction. The experiment was carried out on male Wistar rats receiving a standard or a high-fat diets with intragastric α-LA administration for 8 weeks. Plasma and myocardial AA concentration was determined using gas-liquid chromatography (GLC). The Western blot technique was used to examine the expression of proteins from the inflammatory pathway. The content of selected cytokines, inflammatory mediators, and oxidative stress indicators was detected by ELISA, colorimetric, and multiplex assay kits. Our results revealed that α-LA caused a notable reduction in AA content, mainly in the phospholipid fraction with a simultaneous diminishment in the synthesis of pro-inflammatory mediators, i.e., prostaglandin E2, leukotrienes B4 and C4 by decreasing the expression of COX-2 and 5-LOX. α-LA also augmented the level of antioxidative SOD2 and GSH and decreased the level of lipid peroxidation products, which improved oxidative system impairment in the left ventricle tissue. The data clearly showed that α-lipoic acid has a significant role in inflammation and oxidative stress development ameliorating the risk of cardiac obesity induced by high-fat feeding.
Collapse
|
18
|
Thomas SD, Jha NK, Sadek B, Ojha S. Repurposing Dimethyl Fumarate for Cardiovascular Diseases: Pharmacological Effects, Molecular Mechanisms, and Therapeutic Promise. Pharmaceuticals (Basel) 2022; 15:ph15050497. [PMID: 35631325 PMCID: PMC9143321 DOI: 10.3390/ph15050497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule that has been shown to assert potent in vivo immunoregulatory and anti-inflammatory therapeutic actions. The drug has been approved and is currently in use for treating multiple sclerosis and psoriasis in the USA and Europe. Since inflammatory reactions have been significantly implicated in the etiology and progression of diverse disease states, the pharmacological actions of DMF are presently being explored and generalized to other diseases where inflammation needs to be suppressed and immunoregulation is desirable, either as a monotherapeutic agent or as an adjuvant. In this review, we focus on DMF, and present an overview of its mechanism of action while briefly discussing its pharmacokinetic profile. We further discuss in detail its pharmacological uses and highlight its potential applications in the treatment of cardiovascular diseases. DMF, with its unique combination of anti-inflammatory and vasculoprotective effects, has the potential to be repurposed as a therapeutic agent in patients with atherosclerotic cardiovascular disease. The clinical studies mentioned in this review with respect to the beneficial effects of DMF in atherosclerosis involve observations in patients with multiple sclerosis and psoriasis in small cohorts and for short durations. The findings of these studies need to be assessed in larger prospective clinical trials, ideally with a double-blind randomized study design, investigating the effects on cardiovascular endpoints as well as morbidity and mortality. The long-term impact of DMF therapy on cardiovascular diseases also needs to be confirmed.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India;
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| |
Collapse
|
19
|
Scutellarein protects against cardiac hypertrophy via suppressing TRAF2/NF-κB signaling pathway. Mol Biol Rep 2022; 49:2085-2095. [PMID: 34988890 DOI: 10.1007/s11033-021-07026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Scutellarein, a widely studied ingredient of scutellaria herbs, has higher bioavailability and solubility than that of scutellarin. Although the scutellarein had been reported to modulate numerous biological functions, its ability in suppressing cardiac hypertrophy remains unclear. Hence, the present study attempted to investigate whether scutellarein played critical roles in preventing phenylephrine (PE)-induced cardiac hypertrophy. METHODS AND RESULTS Immunocytochemistry (ICC) was employed for evaluating the morphology of the treated cardiomyocytes. Real-time PCR and western blot were respectively applied to assess the mRNA levels and protein expression of the relevant molecules. Bioinformatics analyses were carried out to investigate the potential mechanisms by which scutellarein modulated the PE-induced cardiac hypertrophy. The results showed that Scutellarein treatment significantly inhibited PE-induced increase in H9c2 and AC16 cardiomyocyte size. Besides, scutellarein treatment also dramatically suppressed the expression of the cardiac hypertrophic markers: ANP, BNP and β-MHC. Furthermore, the effects of scutellarein on attenuating the cardiac hypertrophy might be mediated by suppressing the activity of TRAF2/NF-κB signaling pathway. CONCLUSIONS Collectively, our data indicated that scutellarein could protect against PE-induced cardiac hypertrophy via regulating TRAF2/NF-κB signaling pathway using in vitro experiments.
Collapse
|
20
|
Otifi HM, Adiga BK. Endothelial Dysfunction in Covid-19. Am J Med Sci 2022; 363:281-287. [PMID: 35093394 PMCID: PMC8802031 DOI: 10.1016/j.amjms.2021.12.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 is an evolving systemic inflammatory pandemic disease, predominantly affecting the respiratory system. Associated cardiovascular comorbid conditions result in severe to critical illness with mortality up to 14.8 % in octogenarians. The role of endothelial dysfunction in its pathogenesis has been proposed with laboratory and autopsy data, though initially it was thought of as only acute respiratory distress syndrome (ARDS). The current study on endothelial dysfunction in SARS CoV-2 infection highlights its pathophysiology through the effects of direct viral-induced endothelial injury, uncontrolled immune & inflammatory response, imbalanced coagulation homeostasis, and their interactions resulting in a vicious cycle aggravating the disease process. This review may provide further light on proper laboratory tests and therapeutic implications needed for better management of patients. The main objective of the study is to understand the pathophysiology of COVID-19 with respect to the role of endothelium so that more additional relevant treatment may be incorporated in the management protocol.
Collapse
Affiliation(s)
- Hassan M Otifi
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia.
| | - Balkur K Adiga
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
21
|
Szabo TM, Frigy A, Nagy EE. Targeting Mediators of Inflammation in Heart Failure: A Short Synthesis of Experimental and Clinical Results. Int J Mol Sci 2021; 22:13053. [PMID: 34884857 PMCID: PMC8657742 DOI: 10.3390/ijms222313053] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 01/22/2023] Open
Abstract
Inflammation has emerged as an important contributor to heart failure (HF) development and progression. Current research data highlight the diversity of immune cells, proteins, and signaling pathways involved in the pathogenesis and perpetuation of heart failure. Chronic inflammation is a major cardiovascular risk factor. Proinflammatory signaling molecules in HF initiate vicious cycles altering mitochondrial function and perturbing calcium homeostasis, therefore affecting myocardial contractility. Specific anti-inflammatory treatment represents a novel approach to prevent and slow HF progression. This review provides an update on the putative roles of inflammatory mediators involved in heart failure (tumor necrosis factor-alpha; interleukin 1, 6, 17, 18, 33) and currently available biological and non-biological therapy options targeting the aforementioned mediators and signaling pathways. We also highlight new treatment approaches based on the latest clinical and experimental research.
Collapse
Affiliation(s)
- Timea Magdolna Szabo
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
| | - Attila Frigy
- Department of Cardiology, Clinical County Hospital Mures, 540103 Targu Mures, Romania;
- Department of Internal Medicine IV, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540103 Targu Mures, Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania;
- Laboratory of Medical Analysis, Clinical County Hospital Mures, 540394 Targu Mures, Romania
| |
Collapse
|
22
|
Romero N, Favoreel HW. Pseudorabies Virus Infection Triggers NF-κB Activation via the DNA Damage Response but Actively Inhibits NF-κB-Dependent Gene Expression. J Virol 2021; 95:e0166621. [PMID: 34613805 PMCID: PMC8610585 DOI: 10.1128/jvi.01666-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
The nuclear factor kappa B (NF-κB) pathway is known to integrate signaling associated with very diverse intra- and extracellular stressors, including virus infections, and triggers a powerful (proinflammatory) response through the expression of NF-κB-regulated genes. Typically, the NF-κB pathway collects and transduces threatening signals at the cell surface or in the cytoplasm leading to nuclear import of activated NF-κB transcription factors. In the current work, we demonstrate that the swine alphaherpesvirus pseudorabies virus (PRV) induces a peculiar mode of NF-κB activation known as "inside-out" NF-κB activation. We show that PRV triggers the DNA damage response (DDR) and that this DDR response drives NF-κB activation since inhibition of the nuclear ataxia telangiectasia-mutated (ATM) kinase, a chief controller of DDR, abolished PRV-induced NF-κB activation. Initiation of the DDR-NF-κB signaling axis requires viral protein synthesis but occurs before active viral genome replication. In addition, the initiation of the DDR-NF-κB signaling axis is followed by a virus-induced complete shutoff of NF-κB-dependent gene expression that depends on viral DNA replication. In summary, the results presented in this study reveal that PRV infection triggers a noncanonical DDR-NF-κB activation signaling axis and that the virus actively inhibits the (potentially antiviral) consequences of this pathway, by inhibiting NF-κB-dependent gene expression. IMPORTANCE The NF-κB signaling pathway plays a critical role in coordination of innate immune responses that are of vital importance in the control of infections. The current report generates new insights into the interaction of the alphaherpesvirus pseudorabies virus (PRV) with the NF-κB pathway, as they reveal that (i) PRV infection leads to NF-κB activation via a peculiar "inside-out" nucleus-to-cytoplasm signal that is triggered via the DNA damage response (DDR), (ii) the DDR-NF-κB signaling axis requires expression of viral proteins but is initiated before active PRV replication, and (iii) late viral factor(s) allow PRV to actively and efficiently inhibit NF-κB-dependent (proinflammatory) gene expression. These data suggest that activation of the DDR-NF-κB during PRV infection is host driven and that its potential antiviral consequences are actively inhibited by the virus.
Collapse
Affiliation(s)
- Nicolás Romero
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Herman W. Favoreel
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Qiu L, Liu X, Li W, Liu Z, Xu C, Xia H. Downregulation of p300/CBP-associated factor inhibits cardiomyocyte apoptosis via suppression of NF-κB pathway in ischaemia/reperfusion injury rats. J Cell Mol Med 2021; 25:10224-10235. [PMID: 34601814 PMCID: PMC8572777 DOI: 10.1111/jcmm.16959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/11/2021] [Accepted: 09/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiomyocyte apoptosis is the main reason of cardiac injury after myocardial ischaemia-reperfusion (I/R) injury (MIRI), but the role of p300/CBP-associated factor (PCAF) on myocardial apoptosis in MIRI is unknown. The aim of this study was to investigate the main mechanism of PCAF modulating cardiomyocyte apoptosis in MIRI. The MIRI model was constructed by ligation of the rat left anterior descending coronary vessel for 30 min and reperfusion for 24 h in vivo. H9c2 cells were harvested after induced by hypoxia for 6 h and then reoxygenation for 24 h (H/R) in vitro. The RNA interference PCAF expression adenovirus was transfected into rat myocardium and H9c2 cells. The area of myocardial infarction, cardiac function, myocardial injury marker levels, apoptosis, inflammation and oxidative stress were detected respectively. Both I/R and H/R remarkably upregulated the expression of PCAF, and downregulation of PCAF significantly attenuated myocardial apoptosis, inflammation and oxidative stress caused by I/R and H/R. In addition, downregulation of PCAF inhibited the activation of NF-κB signalling pathway in cardiomyocytes undergoing H/R. Pretreatment of lipopolysaccharide, a NF-κB pathway activator, could blunt these protective effects of PCAF downregulation on myocardial apoptosis in MIRI. These results highlight that downregulation of PCAF could reduce cardiomyocyte apoptosis by inhibiting the NF-κB pathway, thereby providing protection for MIRI. Therefore, PCAF might be a promising target for protecting against cardiac dysfunction induced by MIRI.
Collapse
Affiliation(s)
- Liqiang Qiu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wenjing Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhebo Liu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
24
|
Wang L, Li Q, Diao J, Lin L, Wei J. MiR-23a Is Involved in Myocardial Ischemia/Reperfusion Injury by Directly Targeting CX43 and Regulating Mitophagy. Inflammation 2021; 44:1581-1591. [PMID: 33651309 DOI: 10.1007/s10753-021-01443-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/20/2023]
Abstract
Activation of CX43 signaling protects myocardial cells from myocardial ischemia/reperfusion (I/R) injury. However, the underlying mechanism remains unclear. MicroRNAs (miRNAs) are well known to play important roles in the progression of diverse diseases. Here, we first confirmed the expression profile of CX43 in rat heart tissues with I/R injury. Then, microRNAs (miRNAs) that target CX43 were predicted using miRDB, miRWalk, and TargetScan. The candidate miR-23a was selected, and its expression level in I/R samples was investigated. To determine the role of miR-23a, rat primary myocardial cells were transfected with miR-23a mimics after they were subjected to hypoxia-reoxygenation (H/R) injury. Transfection of miR-23a mimics stimulated mitophagy through the PINK1/Parkin pathway and downregulated the protein level of CX43. Treatment of miR-23a-transfected cells with NF-kB inhibitors completely abolished miR-23a-mediated mitophagy after H/R. Moreover, miR-23a transfection significantly suppressed CX43 expression and enhanced mitophagy in the model heart in vivo. Therefore, miR-23a plays a detrimental role in myocardial I/R injury by enhancing mitophagy and inhibiting CX43 mRNA.
Collapse
Affiliation(s)
- Lina Wang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qing Li
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiayu Diao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Lin Lin
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jin Wei
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
25
|
Kim S, Lee SA, Yoon H, Kim MY, Yoo JK, Ahn SH, Park CH, Park J, Nam BY, Park JT, Han SH, Kang SW, Kim NH, Kim HS, Han D, Yook JI, Choi C, Yoo TH. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury. Kidney Int 2021; 100:570-584. [PMID: 34051264 DOI: 10.1016/j.kint.2021.04.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion injury is a major cause of acute kidney injury. Recent studies on the pathophysiology of ischemia-reperfusion-induced acute kidney injury showed that immunologic responses significantly affect kidney ischemia-reperfusion injury and repair. Nuclear factor (NF)-ĸB signaling, which controls cytokine production and cell survival, is significantly involved in ischemia-reperfusion-induced acute kidney injury, and its inhibition can ameliorate ischemic acute kidney injury. Using EXPLOR, a novel, optogenetically engineered exosome technology, we successfully delivered the exosomal super-repressor inhibitor of NF-ĸB (Exo-srIĸB) into B6 wild type mice before/after kidney ischemia-reperfusion surgery, and compared outcomes with those of a control exosome (Exo-Naïve)-injected group. Exo-srIĸB treatment resulted in lower levels of serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin in post-ischemic mice than in the Exo-Naïve treatment group. Systemic delivery of Exo-srIĸB decreased NF-ĸB activity in post-ischemic kidneys and reduced apoptosis. Post-ischemic kidneys showed decreased gene expression of pro-inflammatory cytokines and adhesion molecules with Exo-srIĸB treatment as compared with the control. Intravital imaging confirmed the uptake of exosomes in neutrophils and macrophages. Exo-srIĸB treatment also significantly affected post-ischemic kidney immune cell populations, lowering neutrophil, monocyte/macrophage, and T cell frequencies than those in the control. Thus, modulation of NF-ĸB signaling through exosomal delivery can be used as a novel therapeutic method for ischemia-reperfusion-induced acute kidney injury.
Collapse
Affiliation(s)
- Seonghun Kim
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Sul A Lee
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea; Department of Internal Medicine, MetroWest Medical Center, Framingham, Massachusetts, USA
| | - Heakyung Yoon
- ILIAS Innovation Center, ILIAS Biologics Inc., Daejeon, South Korea
| | - Myung Yoon Kim
- ILIAS Innovation Center, ILIAS Biologics Inc., Daejeon, South Korea
| | - Jae-Kwang Yoo
- ILIAS Innovation Center, ILIAS Biologics Inc., Daejeon, South Korea
| | - So-Hee Ahn
- ILIAS Innovation Center, ILIAS Biologics Inc., Daejeon, South Korea
| | | | - Jimin Park
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, South Korea
| | - Bo Young Nam
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Seung Hyeok Han
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Shin-Wook Kang
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Nam Hee Kim
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Dawool Han
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, College of Dentistry, Yonsei University, Seoul, South Korea.
| | - Chulhee Choi
- ILIAS Innovation Center, ILIAS Biologics Inc., Daejeon, South Korea; Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
| | - Tae-Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea.
| |
Collapse
|
26
|
Uryash A, Mijares A, Esteve E, Adams JA, Lopez JR. Cardioprotective Effect of Whole Body Periodic Acceleration in Dystrophic Phenotype mdx Rodent. Front Physiol 2021; 12:658042. [PMID: 34017265 PMCID: PMC8129504 DOI: 10.3389/fphys.2021.658042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 01/14/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting and the development of a dilated cardiomyopathy (DCM), which is the leading cause of death in DMD patients. Despite knowing the cause of DMD, there are currently no therapies which can prevent or reverse its inevitable progression. We have used whole body periodic acceleration (WBPA) as a novel tool to enhance intracellular constitutive nitric oxide (NO) production. WBPA adds small pulses to the circulation to increase pulsatile shear stress, thereby upregulating endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) and subsequently elevating the production of NO. Myocardial cells from dystrophin-deficient 15-month old mdx mice have contractile deficiency, which is associated with elevated concentrations of diastolic Ca2+ ([Ca2+]d), Na+ ([Na+]d), and reactive oxygen species (ROS), increased cell injury, and decreased cell viability. Treating 12-month old mdx mice with WBPA for 3 months reduced cardiomyocyte [Ca2+]d and [Na+]d overload, decreased ROS production, and upregulated expression of the protein utrophin resulting in increased cell viability, reduced cardiomyocyte damage, and improved contractile function compared to untreated mdx mice.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Eric Esteve
- UMR 5525 UGA-CNRS-Grenoble INP-VetAgro Sup TIMC, Université Grenoble Alpes, Grenoble, France
| | - Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jose R Lopez
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States.,Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
27
|
Activation of Paraventricular Melatonin Receptor 2 Mediates Melatonin-Conferred Cardioprotection Against Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol 2021; 76:197-206. [PMID: 32433359 DOI: 10.1097/fjc.0000000000000851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that melatonin (Mel) can effectively ameliorate myocardial ischemia/reperfusion (MI/R) injury, but the mechanism is yet to be fully elucidated. Mel receptors are expressed in the paraventricular nucleus (PVN), which is also involved in regulating cardiac sympathetic nerve activity. The aim of this study was to examine whether Mel receptors in the PVN are involved in the protective effects of Mel against MI/R injury. The results of quantitative polymerase chain reaction, western blot, and immunofluorescence assays indicated that Mel receptor 2 (MT2) expression in the PVN was upregulated after MI/R. Intraperitoneal administration of Mel significantly improved post-MI/R cardiac function and reduced the infarct size, whereas shRNA silencing of MT2 in the PVN partially blocked this effect. Intraperitoneal administration of Mel reduced sympathetic nerve overexcitation caused by MI/R, whereas shRNA silencing of MT2 in the PVN partially diminished this effect. Furthermore, enzyme-linked immunosorbent assay and western blot results indicated that intraperitoneal administration of Mel lowered the levels of inflammatory cytokines in the PVN after MI/R injury, whereas the application of sh-MT2 in the PVN reduced this effect of Mel. Mel significantly reduced the levels of NF-κB after astrocyte oxygen and glucose deprivation/reoxygenation injury, and this effect was offset when MT2 was silenced. The above experimental results suggest that MT2 in the PVN partially mediated the protective effects of Mel against MI/R injury, and its underlying mechanisms may be related to postactivation amelioration of PVN inflammation and reduction of cardiac sympathetic nerve overexcitation.
Collapse
|
28
|
Huang Y, Sun X, Juan Z, Zhang R, Wang R, Meng S, Zhou J, Li Y, Xu K, Xie K. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury in vitro by inhibiting NLRP3 Inflammasome activation. BMC Anesthesiol 2021; 21:104. [PMID: 33823789 PMCID: PMC8022424 DOI: 10.1186/s12871-021-01334-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Abstract
Background Myocardial ischemia-reperfusion injury (MIRI) is the most common cause of death worldwide. The NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome plays an important role in the inflammatory response to MIRI. Dexmedetomidine (DEX), a specific agonist of α2-adrenergic receptor, is commonly used for sedation and analgesia in anesthesia and critically ill patients. Several studies have shown that dexmedetomidine has a strong anti-inflammatory effect in many diseases. Here, we investigated whether dexmedetomidine protects against MIRI by inhibiting the activation of the NLRP3 inflammasome in vitro. Methods We established an MIRI model in cardiomyocytes (CMs) alone and in coculture with cardiac fibroblasts (CFs) by hypoxia/reoxygenation (H/R) in vitro. The cells were treated with dexmedetomidine with or without MCC950 (a potent selective NLRP3 inhibitor). The beating rate and cell viability of cardiomyocytes, NLRP3 localization, the expression of inflammatory cytokines and NLRP3 inflammasome-related proteins, and the expression of apoptosis-related proteins, including Bcl2 and BAX, were determined. Results Dexmedetomidine treatment increased the beating rates and viability of cardiomyocytes cocultured with cardiac fibroblasts. The expression of the NLRP3 protein was significantly upregulated in cardiac fibroblasts but not in cardiomyocytes after H/R and was significantly attenuated by dexmedetomidine treatment. Expression of the inflammatory cytokines IL-1β, IL-18 and TNF-α was significantly increased in cardiac fibroblasts after H/R and was attenuated by dexmedetomidine treatment. NLRP3 inflammasome activation induced the increased expression of cleaved caspase1, mature IL-1β and IL-18, while dexmedetomidine suppressed H/R-induced NLRP3 inflammasome activation in cardiac fibroblasts. In addition, dexmedetomidine reduced the expression of Bcl2 and BAX in cocultured cardiomyocytes by suppressing H/R-induced NLRP3 inflammasome activation in cardiac fibroblasts. Conclusion Dexmedetomidine treatment can suppress H/R-induced NLRP3 inflammasome activation in cardiac fibroblasts, thereby alleviating MIRI by inhibiting the inflammatory response. Supplementary Information The online version contains supplementary material available at 10.1186/s12871-021-01334-5.
Collapse
Affiliation(s)
- Yaru Huang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China
| | - Xiaotong Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China
| | - Zhaodong Juan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China.
| | - Rui Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China
| | - Ruoguo Wang
- Department of Pain, Affiliated Hospital of Weifang Medical University, Weifang, 261000, China
| | - Shuqi Meng
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China
| | - Jiajia Zhou
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China
| | - Yan Li
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China
| | - Keyou Xu
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China
| | - Keliang Xie
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, No. 7166, Baotong West Street, Weicheng District, Weifang, 261021, China.
| |
Collapse
|
29
|
Pourbagher-Shahri AM, Farkhondeh T, Ashrafizadeh M, Talebi M, Samargahndian S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed Pharmacother 2021; 136:111214. [PMID: 33450488 DOI: 10.1016/j.biopha.2020.111214] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/18/2020] [Accepted: 12/26/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are one of the leading causes of the most considerable mortality globally, and it has been tried to find the molecular mechanisms and design new drugs that triggered the molecular target. Curcumin is the main ingredient of Curcuma longa (turmeric) that has been used in traditional medicine for treating several diseases for years. Numerous investigations have indicated the beneficial effect of Curcumin in modulating multiple signaling pathways involved in oxidative stress, inflammation, apoptosis, and proliferation. The cardiovascular protective effects of Curcumin against CVDs have been indicated in several studies. In the current review study, we provided novel information on Curcumin's protective effects against various CVDs and potential molecular signaling targets of Curcumin. Nonetheless, more studies should be performed to discover the exact molecular target of Curcumin against CVDs.
Collapse
Affiliation(s)
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran; Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, 19968 35115, Iran
| | - Saeed Samargahndian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
30
|
Stamenkovska M, Hadzi-Petrushev N, Nikodinovski A, Gagov H, Atanasova-Panchevska N, Mitrokhin V, Kamkin A, Mladenov M. Application of curcumine and its derivatives in the treatment of cardiovascular diseases: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1977655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
- Faculty of Dental Medicine, European University Skopje, Skopje, North Macedonia
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Aleksandar Nikodinovski
- Institut for Preclinical and Clinical Pharmacology and Toxicology, Medical Faculty, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Hristo Gagov
- Faculty of Biology, St. Kliment Ohridski University, Sofia, Bulgaria
| | - Natalija Atanasova-Panchevska
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Science and Mathematics, Ss Cyril and Methodius University, Skopje, North Macedonia
- Department of Fundamental and Applied Physiology, Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
31
|
Alsamghan AS, Alsaleem SA, Alzahrani MAS, Patel A, Mallick AK, Sheweita SA. Effect of Hypovitaminosis D on Lipid Profile in Hypothyroid Patients in Saudi Arabia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6640402. [PMID: 33425213 PMCID: PMC7775159 DOI: 10.1155/2020/6640402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hypothyroidism is believed to be associated with dyslipidemia and is considered a risk factor for the development of atherosclerotic cardiovascular diseases (ASCVD). Vitamin D, due to its steroid hormone action, retains cell function and controls the metabolism of lipids. Therefore, the present study was carried out to show the association of the risk factors of ASCVD and deficiency of thyroid hormones and vitamin D levels since no previous studies have been performed on Saudi patients before. Methodology. A retrospective cohort study was carried out on 400 hypothyroid patients. Medical records of those patients were followed up and were classified as normal and hypothyroid patients according to their thyroid-stimulating hormone levels. TSH, vitamin D, and lipid profiles were determined using the ELISA technique. RESULT Total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels were significantly higher in hypothyroid patients than those in the normal group. We have found a significant correlation between TSH levels and the risk factors of ASCVD (total cholesterol, triglycerides, and LDL-C). Moreover, a significant correlation between vitamin D levels and the risk factors of ASCVD (total cholesterol, triglycerides, and LDL-C) has been found. In addition, there is a correlation between deficiency of Vit D and low-TSH levels (95% CI 1.092-4.05) indicating a higher risk for the development of ASCVD among those patients. CONCLUSION Hypothyroid and vitamin D-deficient patients must be screened regularly at an early stage to predict and also to prevent cardiovascular diseases. Moreover, an adequate supply of vitamin D and TH should be given to those patients to prevent cardiovascular diseases at an early stage.
Collapse
Affiliation(s)
- Awad S. Alsamghan
- Department of Family and Community Medicine, King Khalid University, Abha, Saudi Arabia
| | - Safar A. Alsaleem
- Department of Family and Community Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Ayyub Patel
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ayaz K. Mallick
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Salah A. Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Egypt
| |
Collapse
|
32
|
Quan W, Ma S, Zhu Y, Shao Q, Hou J, Li X. Apigenin-7- O-β-d-(6″- p-coumaroyl)-glucopyranoside reduces myocardial ischaemia/reperfusion injury in an experimental model via regulating the inflammation response. PHARMACEUTICAL BIOLOGY 2020; 58:80-88. [PMID: 31887257 PMCID: PMC6968710 DOI: 10.1080/13880209.2019.1701043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/18/2019] [Accepted: 11/30/2019] [Indexed: 05/25/2023]
Abstract
Context: Traditionally, Clematis tangutica Korsh. (Ranunculaceae) is used as a Tibetan herb for treating indigestion and blood stasis in China. Recently, a flavonoid glycoside, apigenin-7-O-β-d-(6″-p-coumaroyl)-glucopyranoside (APG), was isolated from the whole plant of C. tangutica.Objective: To investigate the cardioprotective effects of APG against myocardial ischaemia/reperfusion injury (MI/RI) and the possible mechanism.Materials and methods: Animals were subjected to 30 min/3 h MI/RI model. At the end of reperfusion, infarct size (IS), histopathology, serum levels CK-MB, LDH, TNF-α, IL-6 and MPO activities were detected. Phospho-IκB-α, ICAM-1 and NF-κB were assessed in vivo. Neonatal rat cardiomyocytes were pre-treated with or without APG, followed by stimulation with 8 h/2 h oxygen and glucose deprived/reoxygenation (OGD/R) model. Cell viability, LDH and cardiomyocyte apoptosis were assessed. The expression levels of phospho-IκB-α and NF-κB were measured in vitro.Results: Treatment with APG significantly reduced the following indicators in vivo (p < 0.05): (1) the IS (16.2%); (2) morphology score (1.67); (3) myocardial injury enzymes: CK-MB (26.2 ng/mL) and LDH (688 U/L); (4) pro-inflammatory cytokines: TNF-α (31.5 pg/mL) and IL-6 (163.8 pg/mL); (5) MPO activity (2.75 U/mg); (6) expression levels of phospho-IκB-α (0.47), NF-κB (2.87) and ICAM-1 (10.2). Moreover, treatment with APG also remarkably (p < 0.05) attenuated the following indicators in vitro: (1) LDH level (206 U/L); (2) cardiomyocyte apoptosis; (3) phospho-IκB-α (1.37) and NF-κB (2.50).Conclusions: APG possesses protective effects against MI/RI injury in rats and OGD/R-induced injury in cardiomyocytes by suppressing translocation of NF-κB and reducing inflammatory response; consequently, APG is helpful for treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Wei Quan
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, China
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shanbo Ma
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yanrong Zhu
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qing Shao
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, China
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Jixing Hou
- Xi’an Mental Health Center, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi’an, China
| |
Collapse
|
33
|
de Miranda DC, de Oliveira Faria G, Hermidorff MM, Dos Santos Silva FC, de Assis LVM, Isoldi MC. Pre- and Post-Conditioning of the Heart: An Overview of Cardioprotective Signaling Pathways. Curr Vasc Pharmacol 2020; 19:499-524. [PMID: 33222675 DOI: 10.2174/1570161119666201120160619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
Since the discovery of ischemic pre- and post-conditioning, more than 30 years ago, the knowledge about the mechanisms and signaling pathways involved in these processes has significantly increased. In clinical practice, on the other hand, such advancement has yet to be seen. This article provides an overview of ischemic pre-, post-, remote, and pharmacological conditioning related to the heart. In addition, we reviewed the cardioprotective signaling pathways and therapeutic agents involved in the above-mentioned processes, aiming to provide a comprehensive evaluation of the advancements in the field. The advancements made over the last decades cannot be ignored and with the exponential growth in techniques and applications. The future of pre- and post-conditioning is promising.
Collapse
Affiliation(s)
- Denise Coutinho de Miranda
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Gabriela de Oliveira Faria
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Milla Marques Hermidorff
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Fernanda Cacilda Dos Santos Silva
- Laboratory of Cardiovascular Physiology, Department of Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Cell Signaling, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Brazil
| |
Collapse
|
34
|
Yonebayashi S, Tajiri K, Murakoshi N, Xu D, Li S, Feng D, Okabe Y, Yuan Z, Song Z, Aonuma K, Shibuya A, Aonuma K, Ieda M. MAIR-II deficiency ameliorates cardiac remodelling post-myocardial infarction by suppressing TLR9-mediated macrophage activation. J Cell Mol Med 2020; 24:14481-14490. [PMID: 33140535 PMCID: PMC7753988 DOI: 10.1111/jcmm.16070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Macrophages are fundamental components of inflammation in post‐myocardial infarction (MI) and contribute to adverse cardiac remodelling and heart failure. However, the regulatory mechanisms in macrophage activation have not been fully elucidated. Previous studies showed that myeloid‐associated immunoglobulin–like receptor II (MAIR‐II) is involved in inflammatory responses in macrophages. However, its role in MI is unknown. Thus, this study aimed to determine a novel role and mechanism of MAIR‐II in MI. We first identified that MAIR‐II–positive myeloid cells were abundant from post‐MI days 3 to 5 in infarcted hearts of C57BL/6J (WT) mice induced by permanent left coronary artery ligation. Compared to WT, MAIR‐II–deficient (Cd300c2−/−) mice had longer survival, ameliorated cardiac remodelling, improved cardiac function and smaller infarct sizes. Moreover, we detected lower pro‐inflammatory cytokine and fibrotic gene expressions in Cd300c2−/−‐infarcted hearts. These mice also had less infiltrating pro‐inflammatory macrophages following MI. To elucidate a novel molecular mechanism of MAIR‐II, we considered macrophage activation by Toll‐like receptor (TLR) 9–mediated inflammation. In vitro, we observed that Cd300c2−/− bone marrow–derived macrophages stimulated by a TLR9 agonist expressed less pro‐inflammatory cytokines compared to WT. In conclusion, MAIR‐II may enhance inflammation via TLR9‐mediated macrophage activation in MI, leading to adverse cardiac remodelling and poor prognosis.
Collapse
Affiliation(s)
- Saori Yonebayashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuko Tajiri
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuyuki Murakoshi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Dongzhu Xu
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Siqi Li
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Duo Feng
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuta Okabe
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zixun Yuan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Zonghu Song
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kazuhiro Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akira Shibuya
- Department of Immunology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,R&D Center for Innovative Drug Discovery, University of Tsukuba, Tsukuba, Japan.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Kazutaka Aonuma
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masaki Ieda
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
35
|
Abstract
Preconditioning, a milestone concept in the cardiovascular sciences introduced 32 years back by Murry. This concept opened a new era in the field of organ protection. To start with extensive studies done on ischemic preconditioning for myocardial protection, ischemic preconditioning is an endogenous science of cellular kinetics. Several components in signal transduction cascade have been identified but still some mechanisms not yet revealed. Anesthetic preconditioning also contributed a lot for myocardial protection and concreted the concept of preconditioning. We, with an inquisitive brain meticulously persuing newer methods of cardioprotection. Remote ischemic preconditioning (RIPC) is a brilliant example of it. RIPC can be future of cardioprotection, clinical trials and studies proved the benefits but yet to conclude the superiority of RIPC over myocardial ischemic cardioprotection. This review is an attempt to reveal this extraordinary concept with its basic cellular kinetics, methods, and recent trends.
Collapse
Affiliation(s)
| | - Suhrid R Annachhatre
- Department of CVTS, MCRI MGM Medical College and Hospital, Aurangabad, Maharashtra, India
| |
Collapse
|
36
|
Önal B, Özen D, Demir B, Gezen Ak D, Dursun E, Demir C, Akkan AG, Özyazgan S. The Anti-Inflammatory Effects of Anacardic Acid on a TNF-α - Induced Human Saphenous Vein Endothelial Cell Culture Model. Curr Pharm Biotechnol 2020; 21:710-719. [PMID: 31692436 DOI: 10.2174/1389201020666191105154619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Coronary bypass operations are commonly performed for the treatment of ischemic heart diseases. Coronary artery bypass surgery with autologous human saphenous vein maintains its importance as a commonly used therapy for advanced atherosclerosis. Vascular inflammation-related intimal hyperplasia and atherosclerotic progress have major roles in the pathogenesis of saphenous vein graft disease. METHODS In our study, we investigated the effect of anacardic acid (AA), which is a bioactive phytochemical in the shell of Anacardium occidentale, on atherosclerosis considering its inhibitory effect on NF-κB. We observed relative ICAM-1 and NF-κB mRNA levels by qRT-PCR method in a TNF-α- induced inflammation model of saphenous vein endothelial cell culture after 0.1, 0.5, 1 and 5 μM of AA were applied to the cells. In addition, protein levels of ICAM-1 and NF-κB were evaluated by immunofluorescent staining. The results were compared between different concentrations of AA, and also with the control group. RESULTS It was found that 5 μM, 1 μM and 0.5 μM of AA had toxic effects, while cytotoxicity decreased when 0.1 μM of AA was applied both alone and with TNF-α. When AA was applied with TNF-α, there was a decrease and suppression in NF-κB expression compared with the TNF-α group. TNF-α-induced ICAM-1 expression was significantly reduced more in the AA-applied group than in the TNF-α group. CONCLUSION In accordance with our results, it can be said that AA has a protective role in the pathogenesis of atherosclerosis and hence in saphenous vein graft disease.
Collapse
Affiliation(s)
- Burak Önal
- Department of Medical Pharmacology, Medical Faculty, Biruni University, Istanbul, Turkey
| | - Deniz Özen
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bülent Demir
- Department of Cardiology, Bakirkoy Dr Sadi Konuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Duygu Gezen Ak
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Erdinç Dursun
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Caner Demir
- Research and Development Department, Tayf Biotechnology, Istanbul, Turkey
| | - Ahmet Gökhan Akkan
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Sibel Özyazgan
- Department of Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
37
|
Matilla L, Arrieta V, Jover E, Garcia-Peña A, Martinez-Martinez E, Sadaba R, Alvarez V, Navarro A, Fernandez-Celis A, Gainza A, Santamaria E, Fernandez-Irigoyen J, Rossignol P, Zannad F, Lopez-Andres N. Soluble St2 Induces Cardiac Fibroblast Activation and Collagen Synthesis via Neuropilin-1. Cells 2020; 9:cells9071667. [PMID: 32664340 PMCID: PMC7408622 DOI: 10.3390/cells9071667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/21/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
Circulating levels of soluble interleukin 1 receptor-like 1 (sST2) are increased in heart failure and associated with poor outcome, likely because of the activation of inflammation and fibrosis. We investigated the pathogenic role of sST2 as an inductor of cardiac fibroblasts activation and collagen synthesis. The effects of sST2 on human cardiac fibroblasts was assessed using proteomics and immunodetection approaches to evidence the upregulation of neuropilin-1 (NRP-1), a regulator of the profibrotic transforming growth factor (TGF)-β1. In parallel, sST2 increased fibroblast activation, collagen and fibrosis mediators. Pharmacological inhibition of nuclear factor-kappa B (NF-κB) restored NRP-1 levels and blocked profibrotic effects induced by sST2. In NRP-1 knockdown cells, sST2 failed to induce fibroblast activation and collagen synthesis. Exogenous NRP-1 enhanced cardiac fibroblast activation and collagen synthesis via NF-κB. In a pressure overload rat model, sST2 was elevated in association with cardiac fibrosis and was positively correlated with NRP-1 expression. Our study shows that sST2 induces human cardiac fibroblasts activation, as well as the synthesis of collagen and profibrotic molecules. These effects are mediated by NRP-1. The blockade of NF-κB restored NRP-1 expression, improving the profibrotic status induced by sST2. These results show a new pathogenic role for sST2 and its mediator, NRP-1, as cardiac fibroblast activators contributing to cardiac fibrosis.
Collapse
Affiliation(s)
- Lara Matilla
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Vanessa Arrieta
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Eva Jover
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Amaia Garcia-Peña
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Ernesto Martinez-Martinez
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
- Departamento de Fisiología, Facultad Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense, 28040 Madrid, Spain
| | - Rafael Sadaba
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Virginia Alvarez
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Adela Navarro
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Amaya Fernandez-Celis
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Alicia Gainza
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Institute for Health Research, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (E.S.); (J.F.-I.)
| | - Joaquín Fernandez-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Institute for Health Research, Universidad Pública de Navarra, IdiSNA, 31008 Pamplona, Spain; (E.S.); (J.F.-I.)
| | - Patrick Rossignol
- INSERM, Centre d’Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, 54035 Nancy, France; (P.R.); (F.Z.)
| | - Faiez Zannad
- INSERM, Centre d’Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, 54035 Nancy, France; (P.R.); (F.Z.)
| | - Natalia Lopez-Andres
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (L.M.); (V.A.); (E.J.); (A.G.-P.); (E.M.-M.); (R.S.); (V.A.); (A.N.); (A.F.-C.); (A.G.)
- INSERM, Centre d’Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), Université de Lorraine, 54035 Nancy, France; (P.R.); (F.Z.)
- Correspondence: ; Tel.: +34-848428539; Fax: +34-848422300
| |
Collapse
|
38
|
Li M, Chen Y, Zhang Y, Li D, Liu J. Correlation between monocyte chemoattractant protein-1/chemokine (C-C motif) ligand 2 and coronary plaque characteristics. Exp Biol Med (Maywood) 2020; 245:1335-1343. [PMID: 32640896 DOI: 10.1177/1535370220941424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Vulnerable plaques are plaques which are susceptible to rupture or thrombosis and trigger a series of adverse events such as coronary disorders. CCL2 is a soluble basic protein belonging to the CC subfamily. Previous studies have been investigated on the correlation between inflammatory factors and clinical events, but there are few studies on the correlation between CCL2 and plaque characteristics. Our study found that the high expression of CCL2 is involved in multiple processes in the genesis and progression of coronary artery disease, and would be a potential clinical prognostic indicator. In addition, high expression of CCL2 may be related to gene pathways such as Nod-like receptor signaling pathway, suggesting that CCL2 is involved in the inflammatory response and immune process of coronary artery disease.
Collapse
Affiliation(s)
- Meng Li
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yan Chen
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Yan Zhang
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou 450003, China
| | - Danna Li
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Liu
- Department of Cardiology, Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Zhengzhou University, Zhengzhou 450003, China
| |
Collapse
|
39
|
Abstract
Acute myocardial infarction (AMI) is associated with the induction of a sterile inflammatory response that leads to further injury. The NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a macromolecular structure responsible for the inflammatory response to injury or infection. NLRP3 can sense intracellular danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is primed and triggered by locally released damage-associated molecular patterns and amplifies the inflammatory response and cell death through caspase-1 activation. Here, we examine the scientific evidence supporting a role for NLRP3 in AMI and the available strategies to inhibit the effects of the inflammasome. Our focus is on the beneficial effects seen in experimental models of AMI in preclinical animal models and the initial results of clinical trials.
Collapse
|
40
|
Savastio S, Pozzi E, Tagliaferri F, Degrandi R, Cinquatti R, Rabbone I, Bona G. Vitamin D and Cardiovascular Risk: which Implications in Children? Int J Mol Sci 2020; 21:3536. [PMID: 32429489 PMCID: PMC7279000 DOI: 10.3390/ijms21103536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin D (25OHD) pleiotropic effects are widely recognized and studied. Recently, vitamin D cardiovascular effects are gaining interest, especially in children, although the studies present conflicting data. Some randomized controlled trials (RCTs) have demonstrated that cardiovascular risk markers, such as lipid parameters, inflammation markers, blood pressure, and arterial stiffness, are unaffected by vitamin D supplementation. By contrast, other studies show that low vitamin D levels are associated with higher risk of cardiovascular disease (CVD) and mortality, and support that increased risk of these diseases occurs primarily in people with vitamin D deficiency. An update on these points in pediatric patients is certainly of interest to focus on possible benefits of its supplementation.
Collapse
Affiliation(s)
- Silvia Savastio
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, 28100 Novara, Italy; (E.P.); (F.T.); (R.D.); (R.C.); (I.R.); (G.B.)
| | - Erica Pozzi
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, 28100 Novara, Italy; (E.P.); (F.T.); (R.D.); (R.C.); (I.R.); (G.B.)
| | - Francesco Tagliaferri
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, 28100 Novara, Italy; (E.P.); (F.T.); (R.D.); (R.C.); (I.R.); (G.B.)
| | - Roberta Degrandi
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, 28100 Novara, Italy; (E.P.); (F.T.); (R.D.); (R.C.); (I.R.); (G.B.)
| | - Roberta Cinquatti
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, 28100 Novara, Italy; (E.P.); (F.T.); (R.D.); (R.C.); (I.R.); (G.B.)
| | - Ivana Rabbone
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, 28100 Novara, Italy; (E.P.); (F.T.); (R.D.); (R.C.); (I.R.); (G.B.)
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Gianni Bona
- SCDU of Pediatrics, Azienda Ospedaliero-Universitaria Maggiore della Carità, University of Piemonte Orientale, 28100 Novara, Italy; (E.P.); (F.T.); (R.D.); (R.C.); (I.R.); (G.B.)
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
41
|
Wu H, Wang Y, Zhang Y, Xu F, Chen J, Duan L, Zhang T, Wang J, Zhang F. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress. Redox Biol 2020; 32:101500. [PMID: 32193146 PMCID: PMC7078552 DOI: 10.1016/j.redox.2020.101500] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/01/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
Thrombosis is a principle cause of cardiovascular disease, the leading cause of morbidity and mortality worldwide; however, the conventional anti-thrombotic approach often leads to bleeding complications despite extensive clinical management and monitoring. In view of the intense crosstalk between inflammation and coagulation, plus the contributing role of ROS to both inflammation and coagulation, it is highly desirable to develop safer anti-thrombotic agent with preserved anti-inflammatory and anti-oxidative stress activities. Nattokinase (NK) possesses many beneficial effects on cardiovascular system due to its strong thrombolytic and anticoagulant activities. Herein, we demonstrated that NK not only effectively prevented xylene-induced ear oedema in mice, but also remarkably protected against LPS-induced acute kidney injury in mice through restraining inflammation and oxidative stress, a central player in the initiation and progression of inflammation. Fascinatingly, in line with our in vivo data, NK elicited prominent anti-inflammatory activity in RAW264.7 macrophages via suppressing the LPS-induced TLR4 and NOX2 activation, thereby repressing the corresponding ROS production, MAPKs activation, and NF-κB translocation from the cytoplasm to the nucleus, where it mediates the expression of pro-inflammatory mediators, such as TNF-α, IL-6, NO, and PAI-1 in activated macrophage cells. In particular, consistent with the macrophage studies, NK markedly inhibited serum PAI-1 levels induced by LPS, thereby blocking the deposition of fibrin in the glomeruli of endotoxin-treated animals. In summary, we extended the anti-thrombus mechanism of NK by demonstrating the anti-inflammatory and anti-oxidative stress effects of NK in ameliorating LPS-activated macrophage signaling and protecting against LPS-stimulated AKI as well as glomeruler thrombus in mice, opening a comprehensive anti-thrombus strategy by breaking the vicious cycle between inflammation, oxidative stress and thrombosis. NK protects against LPS-induced AKI via inhibiting inflammation and oxidative stress. NK inhibits LPS-induced TRL4 and NOX2 activation in macrophages. NK inhibits inflammation and oxidative stress both in vitro and in vivo. NK inhibits LPS-induced PAI-I levels, thereby blocking glomerular thrombus in mice. NK may break the vicious loop between inflammation, oxidative stress and coagulation.
Collapse
Affiliation(s)
- Hao Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Ying Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Yupeng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Feng Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jiepeng Chen
- Sungen Biotech Co., Ltd, Shantou, 515000, PR China
| | - Lili Duan
- Sungen Biotech Co., Ltd, Shantou, 515000, PR China
| | - Tingting Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| | - Fengjiao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China.
| |
Collapse
|
42
|
Pang X, Lin X, Du J, Zeng D. LTBP2 knockdown by siRNA reverses myocardial oxidative stress injury, fibrosis and remodelling during dilated cardiomyopathy. Acta Physiol (Oxf) 2020; 228:e13377. [PMID: 31512380 DOI: 10.1111/apha.13377] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
AIM Dilated cardiomyopathy (DCM) is characterised by left ventricular dilation and associated with systolic dysfunction. Recent evidence has reported the high expression of latent transforming growth factor beta binding protein 2 (LTBP2) in heart diseases, which may play a role in regulating multiple biological functions of myocardial cells. Thus, this study set out to investigate the molecular mechanism and effects of LTBP2 in myocardial oxidative stress injury, fibrosis and remodelling in a rat model of DCM, with the involvement of NF-κB signalling pathway. METHODS The rat model of DCM was treated with si-LTBP2 and/or activator of NF-κB signalling pathway to examine the haemodynamic indexes, cardiac functions, oxidative stress injury, fibrosis and remodelling. Moreover, in vitro experiments were conducted to verify the regulatory role of LTBP2 and NF-κB signalling pathway in DCM. RESULTS LTBP2 was up-regulated in DCM rats. After LTBP2 was knocked down, haemodynamic indexes, HW/BW ratio, collagen volume fraction (CVF) level, positive expression of LTBP2, levels of reactive oxygen species (ROS), malondialdehyde (MDA), interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), tumour necrosis factor beta 1 (TGF-β1) and brain natriuretic peptide (BNP) were all decreased. Meanwhile, levels of LTBP2, Col-I, Col-III, p65 and p52 were also reduced, while HW, BW and levels of SOD and TAOC were increased. In contrast, activation of NF-κB signalling pathway reversed effects of LTBP2 gene silencing. These findings were confirmed by in vivo experiments. CONCLUSIONS LTBP2 silencing can attenuate myocardial oxidative stress injury, myocardial fibrosis and myocardial remodelling in DCM rats by down-regulating the NF-κB signalling pathway.
Collapse
Affiliation(s)
- Xue‐Feng Pang
- Department of Cardiovascular The First Hospital of China Medical University Shenyang China
| | - Xue Lin
- Department of Cardiovascular Peking Union Medical College Hospital Beijing China
| | - Jian‐Jun Du
- Department of Cardiovascular The First Hospital of China Medical University Shenyang China
| | - Ding‐Yin Zeng
- Department of Cardiovascular The First Hospital of China Medical University Shenyang China
| |
Collapse
|
43
|
Dose-Dependent Effects of Long-Term Administration of Hydrogen Sulfide on Myocardial Ischemia-Reperfusion Injury in Male Wistar Rats: Modulation of RKIP, NF-κB, and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21041415. [PMID: 32093102 PMCID: PMC7073056 DOI: 10.3390/ijms21041415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/30/2022] Open
Abstract
Decreased circulating levels of hydrogen sulfide (H2S) are associated with higher mortality following myocardial ischemia. This study aimed at determining the long-term dose-dependent effects of sodium hydrosulfide (NaSH) administration on myocardial ischemia-reperfusion (IR) injury. Male rats were divided into control and NaSH groups that were treated for 9 weeks with daily intraperitoneal injections of normal saline or NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg), respectively. At the end of the study, hearts from all rats were isolated and hemodynamic parameters were recorded during baseline and following IR. In isolated hearts, infarct size, oxidative stress indices as well as mRNA expression of H2S-, nitric oxide (NO)-producing enzymes, and inflammatory markers were measured. In heart tissue following IR, low doses of NaSH (0.28 and 0.56 mg/kg) had no effect, whereas an intermediate dose (1.6 mg/kg), improved recovery of hemodynamic parameters, decreased infarct size, and decreased oxidative stress. It also increased expression of cystathionine γ-lyase (CSE), Raf kinase inhibitor protein (RKIP), endothelial NO synthase (eNOS), and neuronal NOS (nNOS), as well as decreased expression of inducible NOS (iNOS) and nuclear factor kappa-B (NF-κB). At the high dose of 5.6 mg/kg, NaSH administration was associated with worse recovery of hemodynamic parameters and increased infarct size as well as increased oxidative stress. This dose also decreased expression of CSE, RKIP, and eNOS and increased expression of iNOS and NF-κB. In conclusion, chronic treatment with NaSH has a U-shaped concentration effect on IR injury in heart tissue. An intermediate dose was associated with higher CSE-derived H2S, lower iNOS-derived NO, lower oxidative stress, and inflammation in heart tissue following IR.
Collapse
|
44
|
Alanazi AM, Fadda L, Alhusaini A, Ahmad R, Hasan IH, Mahmoud AM. Liposomal Resveratrol and/or Carvedilol Attenuate Doxorubicin-Induced Cardiotoxicity by Modulating Inflammation, Oxidative Stress and S100A1 in Rats. Antioxidants (Basel) 2020; 9:antiox9020159. [PMID: 32079097 PMCID: PMC7070570 DOI: 10.3390/antiox9020159] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
Doxorubicin (DOX) is a cytotoxic anthracycline antibiotic and one of the important chemotherapeutic agents for different types of cancers. DOX treatment is associated with adverse effects, particularly cardiac dysfunction. This study examined the cardioprotective effects of carvedilol (CAR) and/or resveratrol (RES) and liposomal RES (LIPO-RES) against DOX-induced cardiomyopathy, pointing to their modulatory effect on oxidative stress, inflammation, S100A1 and sarco/endoplasmic reticulum calcium ATPase2a (SERCA2a). Rats received CAR (30 mg/kg) and/or RES (20 mg/kg) or LIPO-RES (20 mg/kg) for 6 weeks and were challenged with DOX (2 mg/kg) twice per week from week 2 to week 6. DOX-administered rats exhibited a significant increase in serum creatine kinase-MB (CK-MB), troponin-I and lactate dehydrogenase (LDH) along with histological alterations, reflecting cardiac cell injury. Cardiac toll-like receptor 4 (TLR-4), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α and interleukin (IL)-6 protein expression were up-regulated, and lipid peroxidation was increased in DOX-administered rats. Treatment with CAR, RES or LIPO-RES as well as their alternative combinations ameliorated all observed biochemical and histological alterations with the most potent effect exerted by CAR/LIPO-RES. All treatments increased cardiac antioxidants, and the expression of S100A1 and SERCA2a. In conclusion, the present study conferred new evidence on the protective effects of CAR and its combination with either RES or LIPO-RES on DOX-induced inflammation, oxidative stress and calcium dysregulation.
Collapse
Affiliation(s)
- Abeer M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Ahlam Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
- Correspondence: (A.A.); (A.M.M.)
| | - Rehab Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: (A.A.); (A.M.M.)
| |
Collapse
|
45
|
Oldfield CJ, Duhamel TA, Dhalla NS. Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 2020; 98:74-84. [DOI: 10.1139/cjpp-2019-0566] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The heart is capable of responding to stressful situations by increasing muscle mass, which is broadly defined as cardiac hypertrophy. This phenomenon minimizes ventricular wall stress for the heart undergoing a greater than normal workload. At initial stages, cardiac hypertrophy is associated with normal or enhanced cardiac function and is considered to be adaptive or physiological; however, at later stages, if the stimulus is not removed, it is associated with contractile dysfunction and is termed as pathological cardiac hypertrophy. It is during physiological cardiac hypertrophy where the function of subcellular organelles, including the sarcolemma, sarcoplasmic reticulum, mitochondria, and myofibrils, may be upregulated, while pathological cardiac hypertrophy is associated with downregulation of these subcellular activities. The transition of physiological cardiac hypertrophy to pathological cardiac hypertrophy may be due to the reduction in blood supply to hypertrophied myocardium as a consequence of reduced capillary density. Oxidative stress, inflammatory processes, Ca2+-handling abnormalities, and apoptosis in cardiomyocytes are suggested to play a critical role in the depression of contractile function during the development of pathological hypertrophy.
Collapse
Affiliation(s)
- Christopher J. Oldfield
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Todd A. Duhamel
- Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
46
|
Mouton AJ, El Hajj EC, Ninh VK, Siggins RW, Gardner JD. Inflammatory cardiac fibroblast phenotype underlies chronic alcohol-induced cardiac atrophy and dysfunction. Life Sci 2020; 245:117330. [PMID: 31962130 DOI: 10.1016/j.lfs.2020.117330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
AIMS The purpose of this study was to investigate mechanisms of chronic alcohol-induced cardiac remodeling and dysfunction. We also sought to determine the role of cardiac fibroblasts, which play a dynamic role in cardiac remodeling, in mediating these effects. MAIN METHODS Adult male Wistar rats were exposed to ethanol (EtOH) vapor inhalation for 16 weeks. Echocardiography was performed to assess terminal cardiac structure and function. Cardiac fibroblasts were isolated from the left ventricle (LV) for both ex vivo and in vitro analysis. Cultured H9C2 cells were also exposed to conditioned media from alcohol-exposed cardiac fibroblasts. Gene expression in whole LV tissue, isolated cardiac fibroblasts, or cultured H9C2 cells was determined by real-time PCR, and protein expression was determined by Western blot. KEY FINDINGS EtOH led to LV wall thinning and impaired systolic function, and decreased contractile protein mRNA levels. EtOH increased LV inflammatory markers, JNK and Akt activation, and decreased mTOR expression. EtOH induced myofibroblast activation as assessed by flow cytometry, and increased LV collagen III expression. EtOH increased expression of several inflammatory mediators in cardiac fibroblasts both ex vivo and in vitro. Administration of conditioned media from EtOH-treated fibroblasts decreased contractile protein mRNA levels and impaired Akt and mTOR signaling in differentiated H9C2 cardiomyocytes. SIGNIFICANCE Our results indicate that EtOH-induced cardiac atrophy and dysfunction is associated with activation of inflammatory pathways. Furthermore, EtOH may induce a pro-inflammatory cardiac fibroblast phenotype, leading to aberrant fibroblast-myocyte cross-talk. Thus, EtOH may promote cardiac muscle wasting in part by activation of pro-inflammatory fibroblasts.
Collapse
Affiliation(s)
- A J Mouton
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70124, United States of America
| | - E C El Hajj
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70124, United States of America
| | - V K Ninh
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70124, United States of America
| | - R W Siggins
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70124, United States of America
| | - J D Gardner
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70124, United States of America.
| |
Collapse
|
47
|
Cederström S, Lundman P, Folkersen L, Paulsson-Berne G, Karadimou G, Eriksson P, Caidahl K, Gabrielsen A, Jernberg T, Persson J, Tornvall P. New candidate genes for ST-elevation myocardial infarction. J Intern Med 2020; 287:66-77. [PMID: 31589004 DOI: 10.1111/joim.12976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite extensive research in atherosclerosis, the mechanisms of coronary atherothrombosis in ST-elevation myocardial infarction (STEMI) patients are undetermined. OBJECTIVES Our aim was to find candidate genes involved in STEMI by analysing leucocyte gene expression in STEMI patients, without the influence of secondary inflammation from innate immunity, which was assumed to be a consequence rather than the cause of coronary atherothrombosis. METHODS Fifty-one patients were included at coronary angiography because of STEMI. Arterial blood was sampled in the acute phase (P1), at 24-48 h (P2) and at 3 months (P3). Leucocyte RNA was isolated and gene expression analysis was performed by Affymetrix Human Transcriptome Array 2.0. By omission of up- or downregulated genes at P2, secondary changes from innate immunity were excluded. Genes differentially expressed in P1 when compared to the convalescent sample in P3 were determined as genes involved in STEMI. RESULTS Three genes were upregulated at P1 compared to P3; ABCG1 (P = 5.81 × 10-5 ), RAB20 (P = 3.69 × 10-5 ) and TMEM2 (P = 7.75 × 10-6 ) whilst four were downregulated; ACVR1 (P = 9.01 × 10-5 ), NFATC2IP (P = 8.86 × 10-5 ), SUN1 (P = 3.87 × 10-5 ) and TTC9C (P = 7.18 × 10-6 ). These genes were also highly expressed in carotid atherosclerotic plaques. CONCLUSIONS We found seven genes involved in STEMI. The study is unique regarding the blood sampling in the acute phase and omission of secondary expressed genes from innate immunity. However, the results need to be replicated by future studies.
Collapse
Affiliation(s)
- S Cederström
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - P Lundman
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - L Folkersen
- Sankt Hans Hospital, Capital Region Hospitals, Roskilde, Denmark
| | - G Paulsson-Berne
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - G Karadimou
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - P Eriksson
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - K Caidahl
- Department of Molecular Medicine and Surgery (MMK), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - A Gabrielsen
- Cardiovascular Medicine Unit, Department of Medicine Solna, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - T Jernberg
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - J Persson
- Division of Cardiovascular medicine, Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital (KI DS), Stockholm, Sweden
| | - P Tornvall
- Division of Cardiovascular medicine, Department of Clinical Science and Education, Södersjukhuset (KI SÖS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Sun N, Li D, Chen X, Wu P, Lu YJ, Hou N, Chen WH, Wong WL. New Applications of Oleanolic Acid and its Derivatives as Cardioprotective Agents: A Review of their Therapeutic Perspectives. Curr Pharm Des 2019; 25:3740-3750. [DOI: 10.2174/1381612825666191105112802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/30/2019] [Indexed: 01/14/2023]
Abstract
Oleanolic acid is an analogue of pentacyclic triterpenoids. It has been used as a hepatic drug for over
20 years in China. Currently, there are only five approved drugs derived from pentacyclic triterpenoids, including
oleanolic acid (liver diseases), asiaticoside (wound healing), glycyrrhizinate (liver diseases), isoglycyrrhizinate
(liver disease) and sodium aescinate (hydrocephalus). To understand more about the bioactivity and functional
mechanisms of oleanolic acid, it can be developed as a potent therapeutic agent, in particular, for the prevention
and treatment of heart diseases that are the leading cause of death for people worldwide. The primary aim of this
mini-review is to summarize the new applications of oleanolic acid and its derivatives as cardioprotective agents
reported in recent years and to highlight their therapeutic perspectives in cardiovascular diseases.
Collapse
Affiliation(s)
- Ning Sun
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiaoqing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yu-Jing Lu
- Goldenhealth Biotechnology Co. Ltd, Foshan 528000, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Wen-Hua Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
49
|
Yue Y, Wang C, Benedict C, Huang G, Truongcao M, Roy R, Cimini M, Garikipati VNS, Cheng Z, Koch WJ, Kishore R. Interleukin-10 Deficiency Alters Endothelial Progenitor Cell-Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment. Circ Res 2019; 126:315-329. [PMID: 31815595 DOI: 10.1161/circresaha.119.315829] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC-derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell-derived exosomes (TNFα inflamed mouse cardiac endothelial cell-derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB-dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome-mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.
Collapse
Affiliation(s)
- Yujia Yue
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Chunlin Wang
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Cindy Benedict
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Grace Huang
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - May Truongcao
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rajika Roy
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Maria Cimini
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Venkata Naga Srikanth Garikipati
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Zhongjian Cheng
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J Koch
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Pharmacology and Medicine (W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Raj Kishore
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Pharmacology and Medicine (W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
50
|
Brayson D, Frustaci A, Verardo R, Chimenti C, Russo MA, Hayward R, Ahmad S, Vizcay-Barrena G, Protti A, Zammit PS, dos Remedios CG, Ehler E, Shah AM, Shanahan CM. Prelamin A mediates myocardial inflammation in dilated and HIV-associated cardiomyopathies. JCI Insight 2019; 4:126315. [PMID: 31622279 PMCID: PMC6948859 DOI: 10.1172/jci.insight.126315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiomyopathies are complex heart muscle diseases that can be inherited or acquired. Dilated cardiomyopathy can result from mutations in LMNA, encoding the nuclear intermediate filament proteins lamin A/C. Some LMNA mutations lead to accumulation of the lamin A precursor, prelamin A, which is disease causing in a number of tissues, yet its impact upon the heart is unknown. Here, we discovered myocardial prelamin A accumulation occurred in a case of dilated cardiomyopathy, and we show that a potentially novel mouse model of cardiac-specific prelamin A accumulation exhibited a phenotype consistent with inflammatory cardiomyopathy, which we observed to be similar to HIV-associated cardiomyopathy, an acquired disease state. Numerous HIV protease therapies are known to inhibit ZMPSTE24, the enzyme responsible for prelamin A processing, and we confirmed that accumulation of prelamin A occurred in HIV+ patient cardiac biopsies. These findings (a) confirm a unifying pathological role for prelamin A common to genetic and acquired cardiomyopathies; (b) have implications for the management of HIV patients with cardiac disease, suggesting protease inhibitors should be replaced with alternative therapies (i.e., nonnucleoside reverse transcriptase inhibitors); and (c) suggest that targeting inflammation may be a useful treatment strategy for certain forms of inherited cardiomyopathy.
Collapse
Affiliation(s)
- Daniel Brayson
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | - Andrea Frustaci
- Department of Cardiovascular, Nefrologic, Anestesiologic and Geriatric Sciences, La Sapienza University of Rome, Italy.,National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Romina Verardo
- National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Cristina Chimenti
- Department of Cardiovascular, Nefrologic, Anestesiologic and Geriatric Sciences, La Sapienza University of Rome, Italy.,National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy
| | - Matteo Antonio Russo
- MEBIC Open University San Raffaele and IRCCS San Raffaele Pisana, Laboratory of Molecular and Cellular Pathology, Milan, Italy
| | - Robert Hayward
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | - Sadia Ahmad
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | | | - Andrea Protti
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Elisabeth Ehler
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom.,Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| | - Catherine M Shanahan
- School of Cardiovascular Medicine and Sciences, King's College London BHF Centre for Research Excellence, London, United Kingdom
| |
Collapse
|