1
|
Lee J, Jin BR, Cho J. Spatiotemporal regulation of neutrophil heterogeneity in health and disease. Hum Mol Genet 2025:ddaf008. [PMID: 40287830 DOI: 10.1093/hmg/ddaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 01/08/2025] [Indexed: 04/29/2025] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and are indispensable for innate immunity. They are short-lived, terminally differentiated cells. However, mounting evidence indicates that neutrophils are heterogeneous in health and disease: they are young or aged in a steady state, while their heterogeneity becomes more diverse in disease conditions, such as cancer, sepsis, and thromboinflammation. Although the presence of distinct neutrophil subsets is well recognized, it is not fully understood how neutrophils have functional and phenotypic heterogeneity and what mechanisms control it. This review will focus on our current understanding of the molecular basis for neutrophil heterogeneity in pathophysiological conditions. In addition, we will discuss the possibility of targeting a specific subset of neutrophils to attenuate inflammation and tissue damage without compromising innate immune responses.
Collapse
Affiliation(s)
- Jingu Lee
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Bo-Ram Jin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
2
|
Morrissey SM, Kirkland LG, Phillips TK, Levit RD, Hopke A, Jensen BC. Multifaceted roles of neutrophils in cardiac disease. J Leukoc Biol 2025; 117:qiaf017. [PMID: 39936506 DOI: 10.1093/jleuko/qiaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/15/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025] Open
Abstract
Neutrophils, the most abundant leukocytes in human blood, have long been recognized as critical first responders in the innate immune system's defense against pathogens. Some of the more notable innate antimicrobial properties of neutrophils include generation of superoxide free radicals like myeloperoxidase, production of proteases that reshape the extracellular matrix allowing for easier access to infected tissues, and release of neutrophil extracellular traps, extruded pieces of DNA that ensnare bacterial and fungi. These mechanisms developed to provide neutrophils with a vast array of specialized functions to provide the host defense against infection in an acute setting. However, emerging evidence over the past few decades has revealed a far more complex and nuanced role for these neutrophil-driven processes in various chronic conditions, particularly in cardiovascular diseases. The pathophysiology of cardiac diseases involves a complex interplay of hemodynamic, neurohumoral, and inflammatory factors. Neutrophils, as key mediators of inflammation, contribute significantly to this intricate network. Their involvement extends far beyond their classical role in pathogen clearance, encompassing diverse functions that can both exacerbate tissue damage and contribute to repair processes. Here, we consider the contributions of neutrophils to myocardial infarction, heart failure, cardiac arrhythmias, and nonischemic cardiomyopathies. Understanding these complex interactions is crucial for developing novel therapeutic strategies aimed at modulating neutrophil functions in these highly morbid cardiac diseases.
Collapse
Affiliation(s)
- Samantha M Morrissey
- Department of Medicine, University of North Carolina School of Medicine, 125 MacNider Hall, Chapel Hill, NC 27599-7005, United States
| | - Logan G Kirkland
- McAllister Heart Institute, University of North Carolina School of Medicine, 111 Mason Farm Rd., Chapel Hill, NC 27599-7126, United States
| | - Tasha K Phillips
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, United States
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, 100 Woodruff Circle, Atlanta, GA 30322, United States
| | - Alex Hopke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, PO Box 70300, Johnson City, TN 37614, United States
| | - Brian C Jensen
- Department of Medicine, University of North Carolina School of Medicine, 125 MacNider Hall, Chapel Hill, NC 27599-7005, United States
- McAllister Heart Institute, University of North Carolina School of Medicine, 111 Mason Farm Rd., Chapel Hill, NC 27599-7126, United States
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Rd., Chapel Hill, NC 27599-7365, United States
| |
Collapse
|
3
|
Mastoor Y, Murphy E, Roman B. Mechanisms of postischemic cardiac death and protection following myocardial injury. J Clin Invest 2025; 135:e184134. [PMID: 39744953 DOI: 10.1172/jci184134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Acute myocardial infarction (MI) is a leading cause of death worldwide. Although with current treatment, acute mortality from MI is low, the damage and remodeling associated with MI are responsible for subsequent heart failure. Reducing cell death associated with acute MI would decrease the mortality associated with heart failure. Despite considerable study, the precise mechanism by which ischemia and reperfusion (I/R) trigger cell death is still not fully understood. In this Review, we summarize the changes that occur during I/R injury, with emphasis on those that might initiate cell death, such as calcium overload and oxidative stress. We review cell-death pathways and pathway crosstalk and discuss cardioprotective approaches in order to provide insight into mechanisms that could be targeted with therapeutic interventions. Finally, we review cardioprotective clinical trials, with a focus on possible reasons why they were not successful. Cardioprotection has largely focused on inhibiting a single cell-death pathway or one death-trigger mechanism (calcium or ROS). In treatment of other diseases, such as cancer, the benefit of targeting multiple pathways with a "drug cocktail" approach has been demonstrated. Given the crosstalk between cell-death pathways, targeting multiple cardiac death mechanisms should be considered.
Collapse
|
4
|
DeBerge M, Glinton K, Lantz C, Ge ZD, Sullivan DP, Patil S, Lee BR, Thorp MI, Mullick A, Yeh S, Han S, van der Laan AM, Niessen HWM, Luo X, Sibinga NES, Thorp EB. Mechanical regulation of macrophage metabolism by allograft inflammatory factor 1 leads to adverse remodeling after cardiac injury. NATURE CARDIOVASCULAR RESEARCH 2025; 4:83-101. [PMID: 39747455 DOI: 10.1038/s44161-024-00585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
Myocardial infarction (MI) mobilizes macrophages, the central protagonists of tissue repair in the infarcted heart. Although necessary for repair, macrophages also contribute to adverse remodeling and progression to heart failure. In this context, specific targeting of inflammatory macrophage activation may attenuate maladaptive responses and enhance cardiac repair. Allograft inflammatory factor 1 (AIF1) is a macrophage-specific protein expressed in a variety of inflammatory settings, but its function after MI is unknown. Here we identify a maladaptive role for macrophage AIF1 after MI in mice. Mechanistic studies show that AIF1 increases actin remodeling in macrophages to promote reactive oxygen species-dependent activation of hypoxia-inducible factor (HIF)-1α. This directs a switch to glycolytic metabolism to fuel macrophage-mediated inflammation, adverse ventricular remodeling and progression to heart failure. Targeted knockdown of Aif1 using antisense oligonucleotides improved cardiac repair, supporting further exploration of macrophage AIF1 as a therapeutic target after MI.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center, Houston, TX, USA.
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | | | - Connor Lantz
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Zhi-Dong Ge
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - David P Sullivan
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Swapna Patil
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Bo Ryung Lee
- Department of Anesthesiology, Critical Care, and Pain Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Minori I Thorp
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | | | - Steve Yeh
- Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Shuling Han
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Anja M van der Laan
- Department of Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology and Cardiac Surgery, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU Medical Center, Amsterdam, The Netherlands
| | - Xunrong Luo
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Köhler D, Leiss V, Beichert L, Killinger S, Grothe D, Kushwaha R, Schröter A, Roslan A, Eggstein C, Focken J, Granja T, Devanathan V, Schittek B, Lukowski R, Weigelin B, Rosenberger P, Nürnberg B, Beer-Hammer S. Targeting Gα i2 in neutrophils protects from myocardial ischemia reperfusion injury. Basic Res Cardiol 2024; 119:717-732. [PMID: 38811421 PMCID: PMC11461587 DOI: 10.1007/s00395-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gαi proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gαi2 proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras. In fact, the absence of Gαi2 in all blood cells reduced the extent of mIRI (22,9% infarct size of area at risk (AAR) Gnai2-/- → wt vs 44.0% wt → wt; p < 0.001) whereas the absence of Gαi2 in non-hematopoietic cells increased the infarct damage (66.5% wt → Gnai2-/- vs 44.0% wt → wt; p < 0.001). Previously we have reported the impact of platelet Gαi2 for mIRI. Here, we show that infarct size was substantially reduced when Gαi2 signaling was either genetically ablated in neutrophils/macrophages using LysM-driven Cre recombinase (AAR: 17.9% Gnai2fl/fl LysM-Cre+/tg vs 42.0% Gnai2fl/fl; p < 0.01) or selectively blocked with specific antibodies directed against Gαi2 (AAR: 19.0% (anti-Gαi2) vs 49.0% (IgG); p < 0.001). In addition, the number of platelet-neutrophil complexes (PNCs) in the infarcted area were reduced in both, genetically modified (PNCs: 18 (Gnai2fl/fl; LysM-Cre+/tg) vs 31 (Gnai2fl/fl); p < 0.001) and in anti-Gαi2 antibody-treated (PNCs: 9 (anti-Gαi2) vs 33 (IgG); p < 0.001) mice. Of note, significant infarct-limiting effects were achieved with a single anti-Gαi2 antibody challenge immediately prior to vessel reperfusion without affecting bleeding time, heart rate or cellular distribution of neutrophils. Finally, anti-Gαi2 antibody treatment also inhibited transendothelial migration of human neutrophils (25,885 (IgG) vs 13,225 (anti-Gαi2) neutrophils; p < 0.001), collectively suggesting that a therapeutic concept of functional Gαi2 inhibition during thrombolysis and reperfusion in patients with myocardial infarction should be further considered.
Collapse
Affiliation(s)
- David Köhler
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Lukas Beichert
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Simon Killinger
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Daniela Grothe
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Ragini Kushwaha
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Agnes Schröter
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Anna Roslan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Jule Focken
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Tiago Granja
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Vasudharani Devanathan
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Multiscale Immunoimaging, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
6
|
Liu Y, Chen Q, Hu T, Deng C, Huang J. Dexmedetomidine administration is associated with improved outcomes in critically ill patients with acute myocardial infarction partly through its anti-inflammatory activity. Front Pharmacol 2024; 15:1428210. [PMID: 39239649 PMCID: PMC11375293 DOI: 10.3389/fphar.2024.1428210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Background Dexmedetomidine (DEX) is a commonly used sedative in the intensive care unit and has demonstrated cardioprotective properties against ischemia-reperfusion injury in preclinical studies. However, the protective effects of early treatment of DEX in patients with acute myocardial infarction (AMI) and its underlying mechanism are still not fully understood. This study aims to investigate the association between early DEX treatment and in-hospital mortality in patients with AMI, and to explore the potential mediating role of white blood cell (WBC) reduction in this relationship. Methods A retrospective cohort analysis was conducted using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Patients with AMI were divided into the DEX and non-DEX group, based on whether they received DEX treatment in the early stage of hospitalization. The primary outcome measured was in-hospital mortality. The study evaluated the association between DEX use and in-hospital mortality using the Kaplan-Meier (KM) method and Cox proportional hazards model. Additionally, 1:1 propensity score matching (PSM) was conducted to validate the results. Furthermore, causal mediation analysis (CMA) was utilized to explore potential causal pathways mediated by WBC reduction between early DEX use and the primary outcome. Results This study analyzed data from 2,781 patients, with 355 in the DEX group and 2,426 in the non-DEX group. KM survival analysis revealed a significantly lower in-hospital mortality rate in the DEX group compared to the non-DEX group. After adjusting for multiple confounding factors, the Cox regression model demonstrated a significant positive impact of DEX on the risk of in-hospital mortality in patients with AMI, with hazard ratios (HR) of 0.50 (95% confidence interval (CI): 0.35-0.71, p < 0.0001). PSM analysis confirmed these results, showing HR of 0.49 (95% CI: 0.31-0.77, p = 0.0022). Additionally, CMA indicated that 13.7% (95% CI: 1.8%-46.9%, p = 0.022) of the beneficial effect of DEX on reducing in-hospital mortality in patients with AMI was mediated by the reduction in WBC. Conclusion The treatment of DEX was associated with a lower risk of in-hospital mortality in patients with AMI, potentially due to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Yimou Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Chen
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changming Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Hilgendorf I, Frantz S, Frangogiannis NG. Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circ Res 2024; 134:1718-1751. [PMID: 38843294 PMCID: PMC11164543 DOI: 10.1161/circresaha.124.323658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
The adult mammalian heart has limited endogenous regenerative capacity and heals through the activation of inflammatory and fibrogenic cascades that ultimately result in the formation of a scar. After infarction, massive cardiomyocyte death releases a broad range of damage-associated molecular patterns that initiate both myocardial and systemic inflammatory responses. TLRs (toll-like receptors) and NLRs (NOD-like receptors) recognize damage-associated molecular patterns (DAMPs) and transduce downstream proinflammatory signals, leading to upregulation of cytokines (such as interleukin-1, TNF-α [tumor necrosis factor-α], and interleukin-6) and chemokines (such as CCL2 [CC chemokine ligand 2]) and recruitment of neutrophils, monocytes, and lymphocytes. Expansion and diversification of cardiac macrophages in the infarcted heart play a major role in the clearance of the infarct from dead cells and the subsequent stimulation of reparative pathways. Efferocytosis triggers the induction and release of anti-inflammatory mediators that restrain the inflammatory reaction and set the stage for the activation of reparative fibroblasts and vascular cells. Growth factor-mediated pathways, neurohumoral cascades, and matricellular proteins deposited in the provisional matrix stimulate fibroblast activation and proliferation and myofibroblast conversion. Deposition of a well-organized collagen-based extracellular matrix network protects the heart from catastrophic rupture and attenuates ventricular dilation. Scar maturation requires stimulation of endogenous signals that inhibit fibroblast activity and prevent excessive fibrosis. Moreover, in the mature scar, infarct neovessels acquire a mural cell coat that contributes to the stabilization of the microvascular network. Excessive, prolonged, or dysregulated inflammatory or fibrogenic cascades accentuate adverse remodeling and dysfunction. Moreover, inflammatory leukocytes and fibroblasts can contribute to arrhythmogenesis. Inflammatory and fibrogenic pathways may be promising therapeutic targets to attenuate heart failure progression and inhibit arrhythmia generation in patients surviving myocardial infarction.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen and Faculty of Medicine at the University of Freiburg, Freiburg, Germany
| | - Stefan Frantz
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
9
|
Yu KH, Tien KW, Wang WC, Chi CH, Tsai KC, Chou CH, Hwang TL, Hung HY. Design and synthesis of pyrazole derivatives against neutrophilic inflammation. Eur J Med Chem 2023; 262:115874. [PMID: 37918036 DOI: 10.1016/j.ejmech.2023.115874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
Neutrophils are the most abundant immune cells. However, neutrophil dysregulation leads to acute and chronic inflammation and is involved in various diseases. The aim of this study was to develop anti-inflammatory agents in human neutrophils. A drug screening was conducted on in-house compounds with the potential to inhibit the respiratory burst, which involves the generation of superoxide anions in human neutrophils. Bioisosteric replacement was then applied to design more active derivatives. The most potent inhibitors of superoxide anion generation activity were compounds 58 and 59, which had IC50 values of 13.30 and 9.06 nM, respectively. The inhibitory effects of 58 and 59 were reversed by H89, a PKA inhibitor. PDE selective screening indicated that the best inhibitory effects were PDE4B1 and PDE4D2, and the inhibitory activities were 83% and 85%, respectively, at a 10 μM concentration of 59. The final molecular simulation experiment highlighted the slightly different binding poses of 58 and 59 in the PDE4 active site. An in vivo pharmacokinetic study revealed that the half-life of 59 was approximately 79 min when using intravenous bolus administration. This work introduced a new class structure of PDE4 inhibitors resulting in potent neutrophil inactivation activity, with the aim of contributing to new anti-inflammatory drug discovery.
Collapse
Affiliation(s)
- Ko-Hua Yu
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Wen Tien
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wei-Chun Wang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ching-Ho Chi
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Keng-Chang Tsai
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei, 112, Taiwan
| | - Chen-Hsi Chou
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
10
|
Hsieh YK, Wang MT, Wang CY, Chen CF, Ko YL, Huang WC. Recent advances in the diagnosis and management of acute myocardial infarction. J Chin Med Assoc 2023; 86:950-959. [PMID: 37801590 DOI: 10.1097/jcma.0000000000001001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/08/2023] Open
Abstract
With the discovery of new biomarkers for the early detection of acute myocardial infarction (AMI), advancements in valid medication, and percutaneous coronary intervention (PCI), the overall prognosis of AMI has improved remarkably. Nevertheless, challenges remain which require more difficult work to overcome. Novel diagnostic and therapeutic techniques include new AMI biomarkers, hypothermia therapy, supersaturated oxygen (SSO 2 ) therapy, targeted anti-inflammatory therapy, targeted angiogenesis therapy, and stem cell therapy. With these novel methods, we believe that the infarction size after AMI will decrease, and myocardial injury-associated ventricular remodeling may be avoided. This review focuses on novel advances in the diagnosis and management of AMI.
Collapse
Affiliation(s)
- Yi-Keng Hsieh
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
| | - Chien-Ying Wang
- School of Medicine, National Yang Ming Chao Tung University, Taipei, Taiwan, ROC
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Division of Trauma, Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Cheng-Fong Chen
- Department of Orthopaedics and Traumatology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Surgery, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Exercise and Health Sciences, University of Taipei, Taipei, Taiwan, ROC
| | - Yu-Ling Ko
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, ROC
- Chang Gung Memorial Hospital, Taoyuan, Taiwan, ROC
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
11
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
12
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
13
|
Kakavand H, Saadatagah S, Naderian M, Aghakouchakzadeh M, Jalali A, Sadri F, Amoli AI, Hosseini SH, Jenab Y, Pourhosseini H, Salarifar M, Talasaz AH. Evaluating the role of intravenous pentoxifylline administration on primary percutaneous coronary intervention success rate in patients with ST-elevation myocardial infarction (PENTOS-PCI). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:557-565. [PMID: 36856810 PMCID: PMC9975441 DOI: 10.1007/s00210-022-02368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/12/2022] [Indexed: 03/02/2023]
Abstract
Ischemia reperfusion injury can lead to further myocardiocyte damage in patients with ST-elevation myocardial infarction (STEMI). Pentoxifylline is a methylxanthine derivative with known anti-inflammatory, antioxidant, vasodilator, and rheological properties which can be a promising agent in preventing reperfusion injury. PENTOS-PCI is a single-center, randomized, double-blind, placebo-controlled trial which evaluated the efficacy and safety of preprocedural administration of intravenous pentoxifylline in patients undergoing primary percutaneous coronary intervention (PCI). Patients with acute STEMI who were eligible for PCI were randomized to receive either 100-mg intravenous infusion of pentoxifylline or placebo, prior to transferring to catheterization laboratory. Overall, 161 patients were included in our study of whom 80 patients were assigned to pentoxifylline and 81 to the control groups. Per-protocol analysis of primary endpoint indexing PCI's success rate as measured by thrombolysis in myocardial infarction (TIMI) flow grade 3 was not significantly different between pentoxifylline and placebo (71.3% and 66.3% respectively, P = 0.40). In addition, pentoxifylline could not improve secondary angiographic endpoints including myocardial blush grade 3 (87.5% and 85.2%, P = 0.79) and corrected TIMI frame count (22.8 [± 9.0] and 24.0 [± 5.1], P = 0.33) in the intervention and placebo groups respectively. The rates of major adverse cardiac and treatment emergent adverse effects were not significantly different between the two groups. Administration of intravenous pentoxifylline before primary PCI did not improve the success rate of the procedure in patients with STEMI. Intravenous administration of pentoxifylline was well tolerated, and there were no significant differences regarding adverse drug reactions in the two groups. Panel A, background: pentoxifylline is a methylxanthine derivative with known anti-inflammatory, antioxidant, vasodilator, and rheological properties which can be a promising agent in preventing reperfusion injury. Panel B: study design and main results of the PENTOS-PCI trial. cTFC corrected TIMI frame count, ED emergency department, IRI ischemia reperfusion injury, MBG myocardial blush grade, PCI percutaneous coronary intervention, PPCI primary PCI, PTX pentoxifylline, ROS reactive oxygen species, SD standard deviation, STEMI ST-elevation myocardial infarction, TIMI thrombolysis in myocardial infarction.
Collapse
Affiliation(s)
- Hessam Kakavand
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research On Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Mohammadreza Naderian
- Tehran Heart Center, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Maryam Aghakouchakzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Arash Jalali
- Tehran Heart Center, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Farshad Sadri
- Department of Cardiology, Yas Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Izadi Amoli
- Tehran Heart Center, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | | | - Yaser Jenab
- Tehran Heart Center, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Hamidreza Pourhosseini
- Tehran Heart Center, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Mojtaba Salarifar
- Tehran Heart Center, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran
| | - Azita H Talasaz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Tehran Heart Center, Tehran University of Medical Sciences, North Kargar Street, Tehran, Iran.
| |
Collapse
|
14
|
Sayegh MN, Cooney KA, Han WM, Cicka M, Strobel F, Wang L, García AJ, Levit RD. Hydrogel delivery of purinergic enzymes improves cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 176:98-109. [PMID: 36764383 PMCID: PMC10006353 DOI: 10.1016/j.yjmcc.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
RATIONALE The innate immune response contributes to cardiac injury in myocardial ischemia/reperfusion (MI/R). Neutrophils are an important early part of the innate immune response to MI/R. Adenosine, an endogenous purine, is a known innate immune modulator and inhibitor of neutrophil activation. However, its delivery to the heart is limited by its short half-life (<30 s) and off-target side effects. CD39 and CD73 are anti-inflammatory homeostatic enzymes that can generate adenosine from phosphorylated adenosine substrate such as ATP released from injured tissue. OBJECTIVE We hypothesize that hydrogel-delivered CD39 and CD73 target the local early innate immune response, reduce neutrophil activation, and preserve cardiac function in MI/R injury. METHODS AND RESULTS We engineered a poly(ethylene) glycol (PEG) hydrogel loaded with the adenosine-generating enzymes CD39 and CD73. We incubated the hydrogels with neutrophils in vitro and showed a reduction in hydrogen peroxide production using Amplex Red. We demonstrated availability of substrate for the enzymes in the myocardium in MI/R by LC/MS, and tested release kinetics from the hydrogel. On echocardiography, global longitudinal strain (GLS) was preserved in MI/R hearts treated with the loaded hydrogel. Delivery of purinergic enzymes via this synthetic hydrogel resulted in lower innate immune infiltration into the myocardium post-MI/R, decreased markers of macrophage and neutrophil activation (NETosis), and decreased leukocyte-platelet complexes in circulation. CONCLUSIONS In a rat model of MI/R injury, CD39 and CD73 delivered via a hydrogel preserve cardiac function by modulating the innate immune response.
Collapse
Affiliation(s)
- Michael N Sayegh
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biological Sciences, Tennessee State University, Nashville, TN, United States of America
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Frederick Strobel
- Department of Chemistry, Emory University, Atlanta, GA, United States of America
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
| |
Collapse
|
15
|
Soldozy S, Dalzell C, Skaff A, Ali Y, Norat P, Yagmurlu K, Park MS, Kalani MYS. Reperfusion injury in acute ischemic stroke: Tackling the irony of revascularization. Clin Neurol Neurosurg 2023; 225:107574. [PMID: 36696846 DOI: 10.1016/j.clineuro.2022.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Reperfusion injury is an unfortunate consequence of restoring blood flow to tissue after a period of ischemia. This phenomenon can occur in any organ, although it has been best studied in cardiac cells. Based on cardiovascular studies, neuroprotective strategies have been developed. The molecular biology of reperfusion injury remains to be fully elucidated involving several mechanisms, however these mechanisms all converge on a similar final common pathway: blood brain barrier disruption. This results in an inflammatory cascade that ultimately leads to a loss of cerebral autoregulation and clinical worsening. In this article, the authors present an overview of these mechanisms and the current strategies being employed to minimize injury after restoration of blood flow to compromised cerebral territories.
Collapse
Affiliation(s)
- Sauson Soldozy
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA; Department of Neurosurgery, Westchester Medical Center, Valhalla, NY, USA
| | - Christina Dalzell
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Anthony Skaff
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Yusuf Ali
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Kaan Yagmurlu
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - Min S Park
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, VA, USA
| | - M Yashar S Kalani
- Department of Surgery, University of Oklahoma, and St. John's Neuroscience Institute, Tulsa, OK, USA.
| |
Collapse
|
16
|
Manso AM, Romaine A, Christensen G, Ross RS. Integrins in Cardiac Form, Function, and Disease. BIOLOGY OF EXTRACELLULAR MATRIX 2023:135-183. [DOI: 10.1007/978-3-031-23781-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Nian W, Huang Z, Fu C. Immune cells drive new immunomodulatory therapies for myocardial infarction: From basic to clinical translation. Front Immunol 2023; 14:1097295. [PMID: 36761726 PMCID: PMC9903069 DOI: 10.3389/fimmu.2023.1097295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
The high incidence of heart failure secondary to myocardial infarction (MI) has been difficult to effectively address. MI causes strong aseptic inflammation, and infiltration of different immune cells and changes in the local inflammatory microenvironment play a key regulatory role in ventricular remodeling. Therefore, the possibility of improving the prognosis of MI through targeted immunity has been of interest and importance in MI. However, previously developed immune-targeted therapies have not achieved significant success in clinical trials. Here, we propose that the search for therapeutic targets from different immune cells may be more precise and lead to better clinical translation. Specifically, this review summarizes the role and potential therapeutic targets of various immune cells in ventricular remodeling after MI, especially monocytes/macrophages and neutrophils, as a way to demonstrate the importance and potential of immunomodulatory therapies for MI. In addition, we analyze the reasons for the failure of previous immunomodulatory therapies and the issues that need to be addressed, as well as the prospects and targeting strategies of using immune cells to drive novel immunomodulatory therapies, hoping to advance the development of immunomodulatory therapies by providing evidence and new ideas.
Collapse
Affiliation(s)
- Wenjian Nian
- Department of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Zijian Huang
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Cong Fu
- Department of Cardiology, Yi Ji Shan Hospital affiliated to Wannan Medical College, Wuhu, China.,Anesthesia Laboratory and Training Center, Wannan Medical College, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
18
|
Chalise U, Becirovic‐Agic M, Lindsey ML. The cardiac wound healing response to myocardial infarction. WIREs Mech Dis 2023; 15:e1584. [PMID: 36634913 PMCID: PMC10077990 DOI: 10.1002/wsbm.1584] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
Myocardial infarction (MI) is defined as evidence of myocardial necrosis consistent with prolonged ischemia. In response to MI, the myocardium undergoes a series of wound healing events that initiate inflammation and shift to anti-inflammation before transitioning to tissue repair that culminates in scar formation to replace the region of the necrotic myocardium. The overall response to MI is determined by two major steps, the first of which is the secretion of proteases by infiltrating leukocytes to breakdown extracellular matrix (ECM) components, a necessary step to remove necrotic cardiomyocytes. The second step is the generation of new ECM that comprises the scar; and this step is governed by the cardiac fibroblasts as the major source of new ECM synthesis. The leukocyte component resides in the middle of the two-step process, contributing to both sides as the leukocytes transition from pro-inflammatory to anti-inflammatory and reparative cell phenotypes. The balance between the two steps determines the final quantity and quality of scar formed, which in turn contributes to chronic outcomes following MI, including the progression to heart failure. This review will summarize our current knowledge regarding the cardiac wound healing response to MI, primarily focused on experimental models of MI in mice. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Mediha Becirovic‐Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| |
Collapse
|
19
|
Inflammation in myocardial infarction: roles of mesenchymal stem cells and their secretome. Cell Death Dis 2022; 8:452. [DOI: 10.1038/s41420-022-01235-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/25/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022]
Abstract
AbstractInflammation plays crucial roles in the regulation of pathophysiological processes involved in injury, repair and remodeling of the infarcted heart; hence, it has become a promising target to improve the prognosis of myocardial infarction (MI). Mesenchymal stem cells (MSCs) serve as an effective and innovative treatment option for cardiac repair owing to their paracrine effects and immunomodulatory functions. In fact, transplanted MSCs have been shown to accumulate at injury sites of heart, exerting multiple effects including immunomodulation, regulating macrophages polarization, modulating the activation of T cells, NK cells and dendritic cells and alleviating pyroptosis of non-immune cells. Many studies also proved that preconditioning of MSCs can enhance their inflammation-regulatory effects. In this review, we provide an overview on the current understanding of the mechanisms on MSCs and their secretome regulating inflammation and immune cells after myocardial infarction and shed light on the applications of MSCs in the treatment of cardiac infarction.
Collapse
|
20
|
Li R, Frangogiannis NG. Integrins in cardiac fibrosis. J Mol Cell Cardiol 2022; 172:1-13. [PMID: 35872324 DOI: 10.1016/j.yjmcc.2022.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
Cells sense mechanical stress and changes in their matrix environment through the integrins, a family of heterodimeric surface receptors that bind to extracellular matrix ligands and trigger cytoskeletal remodeling, while transducing a wide range of intracellular signals. Integrins have been extensively implicated in regulation of inflammation, repair and fibrosis in many different tissues. This review manuscript discusses the role of integrin-mediated cascades in myocardial fibrosis. In vitro studies have demonstrated that β1 and αv integrins play an important role in fibrogenic conversion of cardiac fibroblast, acting through direct stimulation of FAK/Src cascades, or via accentuation of growth factor signaling. Fibrogenic actions of αv integrins may be mediated, at least in part, through pericellular activation of latent TGF-β stores. In vivo evidence supporting the role of integrin heterodimers in fibrotic cardiac remodeling is limited to associative evidence, and to experiments using pharmacologic inhibitors, or global loss-of-function approaches. Studies documenting in vivo actions of integrins on fibroblasts using cell-specific strategies are lacking. Integrin effects on leukocytes may also contribute to the pathogenesis of fibrotic myocardial responses by mediating recruitment and activation of fibrogenic macrophages. The profile and role of integrins in cardiac fibrosis may be dependent on the underlying pathologic condition. Considering their cell surface localization and the availability of small molecule inhibitors, integrins may be attractive therapeutic targets for patients with heart failure associated with prominent fibrotic remodeling.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
21
|
Liu W, Cronin CG, Cao Z, Wang C, Ruan J, Pulikkot S, Hall A, Sun H, Groisman A, Chen Y, Vella AT, Hu L, Liang BT, Fan Z. Nexinhib20 Inhibits Neutrophil Adhesion and β 2 Integrin Activation by Antagonizing Rac-1-Guanosine 5'-Triphosphate Interaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1574-1585. [PMID: 36165184 PMCID: PMC9529951 DOI: 10.4049/jimmunol.2101112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 08/03/2022] [Indexed: 11/07/2022]
Abstract
Neutrophils are critical for mediating inflammatory responses. Inhibiting neutrophil recruitment is an attractive approach for preventing inflammatory injuries, including myocardial ischemia-reperfusion (I/R) injury, which exacerbates cardiomyocyte death after primary percutaneous coronary intervention in acute myocardial infarction. In this study, we found out that a neutrophil exocytosis inhibitor Nexinhib20 inhibits not only exocytosis but also neutrophil adhesion by limiting β2 integrin activation. Using a microfluidic chamber, we found that Nexinhib20 inhibited IL-8-induced β2 integrin-dependent human neutrophil adhesion under flow. Using a dynamic flow cytometry assay, we discovered that Nexinhib20 suppresses intracellular calcium flux and β2 integrin activation after IL-8 stimulation. Western blots of Ras-related C3 botulinum toxin substrate 1 (Rac-1)-GTP pull-down assays confirmed that Nexinhib20 inhibited Rac-1 activation in leukocytes. An in vitro competition assay showed that Nexinhib20 antagonized the binding of Rac-1 and GTP. Using a mouse model of myocardial I/R injury, Nexinhib20 administration after ischemia and before reperfusion significantly decreased neutrophil recruitment and infarct size. Our results highlight the translational potential of Nexinhib20 as a dual-functional neutrophil inhibitory drug to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chunxia G Cronin
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT
| | - Ziming Cao
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Chengliang Wang
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Jianbin Ruan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Sunitha Pulikkot
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Alexxus Hall
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Hao Sun
- Department of Medicine, University of California San Diego, La Jolla, CA
| | - Alex Groisman
- Department of Physics, University of California San Diego, La Jolla, CA
| | - Yunfeng Chen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX
- Department of Pathology, University of Texas Medical Branch, Galveston, TX
| | - Anthony T Vella
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; and
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, School of Medicine, UConn Health, Farmington, CT;
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT;
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA
| |
Collapse
|
22
|
Yang XX, Li YY, Gong G, Geng HY. lncRNA260 siRNA Accelerates M2 Macrophage Polarization and Alleviates Oxidative Stress via Inhibiting IL28RA Gene Alternative Splicing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4942519. [PMID: 36193089 PMCID: PMC9525799 DOI: 10.1155/2022/4942519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
The macrophage transformation of inflammatory M1 to anti-inflammatory M2 could be promoted by activating PI3K/AKT signaling pathway. In our previous study, it was found that downregulation of lncRNA260 could ameliorate hypoxic cardiomyocyte injury by regulating IL28RA through the activation of PI3K/AKT signaling pathways. It was suggested that lncRNA260 siRNA could promote the macrophages toward M2 polarization by regulating IL28RA. In this study, lncRNA260 siRNA was used to observe its effect on the polarization of murine bone marrow-derived macrophages (BMDM) and investigate its related mechanisms. lncRNA 260 specific siRNA were designed and synthesized which were transfected into murine BMDM with liposomes. The experiment was divided into three groups: Hypoxia group, Hypoxia+lncRNA 260-specific siRNA transfection group, and Normoxia group. The CD206-APC/CD11b-FITC or CD206-FITC/CD107b (Mac-3) double positive proportions were used to compare the M2 polarization proportions in the hypoxia process by using the immunofluorescence staining method. The p-AKT, Arg 1, PI3KCG, IL28RAV1, and IL28RAV2 protein expression changes were observed by using the western blot method. Compared with the Normoxia group, the M2 proportions were significantly decreased in the Hypoxia group (P < 0.05). Compared with the hypoxia group, the M2 proportions were significantly increased in the Hypoxia+lncRNA260 siRNA transfection group (P < 0.05). In the Hypoxia group, the ratios of Arg 1/β-Actin, p-AKT/β-Actin, PI3KCG/β-Actin, and IL28RAV1/β-Actin were significantly lower than those in the Normoxia group (P < 0.05). After transfection with lncRNA260 siRNA, the ratios of Arg1/β-Actin, p-AKT/β-Actin, PI3KCG/β-Actin, and IL28RAV1/β-Actin were significantly higher than those in the Hypoxia group (P < 0.05). Compared with the Normoxia group, the IL28RAV2/β-Actin in the Hypoxia group was significantly increased (P < 0.05). After transfection with lncRNA260 siRNA, the ratio of IL28RAV2/β-Actin was significantly decreased than that in the Hypoxia group (P < 0.05). lncRNA260 siRNA could promote the M2 polarization of the hypoxia macrophages by reducing the IL28RAV2 alternative splicing variant, which might be related to the activation of the JAK-STAT and PI3K/AKT signaling pathways. It will provide a new strategy for the anti-inflammation, antioxidative stress therapy, and cardiac remodeling after AMI.
Collapse
Affiliation(s)
- Xin-Xing Yang
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Intensive Care Unit, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yan-Yan Li
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Clinical Research Center, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ge Gong
- Department of Gerontology, General Hospital of Eastern Theater Command, Nanjing, China
| | - Hong-Yu Geng
- Department of Intensive Care Unit, Baoding First Central Hospital, Baoding, China
| |
Collapse
|
23
|
Margraf A, Lowell CA, Zarbock A. Neutrophils in acute inflammation: current concepts and translational implications. Blood 2022; 139:2130-2144. [PMID: 34624098 PMCID: PMC9728535 DOI: 10.1182/blood.2021012295] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022] Open
Abstract
Modulation of neutrophil recruitment and function is crucial for targeting inflammatory cells to sites of infection to combat invading pathogens while, at the same time, limiting host tissue injury or autoimmunity. The underlying mechanisms regulating recruitment of neutrophils, 1 of the most abundant inflammatory cells, have gained increasing interest over the years. The previously described classical recruitment cascade of leukocytes has been extended to include capturing, rolling, adhesion, crawling, and transmigration, as well as a reverse-transmigration step that is crucial for balancing immune defense and control of remote organ endothelial leakage. Current developments in the field emphasize the importance of cellular interplay, tissue environmental cues, circadian rhythmicity, detection of neutrophil phenotypes, differential chemokine sensing, and contribution of distinct signaling components to receptor activation and integrin conformations. The use of therapeutics modulating neutrophil activation responses, as well as mutations causing dysfunctional neutrophil receptors and impaired signaling cascades, have been defined in translational animal models. Human correlates of such mutations result in increased susceptibility to infections or organ damage. This review focuses on current advances in the understanding of the regulation of neutrophil recruitment and functionality and translational implications of current discoveries in the field with a focus on acute inflammation and sepsis.
Collapse
Affiliation(s)
- Andreas Margraf
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
- William Harvey Research Institute, Bart's and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
24
|
Secretome of Stressed Peripheral Blood Mononuclear Cells Alters Transcriptome Signature in Heart, Liver, and Spleen after an Experimental Acute Myocardial Infarction: An In Silico Analysis. BIOLOGY 2022; 11:biology11010116. [PMID: 35053121 PMCID: PMC8772778 DOI: 10.3390/biology11010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
Simple Summary Acute myocardial infarction is characterized by impaired coronary blood flow, which leads to cardiac ischemia and, ultimately, compromised heart function. Damage and cellular responses are not limited to the non-perfused area, but rather affect the entire heart, as well as distal organs, such as the liver and spleen. We found that the therapeutic secretome of stressed white blood cells improved short-term and long-term cardiac performance in a porcine infarction model. In order to unravel the molecular events governing secretome-mediated tissue regeneration, we performed transcriptional analyses of the non-perfused, transition, and perfused heart, as well as the liver and spleen 24 h after myocardial infarction. We observed a highly tissue-specific effect of the secretome and, except for the transition zone, a uniform downregulation of pro-inflammatory factors and pathways. Simultaneously, the secretome strongly promoted the expression of genes that are essential for heart function in the non-perfused area. In the liver and spleen, different metabolic processes were induced. Together, our data suggest several plausible mechanisms by which the secretome improves heart function after cardiac ischemia. Deepening our understanding of the molecular processes identified here might uncover further pharmacologic strategies aiming at delimiting adverse cardiac remodeling and sequelae after myocardial infarction. Abstract Acute myocardial infarction (AMI) is a result of cardiac non-perfusion and leads to cardiomyocyte necrosis, inflammation, and compromised cardiac performance. Here, we showed that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) improved heart function in a porcine AMI model and displayed beneficial long- and short-term effects. As an AMI is known to strongly affect gene regulation of the ischemia non-affected heart muscle and distal organs, we employed a transcriptomics approach to further study the immediate molecular events orchestrated using the PBMCsec in myocardium, liver, and spleen 24 h post ischemia. In the infarcted area, the PBMCsec mainly induced genes that were essential for cardiomyocyte function and simultaneously downregulated pro-inflammatory genes. Interestingly, genes associated with pro-inflammatory processes were activated in the transition zone, while being downregulated in the remote zone. In the liver, we observed a pronounced inhibition of immune responses using the PBMCsec, while genes involved in urea and tricarboxylic cycles were induced. The spleen displayed elevated lipid metabolism and reduced immunological processes. Together, our study suggested several types of pharmacodynamics by which the PBMCsec conferred immediate cardioprotection. Furthermore, our data supported the assumption that an AMI significantly affects distal organs, suggesting that a holistic treatment of an AMI, as achieved by PBMCsec, might be highly beneficial.
Collapse
|
25
|
Garcia-Bonilla L, Iadecola C, Anrather J. Inflammation and Immune Response. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Maslov LN, Popov SV, Mukhomedzyanov AV, Naryzhnaya NV, Voronkov NS, Ryabov VV, Boshchenko AA, Khaliulin I, Prasad NR, Fu F, Pei JM, Logvinov SV, Oeltgen PR. Reperfusion Cardiac Injury: Receptors and the Signaling Mechanisms. Curr Cardiol Rev 2022; 18:63-79. [PMID: 35422224 PMCID: PMC9896422 DOI: 10.2174/1573403x18666220413121730] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022] Open
Abstract
It has been documented that Ca2+ overload and increased production of reactive oxygen species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.
Collapse
Affiliation(s)
- Leonid N. Maslov
- Address correspondence to this author at the Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Kyevskskaya 111A, 634012 Tomsk, Russia; Tel. +7 3822 262174; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kauer J, Vogt F, Hagelstein I, Hörner S, Märklin M, Maurer S, Salih HR, Jung G, Zekri L. CD18 Antibody Application Blocks Unwanted Off-Target T Cell Activation Caused by Bispecific Antibodies. Cancers (Basel) 2021; 13:cancers13184596. [PMID: 34572822 PMCID: PMC8467378 DOI: 10.3390/cancers13184596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Bispecific antibodies are a very effective immunotherapy against different types of cancer since they activate T cells in the presence of tumor cells. However, they can cause severe side effects, such as a systemic inflammation called cytokine release syndrome. We aimed to clarify an important mechanism that causes cytokine release syndrome. In cocultures of T cells with endothelial cells or lymphoid cells, application of bispecific antibodies can induce T cell activation and cytokine release in the absence of tumor cells. By blocking the adhesion molecule CD18, this interaction is interrupted and the unwanted T cell activation is diminished. CD18 blockade, however, does not interfere with T cell activation when tumor cells are present. Therefore, CD18 blockade could prevent side effects of bispecific antibodies without decreasing the anti-tumor effect. Abstract T cell-recruiting bispecific antibodies (bsAbs) are successfully used for the treatment of cancer. However, effective treatment with bsAbs is so far hampered by severe side effects, i.e., potentially life-threatening cytokine release syndrome. Off-target T cell activation due to binding of bispecific CD3 antibodies to T cells in the absence of target cells may contribute to excessive cytokine release. We report here, in an in vitro setting, that off-target T cell activation is induced by bsAbs with high CD3 binding affinity and increased by endothelial- or lymphoid cells that act as stimulating bystander cells. Blocking antibodies directed against the adhesion molecules CD18/CD54 or CD2/CD58 markedly reduced this type of off-target T cell activation. CD18 blockade—in contrast to CD2—did not affect the therapeutic activity of various bsAbs. Since CD18 antibodies have been shown to be safely applicable in patients, blockade of this integrin holds promise as a potential target for the prevention of unwanted off-target T cell activation and allows the application of truly effective bsAb doses.
Collapse
Affiliation(s)
- Joseph Kauer
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- Department of Oncology and Hematology, University Clinic Heidelberg, 69118 Heidelberg, Germany
- Correspondence: ; Tel.: +49-06221-56-8611
| | - Fabian Vogt
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
| | - Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
| | - Sebastian Hörner
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
| | - Stefanie Maurer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
| | - Gundram Jung
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
| | - Latifa Zekri
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (F.V.); (S.H.); (G.J.); (L.Z.)
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (I.H.); (M.M.); (S.M.); (H.R.S.)
- DFG Cluster of Excellence 2180 ‘Image-Guided and Functional Instructed Tumor Therapy’ (iFIT), Eberhard Karls University, 72076 Tübingen, Germany
| |
Collapse
|
28
|
Wang Y, Zhang H, Wang Z, Wei Y, Wang M, Liu M, Wang X, Jiang Y, Shi G, Zhao D, Yang Z, Ren Z, Li J, Zhang Z, Wang Z, Zhang B, Zong B, Lou X, Liu C, Wang Z, Zhang H, Tao N, Li X, Zhang X, Guo Y, Ye Y, Qi Y, Li H, Wang M, Guo R, Cheng G, Li S, Zhang J, Liu G, Chai L, Lou Q, Li X, Cui X, Gao E, Dong Z, Hu Y, Chen YH, Ma Y. Blocking the death checkpoint protein TRAIL improves cardiac function after myocardial infarction in monkeys, pigs, and rats. Sci Transl Med 2021; 12:12/540/eaaw3172. [PMID: 32321866 DOI: 10.1126/scitranslmed.aaw3172] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 06/26/2019] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
Abstract
Myocardial infarction (MI) is a leading cause of death worldwide for which there is no cure. Although cardiac cell death is a well-recognized pathological mechanism of MI, therapeutic blockade of cell death to treat MI is not straightforward. Death receptor 5 (DR5) and its ligand TRAIL [tumor necrosis factor (TNF)-related apoptosis-inducing ligand] are up-regulated in MI, but their roles in pathological remodeling are unknown. Here, we report that blocking TRAIL with a soluble DR5 immunoglobulin fusion protein diminished MI by preventing cardiac cell death and inflammation in rats, pigs, and monkeys. Mechanistically, TRAIL induced the death of cardiomyocytes and recruited and activated leukocytes, directly and indirectly causing cardiac injury. Transcriptome profiling revealed increased expression of inflammatory cytokines in infarcted heart tissue, which was markedly reduced by TRAIL blockade. Together, our findings indicate that TRAIL mediates MI directly by targeting cardiomyocytes and indirectly by affecting myeloid cells, supporting TRAIL blockade as a potential therapeutic strategy for treating MI.
Collapse
Affiliation(s)
- Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Mingli Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Meichen Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xuance Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China.,Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Yinan Jiang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Gongning Shi
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Dongmei Zhao
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhenkai Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zhenfeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Bei Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Beibei Zong
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xueke Lou
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Chengguo Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Zihui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hao Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Ningya Tao
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xuefang Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xingkun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yafei Guo
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yang Ye
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Yu Qi
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Man Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Rongxin Guo
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Guanchang Cheng
- Henan University affiliated Huaihe Hospital, Kaifeng 475004, P.R. China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Guangchao Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Qiang Lou
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xia Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Erhe Gao
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cell and Molecular Immunology, School of Medical Sciences, Henan University, Kaifeng 475004, P.R. China.
| |
Collapse
|
29
|
Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochem Pharmacol 2021; 190:114597. [PMID: 33965393 DOI: 10.1016/j.bcp.2021.114597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
Myocardial infarction (MI) is one of the major contributors to cardiovascular morbidity and mortality. Excess inflammation significantly contributes to cardiac remodeling and heart failure after MI. Accumulating evidence has shown the central role of cellular metabolism in regulating the differentiation and function of cells. Metabolic rewiring is particularly relevant for proinflammatory responses induced by ischemia. Hypoxia reduces mitochondrial oxidative phosphorylation (OXPHOS) and induces increased reliance on glycolysis. Moreover, activation of a proinflammatory transcriptional program is associated with preferential glucose metabolism in leukocytes. An improved understanding of the mechanisms that regulate metabolic adaptations holds the potential to identify new metabolic targets and strategies to reduce ischemic cardiac damage, attenuate excess local inflammation and ultimately prevent the development of heart failure. Among possible drug targets, glucose transporter 1 (GLUT1) gained considerable interest considering its pivotal role in regulating glucose availability in activated leukocytes and the availability of small molecules that selectively inhibit it. Therefore, we summarize current evidence on the role of GLUT1 in leukocytes (focusing on macrophages and T cells) and non-leukocytes, including cardiomyocytes, endothelial cells and fibroblasts regarding ischemic heart disease. Beyond myocardial infarction, we can foresee the role of GLUT1 blockers as a possible pharmacological approach to limit pathogenic inflammation in other conditions driven by excess sterile inflammation.
Collapse
|
30
|
Pluijmert NJ, Atsma DE, Quax PHA. Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Front Cardiovasc Med 2021; 8:647785. [PMID: 33996944 PMCID: PMC8113407 DOI: 10.3389/fcvm.2021.647785] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Following acute occlusion of a coronary artery causing myocardial ischemia and implementing first-line treatment involving rapid reperfusion, a dynamic and balanced inflammatory response is initiated to repair and remove damaged cells. Paradoxically, restoration of myocardial blood flow exacerbates cell damage as a result of myocardial ischemia-reperfusion (MI-R) injury, which eventually provokes accelerated apoptosis. In the end, the infarct size still corresponds to the subsequent risk of developing heart failure. Therefore, true understanding of the mechanisms regarding MI-R injury, and its contribution to cell damage and cell death, are of the utmost importance in the search for successful therapeutic interventions to finally prevent the onset of heart failure. This review focuses on the role of innate immunity, chemokines, cytokines, and inflammatory cells in all three overlapping phases following experimental, mainly murine, MI-R injury known as the inflammatory, reparative, and maturation phase. It provides a complete state-of-the-art overview including most current research of all post-ischemic processes and phases and additionally summarizes the use of immunomodulatory therapies translated into clinical practice.
Collapse
Affiliation(s)
- Niek J Pluijmert
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
31
|
Kologrivova I, Shtatolkina M, Suslova T, Ryabov V. Cells of the Immune System in Cardiac Remodeling: Main Players in Resolution of Inflammation and Repair After Myocardial Infarction. Front Immunol 2021; 12:664457. [PMID: 33868315 PMCID: PMC8050340 DOI: 10.3389/fimmu.2021.664457] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The burden of heart failure (HF), developing after myocardial infarction MI, still represents a major issue in clinical practice. Failure of appropriate resolution of inflammation during post-myocardial injury is associated with unsuccessful left ventricular remodeling and underlies HF pathogenesis. Cells of the immune system have been shown to mediate both protective and damaging effects in heart remodeling. This ambiguity of the role of the immune system and inconsistent results of the recent clinical trials question the benefits of anti-inflammatory therapies during acute MI. The present review will summarize knowledge of the roles that different cells of the immune system play in the process of post-infarct cardiac healing. Data on the phenotype, active molecules and functions of the immune cells, based on the results of both experimental and clinical studies, will be provided. For some cellular subsets, such as macrophages, neutrophils, dendritic cells and lymphocytes, an anti-inflammatory activity has been attributed to the specific subpopulations. Activity of other cells, such as eosinophils, mast cells, natural killer (NK) cells and NKT cells has been shown to be highly dependent of the signals created by micro-environment. Also, new approaches for classification of cellular phenotypes based on the single-cell RNA sequencing allow better understanding of the phenotype of the cells involved in resolution of inflammation. Possible perspectives of immune-mediated therapy for AMI patients are discussed in the conclusion. We also outline unresolved questions that need to be solved in order to implement the current knowledge on the role of the immune cells in post-MI tissue repair into practice.
Collapse
Affiliation(s)
- Irina Kologrivova
- Department of Clinical Laboratory Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Marina Shtatolkina
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Tatiana Suslova
- Department of Clinical Laboratory Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav Ryabov
- Department of Emergency Cardiology, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia.,Division of Cardiology, Department of Professional Development and Retraining, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
32
|
Pharmacologic Prevention of Myocardial Ischemia-Reperfusion Injury in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. J Cardiovasc Pharmacol 2021; 77:430-449. [PMID: 33416260 DOI: 10.1097/fjc.0000000000000980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Establishing efficient perfusion into the myocardium is the main purpose in patients with acute coronary syndrome, but the process of reperfusion is not without risk and can damage the myocardium paradoxically. Unfortunately, there is no effective treatment for reperfusion injury, and efforts to find an efficient preventive approach are still ongoing. In the past 3 decades, there have been many successful animal studies on how to prevent reperfusion injury; nonetheless, translation to the clinical setting has almost always proven disappointing. In this article, we review clinical studies on the prevention of reperfusion injury in patients with acute coronary syndrome undergoing primary percutaneous coronary intervention in a pharmacologic-based approach. We categorize all the agents that are evaluated for the prevention of myocardial reperfusion injury based on their mechanisms of action into 5 groups: drugs that can reduce oxidative stress, drugs that can affect cellular metabolism, rheological agents that target microvascular obstruction, anti-inflammatory agents, and agents with mixed mechanisms of action. Then, review all the clinical studies of these agents in the setting of primary percutaneous coronary intervention. Finally, we will discuss the possible reasons for the failure in translation of studies into practice and propose potential solutions to overcome this problem.
Collapse
|
33
|
Marchini T, Mitre LS, Wolf D. Inflammatory Cell Recruitment in Cardiovascular Disease. Front Cell Dev Biol 2021; 9:635527. [PMID: 33681219 PMCID: PMC7930487 DOI: 10.3389/fcell.2021.635527] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, the main underlying pathology for myocardial infarction and stroke, is a chronic inflammatory disease of middle-sized to large arteries that is initiated and maintained by leukocytes infiltrating into the subendothelial space. It is now clear that the accumulation of pro-inflammatory leukocytes drives progression of atherosclerosis, its clinical complications, and directly modulates tissue-healing in the infarcted heart after myocardial infarction. This inflammatory response is orchestrated by multiple soluble mediators that enhance inflammation systemically and locally, as well as by a multitude of partially tissue-specific molecules that regulate homing, adhesion, and transmigration of leukocytes. While numerous experimental studies in the mouse have refined our understanding of leukocyte accumulation from a conceptual perspective, only a few anti-leukocyte therapies have been directly validated in humans. Lack of tissue-tropism of targeted factors required for leukocyte accumulation and unspecific inhibition strategies remain the major challenges to ultimately translate therapies that modulate leukocytes accumulation into clinical practice. Here, we carefully describe receptor and ligand pairs that guide leukocyte accumulation into the atherosclerotic plaque and the infarcted myocardium, and comment on potential future medical therapies.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Lucía Sol Mitre
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Hess A, Thackeray JT, Wollert KC, Bengel FM. Radionuclide Image-Guided Repair of the Heart. JACC Cardiovasc Imaging 2020; 13:2415-2429. [DOI: 10.1016/j.jcmg.2019.11.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 01/12/2023]
|
35
|
Richart AL, Reddy M, Khalaji M, Natoli AL, Heywood SE, Siebel AL, Lancaster GL, Murphy AJ, Carey AL, Drew BG, Didichenko SA, Navdaev AV, Kingwell BA. Apo AI Nanoparticles Delivered Post Myocardial Infarction Moderate Inflammation. Circ Res 2020; 127:1422-1436. [PMID: 32951519 DOI: 10.1161/circresaha.120.316848] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE Decades of research have examined immune-modulatory strategies to protect the heart after an acute myocardial infarction and prevent progression to heart failure but have failed to translate to clinical benefit. OBJECTIVE To determine anti-inflammatory actions of n-apo AI (Apo AI nanoparticles) that contribute to cardiac tissue recovery after myocardial infarction. METHODS AND RESULTS Using a preclinical mouse model of myocardial infarction, we demonstrate that a single intravenous bolus of n-apo AI (CSL111, 80 mg/kg) delivered immediately after reperfusion reduced the systemic and cardiac inflammatory response. N-apo AI treatment lowered the number of circulating leukocytes by 30±7% and their recruitment into the ischemic heart by 25±10% (all P<5.0×10-2). This was associated with a reduction in plasma levels of the clinical biomarker of cardiac injury, cardiac troponin-I, by 52±17% (P=1.01×10-2). N-apo AI reduced the cardiac expression of chemokines that attract neutrophils and monocytes by 60% to 80% and lowered surface expression of integrin CD11b on monocytes by 20±5% (all P<5.0×10-2). Fluorescently labeled n-apo AI entered the infarct and peri-infarct regions and colocalized with cardiomyocytes undergoing apoptosis and with leukocytes. We further demonstrate that n-apo AI binds to neutrophils and monocytes, with preferential binding to the proinflammatory monocyte subtype and partially via SR-BI (scavenger receptor BI). In patients with type 2 diabetes, we also observed that intravenous infusion of the same n-apo AI (CSL111, 80 mg/kg) similarly reduced the level of circulating leukocytes by 12±5% (all P<5.0×10-2). CONCLUSIONS A single intravenous bolus of n-apo AI delivered immediately post-myocardial infarction reduced the systemic and cardiac inflammatory response through direct actions on both the ischemic myocardium and leukocytes. These data highlight the anti-inflammatory effects of n-apo AI and provide preclinical support for investigation of its use for management of acute coronary syndromes in the setting of primary percutaneous coronary interventions.
Collapse
Affiliation(s)
- Adele L Richart
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Medini Reddy
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Mina Khalaji
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Alaina L Natoli
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Sarah E Heywood
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | | | - Graeme L Lancaster
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Andrew L Carey
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.)
| | | | | | - Bronwyn A Kingwell
- Baker Heart and Diabetes Institute, Melbourne, Australia (A.L.R., M.R., M.K., A.L.N., S.E.H., G.L.L., A.J.M., B.G.D., B.A.K.).,Department of Physiology (B.A.K.), Monash University, Melbourne, Australia.,School of Medicine (B.A.K.), Monash University, Melbourne, Australia.,CSL Ltd, Bio21, Parkville, Australia (B.A.K.)
| |
Collapse
|
36
|
Rout A, Tantry US, Novakovic M, Sukhi A, Gurbel PA. Targeted pharmacotherapy for ischemia reperfusion injury in acute myocardial infarction. Expert Opin Pharmacother 2020; 21:1851-1865. [PMID: 32659185 DOI: 10.1080/14656566.2020.1787987] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Achieving reperfusion immediately after acute myocardial infarction improves outcomes; despite this, patients remain at a high risk for mortality and morbidity at least for the first year after the event. Ischemia-reperfusion injury (IRI) has a complex pathophysiology and plays an important role in myocardial tissue injury, repair, and remodeling. AREAS COVERED In this review, the authors discuss the various mechanisms and their pharmacological agents currently available for reducing myocardial ischemia-reperfusion injury (IRI). They review important original investigations and trials in various clinical databases for treatments targeting IRI. EXPERT OPINION Encouraging results observed in many preclinical studies failed to show similar success in attenuating myocardial IRI in large-scale clinical trials. Identification of critical risk factors for IRI and targeting them individually rather than one size fits all approach should be the major focus of future research. Various newer therapies like tocilizumab, anakinra, colchicine, revacept, and therapies targeting the reperfusion injury salvage kinase pathway, survivor activating factor enhancement, mitochondrial pathways, and angiopoietin-like peptide 4 hold promise for the future.
Collapse
Affiliation(s)
- Amit Rout
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Marko Novakovic
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Ajaypaul Sukhi
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research and Drug Development, Sinai Hospital of Baltimore, Lifebridge Health , Baltimore, MD, USA
| |
Collapse
|
37
|
Behrouzi B, Weyers JJ, Qi X, Barry J, Rabadia V, Manca D, Connelly J, Spino M, Wood JC, Strauss BH, Wright GA, Ghugre NR. Action of iron chelator on intramyocardial hemorrhage and cardiac remodeling following acute myocardial infarction. Basic Res Cardiol 2020; 115:24. [PMID: 32140789 DOI: 10.1007/s00395-020-0782-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
Intramyocardial hemorrhage is an independent predictor of adverse outcomes in ST-segment elevation myocardial infarction (STEMI). Iron deposition resulting from ischemia-reperfusion injury (I/R) is pro-inflammatory and has been associated with adverse remodeling. The role of iron chelation in hemorrhagic acute myocardial infarction (AMI) has never been explored. The purpose of this study was to investigate the cardioprotection offered by the iron-chelating agent deferiprone (DFP) in a porcine AMI model by evaluating hemorrhage neutralization and subsequent cardiac remodeling. Two groups of animals underwent a reperfused AMI procedure: control and DFP treated (N = 7 each). A comprehensive MRI examination was performed in healthy state and up to week 4 post-AMI, followed by histological assessment. Infarct size was not significantly different between the two groups; however, the DFP group demonstrated earlier resolution of hemorrhage (by T2* imaging) and edema (by T2 imaging). Additionally, ventricular enlargement and myocardial hypertrophy (wall thickness and mass) were significantly smaller with DFP, suggesting reduced adverse remodeling, compared to control. The histologic results were consistent with the MRI findings. To date, there is no effective targeted therapy for reperfusion hemorrhage. Our proof-of-concept study is the first to identify hemorrhage-derived iron as a therapeutic target in I/R and exploit the cardioprotective properties of an iron-chelating drug candidate in the setting of AMI. Iron chelation could potentially serve as an adjunctive therapy in hemorrhagic AMI.
Collapse
Affiliation(s)
- Bita Behrouzi
- Department of Physics and Physiology, University of Toronto, Toronto, ON, Canada
| | - Jill J Weyers
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Xiuling Qi
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jennifer Barry
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | | | | | - Michael Spino
- ApoPharma Inc, Toronto, ON, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - John C Wood
- Childrens Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - Bradley H Strauss
- Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Graham A Wright
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nilesh R Ghugre
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada. .,Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Tokutome M, Matoba T, Nakano Y, Okahara A, Fujiwara M, Koga JI, Nakano K, Tsutsui H, Egashira K. Peroxisome proliferator-activated receptor-gamma targeting nanomedicine promotes cardiac healing after acute myocardial infarction by skewing monocyte/macrophage polarization in preclinical animal models. Cardiovasc Res 2020; 115:419-431. [PMID: 30084995 DOI: 10.1093/cvr/cvy200] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 08/01/2018] [Indexed: 01/07/2023] Open
Abstract
Aims Monocyte-mediated inflammation is a major mechanism underlying myocardial ischaemia-reperfusion (IR) injury and the healing process after acute myocardial infarction (AMI). However, no definitive anti-inflammatory therapies have been developed for clinical use. Pioglitazone, a peroxisome proliferator-activated receptor-gamma (PPARγ) agonist, has unique anti-inflammatory effects on monocytes/macrophages. Here, we tested the hypothesis that nanoparticle (NP)-mediated targeting of pioglitazone to monocytes/macrophages ameliorates IR injury and cardiac remodelling in preclinical animal models. Methods and results We formulated poly (lactic acid/glycolic acid) NPs containing pioglitazone (pioglitazone-NPs). In a mouse IR model, these NPs were delivered predominantly to circulating monocytes and macrophages in the IR heart. Intravenous treatment with pioglitazone-NPs at the time of reperfusion attenuated IR injury. This effect was abrogated by pre-treatment with the PPARγ antagonist GW9662. In contrast, treatment with a pioglitazone solution had no therapeutic effects on IR injury. Pioglitazone-NPs inhibited Ly6Chigh inflammatory monocyte recruitment as well as inflammatory gene expression in the IR hearts. In a mouse myocardial infarction model, intravenous treatment with pioglitazone-NPs for three consecutive days, starting 6 h after left anterior descending artery ligation, attenuated cardiac remodelling by reducing macrophage recruitment and polarizing macrophages towards the pro-healing M2 phenotype. Furthermore, pioglitazone-NPs significantly decreased mortality after MI. Finally, in a conscious porcine model of myocardial IR, pioglitazone-NPs induced cardioprotection from reperfused infarction, thus providing pre-clinical proof of concept. Conclusion NP-mediated targeting of pioglitazone to inflammatory monocytes protected the heart from IR injury and cardiac remodelling by antagonizing monocyte/macrophage-mediated acute inflammation and promoting cardiac healing after AMI.
Collapse
Affiliation(s)
- Masaki Tokutome
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Nakano
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Arihide Okahara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Masaki Fujiwara
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Jun-Ichiro Koga
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Kaku Nakano
- Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kensuke Egashira
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1, Maidashi, Higashi-ku, Fukuoka, Japan.,Department of Cardiovascular Research, Development, and Translational Medicine, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan
| |
Collapse
|
39
|
Konijnenberg LSF, Damman P, Duncker DJ, Kloner RA, Nijveldt R, van Geuns RJM, Berry C, Riksen NP, Escaned J, van Royen N. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res 2020; 116:787-805. [PMID: 31710673 PMCID: PMC7061278 DOI: 10.1093/cvr/cvz301] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/13/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
Early mechanical reperfusion of the epicardial coronary artery by primary percutaneous coronary intervention (PCI) is the guideline-recommended treatment for ST-elevation myocardial infarction (STEMI). Successful restoration of epicardial coronary blood flow can be achieved in over 95% of PCI procedures. However, despite angiographically complete epicardial coronary artery patency, in about half of the patients perfusion to the distal coronary microvasculature is not fully restored, which is associated with increased morbidity and mortality. The exact pathophysiological mechanism of post-ischaemic coronary microvascular dysfunction (CMD) is still debated. Therefore, the current review discusses invasive and non-invasive techniques for the diagnosis and quantification of CMD in STEMI in the clinical setting as well as results from experimental in vitro and in vivo models focusing on ischaemic-, reperfusion-, and inflammatory damage to the coronary microvascular endothelial cells. Finally, we discuss future opportunities to prevent or treat CMD in STEMI patients.
Collapse
Affiliation(s)
- Lara S F Konijnenberg
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Peter Damman
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Dirk J Duncker
- Department of Radiology and Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Robert A Kloner
- Huntington Medical Research Institutes, Pasadena, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robin Nijveldt
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Robert-Jan M van Geuns
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Colin Berry
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
- British Heart Foundation, Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Javier Escaned
- Department of Cardiology, Hospital Clínico San Carlos IDISSC, Universidad Complutense de Madrid, Madrid, Spain
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
40
|
Iking J, Klose J, Staniszewska M, Fendler WP, Herrmann K, Rischpler C. Imaging inflammation after myocardial infarction: implications for prognosis and therapeutic guidance. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:35-50. [PMID: 32077669 DOI: 10.23736/s1824-4785.20.03232-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation after myocardial infarction (MI) has been in the focus of cardiovascular research for several years as it influences the remodeling process of the ischemic heart and thereby critically determines the clinical outcome of the patient. Today, it is well appreciated that inflammation is a crucial necessity for the initiation of the natural wound healing process; however, excessive inflammation can have detrimental effects and might result in adverse ventricular remodeling which is associated with an increased risk of heart failure. Newly emerged imaging techniques facilitate the non-invasive assessment of immune cell infiltration into the ischemic myocardium and can provide greater insight into the underlying complex and dynamic repair mechanisms. Molecular imaging of inflammation in the context of MI may help with stratification of patients at high risk of adverse ventricular remodeling post-MI which may be of diagnostic, therapeutic, and prognostic value. Novel radiopharmaceuticals may additionally provide a way to combine patient monitoring and therapy. In spite of great advances in recent years in the field of imaging sciences, clinicians still need to overcome some obstacles to a wider implementation of inflammation imaging post-MI. This review focuses on inflammation as a molecular imaging target and its potential implication in prognosis and therapeutic guidance.
Collapse
Affiliation(s)
- Janette Iking
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany.,Department of Cardiology I for Coronary and Peripheral Vascular Disease, and Heart Failure, University Hospital Münster, Münster, Germany
| | - Jasmin Klose
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | | | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
41
|
Abstract
Despite an increase in the rates of survival in patients suffering myocardial infarction, as yet there is no therapy specifically targeting ischaemia and reperfusion injury of the myocardium. With a greater understanding of immune activation during infarction, more potential treatment targets are now being identified. The innate immune system is believed to play an important role in the myocardium after ischaemia-driven cardiomyocyte death. The release of intracellular contents including DNA into the extracellular space during necrosis and cell rupture is now believed to create a pro-inflammatory milieu which propagates the inflammatory process. DNA and DNA fragments have been shown to activate the innate immune system by acting as Danger-Associated Molecular Patterns (DAMPs), which act as ligands on toll-like receptors (TLRs). Stimulation of TLRs, in turn, can activate intracellular cell death pathways such as pyroptosis. Here, we review the role of DNA fragments during ischaemia and reperfusion, and assess their potential as a target in the quest to preserve cardiomyocyte viability following myocardial infarction.
Collapse
Affiliation(s)
- Mohammed Shah
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
42
|
Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators Inflamm 2020; 2020:8405370. [PMID: 32410868 PMCID: PMC7204323 DOI: 10.1155/2020/8405370] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia reperfusion syndrome is a complex entity where many inflammatory mediators play different roles, both to enhance myocardial infarction-derived damage and to heal injury. In such a setting, the establishment of an effective therapy to treat this condition has been elusive, perhaps because the experimental treatments have been conceived to block just one of the many pathogenic pathways of the disease, or because they thwart the tissue-repairing phase of the syndrome. Either way, we think that a discussion about the pathophysiology of the disease and the mechanisms of action of some drugs may shed some clarity on the topic.
Collapse
|
43
|
Sezer M, van Royen N, Umman B, Bugra Z, Bulluck H, Hausenloy DJ, Umman S. Coronary Microvascular Injury in Reperfused Acute Myocardial Infarction: A View From an Integrative Perspective. J Am Heart Assoc 2019; 7:e009949. [PMID: 30608201 PMCID: PMC6404180 DOI: 10.1161/jaha.118.009949] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Murat Sezer
- 1 Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | | | - Berrin Umman
- 1 Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Zehra Bugra
- 1 Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| | - Heerajnarain Bulluck
- 3 The Hatter Cardiovascular Institute Institute of Cardiovascular Science University College London London United Kingdom.,4 Papworth Hospital NHS Trust Cambridge United Kingdom
| | - Derek J Hausenloy
- 3 The Hatter Cardiovascular Institute Institute of Cardiovascular Science University College London London United Kingdom.,4 Papworth Hospital NHS Trust Cambridge United Kingdom.,5 National Heart Research Institute Singapore National Heart Centre Singapore Singapore.,6 Cardiovascular and Metabolic Disorders Program Duke-National University of Singapore Singapore.,7 Yong Loo Lin School of Medicine National University Singapore Singapore.,8 The National Institute of Health Research University College London Hospitals Biomedical Research Centre London United Kingdom.,9 Barts Heart Centre St Bartholomew's Hospital London United Kingdom
| | - Sabahattin Umman
- 1 Istanbul Faculty of Medicine Istanbul University Istanbul Turkey
| |
Collapse
|
44
|
Vanhaverbeke M, Vausort M, Veltman D, Zhang L, Wu M, Laenen G, Gillijns H, Moreau Y, Bartunek J, Van De Werf F, Devaux Y, Janssens S, Sinnaeve PR. Peripheral Blood RNA Levels of QSOX1 and PLBD1 Are New Independent Predictors of Left Ventricular Dysfunction After Acute Myocardial Infarction. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002656. [PMID: 31756302 PMCID: PMC6922070 DOI: 10.1161/circgen.119.002656] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND The identification of patients with acute myocardial infarction (MI) at risk of subsequent left ventricular (LV) dysfunction remains challenging, but it is important to optimize therapies. The aim of this study was to determine the unbiased RNA profile in peripheral blood of patients with acute MI and to identify and validate new prognostic markers of LV dysfunction. METHODS We prospectively enrolled a discovery cohort with acute MI (n=143) and performed whole-blood RNA profiling at different time points. We then selected transcripts on admission that related to LV dysfunction at follow-up and validated them by quantitative polymerase chain reaction in the discovery cohort, in an external validation cohort (n=449), and in a representative porcine MI model with cardiac magnetic resonance-based measurements of infarct size and postmortem myocardial pathology (n=33). RESULTS RNA profiling in the discovery cohort showed upregulation of genes involved in chemotaxis, IL (interleukin)-6, and NF-κB (nuclear factor-κB) signaling in the acute phase of MI. Expression levels of the majority of these transcripts paralleled the rise in cardiac troponin T and decayed at 30 days. RNA levels of QSOX1, PLBD1, and S100A8 on admission with MI correlated with LV dysfunction at follow-up. Using quantitative polymerase chain reaction, we confirmed that QSOX1 and PLBD1 predicted LV dysfunction (odds ratio, 2.6 [95% CI, 1.1-6.1] and 3.2 [95% CI, 1.4-7.4]), whereas S100A8 did not. In the external validation cohort, we confirmed QSOX1 and PLBD1 as new independent markers of LV dysfunction (odds ratio, 1.41 [95% CI, 1.06-1.88] and 1.43 [95% CI, 1.08-1.89]). QSOX1 had an incremental predictive value in a model consisting of clinical variables and cardiac biomarkers (including NT-proBNP [N-terminal pro-B-type natriuretic peptide]). In the porcine MI model, whole-blood levels of QSOX1 and PLBD1 related to neutrophil infiltration in the ischemic myocardium in an infarct size-independent manner. CONCLUSIONS Peripheral blood QSOX1 and PLBD1 in acute MI are new independent markers of LV dysfunction post-MI.
Collapse
Affiliation(s)
- Maarten Vanhaverbeke
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Department of Cardiovascular Medicine, University Hospitals Leuven, Belgium (M. Vanhaverbeke, F.V.D.W., S.J., P.R.S.)
| | - Mélanie Vausort
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen (M. Vausort, L.Z., Y.D.)
| | - Denise Veltman
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.)
| | - Lu Zhang
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen (M. Vausort, L.Z., Y.D.)
| | - Ming Wu
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.)
| | - Griet Laenen
- Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven (G.L., Y.M.)
| | - Hilde Gillijns
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.)
| | - Yves Moreau
- Department of Electrical Engineering ESAT, STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven (G.L., Y.M.)
| | - Jozef Bartunek
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Cardiovascular Center, OLV Hospital, Aalst, Belgium (J.B.)
| | - Frans Van De Werf
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Department of Cardiovascular Medicine, University Hospitals Leuven, Belgium (M. Vanhaverbeke, F.V.D.W., S.J., P.R.S.)
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, Strassen (M. Vausort, L.Z., Y.D.)
| | - Stefan Janssens
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Department of Cardiovascular Medicine, University Hospitals Leuven, Belgium (M. Vanhaverbeke, F.V.D.W., S.J., P.R.S.)
| | - Peter R Sinnaeve
- Department of Cardiovascular Sciences (M. Vanhaverbeke, D.V., M.W., H.G., J.B., F.V.D.W., S.J., P.R.S.).,Department of Cardiovascular Medicine, University Hospitals Leuven, Belgium (M. Vanhaverbeke, F.V.D.W., S.J., P.R.S.)
| | | |
Collapse
|
45
|
Thackeray JT, Bengel FM. Molecular Imaging of Myocardial Inflammation With Positron Emission Tomography Post-Ischemia: A Determinant of Subsequent Remodeling or Recovery. JACC Cardiovasc Imaging 2019; 11:1340-1355. [PMID: 30190033 DOI: 10.1016/j.jcmg.2018.05.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 12/20/2022]
Abstract
Inflammation after myocardial ischemia influences ventricular remodeling and repair and has emerged as a therapeutic target. Conventional diagnostic measurements address systemic inflammation but cannot quantify local tissue changes. Molecular imaging facilitates noninvasive assessment of leukocyte infiltration into damaged myocardium. Preliminary experience with 18F-labeled fluorodeoxyglucose ([18F]FDG) demonstrates localized inflammatory cell signal within the infarct territory as an independent predictor of subsequent ventricular dysfunction. Novel targeted radiotracers may provide additional insight into the enrichment of specific leukocyte populations. Challenges to wider implementation of inflammation imaging after myocardial infarction include accurate and reproducible quantification, prognostic value, and capacity to monitor inflammation response to novel treatment. This review describes myocardial inflammation following ischemia as a molecular imaging target and evaluates established and emerging radiotracers for this application. Furthermore, the potential role of inflammation imaging to provide prognostic information, support novel drug and therapeutic research, and assess biological response to cardiac disease is discussed.
Collapse
Affiliation(s)
- James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany.
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
46
|
Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R, Hausenloy DJ. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res 2019; 115:1117-1130. [PMID: 30825305 PMCID: PMC6529904 DOI: 10.1093/cvr/cvz050] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
New therapies are required to reduce myocardial infarct (MI) size and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI), one of the leading causes of death and disability globally. In this regard, the immune cell response to AMI, which comprises an initial pro-inflammatory reaction followed by an anti-inflammatory phase, contributes to final MI size and post-AMI remodelling [changes in left ventricular (LV) size and function]. The transition between these two phases is critical in this regard, with a persistent and severe pro-inflammatory reaction leading to adverse LV remodelling and increased propensity for developing heart failure. In this review article, we provide an overview of the immune cells involved in orchestrating the complex and dynamic inflammatory response to AMI-these include neutrophils, monocytes/macrophages, and emerging players such as dendritic cells, lymphocytes, pericardial lymphoid cells, endothelial cells, and cardiac fibroblasts. We discuss potential reasons for past failures of anti-inflammatory cardioprotective therapies, and highlight new treatment targets for modulating the immune cell response to AMI, as a potential therapeutic strategy to improve clinical outcomes in AMI patients. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Hector A Cabrera-Fuentes
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig University, Ludwigstrasse 23, Giessen, Germany
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, Russia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology) Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B Bronx NY USA
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, Würzburg, Germany
| | - Tomasz Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Świętej Anny 12, Kraków, Poland
- Institute of Cardiovascular and Medical Sciences, University ofGlasgow, University Avenue, Glasgow, UK
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University,Templergraben 55, Aachen, Germany
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Strada Petru Rareș 2, Craiova, Romania
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, Rheinisch Westfälische Technische Hochschule,Templergraben 55, Aachen, Germany
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Rainer Schulz
- Physiologisches Institut Fachbereich Medizin der Justus-Liebig-Universität, Aulweg 129, Giessen, Germany
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st floor, 149 Tottenham Court Road, London, UK
| |
Collapse
|
47
|
Michels da Silva D, Langer H, Graf T. Inflammatory and Molecular Pathways in Heart Failure-Ischemia, HFpEF and Transthyretin Cardiac Amyloidosis. Int J Mol Sci 2019; 20:ijms20092322. [PMID: 31083399 PMCID: PMC6540104 DOI: 10.3390/ijms20092322] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
Elevated pro-inflammatory biomarkers and cytokines are associated with morbidity and mortality in heart failure (HF). Preclinical and clinical studies have shown multiple inflammatory mechanisms causing cardiac remodeling, dysfunction and chronic failure. Therapeutics in trials targeting the immune response in heart failure and its effects did not result in evident benefits regarding clinical endpoints and mortality. This review elaborates pathways of immune cytokines in pathogenesis and worsening of heart failure in clinical and cellular settings. Besides the well-known mechanisms of immune activation and inflammation in atherosclerosis causing ischemic cardiomyopathy or myocarditis, attention is focused on other mechanisms leading to heart failure such as transthyretin (TTR) amyloidosis or heart failure with preserved ejection fraction. The knowledge of the pathogenesis in heart failure and amyloidosis on a molecular and cellular level might help to highlight new disease defining biomarkers and to lead the way to new therapeutic targets.
Collapse
Affiliation(s)
- Diana Michels da Silva
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Harald Langer
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| | - Tobias Graf
- Department of Cardiology, Angiology and Intensive Care, Medicine Medical Clinic II, University Heart Center Lübeck, 23562 Lübeck, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
48
|
LaRocca TJ, Altman P, Jarrah AA, Gordon R, Wang E, Hadri L, Burke MW, Haddad GE, Hajjar RJ, Tarzami ST. CXCR4 Cardiac Specific Knockout Mice Develop a Progressive Cardiomyopathy. Int J Mol Sci 2019; 20:ijms20092267. [PMID: 31071921 PMCID: PMC6539363 DOI: 10.3390/ijms20092267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022] Open
Abstract
Activation of multiple pathways is associated with cardiac hypertrophy and heart failure. We previously published that CXCR4 negatively regulates β-adrenergic receptor (β-AR) signaling and ultimately limits β-adrenergic diastolic (Ca2+) accumulation in cardiac myocytes. In isolated adult rat cardiac myocytes; CXCL12 treatment prevented isoproterenol-induced hypertrophy and interrupted the calcineurin/NFAT pathway. Moreover; cardiac specific CXCR4 knockout mice show significant hypertrophy and develop cardiac dysfunction in response to chronic catecholamine exposure in an isoproterenol-induced (ISO) heart failure model. We set this study to determine the structural and functional consequences of CXCR4 myocardial knockout in the absence of exogenous stress. Cardiac phenotype and function were examined using (1) gated cardiac magnetic resonance imaging (MRI); (2) terminal cardiac catheterization with in vivo hemodynamics; (3) histological analysis of left ventricular (LV) cardiomyocyte dimension; fibrosis; and; (4) transition electron microscopy at 2-; 6- and 12-months of age to determine the regulatory role of CXCR4 in cardiomyopathy. Cardiomyocyte specific-CXCR4 knockout (CXCR4 cKO) mice demonstrate a progressive cardiac dysfunction leading to cardiac failure by 12-months of age. Histological assessments of CXCR4 cKO at 6-months of age revealed significant tissue fibrosis in knockout mice versus wild-type. The expression of atrial naturietic factor (ANF); a marker of cardiac hypertrophy; was also increased with a subsequent increase in gross heart weights. Furthermore, there were derangements in both the number and the size of the mitochondria within CXCR4 cKO hearts. Moreover, CXCR4 cKO mice were more sensitive to catocholamines, their response to β-AR agonist challenge via acute isoproterenol (ISO) infusion demonstrated a greater increase in ejection fraction, dp/dtmax, and contractility index. Interestingly, prior to ISO infusion, there were significant differences in baseline hemodynamics between the CXCR4 cKO compared to littermate controls. However, upon administering ISO, the CXCR4 cKO responded in a robust manner overcoming the baseline hemodynamic deficits reaching WT values supporting our previous data that CXCR4 negatively regulates β-AR signaling. This further supports that, in the absence of the physiologic negative modulation, there is an overactivation of down-stream pathways, which contribute to the development and progression of contractile dysfunction. Our results demonstrated that CXCR4 plays a non-developmental role in regulating cardiac function and that CXCR4 cKO mice develop a progressive cardiomyopathy leading to clinical heart failure.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Perry Altman
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Andrew A Jarrah
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Ron Gordon
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Edward Wang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Lahouaria Hadri
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Mark W Burke
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| | - Georges E Haddad
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10128, USA.
| | - Sima T Tarzami
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
49
|
Puhl SL, Steffens S. Neutrophils in Post-myocardial Infarction Inflammation: Damage vs. Resolution? Front Cardiovasc Med 2019; 6:25. [PMID: 30937305 PMCID: PMC6431642 DOI: 10.3389/fcvm.2019.00025] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/26/2019] [Indexed: 01/08/2023] Open
Abstract
Inflammation not only plays a crucial role in acute ischemic cardiac injury, but also contributes to post-infarction repair and remodeling. Traditionally, neutrophils have been merely considered as detrimental in the setting of an acute myocardial infarction. However, recently published studies demonstrated that neutrophils might also play an important role in cardiac repair by regulating reparative processes. An emerging concept is that different neutrophil subsets exist, which might exhibit separate functional properties. In support of the existence of distinct neutrophil subsets in the ischemic heart, transcriptional changes in cardiac neutrophils have been reported within the first few days after myocardial infarction. In addition, there is an increasing awareness of sex-specific differences in many physiological and pathophysiological responses, including cardiovascular parameters and inflammation. Of particular interest in this context are recent experimental data dissecting sex-specific differences in neutrophil signaling after myocardial infarction. Unraveling the distinct and possibly stage-dependent properties of neutrophils in cardiac repair may provide new therapeutic strategies in order to improve the clinical outcome for myocardial infarction patients. This review will briefly discuss recent advances in our understanding of the neutrophil functional repertoire and emerging insights of sex-specific differences in post-myocardial infarction inflammatory responses.
Collapse
Affiliation(s)
- Sarah-Lena Puhl
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University (LMU), Munich, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
50
|
Weil BR, Neelamegham S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front Immunol 2019; 10:300. [PMID: 30873166 PMCID: PMC6400985 DOI: 10.3389/fimmu.2019.00300] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
The glycosciences aim to understand the impact of extracellular and intracellular carbohydrate structures on biological function. These glycans primarily fall into three major groups: lipid-linked carbohydrates that are referred to as glycosphingolipids or simply glycolipids; relatively short carbohydrate chains that are often O- or N-linked to proteins yielding common glycoproteins; and extended linear polymeric carbohydrate structures that are referred to as glycosaminoglycans (GAGs). Whereas, the impact of such carbohydrate structures has been extensively examined in cancer biology, their role in acute and chronic heart disease is less studied. In this context, a growing body of evidence indicates that glycans play an important role in immune mediated cell recruitment to damaged heart tissue to initiate wound healing and repair after injury. This is particularly important following ischemia and reperfusion that occurs in the heart in the setting of acute myocardial infarction. Here, immune system-mediated repair of the damaged myocardium plays a critical role in determining post-infarction ventricular remodeling, cardiac function, and patient outcome. Further, alterations in immune cell activity can promote the development of heart failure. The present review summarizes our current understanding of the phases of immune-mediated repair following myocardial infarction. It discusses what is known regarding glycans in mediating the recruitment of circulating immune cells during the early inflammatory stage of post-infarction repair, with focus on the selectin family of adhesion molecules. It offers future directions for research aimed at utilizing our knowledge of mechanisms underlying immune cell recruitment to either modulate leukocyte recruitment to the injured tissue or enhance the targeted delivery of biologic therapeutics such as stem cells in an attempt to promote repair of the damaged heart.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Chemical & Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|