1
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2025; 71:227-262. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
2
|
Ackermann J, Feuerriegel GC, Vlachopoulos L, Fucentese SF. Influence of Sulcus-Deepening Trochleoplasty on Patellofemoral Cartilage Integrity in Patients With Severe Trochlear Dysplasia at Short-term to Midterm Follow-up: A Case-Control Study. Orthop J Sports Med 2025; 13:23259671251326052. [PMID: 40182561 PMCID: PMC11967219 DOI: 10.1177/23259671251326052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 04/05/2025] Open
Abstract
Background Sulcus-deepening trochleoplasty is a well-established treatment option for patients presenting with severe trochlear dysplasia and patellar instability. However, concerns remain regarding its influence on cartilage integrity in the patellofemoral (PF) joint. Purpose To assess the midterm effect of trochleoplasty on PF cartilage integrity in patients with severe trochlear dysplasia treated for patellar instability. Study Design Cohort study; Level of evidence, 3. Methods A total of 75 patients with high-grade trochlear dysplasia (Dejour types B and C) who underwent patellar stabilizing surgery for patellar instability at a single institution were included. Of these, 42 patients underwent patellar stabilizing surgery without trochleoplasty (group I), while 33 patients underwent thin-flap sulcus-deepening trochleoplasty as part of their surgical treatment (group II). Preoperative and postoperative magnetic resonance imaging scans were retrospectively assessed to evaluate PF cartilage, grading from 0 (intact) to 4 (full-thickness lesion) for the medial, central, and lateral patella as well as the medial, central, and lateral trochlea. Associations between patient-specific characteristics, anatomic parameters, and chondral integrity were also assessed. Results Patients underwent patellar stabilizing surgery at a mean age of 23.2 ± 8.0 years with a body mass index of 25.5 ± 5.0 kg/m2. Postoperative magnetic resonance imaging was performed at a mean of 35.2 ± 26.3 months (range, 6-118 months). Patients in group II were slightly older (25.0 ± 7.5 vs 21.8 ± 8.2 years, respectively; P = .032) and had a significantly higher preoperative tibial tubercle-trochlear groove distance (18.4 ± 4.0 vs 14.1 ± 3.4 mm, respectively; P < .001) and patellar tilt (26.4° ± 12.5° vs 13.2° ± 6.7°, respectively; P < .001) compared with patients in group I. Both groups showed similar preoperative cartilage integrity in the PF joint (not significant). Postoperatively, both groups had similar patellar chondral damage (not significant), but group II showed significantly greater trochlear chondral damage (P = .001 for medial; P < .001 for central; and P = .002 for lateral). In comparison to preoperatively, 92.9% to 97.6% of patients in group I had intact trochlear cartilage or an unchanged status of trochlear cartilage postoperatively compared with 36.4%to 63.6% of patients in group II; the incidence varied depending on the location (P = .001 for medial; P < .001 for central; and P = .008 for lateral). Among all PF parameters, only the postoperative sagittal tibial tubercle-trochlear groove distance was associated with the progression or new occurrence of chondral damage in the medial trochlea (r = 0.232; P = .045). Conclusion The integrity of the PF chondral layer remained unchanged in most patients treated for patellar instability in the setting of trochlear dysplasia. Yet, significantly more patients who underwent trochleoplasty showed a decline in trochlear chondral status at short-term to midterm follow-up.
Collapse
Affiliation(s)
- Jakob Ackermann
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Georg C. Feuerriegel
- Department of Radiology, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lazaros Vlachopoulos
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Sandro F. Fucentese
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Keiser M, Preiss S, Ferguson SJ, Stadelmann VA. High-resolution microCT analysis of sclerotic subchondral bone beneath bone-on-bone wear grooves in severe osteoarthritis. Bone 2025; 193:117388. [PMID: 39761845 DOI: 10.1016/j.bone.2024.117388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/14/2025]
Abstract
Osteoarthritis (OA) is associated with sclerosis, a thickening of the subchondral bone plate, yet little is known about bone adaptations around full-thickness cartilage defects in severe knee OA, particularly beneath bone-on-bone wear grooves. This high-resolution micro-computed tomography (microCT) study aimed to quantify subchondral bone microstructure relative to cartilage defect location, distance from the joint space, and groove depth. Ten tibial plateaus with full-thickness cartilage defects were microCT-scanned to determine defect location and size. Wear groove depth was estimated as the thickness from its deepest point to a surface interpolated from the defect edges. Two 5 × 5 mm specimens were sampled from three regions (defect, edge, and cartilage-covered areas) and two from the contralateral condyle, then scanned at higher resolution. Bone density profiles were analyzed as a function of distance from the joint space to identify cortical and trabecular regions of interest and and compute their respective bone density and microstructure. Cortical bone beneath defects was four times thicker under wear grooves than beneath cartilage. Bone density profiles significantly differed between the three specimen types at depths up to 5 mm. Below defects, cortical porosity was 85 % higher, and trabecular density 14 % higher, than in cartilage-covered specimens. Some trabecular spaces were filled with woven bone-like tissue, forming a new cortical layer. These changes were confined to the defect region and ceased abruptly at the defect edge. No correlation was found between bone microstructural indices and the estimated groove depth. Our findings suggest an ongoing migration of the cortical layer during formation of the groove from its original position into the underlying trabecular bone, a process we termed "trabecular corticalization." Under deeper wear grooves, the new cortical layer exhibited large pores connecting bone marrow to the joint space, suggesting physiological limits to corticalization. These results highlight specific bone adaptations beneath cartilage defects in severe OA and provide insights into the progression of subchondral bone changes under bone-on-bone contact areas.
Collapse
Affiliation(s)
- Meret Keiser
- Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland
| | - Stefan Preiss
- Department of Hip and Knee Surgery, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland
| | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zurich, Gloriastrasse 37/39, 8092 Zürich, Switzerland
| | - Vincent A Stadelmann
- Department of Research and Development, Schulthess Klinik, Lengghalde 2, 8008 Zürich, Switzerland.
| |
Collapse
|
4
|
Hashimoto T, Akagi M, Tsukamoto I, Hashimoto K, Morishita T, Ito T, Goto K. RANKL-mediated osteoclastic subchondral bone loss at a very early stage precedes subsequent cartilage degeneration and uncoupled bone remodeling in a mouse knee osteoarthritis model. J Orthop Surg Res 2025; 20:226. [PMID: 40025588 PMCID: PMC11874437 DOI: 10.1186/s13018-025-05578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Uncoupled bone remodeling in the subchondral bone (SB) has recently been considered as an important process in the progression of knee osteoarthritis (KOA). In this study, we aimed to investigate changes in SB and articular cartilage using a mouse model of destabilization of the medial meniscus (DMM) and determine the effects of bone metabolism on KOA progression. METHODS DMM or sham surgery was performed on the left knees of 40-week-old male wild-type (WT) mice and Tsukuba hypertensive mice (THM), which exhibit high-turnover bone metabolism. Bone volume/tissue volume (BV/TV) and bone mineral density (BMD) in the medial tibial SB were measured longitudinally in vivo using μCT at 0 (immediately after surgery), 1, 2, 4, 8, and 12 weeks postoperatively. Concurrently, histological evaluations of the articular cartilage in the medial tibial plateau were conducted. Furthermore, the number of endo-periosteal tartrate-resistant acid phosphatase-positive osteoclasts, trabecular RANKL-positive osteocytes, and osteocytes in the trabeculae were measured at 0, 1, 2, and 4 weeks. RESULTS In the WT + DMM group, BV/TV and BMD in the SB significantly decreased with time, whereas cartilage degeneration significantly increased. In the THM + DMM group, these changes in BMD and cartilage degeneration were significantly pronounced. Interestingly, in the THM + DMM group, BV/TV significantly decreased up to 4 weeks but then began to increase, although BMD continued to decrease until the 12-week mark. The number of osteoclasts and the percentage of RANKL-positive osteocytes per total number of osteocytes within the total trabecular bone area (%) in the WT + DMM group significantly increased with time, with a significant difference between the WT + DMM and WT + sham groups at 4 weeks. The number of osteocytes in the WT + DMM group significantly decreased with time, and the difference between the WT + DMM and WT + sham groups was significant at 4 weeks postoperatively. These histological changes were significantly enhanced in the THM + DMM group. CONCLUSIONS The results indicate that early-stage osteocyte death in the SB and RANKL-mediated osteoclastic SB loss precede histological cartilage degeneration and contribute to uncoupled bone remodeling at the later stage. Acceleration of disease processes in the THM + DMM group suggests that high-turnover bone metabolism is a potential risk factor for KOA. Maintaining SB integrity and avoiding continuous SB overload may be key strategies for mitigating disease progression.
Collapse
Affiliation(s)
- Teruaki Hashimoto
- Department of Orthopaedic Surgery, Kindai University Hospital, 377-2 Ohno-Higashi, Osaka-Sayama City, Osaka, 589-8511, Japan.
| | - Masao Akagi
- Department of Orthopaedic Surgery, Kindai University Hospital, 377-2 Ohno-Higashi, Osaka-Sayama City, Osaka, 589-8511, Japan
| | - Ichiro Tsukamoto
- Department of Orthopaedic Surgery, Kindai University Hospital, 377-2 Ohno-Higashi, Osaka-Sayama City, Osaka, 589-8511, Japan
| | - Kazuhiko Hashimoto
- Department of Orthopaedic Surgery, Kindai University Hospital, 377-2 Ohno-Higashi, Osaka-Sayama City, Osaka, 589-8511, Japan
| | - Takafumi Morishita
- Department of Orthopaedic Surgery, Kindai University Hospital, 377-2 Ohno-Higashi, Osaka-Sayama City, Osaka, 589-8511, Japan
| | - Tomohiko Ito
- Department of Orthopaedic Surgery, Kindai University Hospital, 377-2 Ohno-Higashi, Osaka-Sayama City, Osaka, 589-8511, Japan
| | - Koji Goto
- Department of Orthopaedic Surgery, Kindai University Hospital, 377-2 Ohno-Higashi, Osaka-Sayama City, Osaka, 589-8511, Japan
| |
Collapse
|
5
|
Tang S, Zhang C, Oo WM, Fu K, Risberg MA, Bierma-Zeinstra SM, Neogi T, Atukorala I, Malfait AM, Ding C, Hunter DJ. Osteoarthritis. Nat Rev Dis Primers 2025; 11:10. [PMID: 39948092 DOI: 10.1038/s41572-025-00594-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 05/09/2025]
Abstract
Osteoarthritis is a heterogeneous whole-joint disease that can cause pain and is a leading cause of disability and premature work loss. The predominant disease risk factors - obesity and joint injury - are well recognized and modifiable. A greater understanding of the complex mechanisms, including inflammatory, metabolic and post-traumatic processes, that can lead to disease and of the pathophysiology of pain is helping to delineate mechanistic targets. Currently, management is primarily focused on alleviating the main symptoms of pain and obstructed function through lifestyle interventions such as self-management programmes, education, physical activity, exercise and weight management. However, lack of adherence to known effective osteoarthritis therapeutic strategies also contributes to the high global disease burden. For those who have persistent symptoms that are compromising quality of life and have not responded adequately to core treatments, joint replacement is an option to consider. The burden imparted by the disease causes a substantial impact on individuals affected in terms of quality of life. For society, this disease is a substantial driver of increased health-care costs and underemployment. This Primer highlights advances and controversies in osteoarthritis, drawing key insights from the current evidence base.
Collapse
Affiliation(s)
- Su'an Tang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Exercise and Rehabilitation Science, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Win Min Oo
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Faculty of Medicine and Health Science, Kolling Institute, University of Sydney, Sydney, Australia
- Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Myanmar
| | - Kai Fu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - May Arna Risberg
- Department of Sport Medicine, Norwegian School Sport Sciences, Oslo, Norway
| | - Sita M Bierma-Zeinstra
- Department of General Practice, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tuhina Neogi
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Inoshi Atukorala
- Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Institute of Exercise and Rehabilitation Science, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| | - David J Hunter
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Rheumatology, Royal North Shore Hospital and Sydney Musculoskeletal Health, Faculty of Medicine and Health Science, Kolling Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Liu Y, Da W, Xu MJ, Xiao CX, Deng T, Zhou SL, Chen XT, Zhou YJ, Tang L, Nie Y, Zeng Y, Xie HQ, Shen B. Single-cell transcriptomics reveals novel chondrocyte and osteoblast subtypes and their role in knee osteoarthritis pathogenesis. Signal Transduct Target Ther 2025; 10:40. [PMID: 39904988 PMCID: PMC11794573 DOI: 10.1038/s41392-025-02136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Research on treating knee osteoarthritis (KOA) is becoming more challenging due to a growing number of younger patients being affected. The pathogenesis of KOA is complex for being a multifactorial disease affecting the entire joint, with remodeling of subchondral bone playing a key role in the degeneration of the overlying cartilage. Therefore, this study constructed a bipedal postmenopausal KOA mouse model to better understand how the interplay between subchondral bone remodeling and cartilage degeneration contributes to KOA development. A single-cell atlas of the osteochondral composite tissue was established. Furthermore, three novel subtypes of chondrocytes, including Smoc2+ angiogenic chondrocytes, Angptl7+ angiogenic chondrocytes, and Col1a1+ osteogenic chondrocytes, were identified in femoral condyles of KOA mice. In addition, the Angptl7+ chondrocytes promoted angiogenesis in the subchondral bone of KOA mice by interacting with endothelial cells via the FGF2-FGFR2 signaling pathway. The number of H-type vessels was increased in the subchondral bone, recruiting osteoprogenitor cells and facilitating osteogenesis in KOA mice. Sparc+ osteoblasts have negatively regulated bone mineralization and osteoblastic differentiation, aggravated the pathological remodeling of subchondral bone, and promoted the progression of KOA. The above findings have offered new targets and opened up an avenue for the therapeutic intervention of KOA.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Jie Xu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chao-Xin Xiao
- Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Deng
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Sheng-Liang Zhou
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Ting Chen
- Animal Laboratory Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yao-Jia Zhou
- Animal Laboratory Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Tang
- Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zeng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Fugazzola MC, De Ruijter M, Veraa S, Plomp S, van Buul W, Hermsen G, van Weeren R. A hybrid repair strategy for full-thickness cartilage defects: Long-term experimental study in eight horses. J Orthop Res 2025; 43:59-69. [PMID: 39292194 PMCID: PMC11615427 DOI: 10.1002/jor.25972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
The objective of this study was to evaluate a non-resorbable implant for the focal repair of chondral defects in eight adult horses with 12-month follow-up. The bi-layered construct composed of a polycarbonate-urethane-urea biomaterial which was printed in 3D fashion onto a bone anchor was implanted into surgically created osteochondral defects into the femoropatellar joints of eight horses. The analysis of post-mortem outcomes were compared to defects treated with microfracture in the same animal on the contralateral femoropatellar jointfemoropatellar joint. The overall macroscopic scoring after 12 months yielded higher scores in the OCI-treated stifles compared to MF treatment (p = 0.09) with better quality and filling of the defect. Histology revealed good anchorage of repair tissue growing into the 3D structure of the implant and histopathology scoring for adjacent native cartilage showed no difference between groups. MRI and micro-CT showed overall less sclerotic reactions in the surrounding bone in the implant group and no foreign body reaction was detected. Biomechanical analysis of the repair tissue revealed a significantly higher peak modulus (p < 0.05) in the implant group (0.74 ± 0.45) compared to the microfracture control group (0.15 ± 0.11). Dynamic loading yielded higher values for the repair tissue overgrowing the implant group (0.23 ± 0.17) compared to the microfracture control (0.06 ± 0.06) (p < 0.05). The bi-layered osteochondral implant provided a safe implant for focal repair of full-thickness osteochondral defects, as no adverse reaction was seen within the joints and the level of degeneration of adjacent cartilage to the repair site was not different compared to that seen in defects treated with microfracture after 12 months.
Collapse
Affiliation(s)
- Maria C. Fugazzola
- Department of Clinical Sciences, Faculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Mylène De Ruijter
- Department of Clinical Sciences, Faculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Stefanie Veraa
- Department of Clinical Sciences, Faculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Saskia Plomp
- Department of Clinical Sciences, Faculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | | | - René van Weeren
- Department of Clinical Sciences, Faculty of Veterinary ScienceUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
8
|
Bonecka J, Turek B, Jankowski K, Borowska M, Jasiński T, Smyth G, Domino M. Relationship between Feline Knee Joint Osteoarthritis and Bone Mineral Density Quantified Using Computed Tomography and Computed Digital Absorptiometry. Animals (Basel) 2024; 14:2615. [PMID: 39272400 PMCID: PMC11394321 DOI: 10.3390/ani14172615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Osteoarthritis (OA), including knee joint OA, is a common chronic condition in cats. In both cats and humans, knee joint OA is characterized radiographically by the presence of osteophytes, enthesiophytes, subchondral sclerosis, and joint space narrowing. However, only in humans have these radiographic signs been reported to increase bone mineral density (BMD). Therefore, this study aims to quantify the volumetric (vBMD) and relative (rBMD) BMD measures of the feline knee joint and compare BMD measures between various severities of OA to test the hypothesized OA-BMD relationship in the knee joint in cats. The 46 feline knee joints were imaged using computed tomography (CT) and conventional radiography supported by the computed digital absorptiometry (CDA) method to obtain vBMD and rBMD, respectively. Both BMD measures were assessed in three regions of interest (ROIs): the distal femur (ROI 1), patella (ROI 2), and proximal tibia (ROI 3). In all locations, vBMD and rBMD showed moderate (ROI 2: r = 0.67, p < 0.0001) to strong (ROI 1: ρ = 0.96, p < 0.0001; ROI 3: r = 0.89, p < 0.0001) positive correlations. Due to differences (p < 0.0001) in the width of the distal femur (17.9 ± 1.21 mm), patella (8.2 ± 0.82 mm), and proximal tibia (19.3 ± 1.16 mm), the rBMD was corrected (corr rBMD) using the thickness coefficient of 0.46 ± 0.04 for ROI 2 and 1.08 ± 0.03 for ROI 3. Regardless of the quantification method used, BMD measures increased linearly from a normal knee joint to severe OA, with differences in BMD between normal and mild to severe knee joint OA. The OA-BMD relationship in the feline knee joint can be preliminarily confirmed.
Collapse
Affiliation(s)
- Joanna Bonecka
- Department of Small Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Bernard Turek
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Krzysztof Jankowski
- Institute of Mechanics and Printing, Warsaw University of Technology, 02-524 Warsaw, Poland
| | - Marta Borowska
- Institute of Biomedical Engineering, Faculty of Mechanical Engineering, Białystok University of Technology, 15-351 Bialystok, Poland
| | - Tomasz Jasiński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| | - Graham Smyth
- Menzies Health Institute Queensland, Griffith University School of Medicine, Southport, QLD 4222, Australia
| | - Małgorzata Domino
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland
| |
Collapse
|
9
|
Hung VT, Dee DT, McGarry MH, Lee TQ. Evaluation of Tibiofemoral Contact Mechanics After a Novel Hybrid Procedure for Femoral Osteochondral Defect Repairs With a Subchondral Implant and Dermal Matrix. Orthop J Sports Med 2024; 12:23259671241266332. [PMID: 39286524 PMCID: PMC11403705 DOI: 10.1177/23259671241266332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background There is a lack of procedures that adequately address the subchondral bone structure and function for reconstructing osteochondral defects in the femoral condyles. Purpose To biomechanically evaluate the tibiofemoral joint contact characteristics before and after reconstruction of femoral condylar osteochondral defects using a novel hybrid reconstructive procedure, which was hypothesized to restore the contact characteristics to the intact condition. Study Design Controlled laboratory study. Methods Tibiofemoral contact areas, contact forces, and mean contact pressures were measured in 8 cadaveric knees (mean age 52 ± 11 years; 6 women, 2 men) using a custom testing system and pressure mapping sensors. Five conditions were tested for each condyle: intact, 8-mm defect, 8-mm repair, 10-mm defect, and 10-mm repair. Medial femoral condylar defects were evaluated at 30° of knee flexion and lateral condylar defects were evaluated at 60° of knee flexion, with compressive loads of 50, 100, and 150 N. The defects were reconstructed with a titanium fenestrated threaded implant countersunk in the subchondral bone and an acellular dermal matrix allograft. Repeated-measures analysis of variance with Bonferroni correction for multiple comparisons was used to compare the results between the 5 testing conditions at each load. Results Medial condylar defects significantly increased mean contact pressure on the lateral side (P < .042), which was restored to the intact levels with repair. The lateral condylar defect decreased the mean contact pressure laterally while increasing the mean pressure medially. The lateral and medial mean contact pressures were restored to intact levels with the 8-mm lateral condylar defect repair. The medial mean contact pressure was restored to intact levels with the 10-mm lateral condylar defect repair. The lateral mean contact pressure decreased compared with the intact state with the lateral condylar 10-mm defect repair. Conclusion Tibiofemoral joint contact pressure was restored to the intact condition after reconstruction of osteochondral defects with dermal allograft matrix and subchondral implants for the repair of both 8- and 10-mm lateral condylar defects as well as 8-mm medial condylar defects but not completely for 10-mm medial condylar defects. Clinical Relevance The novel hybrid procedure for osteochondral defect repair restored tibiofemoral joint contact characteristics to normal in a cadaveric model.
Collapse
Affiliation(s)
- Victor T Hung
- Orthopaedic Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| | - Derek T Dee
- Dee Sports Orthopaedics, Huntington Beach, California, USA
| | - Michelle H McGarry
- Orthopaedic Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| | - Thay Q Lee
- Orthopaedic Biomechanics Laboratory, Congress Medical Foundation, Pasadena, California, USA
| |
Collapse
|
10
|
Hu YJ, Yu YE, Cooper HJ, Shah RP, Geller JA, Lu XL, Shane E, Bathon J, Lane NE, Guo XE. Mechanical and structural properties of articular cartilage and subchondral bone in human osteoarthritic knees. J Bone Miner Res 2024; 39:1120-1131. [PMID: 38887013 DOI: 10.1093/jbmr/zjae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Knee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. Although structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated. We performed comprehensive structural and biomechanical quantification of the cartilage, subchondral bone plate (SBP), and subchondral trabecular bone (STB) using 101 osteochondral cores collected from tibial plateaus of 12 control human cadavers (CT, 5 male/7 female) and 19 patients undergoing total knee replacement (OA, 6 male/13 female). For each sample, we quantified SBP microstructure, plate-and-rod morphological properties of the STB using individual trabecula segmentation, and morphological and compositional properties of the articular cartilage. We also performed indentation testing on each compartment of the osteochondral unit to extract the respective structural-mechanical properties. Cartilage thickness was lower in moderate and severe OA regions, while Osteoarthritis Research Society International score was higher only in severe OA regions. GAG content did not change in any OA region. Aggregate and shear moduli were lower only in severe OA regions, while permeability was lower only in moderate OA regions. In the SBP, thickness and tissue mineral density were higher in moderate and severe OA regions. Tissue modulus of STB was lower in moderate OA regions despite a thicker and more mineralized SBP; this deterioration was not observed in severe OA regions. Regression analysis revealed strong correlations between cartilage and STB properties in CT; these correlations were also found in moderate OA regions but were not observed in severe OA regions. In summary, our findings comprehensively characterize the human OA osteochondral unit. Importantly, uncoupling cartilage and subchondral bone structural-mechanical properties may be a hallmark of OA.
Collapse
Affiliation(s)
- Yizhong Jenny Hu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Y Eric Yu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Herbert J Cooper
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, NY 10032, United States
| | - Roshan P Shah
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, NY 10032, United States
| | - Jeffrey A Geller
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, NY 10032, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, United States
| | - Joan Bathon
- Division of Rheumatology, Department of Medicine, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nancy E Lane
- Division of Rheumatology, Department of Medicine, University of California Davis, Davis, CA 95817, United States
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| |
Collapse
|
11
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
12
|
Xu L, Kazezian Z, Pitsillides AA, Bull AMJ. A synoptic literature review of animal models for investigating the biomechanics of knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1408015. [PMID: 39132255 PMCID: PMC11311206 DOI: 10.3389/fbioe.2024.1408015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic disease largely driven by mechanical factors, causing significant health and economic burdens worldwide. Early detection is challenging, making animal models a key tool for studying its onset and mechanically-relevant pathogenesis. This review evaluate current use of preclinical in vivo models and progressive measurement techniques for analysing biomechanical factors in the specific context of the clinical OA phenotypes. It categorizes preclinical in vivo models into naturally occurring, genetically modified, chemically-induced, surgically-induced, and non-invasive types, linking each to clinical phenotypes like chronic pain, inflammation, and mechanical overload. Specifically, we discriminate between mechanical and biological factors, give a new explanation of the mechanical overload OA phenotype and propose that it should be further subcategorized into two subtypes, post-traumatic and chronic overloading OA. This review then summarises the representative models and tools in biomechanical studies of OA. We highlight and identify how to develop a mechanical model without inflammatory sequelae and how to induce OA without significant experimental trauma and so enable the detection of changes indicative of early-stage OA in the absence of such sequelae. We propose that the most popular post-traumatic OA biomechanical models are not representative of all types of mechanical overloading OA and, in particular, identify a deficiency of current rodent models to represent the chronic overloading OA phenotype without requiring intraarticular surgery. We therefore pinpoint well standardized and reproducible chronic overloading models that are being developed to enable the study of early OA changes in non-trauma related, slowly-progressive OA. In particular, non-invasive models (repetitive small compression loading model and exercise model) and an extra-articular surgical model (osteotomy) are attractive ways to present the chronic natural course of primary OA. Use of these models and quantitative mechanical behaviour tools such as gait analysis and non-invasive imaging techniques show great promise in understanding the mechanical aspects of the onset and progression of OA in the context of chronic knee joint overloading. Further development of these models and the advanced characterisation tools will enable better replication of the human chronic overloading OA phenotype and thus facilitate mechanically-driven clinical questions to be answered.
Collapse
Affiliation(s)
- Luyang Xu
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Zepur Kazezian
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Anthony M. J. Bull
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Centre for Blast Injury Studies, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
Azami P, Ashraf A, Yousefi O, Hosseinpour A, Nasiri A. Impact of treadmill running on distal femoral cartilage thickness: a cross-sectional study of professional athletes and healthy controls. BMC Sports Sci Med Rehabil 2024; 16:104. [PMID: 38711058 PMCID: PMC11071246 DOI: 10.1186/s13102-024-00896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE This present study aimed to assess the impact of treadmill running on distal femoral cartilage thickness. METHODS Professional athletes aged 20 to 40 years with a history of treadmill running (minimum 75 min per week for the past three months or more) and age-, sex-, and body mass index (BMI)-matched healthy controls were recruited. Demographics and clinical features of participants were recorded. Athletes were divided into subgroup 1 with less than 12 months of treadmill running and subgroup 2 with 12 months or more of treadmill running. Distal femoral cartilage thicknesses were measured at the midpoints of the right medial condyle (RMC), right intercondylar area (RIA), right lateral condyle (RLC), left medial condyle (LMC), left intercondylar area (LIA), and left lateral condyle (LLC) via ultrasonography. RESULT A total of 72 athletes (mean age: 29.6 ± 6.6 years) and 72 controls (mean age: 31.9 ± 6.7 years) were enrolled. Athletes had significantly thinner cartilages in the RLC (2.21 ± 0.38 vs. 2.39 ± 0.31 cm, p = 0.002), LLC (2.28 ± 0.37 vs. 2.46 ± 0.35 cm, p = 0.004), and LMC (2.28 ± 0.42 vs. 2.42 ± 0.36 cm, p = 0.039) compared with the control group. Furthermore, cartilage thickness was significantly thinner in subgroup 2 athletes compared with the control group in the RLC (2.13 ± 0.34 vs. 2.39 ± 0.31 cm, p = 0.001), LLC (2.22 ± 0.31 vs. 2.46 ± 0.35 cm, p = 0.005), and LMC (2.21 ± 0.46 vs. 2.42 ± 0.36 cm, p = 0.027); however, subgroup 1 athletes did not have such differences. There was a weak negative correlation between total months of treadmill running and cartilage thickness in the RLC (r = - 0.0236, p = 0.046) and LLC (r = - 0.0233, p = 0.049). No significant correlation was found between the distal femoral cartilage thickness at different sites and the patients' demographic features, including age, BMI, speed and incline of treadmill running, and minutes of running per session and week (p > 0.05). CONCLUSION Compared with healthy controls, professional athletes with a history of long-term high-intensity treadmill running had thinner femoral cartilages. The duration (months) of treadmill running was weakly negatively correlated with distal femoral cartilage thickness. Longitudinal studies with prolonged follow-ups are needed to clarify how treadmill running affects femoral cartilage thickness in athletes.
Collapse
Affiliation(s)
- Pouria Azami
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ashraf
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Yousefi
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Aref Nasiri
- Department of Physical Medicine and Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
14
|
Lee SJ, Jeon O, Lee YB, Alt DS, Ding A, Tang R, Alsberg E. In situ cell condensation-based cartilage tissue engineering via immediately implantable high-density stem cell core and rapidly degradable shell microgels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590385. [PMID: 38712035 PMCID: PMC11071421 DOI: 10.1101/2024.04.20.590385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Formation of chondromimetic human mesenchymal stem cells (hMSCs) condensations typically required in vitro culture in defined environments. In addition, extended in vitro culture in differentiation media over several weeks is usually necessary prior to implantation, which is costly, time consuming and delays clinical treatment. Here, this study reports on immediately implantable core/shell microgels with a high-density hMSC-laden core and rapidly degradable hydrogel shell. The hMSCs in the core formed cell condensates within 12 hours and the oxidized and methacrylated alginate (OMA) hydrogel shells were completely degraded within 3 days, enabling spontaneous and precipitous fusion of adjacent condensed aggregates. By delivering transforming growth factor-β1 (TGF-β1) within the core, the fused condensates were chondrogenically differentiated and formed cartilage microtissues. Importantly, these hMSC-laden core/shell microgels, fabricated without any in vitro culture, were subcutaneously implanted into mice and shown to form cartilage tissue via cellular condensations in the core after 3 weeks. This innovative approach to form cell condensations in situ without in vitro culture that can fuse together with each other and with host tissue and be matured into new tissue with incorporated bioactive signals, allows for immediate implantation and may be a platform strategy for cartilage regeneration and other tissue engineering applications.
Collapse
Affiliation(s)
- Sang Jin Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Oju Jeon
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Yu Bin Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Daniel S. Alt
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106 USA
| | - Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Rui Tang
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| | - Eben Alsberg
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL 60612, USA
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106 USA
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612 USA
| |
Collapse
|
15
|
Yokota S, Ishizu H, Miyazaki T, Takahashi D, Iwasaki N, Shimizu T. Osteoporosis, Osteoarthritis, and Subchondral Insufficiency Fracture: Recent Insights. Biomedicines 2024; 12:843. [PMID: 38672197 PMCID: PMC11048726 DOI: 10.3390/biomedicines12040843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The increased incidence of osteoarthritis (OA), particularly knee and hip OA, and osteoporosis (OP), owing to population aging, have escalated the medical expense burden. Osteoarthritis is more prevalent in older women, and the involvement of subchondral bone fragility spotlights its association with OP. Notably, subchondral insufficiency fracture (SIF) may represent a more pronounced condition of OA pathophysiology. This review summarizes the relationship between OA and OP, incorporating recent insights into SIF. Progressive SIF leads to joint collapse and secondary OA and is associated with OP. Furthermore, the thinning and fragility of subchondral bone in early-stage OA suggest that SIF may be a subtype of OA (osteoporosis-related OA, OPOA) characterized by significant subchondral bone damage. The high bone mineral density observed in OA may be overestimated due to osteophytes and sclerosis and can potentially contribute to OPOA. The incidence of OPOA is expected to increase along with population aging. Therefore, prioritizing OP screening, early interventions for patients with early-stage OA, and fracture prevention measures such as rehabilitation, fracture liaison services, nutritional management, and medication guidance are essential.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomohiro Shimizu
- Department of Orthopedic Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (S.Y.); (H.I.); (T.M.); (D.T.); (N.I.)
| |
Collapse
|
16
|
Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X, Zeng Y. Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies. Orthop Surg 2024; 16:532-550. [PMID: 38296798 PMCID: PMC10925521 DOI: 10.1111/os.13993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoarthritis (OA) is the most common chronic degenerative joint disease in middle-aged and elderly people, characterized by joint pain and dysfunction. Macrophages are key players in OA pathology, and their activation state has been studied extensively. Various studies have suggested that macrophages might respond to stimuli in their microenvironment by changing their phenotypes to pro-inflammatory or anti-inflammatory phenotypes, which is called macrophage polarization. Macrophages accumulate and become polarized (M1 or M2) in many tissues, such as synovium, adipose tissue, bone marrow, and bone mesenchymal tissues in joints, while resident macrophages as well as other stromal cells, including fibroblasts, chondrocytes, and osteoblasts, form the joint and function as an integrated unit. In this study, we focus exclusively on synovial macrophages, adipose tissue macrophages, and osteoclasts, to investigate their roles in the development of OA. We review recent key findings related to macrophage polarization and OA, including pathogenesis, molecular pathways, and therapeutics. We summarize several signaling pathways in macrophage reprogramming related to OA, including NF-κB, MAPK, TGF-β, JAK/STAT, PI3K/Akt/mTOR, and NLRP3. Of note, despite the increasing availability of treatments for osteoarthritis, like intra-articular injections, surgery, and cellular therapy, the demand for more effective clinical therapies has remained steady. Therefore, we also describe the current prospective therapeutic methods that deem macrophage polarization to be a therapeutic target, including physical stimulus, chemical compounds, and biological molecules, to enhance cartilage repair and alleviate the progression of OA.
Collapse
Affiliation(s)
- Zimu Yuan
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Decheng Jiang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Mengzhu Yang
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Jie Tao
- West China Medical SchoolSichuan UniversityChengduChina
- West China HospitalSichuan UniversityChengduChina
| | - Xin Hu
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| | - Xiao Yang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Yi Zeng
- Orthopedic Research Institute, Department of OrthopedicsWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
17
|
Zachariadis CB, Leligou HC, Kourkoulis SK, Magnisalis E, Papagelopoulos PJ, Savvidou OD. Complications Following Intraosseous Injections of Calcium Phosphate Bone Cement in Subchondroplasty. J Long Term Eff Med Implants 2024; 34:15-22. [PMID: 38842229 DOI: 10.1615/jlongtermeffmedimplants.2023049584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
An alternative approach to the major problem of osteoarthritis that has begun to pique the interest of researchers focuses on the pathology of the subchondral bone, its constant cross-talk with the articular cartilage, and its interaction with the joint. The presence of bone marrow lesions, detectable on MRI scans, has proven to be a cause of pain as well as a predictor of the progression of degenerative changes. Subchondroplasty is a relatively new surgical procedure for the treatment of these lesions, in which injectable calcium phosphate bone cement is infused into the affected area percutaneously, under fluoroscopic guidance. In its use as a synthetic scaffold, calcium phosphate bone cement exhibits considerable osteoconductivity, bioabsorbability, and low toxicity, thus showing great potential for restoring subchondral biomechanical properties through structural remodeling. Although published results appear quite promising, there are certain complications that the surgeon should be aware of. We reviewed the published data regarding complications of the procedure, highlighting possible causes according to these data, and suggesting safety measures. Avascular necrosis of the talus is the most reported concern. Postsurgical pain, infection, and continuous wound drainage due to bone substitute material extravasation to the joint or soft tissue are also mentioned, necessitating further standardization of the procedure. There are no reports of permanent postoperative disability or fatal outcomes.
Collapse
Affiliation(s)
| | - Helen C Leligou
- University of West Attica, Dept. of Industrial Design and Production Engineering P. Ralli & Thivon 250, 12244 Aigaleo, Athens, Greece
| | - Stauros K Kourkoulis
- National Technical University of Athens, SAMPS, Department of Mechanics Athens, Attiki, Greece
| | - Evaggelos Magnisalis
- First Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University General Hospital, 12462, Athens, Greece; National Technical University of Athens, SAMPS, Department of Mechanics Athens, Attiki, Greece
| | - Panayiotis J Papagelopoulos
- First Department of Orthopedics, National and Kapodistrian University of Athens, Atikon University General Hospital, Athens, Greece
| | - Olga D Savvidou
- First Department of Orthopedics, National and Kapodistrian University of Athens, Medical School, ATTIKON University General Hospital, GREECE
| |
Collapse
|
18
|
Qu Y, Chen S, Han M, Gu Z, Zhang Y, Fan T, Zeng M, Ruan G, Cao P, Yang Q, Ding C, Zhang Y, Zhu Z. Osteoporosis and osteoarthritis: a bi-directional Mendelian randomization study. Arthritis Res Ther 2023; 25:242. [PMID: 38093316 PMCID: PMC10717893 DOI: 10.1186/s13075-023-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
OBJECTIVE To investigate the causal relationship between low bone mineral density (BMD) and osteoarthritis (OA) using Mendelian randomization (MR) design. METHODS Two-sample bi-directional MR analyses were performed using summary-level information on OA traits from UK Biobank and arcOGEN. Sensitivity analyses including MR-Egger, simple median, weighted median, MR pleiotropy residual sum, and outlier approaches were utilized in conjunction with inverse variance weighting (IVW). Gene ontology (GO) enrichment analyses and expression quantitative trait locus (eQTL) colocalization analyses were used to investigate the potential mechanism and shared genes between osteoporosis (OP) and OA. RESULTS The IVW method revealed that genetically predicted low femoral neck BMD was significantly linked with hip (β = 0.105, 95% CI: 0.023-0.188) and knee OA (β = 0.117, 95% CI: 0.049-0.184), but not with other site-specific OA. Genetically predicted low lumber spine BMD was significantly associated with OA at any sites (β = 0.048, 95% CI: 0.011-0.085), knee OA (β = 0.101, 95% CI: 0.045-0.156), and hip OA (β = 0.150, 95% CI: 0.077-0.224). Only hip OA was significantly linked with genetically predicted reduced total bone BMD (β = 0.092, 95% CI: 0.010-0.174). In the reverse MR analyses, no evidence for a causal effect of OA on BMD was found. GO enrichment analysis and eQTL analysis illustrated that DDN and SMAD-3 were the most prominent co-located genes. CONCLUSIONS These findings suggested that OP may be causally linked to an increased risk of OA, indicating that measures to raise BMD may be effective in preventing OA. More research is required to determine the underlying processes via which OP causes OA.
Collapse
Affiliation(s)
- Yudun Qu
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Shibo Chen
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengling Han
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ziqi Gu
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujie Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianxiang Fan
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Muhui Zeng
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangfeng Ruan
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Yang
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
- Department of Orthopaedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Yan Zhang
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| | - Zhaohua Zhu
- Clinical Research Centre, Zhujiang Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Rayegan H, Nguyen H, Weinans H, Gielis W, Ahmadi Brooghani S, Custers R, van Egmond N, Lindner C, Arbabi V. Automated Radiographic Measurements of Knee Osteoarthritis. Cartilage 2023; 14:413-423. [PMID: 37265053 PMCID: PMC10807738 DOI: 10.1177/19476035231166126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/27/2022] [Accepted: 03/12/2023] [Indexed: 06/03/2023] Open
Abstract
OBJECTIVE Herewith, we report the development of Orthopedic Digital Image Analysis (ODIA) software that is developed to obtain quantitative measurements of knee osteoarthritis (OA) radiographs automatically. Manual segmentation and measurement of OA parameters currently hamper large-cohort analyses, and therefore, automated and reproducible methods are a valuable addition in OA research. This study aims to test the automated ODIA measurements and compare them with available manual Knee Imaging Digital Analysis (KIDA) measurements as comparison. DESIGN This study included data from the CHECK (Cohort Hip and Cohort Knee) initiative, a prospective multicentre cohort study in the Netherlands with 1,002 participants. Knee radiographs obtained at baseline of the CHECK cohort were included and mean medial/lateral joint space width (JSW), minimal JSW, joint line convergence angle (JLCA), eminence heights, and subchondral bone intensities were compared between ODIA and KIDA. RESULTS Of the potential 2,004 radiographs, 1,743 were included for analyses. Poor intraclass correlation coefficients (ICCs) were reported for the JLCA (0.422) and minimal JSW (0.299). The mean medial and lateral JSW, eminence height, and subchondral bone intensities reported a moderate to good ICC (0.7 or higher). Discrepancies in JLCA and minimal JSW between the 2 methods were mostly a problem in the lateral tibia plateau. CONCLUSIONS The current ODIA tool provides important measurements of OA parameters in an automated manner from standard radiographs of the knee. Given the automated and computerized methodology that has very high reproducibility, ODIA is suitable for large epidemiological cohorts with various follow-up time points to investigate structural progression, such as CHECK or the Osteoarthritis Initiative (OAI).
Collapse
Affiliation(s)
- H. Rayegan
- Orthopaedic-BioMechanics Research Group, University of Birjand, Birjand, Iran
- Department of Mechanical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - H.C. Nguyen
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
- 3D Lab, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - H. Weinans
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering (3mE), Delft University of Technology, Delft, The Netherlands
| | - W.P. Gielis
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S.Y. Ahmadi Brooghani
- Department of Mechanical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - R.J.H. Custers
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N. van Egmond
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C. Lindner
- Division of Informatics, Imaging & Data Sciences, The University of Manchester, Manchester, UK
| | - V. Arbabi
- Orthopaedic-BioMechanics Research Group, University of Birjand, Birjand, Iran
- Department of Mechanical Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
- Department of Orthopaedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Abstract
Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Qi-ling Yuan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Mingyi Yang
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Xianjie Wan
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
21
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
22
|
Thoreau L, Morcillo Marfil D, Thienpont E. Periprosthetic fractures after medial unicompartmental knee arthroplasty: a narrative review. Arch Orthop Trauma Surg 2022; 142:2039-2048. [PMID: 34268614 DOI: 10.1007/s00402-021-04063-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION On rare occasions, fractures of the tibial plateau may occur after uni-compartmental knee arthroplasty (UKA) and account for 2% of total UKA failures. The purpose of this narrative review is to identify and discuss potential risk factors that might lead to prevention of this invalidating complication. MATERIALS AND METHODS Electronic database of Pubmed, Scopus, Cochrane and Google Scholar were searched. A total of 457 articles related to the topic were found. Of those, 86 references were included in this narrative review. RESULTS UKA implantation acts as a stress riser in the medial compartment. To avoid fractures, surgeons need to balance load and bone stock. Post-operative lower limb alignment, implant positioning, level of resection and sizing of the tibial tray have a strong influence on load distribution of the tibial bone. Pain on weight-bearing signals bone-load imbalance and acts as an indicator of bone remodeling and should be a trigger for unloading. The first three months after surgery are critical because of transient post-operative osteoporosis and local biomechanical changes. Acquired osteoporosis is a growing concern in the arthroplasty population. Split fractures require internal fixation, while subsidence fractures differ in their management depending of the amount of bone impaction. Loose implants require revision knee arthroplasty. CONCLUSION Peri-prosthetic fracture is a rare, but troublesome event, which can lead to implant failure and revision surgery. Better knowledge of the multifactorial risk factors in association with a thorough surgical technique is key for prevention.
Collapse
Affiliation(s)
- L Thoreau
- Department of Orthopedic Surgery, Cliniques Universistaires Saint Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium.
| | - D Morcillo Marfil
- Department of Orthopedic Surgery, Cliniques Universistaires Saint Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| | - E Thienpont
- Department of Orthopedic Surgery, Cliniques Universistaires Saint Luc, Avenue Hippocrate 10, 1200, Brussels, Belgium
| |
Collapse
|
23
|
Auger JD, Naik AJ, Murakami AM, Gerstenfeld LC, Morgan EF. Spatial assessment of femoral neck bone density and microstructure in hip osteoarthritis. Bone Rep 2022; 16:101155. [PMID: 34984214 PMCID: PMC8693349 DOI: 10.1016/j.bonr.2021.101155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is known to involve profound changes in bone density and microstructure near to, and even distal to, the joint. Critically, however, a full, spatial picture of these abnormalities has not been well documented in a quantitative fashion in hip OA. Here, micro-computed tomography (44.8 μm/voxel) and data-driven computational anatomy were used to generate 3-D maps of the distribution of bone density and microstructure in human femoral neck samples with early (6F/4M, mean age = 51.3 years), moderate (14F/8M, mean age = 60 years), and severe (16F/6M, mean age = 63.3 years) radiographic OA. With increasing severity of radiographic OA, there was decreased cortical bone mineral density (BMD) (p=0.003), increased cortical thickness (p=0.001), increased cortical porosity (p=0.0028), and increased cortical cross-sectional area (p=0.0012, due to an increase in periosteal radius (p=0.018)), with no differences detected in the total femoral neck or trabecular compartment measures. No OA-related region-specific differences were detected through Statistical Parametric Mapping, but there were trends towards decreased tissue mineral density (TMD) in the inferior femoral neck with increasing OA severity (0.050 < p ≤ 0.091), possibly due to osteophytes. Overall, the lack of differences in cortical TMD among radiographic OA groups indicated that the decrease in cortical BMD with increasing OA severity was largely due to the increased cortical porosity rather than decreased tissue mineralization. As porosity is inversely associated with stiffness and strength in cortical bone, increased porosity may offset the effect that increased cortical cross-sectional area would be expected to have on reducing stresses within the femoral neck. The use of high-resolution imaging and quantitative spatial assessment in this study provide insight into the heterogeneous and multi-faceted changes in density and microstructure in hip OA, which have implications for OA progression and fracture risk.
Collapse
Affiliation(s)
| | | | - Akira M. Murakami
- Boston University School of Medicine, Boston, MA, United States of America
| | | | | |
Collapse
|
24
|
Oo WM, Hunter DJ. Repurposed and investigational disease-modifying drugs in osteoarthritis (DMOADs). Ther Adv Musculoskelet Dis 2022; 14:1759720X221090297. [PMID: 35619876 PMCID: PMC9128067 DOI: 10.1177/1759720x221090297] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
In spite of a major public health burden with increasing prevalence, current osteoarthritis (OA) management is largely palliative with an unmet need for effective treatment. Both industry and academic researchers have invested a vast amount of time and financial expense to discover the first diseasing-modifying osteoarthritis drugs (DMOADs), with no regulatory success so far. In this narrative review, we discuss repurposed drugs as well as investigational agents which have progressed into phase II and III clinical trials based on three principal endotypes: bone-driven, synovitis-driven and cartilage-driven. Then, we will briefly describe the recent failures and lessons learned, promising findings from predefined post hoc analyses and insights gained, novel methodologies to enhance future success and steps underway to overcome regulatory hurdles.
Collapse
Affiliation(s)
- Win Min Oo
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Physical Medicine and Rehabilitation, Mandalay General Hospital, University of Medicine, Mandalay, Mandalay, Myanmar
| | - David J. Hunter
- Rheumatology Department, Royal North Shore Hospital, and Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia
| |
Collapse
|
25
|
Ding R, Zhang N, Wang Q, Wang W. Alterations of the Subchondral Bone in Osteoarthritis: Complying with Wolff's law. Curr Rheumatol Rev 2022; 18:178-185. [PMID: 35366779 DOI: 10.2174/1573397118666220401104428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 11/22/2022]
Abstract
Osteoarthritis (OA) is a whole joint disease that is significantly related to abnormal mechanical loads. Subchondral bone alterations, during the evolution course of OA, are considered as a reflection of adaptation of the bone tissue to mechanical loads. However, some of these alterations are taken as detriment and paradoxical. What are these structure, composition, and mechanical property alterations or mechanical functions for are not quite clear. In this review, we evaluate the possibility that these alterations are used for maintaining joint function. With taking excessive load as a risk factor and under conditions of articular cartilage gradually loss its thickness and its function of evenly distributing load on subchondral bone plate, and applying poroelasticity. Moreover, Boussinesq's pressure bulb theory and bone optimal design principles are utilized for bone mechanics. We found that each subchondral bone alteration has its unique mechanical function in resisting loads and maintaining joint function, and these alterations comply with both bone optimal design principles and Wolff's law within a proper range.
Collapse
Affiliation(s)
- Ran Ding
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, 100029, Beijing, P.R.China
| | - Nianfei Zhang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, 100029, Beijing, P.R.China
| | - Qi Wang
- Peking University China-Japan Friendship School of Clinical Medicine, No. 2 Yinghua East Road, Chaoyang District, 100029, Beijing, P.R.China
| | - Weiguo Wang
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, No. 2 Yinghua East Road, Chaoyang District, 100029, Beijing, P.R.China
| |
Collapse
|
26
|
Li Y, Liem Y, Dall'Ara E, Sullivan N, Ahmed H, Blom A, Sharif M. Subchondral bone microarchitecture and mineral density in human osteoarthritis and osteoporosis: A regional and compartmental analysis. J Orthop Res 2021; 39:2568-2580. [PMID: 33751647 DOI: 10.1002/jor.25018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) and osteoporosis (OP) are historically considered to be inversely correlated but there may be an overlap between the pathophysiology of the two diseases. This study aimed to investigate the subchondral bone microarchitecture and matrix mineralization, and the association between them in OA and OP in relation to the degree of cartilage degeneration. Fifty-six osteochondral plugs were collected from 16 OA femoral heads. They were graded on a regional basis according to the stages of cartilage degeneration, as evaluated by a new macroscopic and a modified microscopic grading system. Twenty-one plugs were collected from seven femoral heads with OP. Plugs were scanned by microcomputed tomography and the microarchitectural and mineral properties were obtained for both subchondral plate and trabecular bone. Microarchitecture and material and apparent densities of subchondral bone in OP were similar to regions with early cartilage degeneration but different from regions with advanced cartilage degradation in OA femoral heads. Subchondral trabecular bone was more mineralized than subchondral plate in both OP and OA, and this compartmental difference varied by severity of cartilage degradation. Furthermore, the relationship among trabecular bone volume fraction, tissue mineral density, and apparent bone density was similar in OP and different stages of OA. Subchondral bone microarchitecture and mineral properties in OP are different from OA in a regionalized manner in relation to stages of cartilage degeneration. Both regional and compartmental differences at structural, material, and cellular levels need to be studied to understand the transition of OA subchondral bone from being osteoporotic to sclerotic.
Collapse
Affiliation(s)
- Yunfei Li
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Yulia Liem
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism and Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Niall Sullivan
- Department of Trauma and Orthopaedics, Bristol Royal Infirmary, University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Haroon Ahmed
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashley Blom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute for Health Research Bristol Biomedical Research Centre, University Hospitals Bristol NHS Foundation Trust and University of Bristol, Bristol, UK
| | - Mohammed Sharif
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
27
|
Aizah N, Chong PP, Kamarul T. Early Alterations of Subchondral Bone in the Rat Anterior Cruciate Ligament Transection Model of Osteoarthritis. Cartilage 2021; 13:1322S-1333S. [PMID: 31569963 PMCID: PMC8804754 DOI: 10.1177/1947603519878479] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Advances in research have shown that the subchondral bone plays an important role in the propagation of cartilage loss and progression of osteoarthritis (OA), but whether the subchondral bone changes precede or lead to articular cartilage loss remains debatable. In order to elucidate the subchondral bone and cartilage changes that occur in early OA, an experiment using anterior cruciate ligament transection (ACLT) induced posttraumatic OA model of the rat knee was conducted. DESIGN Forty-two Sprague Dawley rats were divided into 2 groups: the ACLT group and the nonoperated control group. Surgery was conducted on the ACLT group, and subsequently rats from both groups were sacrificed at 1, 2, and 3 weeks postsurgery. Subchondral bone was evaluated using a high-resolution peripheral quantitative computed tomography scanner, while cartilage was histologically evaluated and scored. RESULTS A significant reduction in the subchondral trabecular bone thickness and spacing was found as early as 1 week postsurgery in ACLT rats compared with the nonoperated control. This was subsequently followed by a reduction in bone mineral density and bone fractional volume at week 2, and finally a decrease in the trabecular number at week 3. These changes occurred together with cartilage degeneration as reflected by an increasing Mankin score over all 3 weeks. CONCLUSIONS Significant changes in subchondral bone occur very early in OA concurrent with surface articular cartilage degenerative change suggest that factors affecting bone remodeling and resorption together with cartilage matrix degradation occur very early in the disease.
Collapse
Affiliation(s)
- Nik Aizah
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia,Nik Aizah, National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic
Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603,
Malaysia.
| | - Pan Pan Chong
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Tunku Kamarul
- National Orthopaedic Centre of
Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery,
Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Yue D, Du L, Zhang B, Wu H, Yang Q, Wang M, Pan J. Time-dependently Appeared Microenvironmental Changes and Mechanism after Cartilage or Joint Damage and the Influences on Cartilage Regeneration. Organogenesis 2021; 17:85-99. [PMID: 34806543 DOI: 10.1080/15476278.2021.1991199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cartilage and joint damage easily degenerates cartilage and turns into osteoarthritis (OA), which seriously affects human life and work, and has no cure currently. The temporal and spatial changes of multiple microenvironments upon the damage of cartilage and joint are noticed, including the emergences of inflammation, bone remodeling, blood vessels, and nerves, as well as alterations of extracellular and pericellular matrix, oxygen tension, biomechanics, underneath articular cartilage tissues, and pH value. This review summarizes the existing literatures on microenvironmental changes, mechanisms, and their negative effects on cartilage regeneration following cartilage and joint damage. We conclude that time-dependently rebuilding the multiple normal microenvironments of damaged cartilage is the key for cartilage regeneration after systematic studies for the timing and correlations of various microenvironment changes.
Collapse
Affiliation(s)
- Danyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Lin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Bingbing Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Huan Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Qiong Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Min Wang
- Orthopedic Department, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| |
Collapse
|
29
|
Doyle SE, Snow F, Duchi S, O’Connell CD, Onofrillo C, Di Bella C, Pirogova E. 3D Printed Multiphasic Scaffolds for Osteochondral Repair: Challenges and Opportunities. Int J Mol Sci 2021; 22:12420. [PMID: 34830302 PMCID: PMC8622524 DOI: 10.3390/ijms222212420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.
Collapse
Affiliation(s)
- Stephanie E. Doyle
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Finn Snow
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| | - Serena Duchi
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Cathal D. O’Connell
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
| | - Carmine Onofrillo
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Claudia Di Bella
- ACMD, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia; (S.D.); (C.O.); (C.D.B.)
- Department of Surgery, The University of Melbourne, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Orthopaedics, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Elena Pirogova
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia; (F.S.)
| |
Collapse
|
30
|
Sindhupakorn B, Kidkhunthod P. Structural investigation in subchondral bone of osteoarthritic knee: Phosphorous K-edge XAS. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
32
|
Wang Y, Wu C, Tao J, Zhao D, Jiang X, Tian W. Differential proteomic analysis of tibial subchondral bone from male and female guinea pigs with spontaneous osteoarthritis. Exp Ther Med 2021; 21:633. [PMID: 33968164 PMCID: PMC8097192 DOI: 10.3892/etm.2021.10065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
A proteomic study on the tibial subchondral bone in guinea pigs with spontaneous osteoarthritis was performed to investigate the molecular alterations that occur in early osteoarthritis. A total of 132 healthy Hartley guinea pigs (aged 1 month; 66 female and 66 male) were randomly divided into 11 groups of six. Changes in articular cartilage and tibial subchondral bone were assessed using macroscopic examinations and micro-computed tomography. iTRAQ-integrated liquid chromatography-tandem mass spectrometry was used to identify differentially altered proteins in the tibial subchondral bone between 1- and 3-month-old guinea pigs, which were then validated using western blotting. A gradual progression of cartilage degeneration was observed in the knee joints of the subject animals from 5-11 months. With aging, the tibial subchondral trabecular bone acquired more plate-like and less anisotropic properties, with increased bone mineral density, bone volume, trabecular thickness and numbers. The proteomic study identified 138 and 113 proteins significantly differentially expressed between 3- and 1-month old guinea pigs in both the male and female animals, respectively. Western blotting confirmed the increased expression of osteoblast-associated protein S100 calcium-binding protein A8 (S100A8) and the deregulated expression of osteoclast-associated proteins coronin 1A (CORO1A) and T-cell immune regulator 1 (TCIRG1) in the 3-month old guinea pigs in comparison to the 1-month old guinea pigs. Spontaneous cartilage degeneration in the knee joints of male Hartley guinea pigs tended to be more serious compared with the females during the development of osteoarthritis. Together, the results suggest that osteoblast-associated protein S100A8 and osteoclast-associated proteins CORO1A and TCIRG1 are potentially key regulators of early osteoarthritic development in tibial subchondral bone.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing 100035, P.R. China
| | - Chengai Wu
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing 100035, P.R. China
| | - Jianfeng Tao
- Department of Molecular Orthopedics, Beijing Research Institute of Traumatology and Orthopedics, Beijing 100035, P.R. China
| | - Danhui Zhao
- Animal Laboratory, Beijing Research Institute of Traumatology and Orthopedics, Beijing 100035, P.R. China
| | - Xu Jiang
- Department of Orthopedics, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| | - Wei Tian
- Department of Spine Surgery, Beijing Jishuitan Hospital, Beijing 100035, P.R. China
| |
Collapse
|
33
|
Zhou Z, Deng Z, Liu Y, Zheng Y, Yang S, Lu W, Xiao D, Zhu W. Protective Effect of SIRT1 Activator on the Knee With Osteoarthritis. Front Physiol 2021; 12:661852. [PMID: 33927645 PMCID: PMC8076744 DOI: 10.3389/fphys.2021.661852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA), one of the most common chronic musculoskeletal disorders, is deemed to be correlated with aging. The SIRT1 activator, resveratrol, acts as a crucial regulator of aging and may have a potential therapeutic effect on OA. Rabbit OA models were established through destabilized medial meniscus surgery. A total of 40 healthy male New Zealand rabbits were divided into five groups: control group (sham operation), OA group, as well as low dose (LD), middle dose (MD), and high dose (HD) resveratrol-treated OA groups. 6 weeks after operation, 0.8 ml of normal saline was injected into the knee joints every other day in the control and OA groups, and 0.8 ml of 5, 10, and 15 μmol/L resveratrol was injected into the knee joints every other day in the LD, MD, and HD group, respectively. The rabbits were sacrificed 2 weeks after medication, and the articular cartilage of the knee joint was collected for Micro-CT, histology and Western blot analysis. Obvious articular cartilage lesion and joint space narrowing were detected in the OA group. Compared with the OA group, less osteoarthritic changes were observed in the MD and HD groups. The MD and HD groups had significantly lower bone volume fraction, trabecular number and Mankin scores than the LD and OA groups (p < 0.05). No significant difference was found between the OA and LD groups (p > 0.05). The expressions of SIRT1 and p53 detected by western blot were consistent with the aforementioned findings. Therefore, resveratrol can activate the SIRT1 gene to play a protective role in the OA process by inhibiting chondrocyte apoptosis, trabecular bone number increasing of the subchondral bone, as well as elevation of bone density. It demonstrated the importance of SIRT1 in maintaining articular cartilage health and provided a promising therapeutic intervention in the treatment of OA.
Collapse
Affiliation(s)
- Zhenquan Zhou
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Orthopaedics, Shenzhen Hospital of Southern Medical University, Shenzhen, China.,Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Clinical Medical College, Guangzhou Medical University, Guangzhou, China.,Clinical Medical College, Shenzhen University, Shenzhen, China.,Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China.,Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yuwei Liu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yizi Zheng
- Department of Thyroid and Breast Surgery, Shenzhen Breast Tumor Research Center for Diagnosis and Treatment, National Standardization Center for Breast Cancer Diagnosis and Treatment, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shiwei Yang
- Clinical Medical College, Anhui Medical University, Hefei, China.,Teaching Office, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wei Lu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Deming Xiao
- Clinical Medical College, Guangzhou Medical University, Guangzhou, China
| | - Weimin Zhu
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Clinical Medical College, Guangzhou Medical University, Guangzhou, China.,Clinical Medical College, Shenzhen University, Shenzhen, China.,Clinical Medical College, Guangxi University of Chinese Medicine, Nanning, China.,Clinical Medical College, Anhui Medical University, Hefei, China
| |
Collapse
|
34
|
Hu W, Chen Y, Dou C, Dong S. Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis. Ann Rheum Dis 2021; 80:413-422. [PMID: 33158879 PMCID: PMC7958096 DOI: 10.1136/annrheumdis-2020-218089] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease in the elderly. Although OA has been considered as primarily a disease of the articular cartilage, the participation of subchondral bone in the pathogenesis of OA has attracted increasing attention. This review summarises the microstructural and histopathological changes in subchondral bone during OA progression that are due, at the cellular level, to changes in the interactions among osteocytes, osteoblasts, osteoclasts (OCs), endothelial cells and sensory neurons. Therefore, we focus on how pathological cellular interactions in the subchondral bone microenvironment promote subchondral bone destruction at different stages of OA progression. In addition, the limited amount of research on the communication between OCs in subchondral bone and chondrocytes (CCs) in articular cartilage during OA progression is reviewed. We propose the concept of 'OC-CC crosstalk' and describe the various pathways by which the two cell types might interact. Based on the 'OC-CC crosstalk', we elaborate potential therapeutic strategies for the treatment of OA, including restoring abnormal subchondral bone remodelling and blocking the bridge-subchondral type H vessels. Finally, the review summarises the current understanding of how the subchondral bone microenvironment is related to OA pain and describes potential interventions to reduce OA pain by targeting the subchondral bone microenvironment.
Collapse
Affiliation(s)
- Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
From Pathogenesis to Therapy in Knee Osteoarthritis: Bench-to-Bedside. Int J Mol Sci 2021; 22:ijms22052697. [PMID: 33800057 PMCID: PMC7962130 DOI: 10.3390/ijms22052697] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
Osteoarthritis (OA) is currently the most widespread musculoskeletal condition and primarily affects weight-bearing joints such as the knees and hips. Importantly, knee OA remains a multifactorial whole-joint disease, the appearance and progression of which involves the alteration of articular cartilage as well as the synovium, subchondral bone, ligaments, and muscles through intricate pathomechanisms. Whereas it was initially depicted as a predominantly aging-related and mechanically driven condition given its clear association with old age, high body mass index (BMI), and joint malalignment, more recent research identified and described a plethora of further factors contributing to knee OA pathogenesis. However, the pathogenic intricacies between the molecular pathways involved in OA prompted the study of certain drugs for more than one therapeutic target (amelioration of cartilage and bone changes, and synovial inflammation). Most clinical studies regarding knee OA focus mainly on improvement in pain and joint function and thus do not provide sufficient evidence on the possible disease-modifying properties of the tested drugs. Currently, there is an unmet need for further research regarding OA pathogenesis as well as the introduction and exhaustive testing of potential disease-modifying pharmacotherapies in order to structure an effective treatment plan for these patients.
Collapse
|
36
|
Bone phenotypes in rheumatology - there is more to bone than just bone. BMC Musculoskelet Disord 2020; 21:789. [PMID: 33248451 PMCID: PMC7700716 DOI: 10.1186/s12891-020-03804-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis, rheumatoid arthritis, psoriatic arthritis, and ankylosing spondylitis, all have one clear common denominator; an altered turnover of bone. However, this may be more complex than a simple change in bone matrix and mineral turnover. While these diseases share a common tissue axis, their manifestations in the area of pathology are highly diverse, ranging from sclerosis to erosion of bone in different regions. The management of these diseases will benefit from a deeper understanding of the local versus systemic effects, the relation to the equilibrium of the bone balance (i.e., bone formation versus bone resorption), and the physiological and pathophysiological phenotypes of the cells involved (e.g., osteoblasts, osteoclasts, osteocytes and chondrocytes). For example, the process of endochondral bone formation in chondrocytes occurs exists during skeletal development and healthy conditions, but also in pathological conditions. This review focuses on the complex molecular and cellular taxonomy of bone in the context of rheumatological diseases that alter bone matrix composition and maintenance, giving rise to different bone turnover phenotypes, and how biomarkers (biochemical markers) can be applied to potentially describe specific bone phenotypic tissue profiles.
Collapse
|
37
|
Chu M, Wu P, Hong M, Zeng H, Wong CK, Feng Y, Cai Z, Lu WW. Lingzhi and San-Miao-San with hyaluronic acid gel mitigate cartilage degeneration in anterior cruciate ligament transection induced osteoarthritis. J Orthop Translat 2020; 26:132-140. [PMID: 33437632 PMCID: PMC7773973 DOI: 10.1016/j.jot.2020.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Objective To investigate the mitigate efficacy of Chinese medicine Lingzhi (LZ) and San-Miao-San (SMS) combined with hyaluronic acid (HA)-gel in attenuating cartilage degeneration in traumatic osteoarthritis (OA). Methods The standardized surgery of anterior cruciate ligament transection (ACLT) was made from the medial compartment of right hind limbs of 8-week-old female SD rats and resulted in a traumatic OA. Rats (n = 5/group) were treated once intra-articular injection of 50 μl HA-gel, 50 μl HA-gel+50 μg LZ-SMS, 50 μl of saline+50 μg LZ-SMS and null (ACLT group) respectively, except sham group. Limbs were harvested for μCT scan and histopathological staining 3-month post-treatment. Inflammatory cytokines from plasma and synovial fluid were detected using Immunology Multiplex Assay kit. The putative targets of active compounds in LZ-SMS and known therapeutic targets for OA were combined to construct protein–protein interaction network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was adopted to predict the potential targets and signaling pathway of LZ-SMS in OA through the tool of DAVID Bioinformatics. Results In vivo, HA-gel + LZ-SMS treatment resulted in a higher volume ratio of hyaline cartilage (HC)/calcified cartilage (CC) and HC/Sum (total volume of cartilage), compared to ACLT and HA-gel groups. In addition, histological results showed the elevated cartilage matrix, chondrogenic and osteoblastic signals in HA-gel + LZ-SMS treatment. Treatment also significantly altered subchondral bone (SCB) structure including an increase in BV/TV, Tb.Th, BMD, Conn.Dn, Tb.N, and DA, as well as a significant decrease in Tb.Sp and Po(tot), which implied a protective effect on maintaining the stabilization of tibial SCB microstructure. Furthermore, there was also a down-regulated inflammatory cytokines and upregulated anti-inflammatory cytokine IL-10 in HA+LZ-SMS group. Finally, 64 shared targets from 37 active compounds in LZ-SMS related to the core genes for the development of OA. LZ-SMS has a putative role in regulating inflammatory circumstance through influencing the MAPK signaling pathway. Conclusion Our study elucidated a protective effect of HA-gel + LZ-SMS in mitigating cartilage degradation and putative interaction with targets and signaling pathway for the development of traumatic OA. The translational potential of this article Our results provide a biological rationale for the use of LZ-SMS as a potential candidate for OA treatment.
Collapse
Key Words
- 3D, Three-dimensional
- AC, Articular cartilage
- ACLT, Anterior cruciate ligament transection
- Acan, Aggrecan
- Articular cartilage
- BMD, Bone mineral density
- BV/TV, Bone volume fraction
- CC, Calcified cartilage
- Conn.Dn, Connectivity density
- DA, Degree of anisotropy
- DL, Drug-likeness
- ECM, Extracellular matrix
- FDR, False discovery rate
- GO, Gene ontology
- HA, Hyaluronic acid
- HC, Hyaline cartilage
- Hyaluronic acid gel
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LZ-SMS, Lingzhi-San-Miao-San
- Lingzhi and San-Miao-San
- MZ, Middle zone area of articular cartilage
- NC, Negative control
- OA, Osteoarthritis
- OB, Oral bioavailability
- OMIM, Online Mendelian Inheritance in Man
- Osteoarthritis
- PPI, Protein–protein interaction
- Po(tot), Total porosity
- ROI, Region of Interest
- SC, Superficial cartilage
- SCB, Subchondral bone
- SZ, Superficial zone of articular cartilage
- Subchondral trabecular bone
- Sum, Whole cartilage
- TCM, Traditional Chinese medicine
- TCMSP, Traditional Chinese Medicine Systems Pharmacology Database
- Tb.N, Trabecular number
- Tb.Pf, Trabecular bone pattern factor
- Tb.Sp, Trabecular separation
- Tb.Th, Trabecular thickness
Collapse
Affiliation(s)
- Man Chu
- Faulty of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Ping Wu
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ming Hong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huasong Zeng
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Yu Feng
- Department of Traumatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhe Cai
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China.,Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.,The Joint Center for Infection and Immunity, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China.,The Joint Center for Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, China
| | - William Weijia Lu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| |
Collapse
|
38
|
Shao YJ, Chen X, Chen Z, Jiang HY, Zhong DY, Wang YF, Yang HL, Saijilafu, Luo ZP. Sensory nerves protect from the progression of early stage osteoarthritis in mice. Connect Tissue Res 2020; 61:445-455. [PMID: 31274342 DOI: 10.1080/03008207.2019.1611796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Osteoarthritis (OA) is a chronic degenerative joint disease. Sensory nerves play an important role in bone metabolism and in the progression of inflammation. This study explored the effects of sensory nerve on OA progression at early stage in mice. MATERIALS AND METHODS OA was induced via destabilization of the medial meniscus (DMM) in C57BL/6 mice. Sensory denervation was induced by subcutaneous injection of capsaicin (90 mg/kg) one week prior to DMM. One week after capsaicin injection, sensory denervation in the tibia was confirmed by immunofluorescent staining. Four weeks after DMM, micro-CT scans, histological analysis, and RT-PCR tests were performed to evaluate OA progression. RESULTS Subcutaneous injection of capsaicin successfully induced sensory denervation in tibia. The Osteoarthritis Research Society International (OARSI) score and synovitis score of the capsaicin+DMM group were significantly higher than the score of the vehicle+DMM group. The BV/TV of the tibial subchondral bone in the capsaicin+DMM group was significantly lower than in the vehicle+DMM group. In addition, the level of expression of inflammatory factors in the capsaicin+DMM group was significantly higher than in the vehicle+DMM group. CONCLUSIONS Capsaicin-induced sensory denervation accelerated OA progression at early stage in mice. To put it another way, sensory nerve protects from OA progression at early stage in mice.
Collapse
Affiliation(s)
- Yi-Jie Shao
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Xi Chen
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China
| | - Zhi Chen
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Hua-Ye Jiang
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Dong-Yan Zhong
- Suzhou Gusu District Women & Children Health Care Institution , Suzhou, P.R. China
| | - Yi-Fan Wang
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Hui-Lin Yang
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University , Suzhou, P.R. China
| | - Saijilafu
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China
| | - Zong-Ping Luo
- Orthopedic Institute, Medical College, Soochow University , Suzhou, P.R. China
| |
Collapse
|
39
|
Estimating tissue-level properties of porcine talar subchondral bone. J Mech Behav Biomed Mater 2020; 110:103931. [PMID: 32805501 DOI: 10.1016/j.jmbbm.2020.103931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022]
Abstract
Tissue-level properties of bone play an important role when characterising apparent-level bone biomechanical behaviour and yet little is known about its effect at this hierarchical level. In combination with trabecular morphological data these properties can be used to predict bone strength, which becomes an invaluable tool for clinicians in patient treatment planning. This study developed specimen-specific micro-finite element (μFE) models using validated continuum-level models, containing grayscale-derived material properties, to indirectly establish tissue-level properties of porcine talar subchondral bone. Specimen-specific continuum finite element (hFE) models of subchondral trabecular bone were setup using μCT data of ten cylindrical specimens extracted from juvenile porcine tali. The models were validated using quasi-static uniaxial compression testing. Validated hFE models were used to calibrate the tissue modulus of corresponding μFE models by minimising the difference between the μFE and hFE stiffness values. Key trabecular morphological indices (BV/TV, DA, Conn.D, Tb.Th, EF) were evaluated. Good agreement was observed between hFE models and experiment (CCC = 0.66). Calibrated Etiss was 504 ± 37.65 MPa. Average BV/TV and DA for μFE specimens were 0.37 ± 0.05 and 0.68 ± 0.11, respectively. BV/TV (r2 = 0.667) correlated highly with μFE stiffness. The small intra-specimen variation to tissue-level properties suggests that variations to apparent-level stiffness originate from variations to microarchitecture rather than tissue mechanical properties.
Collapse
|
40
|
Distribution of mechanical strain in equine distal metacarpal subchondral bone: A microCT-based finite element model. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
41
|
Lee YR, Findlay DM, Muratovic D, Gill TK, Kuliwaba JS. Raman microspectroscopy demonstrates reduced mineralization of subchondral bone marrow lesions in knee osteoarthritis patients. Bone Rep 2020; 12:100269. [PMID: 32395569 PMCID: PMC7210419 DOI: 10.1016/j.bonr.2020.100269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Bone marrow lesions (BMLs) are frequently identified by MRI in the subchondral bone in knee osteoarthritis (KOA). BMLs are known to be closely associated with joint pain, loss of the cartilage and structural changes in the subchondral trabecular bone (SCTB). Despite this, understanding of the nature of BMLs at the trabecular tissue level is incomplete. Thus, we used Raman microspectroscopy to examine the biochemical properties of SCTB from KOA patients with presence or absence of BMLs (OA-BML, OA No-BML; respectively), in comparison with age-matched cadaveric non-symptomatic controls (Non-OA CTL). METHODS Tibial plateau (TP) specimens were collected from 19 KOA arthroplasty patients (6-Male, 13-Female; aged 56-74 years). BMLs were identified ex-vivo by MRI, using PDFS- and T1-weighted sequences. The KOA specimens were then categorized into an OA-BML group (n = 12; containing a BML within the medial condyle only) and an OA No-BML group (n = 7; with no BMLs identified in the TP). The control (CTL) group consisted of Non-OA cadaveric TP samples with no BMLs and no macroscopic or microscopic evidence of OA-related changes (n = 8; 5-Male, 3-Female; aged 44-80 years). Confocal Raman microspectroscopy, with high spatial resolution, was used to quantify the biochemical properties of SCTB tissue of both the medial and the lateral condyle in each group. RESULTS The ratios of peak intensity and integrated area of bone matrix mineral (Phosphate (v1), Phosphate (v2) and Phosphate (v4)), to surrogates of the organic phase of bone matrix (Amide I, Proline and Amide III), were calculated. Within the medial compartment, the mineral:organic matrix ratios were significantly lower for OA-BML, compared to Non-OA CTL. These ratios were also significantly lower for the OA-BML medial compartment, compared to the OA-BML lateral compartment. There were no group or compartmental differences for Carbonate:Phosphate (v1, v2 and v4), Amide III (α-helix):Amide III (random-coil), Hydroxyproline:Proline, or Crystallinity. CONCLUSION As measured by Raman microspectroscopy, SCTB tissue in BML zones in KOA is significantly less mineralized than the corresponding zones in individuals without OA. These data are consistent with those obtained using other methods (e.g. Fourier transform infrared spectroscopy; FTIR) and with the increased rate of bone remodeling observed in BML zones. Reduced mineralization may change the biomechanical properties of the trabecular bone in BMLs and the mechanical interaction between subchondral bone and its overlying cartilage, with potential implications for the development and progression of OA.
Collapse
Affiliation(s)
- Yea-Rin Lee
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- School of Pharmacy and Medical Sciences, The University of South Australia, Adelaide, Australia
| | - David M. Findlay
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Dzenita Muratovic
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Tiffany K. Gill
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Julia S. Kuliwaba
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
42
|
Cui C, Zheng L, Fan Y, Zhang J, Xu R, Xie J, Zhou X. Parathyroid hormone ameliorates temporomandibular joint osteoarthritic-like changes related to age. Cell Prolif 2020; 53:e12755. [PMID: 32154622 PMCID: PMC7162802 DOI: 10.1111/cpr.12755] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Ageing could be a contributing factor to the progression of temporomandibular joint osteoarthritis (TMJ OA), whereas its pathogenesis and potential therapeutic strategy have not been comprehensively investigated. MATERIALS AND METHODS We generated ageing mouse models (45-week and 60-week; 12-week mice as control) and intermittently injected 45-week mice with parathyroid hormone (PTH(1-34)) or vehicle for 4 weeks. Cartilage and subchondral bone of TMJ were analysed by microCT, histological and immunostaining. Western blot, qRT-PCR, ChIP, ELISA and immunohistochemical analysis were utilized to examination the mechanism of PTH(1-34)'s function. RESULTS We showed apparent OA-like phenotypes in ageing mice. PTH treatment could ameliorate the degenerative changes and improve bone microarchitecture in the subchondral bone by activating bone remodelling. Moreover, PTH inhibited phosphorylation level of Smad3, which can combine with p16ink4a gene promoter region, resulting in reduced senescent cells accumulation and increased cellular proliferation of marrow mesenchymal stem cells (MSCs). ELISA also showed relieved levels of specific senescent-associated secretory phenotype (SASP) in ageing mice after PTH treatment. CONCLUSIONS In summary, PTH may reduce the accumulation of senescent cells in subchondral bone by inhibiting p16ink4a and improve bone marrow microenvironment to active bone remodelling process, indicating PTH administration could be a potential preventative and therapeutic treatment for age-related TMJ OA.
Collapse
Affiliation(s)
- Chen Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jun Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China.,School of Stomatology, Kunming Medical University, Kunming, China
| | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
43
|
Tibial subchondral trabecular bone micromechanical and microarchitectural properties are affected by alignment and osteoarthritis stage. Sci Rep 2020; 10:3975. [PMID: 32132556 PMCID: PMC7055326 DOI: 10.1038/s41598-020-60464-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/04/2019] [Indexed: 11/29/2022] Open
Abstract
At advanced knee osteoarthritis (OA) stages subchondral trabecular bone (STB) is altered. Lower limb alignment plays a role in OA progression and modify the macroscopic loading of the medial and lateral condyles of the tibial plateau. How the properties of the STB relate to alignment and OA stage is not well defined. OA stage (KL scores 2–4) and alignment (HKA from 17° Varus to 8° Valgus) of 30 patients were measured and their tibial plateau were collected after total knee arthroplasty. STB tissue elastic modulus, bone volume fraction (BV/TV) and trabecula thickness (Tb.Th) were evaluated with nanoindentation and µCT scans (8.1 µm voxel-size) of medial and lateral samples of each plateau. HKA and KL scores were statistically significantly associated with STB elastic modulus, BV/TV and Tb.Th. Medial to lateral BV/TV ratio correlated with HKA angle (R = −0.53, p = 0.016), revealing a higher ratio for varus than valgus subjects. STB properties showed lower values for KL stage 4 patients. Tissue elastic modulus ratios and BV.TV ratios were strongly correlated (R = 0.81, p < 0.001). Results showed that both micromechanical and microarchitectural properties of STB are affected by macroscopic loading at late stage knee OA. For the first time, a strong association between tissue stiffness and quantity of OA STB was demonstrated.
Collapse
|
44
|
Herrero-Beaumont G, Roman-Blas JA, Mediero A, Sánchez-Pernaute O, Largo R. Treating osteoporotic osteoarthritis, or the art of cutting a balding man's hair. Osteoarthritis Cartilage 2020; 28:239-241. [PMID: 31863830 DOI: 10.1016/j.joca.2019.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 02/02/2023]
Affiliation(s)
- G Herrero-Beaumont
- Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz-Autonomous University of Madrid, Madrid, Spain.
| | - J A Roman-Blas
- Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz-Autonomous University of Madrid, Madrid, Spain
| | - A Mediero
- Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz-Autonomous University of Madrid, Madrid, Spain
| | - O Sánchez-Pernaute
- Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz-Autonomous University of Madrid, Madrid, Spain
| | - R Largo
- Bone and Joint Research Unit, Rheumatology Department, IIS-Fundación Jiménez Díaz-Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
45
|
Mukherjee S, Nazemi M, Jonkers I, Geris L. Use of Computational Modeling to Study Joint Degeneration: A Review. Front Bioeng Biotechnol 2020; 8:93. [PMID: 32185167 PMCID: PMC7058554 DOI: 10.3389/fbioe.2020.00093] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), a degenerative joint disease, is the most common chronic condition of the joints, which cannot be prevented effectively. Computational modeling of joint degradation allows to estimate the patient-specific progression of OA, which can aid clinicians to estimate the most suitable time window for surgical intervention in osteoarthritic patients. This paper gives an overview of the different approaches used to model different aspects of joint degeneration, thereby focusing mostly on the knee joint. The paper starts by discussing how OA affects the different components of the joint and how these are accounted for in the models. Subsequently, it discusses the different modeling approaches that can be used to answer questions related to OA etiology, progression and treatment. These models are ordered based on their underlying assumptions and technologies: musculoskeletal models, Finite Element models, (gene) regulatory models, multiscale models and data-driven models (artificial intelligence/machine learning). Finally, it is concluded that in the future, efforts should be made to integrate the different modeling techniques into a more robust computational framework that should not only be efficient to predict OA progression but also easily allow a patient’s individualized risk assessment as screening tool for use in clinical practice.
Collapse
Affiliation(s)
- Satanik Mukherjee
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium
| | - Majid Nazemi
- GIGA in silico Medicine, University of Liège, Liège, Belgium
| | - Ilse Jonkers
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.,Biomechanics Section, KU Leuven, Leuven, Belgium.,GIGA in silico Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
46
|
Cai Z, Hong M, Xu L, Yang K, Li C, Sun T, Feng Y, Zeng H, Lu WW, Chiu KY. Prevent action of magnoflorine with hyaluronic acid gel from cartilage degeneration in anterior cruciate ligament transection induced osteoarthritis. Biomed Pharmacother 2020; 126:109733. [PMID: 32113051 DOI: 10.1016/j.biopha.2019.109733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 12/22/2022] Open
Abstract
According to the Chinese medicine, magnoflorine exerted significant anti-inflammatory effects and potentially promoted synthesis of proteoglycans in chondrocytes to reverse the progression of rheumatoid arthritis. However, the latent beneficial effect of magnoflorine for the treatment of traumatic osteoarthritis (OA) is still unknown. Therefore, we aim to demonstrate the efficacy of magnoflorine combined with HA-gel in attenuating cartilage degeneration in anterior cruciate ligament transection (ACLT) induced OA rat model. We found that the histological results showed the elevated cartilage matrix, chondrogenic signals and chondroprogenitor cells in HA-gel + magnoflorine treatment. HA-gel + magnoflorine treatment resulted in a decreased modified Mankin's score, and a higher volume ratio of hyaline cartilage (HC)/calcified cartilage (CC) and HC/Sum (whole cartilage), compared to ACLT and HA-gel groups. Furthermore, both the volume ratios of HC/Sum and HC/CC were negatively correlated with modified Mankin's scores. Finally, HA-gel + magnoflorine could significantly increase the BV/TV, Tb.Th, and decrease the Tb.Pf, Po(tot), Conn.Dn and Tb.Sp. In vitro, 50 μg/ml magnoflorine treatment could significantly increase the viability, S-phase, migration rate and chondrogenesis of chondroprogenitor cells. There were significant downregulations of MAPK/NF-κB signaling, and upregulations of chondrogenic signals in 50 μg/ml magnoflorine treatment. There were significant downregulations of proinflammatory cytokines and upregulation of IL-10 in HA-gel + magnoflorine treated group. Therefore, our study elucidated a protective effect of HA-gel + magnoflorine on attenuating cartilage degradation and maintaining SCB stabilization in ACLT induced OA.
Collapse
Affiliation(s)
- Zhe Cai
- The Joint Center for Infection and Immunity, 1. Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, China; 2. Institute Pasteur of Shanghai, Chinese Academy of Science, Shanghai, 200031, China; Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Ming Hong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Lei Xu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kedi Yang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chentian Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tianhao Sun
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yu Feng
- Department of Traumatology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Huasong Zeng
- Department of Allergy, Immunology and Rheumatology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China.
| | - William Weijia Lu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| | - Kwong-Yuen Chiu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
47
|
|
48
|
Xue YZB, Niu YM, Tang B, Wang CM. PCL/EUG scaffolds with tunable stiffness can regulate macrophage secretion behavior. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 148:4-11. [PMID: 31226307 DOI: 10.1016/j.pbiomolbio.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) is a prevalent joint disorder worldwide. Recent studies suggested that macrophages play an important role in the progression of OA. However, the detailed pathology related to macrophages is still ambiguous, especially where related to mechanotransduction. In this study, polycaprolactone (PCL) and Eucommia Ulmoides Gum (EUG) composite scaffolds were first fabricated by electrospinning. The stiffness of as-fabricated scaffolds was altered by adjusting the PCL-to-EUG ratio. The mechanical properties, structural characteristics and chemical composition of the scaffolds were investigated using various materials characterization techniques. The results show that stiffness of the scaffolds was in the same range as that of cartilage tissues with OA. Confocal microscopy and reverse transcription-polymerase chain reaction (RT-PCR) were performed to investigate the macrophages cultured on the scaffolds. Significant morphological changes of cells were observed on PCL/EUG scaffolds with different stiffness. The expression of inflammatory and fibrosis-related cytokines increases as scaffold stiffness decreases, similar to the trend observed in OA progression.
Collapse
Affiliation(s)
- Y Z B Xue
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Y M Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - B Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - C M Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
49
|
Xiao H, Huang W, Xiong K, Ruan S, Yuan C, Mo G, Tian R, Zhou S, She R, Ye P, Liu B, Deng J. Osteochondral repair using scaffolds with gradient pore sizes constructed with silk fibroin, chitosan, and nano-hydroxyapatite. Int J Nanomedicine 2019; 14:2011-2027. [PMID: 30962685 PMCID: PMC6435123 DOI: 10.2147/ijn.s191627] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background One of the main problems associated with the development of osteochondral reparative materials is that the accurate imitation of the structure of the natural osteochondral tissue and fabrication of a suitable scaffold material for osteochondral repair are difficult. The long-term outcomes of single- or bilayered scaffolds are often unsatisfactory because of the absence of a progressive osteochondral structure. Therefore, only scaffolds with gradient pore sizes are suitable for osteochondral repair to achieve better proliferation and differentiation of the stem cells into osteochondral tissues to complete the repair of defects. Methods A silk fibroin (SF) solution, chitosan (CS) solution, and nano-hydroxyapatite (nHA) suspension were mixed at the same weight fraction to obtain osteochondral scaffolds with gradient pore diameters by centrifugation, freeze-drying, and chemical cross-linking. Results The scaffolds prepared in this study are confirmed to have a progressive structure starting from the cartilage layer to bone layer, similar to that of the normal osteochondral tissues. The prepared scaffolds are cylindrical in shape and have high internal porosity. The structure consists of regular and highly interconnected pores with a progressively increasing pore distribution as well as a progressively changing pore diameter. The scaffold strongly absorbs water, and has a suitable degradation rate, sufficient space for cell growth and proliferation, and good resistance to compression. Thus, the scaffold can provide sufficient nutrients and space for cell growth, proliferation, and migration. Further, bone marrow mesenchymal stem cells seeded onto the scaffold closely attach to the scaffold and stably grow and proliferate, indicating that the scaffold has good biocompatibility with no cytotoxicity. Conclusion In brief, the physical properties and biocompatibility of our scaffolds fully comply with the requirements of scaffold materials required for osteochondral tissue engineering, and they are expected to become a new type of scaffolds with gradient pore sizes for osteochondral repair.
Collapse
Affiliation(s)
- Hongli Xiao
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Wenliang Huang
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Kun Xiong
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Shiqiang Ruan
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Cheng Yuan
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Gang Mo
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Renyuan Tian
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Sirui Zhou
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| | - Rongfeng She
- Department of Orthopedics, Guizhou Province People's Hospital, Guiyang 550002, Guizhou Province, People's Republic of China
| | - Peng Ye
- Emergency and Trauma Ward, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China
| | - Bin Liu
- Surgical Laboratory, Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China
| | - Jiang Deng
- Department of Orthopedics, Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, People's Republic of China,
| |
Collapse
|
50
|
Xie J, Huang Z, Yu X, Zhou L, Pei F. Clinical implications of macrophage dysfunction in the development of osteoarthritis of the knee. Cytokine Growth Factor Rev 2019; 46:36-44. [PMID: 30910350 DOI: 10.1016/j.cytogfr.2019.03.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritic disease, leading to disability and impaired quality of life and no curative treatments exist. Increasing evidence indicates that low-grade inflammation plays a pivotal role in the onset and progression of OA. In this review, we summarize emerging findings on the pathological roles of synovial macrophages, adipose tissue macrophages, and osteoclasts in OA and their potential clinical implications from cell biology to preclinical and preliminary clinical trials. The failure of synovial macrophages to transition from pro-inflammatory M1 to anti-inflammatory M2 subtypes may contribute to the initiation and maintenance of synovitis in OA. M1 macrophages promote the inflammatory microenvironment and progression of OA through interactions with synovial fibroblasts and chondrocytes, thus increasing the secretion of matrix metalloproteinases. Direct inhibition of M1 or promotion of M2 polarization may be useful therapeutic interventions. Adipose tissue macrophages present in the infrapatella fat pad (IPFP) were involved in the progression of obesity-induced OA, which contributed to changes in the integrity of the IPFP. Furthermore, macrophages and osteoclasts in the subchondral bone were involved in bone remodeling and pain through uncoupled osteoclast/osteoblast activity and increased nociceptive signaling. Growing evidence has indicated an important role for macrophage-mediated low-grade inflammation in OA. Fully understanding the link between macrophages and other cells in joints will provide new insights into OA disease modification.
Collapse
Affiliation(s)
- Jinwei Xie
- Department of Orthopaedics Surgery, Laboratory of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Zeyu Huang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Li Zhou
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Fuxing Pei
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|