1
|
Gilmore NK, Klimek P, Abrahamsson E, Baar K. Effects of Different Loading Programs on Finger Strength in Rock Climbers. SPORTS MEDICINE - OPEN 2024; 10:125. [PMID: 39560837 DOI: 10.1186/s40798-024-00793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Climbing places high loads through the hands and fingers, and climbers may benefit from specific finger strength training (hangboarding) protocols. The purpose of this study was to evaluate the effect of a 10-minute low intensity hangboard finger strengthening protocol ("Abrahangs"), compared with the generally accepted Max Hangs protocol for training maximal grip strength. METHODS We retrospectively evaluated the change in grip strength and Strength: Weight following Max Hangs, Abrahangs, or the two protocols performed concurrently in rock climbers who used the Crimpd app to log their training. Users who had completed two finger strength tests within a 4-16-week period were included. Climbers were grouped by the number of training sessions into: "Climbing Only", "Abrahangs Only", "Max Hangs Only" and "Both" Max Hangs and Abrahangs. RESULTS Frequent low intensity finger loading was as effective at improving grip strength in climbers as training with maximal loads. Additionally, combining low intensity and maximal load training resulted in additive strength gains. CONCLUSIONS These results suggest that low-intensity long duration holds provide a promising training paradigm for training finger strength that is gentle enough to incorporate into existing training programs.
Collapse
Affiliation(s)
- Natalie K Gilmore
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA
| | | | | | - Keith Baar
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, 95616, USA.
- Department of Physiology and Membrane Biology, University of California Davis, One Shields Ave, 195 Briggs Hall, Davis, CA, 95616, USA.
- VA Northern California Health Care System, Mather, CA, 95655, USA.
| |
Collapse
|
2
|
Wada S, Ideno H, Nakashima K, Komatsu K, Demura N, Tomonari H, Kimura H, Tachibana M, Nifuji A. The histone H3K9 methyltransferase G9a regulates tendon formation during development. Sci Rep 2024; 14:20771. [PMID: 39237663 PMCID: PMC11377446 DOI: 10.1038/s41598-024-71570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
G9a is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9), which is involved in the regulation of gene expression. We had previously reported that G9a is expressed in developing tendons in vivo and in vitro and that G9a-deficient tenocytes show impaired proliferation and differentiation in vitro. In this study, we investigated the functions of G9a in tendon development in vivo by using G9a conditional knockout (G9a cKO) mice. We crossed Sox9Cre/+ mice with G9afl/fl mice to generate G9afl/fl; Sox9Cre/+ mice. The G9a cKO mice showed hypoplastic tendon formation at 3 weeks of age. Bromodeoxyuridine labeling on embryonic day 16.5 (E16.5) revealed decreased cell proliferation in the tenocytes of G9a cKO mice. Immunohistochemical analysis revealed decreased expression levels of G9a and its substrate, H3K9me2, in the vertebral tendons of G9a cKO mice. The tendon tissue of the vertebrae and limbs of G9a cKO mice showed reduced expression of a tendon marker, tenomodulin (Tnmd), and col1a1 genes, suggesting that tenocyte differentiation was suppressed. Overexpression of G9a resulted in enhancement of Tnmd and col1a1 expression in tenocytes in vitro. These results suggest that G9a regulates the proliferation and differentiation of tendon progenitor cells during tendon development. Thus, our results suggest that G9a plays an essential role in tendon development.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hisashi Ideno
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Kazuhisa Nakashima
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Koichiro Komatsu
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Noboru Demura
- Department of Oral and Maxillofacial Surgery, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Hiroshi Tomonari
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501, Japan
| | - Makoto Tachibana
- Laboratory of Epigenome Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akira Nifuji
- Department of Pharmacology, School of Dental Medicine, Tsurumi University, Yokohama, Kanagawa, 230-8501, Japan.
| |
Collapse
|
3
|
Haidar-Montes AA, Mauro A, El Khatib M, Prencipe G, Pierdomenico L, Tosi U, Wouters G, Cerveró-Varona A, Berardinelli P, Russo V, Barboni B. Mechanobiological Strategies to Enhance Ovine ( Ovis aries) Adipose-Derived Stem Cells Tendon Plasticity for Regenerative Medicine and Tissue Engineering Applications. Animals (Basel) 2024; 14:2233. [PMID: 39123758 PMCID: PMC11310997 DOI: 10.3390/ani14152233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose-derived stem cells (ADSCs) hold promise for tendon repair, even if their tenogenic plasticity and underlying mechanisms remain only partially understood, particularly in cells derived from the ovine animal model. This study aimed to characterize oADSCs during in vitro expansion to validate their phenotypic properties pre-transplantation. Moreover, their tenogenic potential was assessed using two in vitro-validated approaches: (1) teno-inductive conditioned media (CM) derived from a co-culture between ovine amniotic stem cells and fetal tendon explants, and (2) short- (48 h) and long-term (14 days) seeding on highly aligned PLGA (ha-PLGA) electrospun scaffold. Our findings indicate that oADSCs can be expanded without senescence and can maintain the expression of stemness (Sox2, Oct4, Nanog) and mesenchymal (CD29, CD166, CD44, CD90) markers while remaining negative for hematopoietic (CD31, CD45) and MHC-II antigens. Of note, oADSCs' tendon differentiation potential greatly depended on the in vitro strategy. oADSCs exposed to CM significantly upregulated tendon-related genes (COL1, TNMD, THBS4) but failed to accumulate TNMD protein at 14 days of culture. Conversely, oADSCs seeded on ha-PLGA fleeces quickly upregulated the tendon-related genes (48 h) and in 14 days accumulated high levels of the TNMD protein into the cytoplasm of ADSCs, displaying a tenocyte-like morphology. This mechano-sensing cellular response involved a complete SOX9 downregulation accompanied by YAP activation, highlighting the efficacy of biophysical stimuli in promoting tenogenic differentiation. These findings underscore oADSCs' long-term self-renewal and tendon differentiative potential, thus opening their use in a preclinical setting to develop innovative stem cell-based and tissue engineering protocols for tendon regeneration, applied to the veterinary field.
Collapse
Affiliation(s)
- Arlette A. Haidar-Montes
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Laura Pierdomenico
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Umberto Tosi
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Guy Wouters
- FAT STEM Company, Erembodegem, 9300 Aalst, Belgium;
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (A.A.H.-M.); (M.E.K.); (G.P.); (U.T.); (A.C.-V.); (P.B.); (V.R.); (B.B.)
| |
Collapse
|
4
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
5
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
6
|
Ganji E, Leek C, Duncan W, Patra D, Ornitz DM, Killian ML. Targeted deletion of Fgf9 in tendon disrupts mineralization of the developing enthesis. FASEB J 2023; 37:e22777. [PMID: 36734881 PMCID: PMC10108073 DOI: 10.1096/fj.202201614r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
The enthesis is a transitional tissue between tendon and bone that matures postnatally. The development and maturation of the enthesis involve cellular processes likened to an arrested growth plate. In this study, we explored the role of fibroblast growth factor 9 (Fgf9), a known regulator of chondrogenesis and vascularization during bone development, on the structure and function of the postnatal enthesis. First, we confirmed spatial expression of Fgf9 in the tendon and enthesis using in situ hybridization. We then used Cre-lox recombinase to conditionally knockout Fgf9 in mouse tendon and enthesis (Scx-Cre) and characterized enthesis morphology as well as mechanical properties in Fgf9ScxCre and wild-type (WT) entheses. Fgf9ScxCre mice had smaller calcaneal and humeral apophyses, thinner cortical bone at the attachment, increased cellularity, and reduced failure load in mature entheses compared to WT littermates. During postnatal development, we found reduced chondrocyte hypertrophy and disrupted type X collagen (Col X) in Fgf9ScxCre entheses. These findings support that tendon-derived Fgf9 is important for functional development of the enthesis, including its postnatal mineralization. Our findings suggest the potential role of FGF signaling during enthesis development.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Mechanical Engineering, University of Delaware, Delaware, Newark, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, IL, Urbana, United States.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Connor Leek
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - William Duncan
- Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| |
Collapse
|
7
|
Zhu M, Lin Tay M, Lim KS, Bolam SM, Tuari D, Callon K, Dray M, Cornish J, Woodfield TBF, Munro JT, Coleman B, Musson DS. Novel Growth Factor Combination for Improving Rotator Cuff Repair: A Rat In Vivo Study. Am J Sports Med 2022; 50:1044-1053. [PMID: 35188803 DOI: 10.1177/03635465211072557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The lack of healing at the repaired tendon-bone interface is an important cause of failure after rotator cuff repair. While augmentation with growth factors (GFs) has demonstrated promise, the ideal combination must target all 3 tissue types at the tendon-bone interface. HYPOTHESIS The GF combination of transforming growth factor beta 1, Insulin-like growth factor 1, and parathyroid hormone will promote tenocyte proliferation and differentiation and improve the biomechanical and histological quality of the repaired tendon-bone interface. STUDY DESIGN Controlled laboratory study. METHODS In vitro, human tenocytes were cultured in the presence of the GF combination for 72 hours, and cell growth assays and the expression of genes specific to tendon, cartilage, and bone were analyzed. In vivo, adult rats (N = 46) underwent detachment and repair of the left supraspinatus tendon. A PVA-tyramine gel was used to deliver the GF combination to the tendon-bone interface. Histological, biomechanical, and RNA microarray analysis was performed at 6 and 12 weeks after surgery. Immunohistochemistry for type II and X collagen was performed at 12 weeks. RESULTS When treated with the GF combination in vitro, human tenocytes proliferated 1.5 times more than control (P = .04). The expression of scleraxis increased 65-fold (P = .013). The expression of Sox-9 (P = .011), type I collagen (P = .021), fibromodulin (P = .0075), and biglycan (P = .010) was also significantly increased, while the expression of PPARγ was decreased (P = .007). At 6 and 12 weeks postoperatively, the quality of healing on histology was significantly higher in the GF group, with the formation of a more mature tendon-bone interface, as confirmed by immunohistochemistry for type II and X collagen. The GF group achieved a load at failure and Young modulus >1.5 times higher at both time points. Microarrays at 6 weeks demonstrated upregulation of genes involved in leukocyte aggregation (S100A8, S100A9) and tissue mineralization (Bglap, serglycin, Fam20c). CONCLUSION The GF combination promoted protendon and cartilage responses in human tenocytes in vitro; it also improved the histological appearance and mechanical properties of the repair in vivo. Microarrays of the tendon-bone interface identified inflammatory and mineralization pathways affected by the GF combination, providing novel therapeutic targets for further research. CLINICAL RELEVANCE The use of this GF combination is translatable to patients and may improve healing after rotator cuff repair.
Collapse
Affiliation(s)
- Mark Zhu
- Bone and Joint Laboratory, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Mei Lin Tay
- Bone and Joint Laboratory, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Khoon S Lim
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Scott M Bolam
- Bone and Joint Laboratory, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Donna Tuari
- Bone and Joint Laboratory, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Karen Callon
- Bone and Joint Laboratory, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Michael Dray
- Department of Pathology, Waikato Hospital, Hamilton, New Zealand
| | - Jillian Cornish
- Bone and Joint Laboratory, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Tim B F Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Jacob T Munro
- Bone and Joint Laboratory, School of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Counties Manukau Health, Auckland, New Zealand
| | - David S Musson
- Bone and Joint Laboratory, School of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Maintenance of Ligament Homeostasis of Spheroid-Colonized Embroidered and Functionalized Scaffolds after 3D Stretch. Int J Mol Sci 2021; 22:ijms22158204. [PMID: 34360970 PMCID: PMC8348491 DOI: 10.3390/ijms22158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Anterior cruciate ligament (ACL) ruptures are usually treated with autograft implantation to prevent knee instability. Tissue engineered ACL reconstruction is becoming promising to circumvent autograft limitations. The aim was to evaluate the influence of cyclic stretch on lapine (L) ACL fibroblasts on embroidered scaffolds with respect to adhesion, DNA and sulphated glycosaminoglycan (sGAG) contents, gene expression of ligament-associated extracellular matrix genes, such as type I collagen, decorin, tenascin C, tenomodulin, gap junctional connexin 43 and the transcription factor Mohawk. Control scaffolds and those functionalized by gas phase fluorination and cross-linked collagen foam were either pre-cultured with a suspension or with spheroids of LACL cells before being subjected to cyclic stretch (4%, 0.11 Hz, 3 days). Stretch increased significantly the scaffold area colonized with cells but impaired sGAGs and decorin gene expression (functionalized scaffolds seeded with cell suspension). Stretching increased tenascin C, connexin 43 and Mohawk but decreased decorin gene expression (control scaffolds seeded with cell suspension). Pre-cultivation of functionalized scaffolds with spheroids might be the more suitable method for maintaining ligamentogenesis in 3D scaffolds compared to using a cell suspension due to a significantly higher sGAG content in response to stretching and type I collagen gene expression in functionalized scaffolds.
Collapse
|
9
|
Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL, Ni GX. Stem cell therapies in tendon-bone healing. World J Stem Cells 2021; 13:753-775. [PMID: 34367476 PMCID: PMC8316867 DOI: 10.4252/wjsc.v13.i7.753] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/08/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.
Collapse
Affiliation(s)
- Yue Xu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Wan-Xia Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li-Na Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yue-Qing Ming
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yu-Lin Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Guo-Xin Ni
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
10
|
Ide K, Takahashi S, Sakai K, Taga Y, Ueno T, Dickens D, Jenkins R, Falciani F, Sasaki T, Ooi K, Kawashiri S, Mizuno K, Hattori S, Sakai T. The dipeptide prolyl-hydroxyproline promotes cellular homeostasis and lamellipodia-driven motility via active β1-integrin in adult tendon cells. J Biol Chem 2021; 297:100819. [PMID: 34029590 PMCID: PMC8239475 DOI: 10.1016/j.jbc.2021.100819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/08/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022] Open
Abstract
Collagen-derived hydroxyproline (Hyp)-containing peptides have a variety of biological effects on cells. These bioactive collagen peptides are locally generated by the degradation of endogenous collagen in response to injury. However, no comprehensive study has yet explored the functional links between Hyp-containing peptides and cellular behavior. Here, we show that the dipeptide prolyl-4-hydroxyproline (Pro-Hyp) exhibits pronounced effects on mouse tendon cells. Pro-Hyp promotes differentiation/maturation of tendon cells with modulation of lineage-specific factors and induces significant chemotactic activity in vitro. In addition, Pro-Hyp has profound effects on cell proliferation, with significantly upregulated extracellular signal-regulated kinase phosphorylation and extracellular matrix production and increased type I collagen network organization. Using proteomics, we have predicted molecular transport, cellular assembly and organization, and cellular movement as potential linked-network pathways that could be altered in response to Pro-Hyp. Mechanistically, cells treated with Pro-Hyp demonstrate increased directional persistence and significantly increased directed motility and migration velocity. They are accompanied by elongated lamellipodial protrusions with increased levels of active β1-integrin-containing focal contacts, as well as reorganization of thicker peripheral F-actin fibrils. Pro-Hyp-mediated chemotactic activity is significantly reduced (p < 0.001) in cells treated with the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or the α5β1-integrin antagonist ATN-161. Furthermore, ATN-161 significantly inhibits uptake of Pro-Hyp into adult tenocytes. Thus, our findings document the molecular basis of the functional benefits of the Pro-Hyp dipeptide in cellular behavior. These dynamic properties of collagen-derived Pro-Hyp dipeptide could lead the way to its application in translational medicine.
Collapse
Affiliation(s)
- Kentaro Ide
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sanai Takahashi
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Keiko Sakai
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Tomonori Ueno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - David Dickens
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Rosalind Jenkins
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Francesco Falciani
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuhiro Ooi
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Shuichi Kawashiri
- Department of Oral and Maxillofacial Surgery, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Takao Sakai
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
11
|
Higuchi T, Suzuki D, Watanabe T, Fanhchaksai K, Ota K, Yokoo K, Furukawa H, Watanabe H. Versican contributes to ligament formation of knee joints. PLoS One 2021; 16:e0250366. [PMID: 33886644 PMCID: PMC8061984 DOI: 10.1371/journal.pone.0250366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Versican is a large proteoglycan in the extracellular matrix. During embryonic stages, it plays a crucial role in the development of cartilage, heart, and dermis. Previously, we reported that Prx1-Vcan conditional knockout mice, lacking Vcan expression in mesenchymal condensation areas of the limb bud, show the impaired joint formation and delayed cartilage development. Here, we investigated their phenotype in adults and found that they develop swelling of the knee joint. Histologically, their newborn joint exhibited impaired formation of both anterior and posterior cruciate ligaments. Immunostaining revealed a decrease in scleraxis-positive cells in both articular cartilage and ligament of Prx1-Vcan knee joint, spotty patterns of type I collagen, and the presence of type II collagen concomitant with the absence of versican expression. These results suggest that versican expression during the perinatal period is required for cruciate ligaments’ formation and that its depletion affects joint function in later ages.
Collapse
Affiliation(s)
- Tomoko Higuchi
- Department of Plastic Surgery, Aichi Medical University, Nagakute, Japan
| | - Daisuke Suzuki
- Department of Health Sciences, Hokkaido Chitose College of Rehabilitation, Chitose, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Kanda Fanhchaksai
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Keiko Ota
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Kazuhisa Yokoo
- Department of Plastic Surgery, Aichi Medical University, Nagakute, Japan
| | - Hiroshi Furukawa
- Department of Plastic Surgery, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
- * E-mail:
| |
Collapse
|
12
|
Hurley-Novatny A, Arumugasaamy N, Kimicata M, Baker H, Mikos AG, Fisher JP. Concurrent multi-lineage differentiation of mesenchymal stem cells through spatial presentation of growth factors. Biomed Mater 2020; 15:055035. [PMID: 32526725 PMCID: PMC7648258 DOI: 10.1088/1748-605x/ab9bb0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Severe tendon and ligament injuries are estimated to affect between 300 000 and 400 000 people annually. Surgical repairs of these injuries often have poor long-term clinical outcomes because of resection of the interfacial tissue-the enthesis-and subsequent stress concentration at the attachment site. A healthy enthesis consists of distinct regions of bone, fibrocartilage, and tendon, each with distinct cell types, extracellular matrix components, and architecture, which are important for tissue function. Tissue engineering, which has been proposed as a potential strategy for replacing this tissue, is currently limited by its inability to differentiate multiple lineages of cells from a single stem cell population within a single engineered construct. In this study, we develop a multi-phasic gelatin methacrylate hydrogel construct system for spatial presentation of proteins, which is then validated for multi-lineage differentiation towards the cell types of the bone-tendon enthesis. This study determines growth factor concentrations for differentiation of mesenchymal stem cells towards osteoblasts, chondrocytes/fibrochondrocytes, and tenocytes, which maintain similar differentiation profiles in 3D hydrogel culture as assessed by qPCR and immunofluorescence staining. Finally, it is shown that this method is able to guide heterogeneous and spatially confined changes in mesenchymal stem cell genes and protein expressions with the tendency to result in osteoblast-, fibrochondrocyte-, and tenocyte-like expression profiles. Overall, we demonstrate the utility of the culture technique for engineering other musculoskeletal tissue interfaces and provide a biochemical approach for recapitulating the bone-tendon enthesis in vitro.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America. Center for Engineering Complex Tissues, University of Maryland and Rice University, College Park, MD 20742, United States of America
| | | | | | | | | | | |
Collapse
|
13
|
Paterson YZ, Evans N, Kan S, Cribbs A, Henson FMD, Guest DJ. The transcription factor scleraxis differentially regulates gene expression in tenocytes isolated at different developmental stages. Mech Dev 2020; 163:103635. [PMID: 32795590 DOI: 10.1016/j.mod.2020.103635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023]
Abstract
The transcription factor scleraxis (SCX) is expressed throughout tendon development and plays a key role in directing tendon wound healing. However, little is known regarding its role in fetal or young postnatal tendons, stages in development that are known for their enhanced regenerative capabilities. Here we used RNA-sequencing to compare the transcriptome of adult and fetal tenocytes following SCX knockdown. SCX knockdown had a larger effect on gene expression in fetal tenocytes, affecting 477 genes in comparison to the 183 genes affected in adult tenocytes, indicating that scleraxis-dependent processes may differ in these two developmental stages. Gene ontology, network and pathway analysis revealed an overrepresentation of extracellular matrix (ECM) remodelling processes within both comparisons. These included several matrix metalloproteinases, proteoglycans and collagens, some of which were also investigated in SCX knockdown tenocytes from young postnatal foals. Using chromatin immunoprecipitation, we also identified novel genes that SCX differentially interacts with in adult and fetal tenocytes. These results indicate a role for SCX in modulating ECM synthesis and breakdown and provide a useful dataset for further study into SCX gene regulation.
Collapse
Affiliation(s)
- Y Z Paterson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - N Evans
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - S Kan
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - A Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK.
| | - F M D Henson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK; Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK.
| | - D J Guest
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk CB8 7UU, UK; Deptartment of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK.
| |
Collapse
|
14
|
Scaal M. Development of the amniote ventrolateral body wall. Dev Dyn 2020; 250:39-59. [PMID: 32406962 DOI: 10.1002/dvdy.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/16/2022] Open
Abstract
In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.
Collapse
Affiliation(s)
- Martin Scaal
- Faculty of Medicine, Institute of Anatomy II, University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Sanchez-Fernandez C, Lorda-Diez CI, Hurlé JM, Montero JA. The methylation status of the embryonic limb skeletal progenitors determines their cell fate in chicken. Commun Biol 2020; 3:283. [PMID: 32504030 PMCID: PMC7275052 DOI: 10.1038/s42003-020-1012-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
Digits shape is sculpted by interdigital programmed cell death during limb development. Here, we show that DNA breakage in the periphery of 5-methylcytosine nuclei foci of interdigital precursors precedes cell death. These cells showed higher genome instability than the digit-forming precursors when exposed to X-ray irradiation or local bone morphogenetic protein (BMP) treatments. Regional but not global DNA methylation differences were found between both progenitors. DNA-Methyl-Transferases (DNMTs) including DNMT1, DNMT3B and, to a lesser extent, DNMT3A, exhibited well-defined expression patterns in regions destined to degenerate, as the interdigital tissue and the prospective joint regions. Dnmt3b functional experiments revealed an inverse regulation of cell death and cartilage differentiation, by transcriptional regulation of key genes including Sox9, Scleraxis, p21 and Bak1, via differential methylation of CpG islands across their promoters. Our findings point to a regulation of cell death versus chondrogenesis of limb skeletal precursors based on epigenetic mechanisms.
Collapse
Affiliation(s)
- Cristina Sanchez-Fernandez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Carlos Ignacio Lorda-Diez
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain
| | - Juan M Hurlé
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain.
| | - Juan Antonio Montero
- Departamento de Anatomía y Biología Celular and IDIVAL, Universidad de Cantabria, Santander, 39011, Spain.
| |
Collapse
|
16
|
Switching of Sox9 expression during musculoskeletal system development. Sci Rep 2020; 10:8425. [PMID: 32439983 PMCID: PMC7242482 DOI: 10.1038/s41598-020-65339-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 04/30/2020] [Indexed: 11/21/2022] Open
Abstract
The musculoskeletal system, which comprises muscles, tendons, and bones, is an efficient tissue complex that coordinates body movement and maintains structural stability. The process of its construction into a single functional and complex organization is unclear. SRY-box containing gene 9 (Sox9) is expressed initially in pluripotent cells and subsequently in ectodermal, endodermal, and mesodermal derivatives. This study investigated how Sox9 controls the development of each component of the musculoskeletal system. Sox9 was expressed in MTJ, tendon, and bone progenitor cells at E13 and in bone at E16. We detected Sox9 expression in muscle progenitor cells using double-transgenic mice and myoblastic cell lines. However, we found no Sox9 expression in developed muscle. A decrease in Sox9 expression in muscle-associated connective tissues, tendons, and bones led to hypoplasia of the cartilage and its attachment to tendons and muscle. These results showed that switching on Sox9 expression in each component (muscle, tendon, and bone) is essential for the development of the musculoskeletal system. Sox9 is expressed in not only tendon and bone progenitor cells but also muscle progenitor cells, and it controls musculoskeletal system development.
Collapse
|
17
|
UHRF genes regulate programmed interdigital tissue regression and chondrogenesis in the embryonic limb. Cell Death Dis 2019; 10:347. [PMID: 31024001 PMCID: PMC6484032 DOI: 10.1038/s41419-019-1575-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
The primordium of the limb contains a number of progenitors far superior to those necessary to form the skeletal components of this appendage. During the course of development, precursors that do not follow the skeletogenic program are removed by cell senescence and apoptosis. The formation of the digits provides the most representative example of embryonic remodeling via cell degeneration. In the hand/foot regions of the embryonic vertebrate limb (autopod), the interdigital tissue and the zones of interphalangeal joint formation undergo massive degeneration that accounts for jointed and free digit morphology. Developmental senescence and caspase-dependent apoptosis are considered responsible for these remodeling processes. Our study uncovers a new upstream level of regulation of remodeling by the epigenetic regulators Uhrf1 and Uhrf2 genes. These genes are spatially and temporally expressed in the pre-apoptotic regions. UHRF1 and UHRF2 showed a nuclear localization associated with foci of methylated cytosine. Interestingly, nuclear labeling increased in cells progressing through the stages of degeneration prior to TUNEL positivity. Functional analysis in cultured limb skeletal progenitors via the overexpression of either UHRF1 or UHRF2 inhibited chondrogenesis and induced cell senescence and apoptosis accompanied with changes in global and regional DNA methylation. Uhrfs modulated canonical cell differentiation factors, such as Sox9 and Scleraxis, promoted apoptosis via up-regulation of Bak1, and induced cell senescence, by arresting progenitors at the S phase and upregulating the expression of p21. Expression of Uhrf genes in vivo was positively modulated by FGF signaling. In the micromass culture assay Uhrf1 was down-regulated as the progenitors lost stemness and differentiated into cartilage. Together, our findings emphasize the importance of tuning the balance between cell differentiation and cell stemness as a central step in the initiation of the so-called “embryonic programmed cell death” and suggest that the structural organization of the chromatin, via epigenetic modifications, may be a precocious and critical factor in these regulatory events.
Collapse
|
18
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Sox Genes Show Spatiotemporal Expression during Murine Tongue and Eyelid Development. Int J Dent 2018; 2018:1601363. [PMID: 30402101 PMCID: PMC6198611 DOI: 10.1155/2018/1601363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022] Open
Abstract
The tongue is a critical organ, involved in functions such as speaking, swallowing, mastication, and degustation. Although Sox genes are known to play critical roles in many biological processes, including organogenesis, the expression of the Sox family members during tongue development remains unclear. We therefore performed a comparative in situ hybridization analysis of 17 Sox genes (Sox1–14, 17, 18, and 21) during murine tongue development. Sox2, 4, 6, 8, 9, 10, 11, 12, and 21 were found to be expressed in the tongue epithelium, whereas Sox2, 4–6, 8–11, 13, and 21 showed expression in the mesenchyme of the developing tongue. Expression of Sox1, 4, 6, 8–12, and 21 were observed in the developing tongue muscle. Sox5 and 13 showed expression only at E12, while Sox1 expression was observed only on E18. Sox6, 8, 9, and 12 showed expression at several stages. Although the expression of Sox2, 4, 10, 11, and 21 was detected during all the four stages of tongue development, their expression patterns differed among the stages. We thus identified a dynamic spatiotemporal expression pattern of the Sox genes during murine tongue development. To understand whether Sox genes are involved in the development of other craniofacial organs through similar roles to those in tongue development, we also examined the expression of Sox genes in eyelid primordia, which also contain epithelium, mesenchyme, and muscle. However, expression patterns and timing of Sox genes differed between tongue and eyelid development. Sox genes are thus related to organogenesis through different functions in each craniofacial organ.
Collapse
|
20
|
In Vitro Comparison of 2D-Cell Culture and 3D-Cell Sheets of Scleraxis-Programmed Bone Marrow Derived Mesenchymal Stem Cells to Primary Tendon Stem/Progenitor Cells for Tendon Repair. Int J Mol Sci 2018; 19:ijms19082272. [PMID: 30072668 PMCID: PMC6121892 DOI: 10.3390/ijms19082272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/26/2023] Open
Abstract
The poor and slow healing capacity of tendons requires novel strategies to speed up the tendon repair process. Hence, new and promising developments in tendon tissue engineering have become increasingly relevant. Previously, we have established a tendon progenitor cell line via ectopic expression of the tendon-related basic helix-loop-helix (bHLH) transcription factor Scleraxis (Scx) in human bone marrow mesenchymal stem cells (hMSC-Scx). The aim of this study was to directly compare the characteristics of hMSC-Scx cells to that of primary human tendon stem/progenitors cells (hTSPCs) via assessment of self-renewal and multipotency, gene marker expression profiling, in vitro wound healing assay and three-dimensional cell sheet formation. As expected, hTSPCs were more naive than hMSC-Scx cells because of higher clonogenicity, trilineage differentiation potential, and expression of stem cell markers, as well as higher mRNA levels of several gene factors associated with early tendon development. Interestingly, with regards to wound healing, both cell types demonstrate a comparable speed of scratch closure, as well as migratory velocity and distance in various migration experiments. In the three-dimensional cell sheet model, hMSC-Scx cells and hTSPCs form compact tendinous sheets as histological staining, and transmission electron microscopy shows spindle-shaped cells and collagen type I fibrils with similar average diameter size and distribution. Taken together, hTSPCs exceed hMSC-Scx cells in several characteristics, namely clonogenicity, multipotentiality, gene expression profile and rates of tendon-like sheet formation, whilst in three-dimensional cell sheets, both cell types have comparable in vitro healing potential and collagenous composition of their three-dimensional cell sheets, making both cell types a suitable cell source for tendon tissue engineering and healing.
Collapse
|
21
|
Sakabe T, Sakai K, Maeda T, Sunaga A, Furuta N, Schweitzer R, Sasaki T, Sakai T. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice. J Biol Chem 2018; 293:5766-5780. [PMID: 29507095 PMCID: PMC5912447 DOI: 10.1074/jbc.ra118.001987] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/16/2018] [Indexed: 01/02/2023] Open
Abstract
Tendon is a dense connective tissue that transmits high mechanical forces from skeletal muscle to bone. The transcription factor scleraxis (Scx) is a highly specific marker of both precursor and mature tendon cells (tenocytes). Mice lacking scx exhibit a specific and virtually complete loss of tendons during development. However, the functional contribution of Scx to wound healing in adult tendon has not yet been fully characterized. Here, using ScxGFP-tracking and loss-of-function systems, we show in an adult mouse model of Achilles tendon injury that paratenon cells, representing a stem cell antigen-1 (Sca-1)-positive and Scx-negative progenitor subpopulation, display Scx induction, migrate to the wound site, and produce extracellular matrix (ECM) to bridge the defect, whereas resident tenocytes exhibit a delayed response. Scx induction in the progenitors is initiated by transforming growth factor β (TGF-β) signaling. scx-deficient mice had migration of Sca-1-positive progenitor cell to the lesion site but impaired ECM assembly to bridge the defect. Mechanistically, scx-null progenitors displayed higher chondrogenic potential with up-regulation of SRY-box 9 (Sox9) coactivator PPAR-γ coactivator-1α (PGC-1α) in vitro, and knock-in analysis revealed that forced expression of full-length scx significantly inhibited Sox9 expression. Accordingly, scx-null wounds formed cartilage-like tissues that developed ectopic ossification. Our findings indicate a critical role of Scx in a progenitor-cell lineage in wound healing of adult mouse tendon. These progenitor cells could represent targets in strategies to facilitate tendon repair. We propose that this lineage-regulatory mechanism in tissue progenitors could apply to a broader set of tissues or biological systems in the body.
Collapse
Affiliation(s)
- Tomoya Sakabe
- From the Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Keiko Sakai
- From the Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Toru Maeda
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Ataru Sunaga
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Nao Furuta
- From the Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, Oregon 97239, and
| | - Takako Sasaki
- Department of Biochemistry, Faculty of Medicine, Oita University, Oita 879-5593, Japan
| | - Takao Sakai
- From the Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, United Kingdom,
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
22
|
Scleraxis: a force-responsive cell phenotype regulator. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Palade J, Djordjevic D, Hutchins ED, George RM, Cornelius JA, Rawls A, Ho JWK, Kusumi K, Wilson-Rawls J. Identification of satellite cells from anole lizard skeletal muscle and demonstration of expanded musculoskeletal potential. Dev Biol 2018; 433:344-356. [PMID: 29291980 PMCID: PMC6180209 DOI: 10.1016/j.ydbio.2017.08.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/22/2017] [Accepted: 08/29/2017] [Indexed: 10/18/2022]
Abstract
The lizards are evolutionarily the closest vertebrates to humans that demonstrate the ability to regenerate entire appendages containing cartilage, muscle, skin, and nervous tissue. We previously isolated PAX7-positive cells from muscle of the green anole lizard, Anolis carolinensis, that can differentiate into multinucleated myotubes and express the muscle structural protein, myosin heavy chain. Studying gene expression in these satellite/progenitor cell populations from A. carolinensis can provide insight into the mechanisms regulating tissue regeneration. We generated a transcriptome from proliferating lizard myoprogenitor cells and compared them to transcriptomes from the mouse and human tissues from the ENCODE project using XGSA, a statistical method for cross-species gene set analysis. These analyses determined that the lizard progenitor cell transcriptome was most similar to mammalian satellite cells. Further examination of specific GO categories of genes demonstrated that among genes with the highest level of expression in lizard satellite cells were an increased number of genetic regulators of chondrogenesis, as compared to mouse satellite cells. In micromass culture, lizard PAX7-positive cells formed Alcian blue and collagen 2a1 positive nodules, without the addition of exogenous morphogens, unlike their mouse counterparts. Subsequent quantitative RT-PCR confirmed up-regulation of expression of chondrogenic regulatory genes in lizard cells, including bmp2, sox9, runx2, and cartilage specific structural genes, aggrecan and collagen 2a1. Taken together, these data suggest that tail regeneration in lizards involves significant alterations in gene regulation with expanded musculoskeletal potency.
Collapse
Affiliation(s)
- Joanna Palade
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| | - Djordje Djordjevic
- Bioinformatics and Systems Medicine Laboratory, Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, The University of New South Wales, Darlinghurst, NSW 2010, Australia.
| | - Elizabeth D Hutchins
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; Neurogenomics Division, Translational Genomics Research Institute, 455 N. Fifth Street Phoenix, 85004, AZ, USA.
| | - Rajani M George
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| | - John A Cornelius
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| | - Alan Rawls
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| | - Joshua W K Ho
- Bioinformatics and Systems Medicine Laboratory, Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, The University of New South Wales, Darlinghurst, NSW 2010, Australia.
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA; Neurogenomics Division, Translational Genomics Research Institute, 455 N. Fifth Street Phoenix, 85004, AZ, USA.
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, PO Box 874501, Tempe, AZ 85287-4501, USA.
| |
Collapse
|
24
|
Mueller AJ, Tew SR, Vasieva O, Clegg PD, Canty-Laird EG. A systems biology approach to defining regulatory mechanisms for cartilage and tendon cell phenotypes. Sci Rep 2016; 6:33956. [PMID: 27670352 PMCID: PMC5037390 DOI: 10.1038/srep33956] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.
Collapse
Affiliation(s)
- A. J. Mueller
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
| | - S. R. Tew
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - O. Vasieva
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Crown St., Liverpool, L69 7ZB, United Kingdom
| | - P. D. Clegg
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| | - E. G. Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health & Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, United Kingdom
- The MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing (CIMA)
| |
Collapse
|
25
|
Agarwal S, Loder S, Cholok D, Peterson J, Li J, Fireman D, Breuler C, Hsieh HS, Ranganathan K, Hwang C, Drake J, Li S, Chan CK, Longaker MT, Levi B. Local and Circulating Endothelial Cells Undergo Endothelial to Mesenchymal Transition (EndMT) in Response to Musculoskeletal Injury. Sci Rep 2016; 6:32514. [PMID: 27616463 PMCID: PMC5018841 DOI: 10.1038/srep32514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/05/2016] [Indexed: 01/09/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been implicated in a variety of aberrant wound healing conditions. However, unambiguous evidence of EndMT has been elusive due to limitations of in vitro experimental designs and animal models. In vitro experiments cannot account for the myriad ligands and cells which regulate differentiation, and in vivo tissue injury models may induce lineage-independent endothelial marker expression in mesenchymal cells. By using an inducible Cre model to mark mesenchymal cells (Scx-creERT/tdTomato + ) prior to injury, we demonstrate that musculoskeletal injury induces expression of CD31, VeCadherin, or Tie2 in mesenchymal cells. VeCadherin and Tie2 were expressed in non-endothelial cells (CD31-) present in marrow from uninjured adult mice, thereby limiting the specificity of these markers in inducible models (e.g. VeCadherin- or Tie2-creERT). However, cell transplantation assays confirmed that endothelial cells (ΔVeCadherin/CD31+/CD45-) isolated from uninjured hindlimb muscle tissue undergo in vivo EndMT when transplanted directly into the wound without intervening cell culture using PDGFRα, Osterix (OSX), SOX9, and Aggrecan (ACAN) as mesenchymal markers. These in vivo findings support EndMT in the presence of myriad ligands and cell types, using cell transplantation assays which can be applied for other pathologies implicated in EndMT including tissue fibrosis and atherosclerosis. Additionally, endothelial cell recruitment and trafficking are potential therapeutic targets to prevent EndMT.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawn Loder
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Cholok
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua Peterson
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Li
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Fireman
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher Breuler
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hsiao Sung Hsieh
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kavitha Ranganathan
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles Hwang
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Drake
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shuli Li
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles K. Chan
- Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | | | - Benjamin Levi
- Burn/Wound and Regenerative Medicine Laboratory, Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Kanazawa T, Gotoh M, Ohta K, Shiba N, Nakamura KI. Three-dimensional ultrastructural analysis of development at the supraspinatus insertion by using focused ion beam/scanning electron microscope tomography in rats. J Orthop Res 2016; 34:969-76. [PMID: 26599103 DOI: 10.1002/jor.23111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/20/2015] [Indexed: 02/04/2023]
Abstract
To obtain a successful outcome after rotator cuff repair, the repaired tendon must be biologically anchored to the bone. However, the histological structure at the repaired tendon-bone interface differs from that of the site of normal tendon insertion. Therefore, analyzing postnatal development in detail will contribute to understanding the repaired tendon-bone interface after rotator cuff repair. In this study, we analyzed postnatal development at the tendon-bone insertion in terms of temporal changes in SOX9/SCX expression and three-dimensional (3D) ultrastructure with FIB/SEM tomography, a new scanning electron microscopic method. Sixteen postnatal Sprague-Dawley rats were used for the study. One-, two-, three-, and four-week-old rats were sacrificed and both right and left shoulders were removed; eight normal supraspinatus tendon insertions were isolated for each time point. At each time point, four specimens were evaluated with fluorescent immunostaining for SOX9/SCX expression, and the remaining four specimens were evaluated with FIB/SEM tomography. Even in postnatal development, SOX9(+) /SCX(+) expression was observed at the tendon insertion; expression gradually decreased with postnatal development at the normal tendon insertion. In 3D ultrastructure, the morphology of the cells and the number/orientation of the cell processes drastically changed by postnatal week 4. The pattern of SOX9/SCX expression and 3D ultrastructural changes obtained in this study contribute to an understanding of the complicated development of normal tendon-bone insertion. Therefore, this study helps elucidate the pathophysiology of tendon-bone insertion, especially in cases of rotator cuff tear and repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:969-976, 2016.
Collapse
Affiliation(s)
- Tomonoshin Kanazawa
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka, 830-0011, Japan.,Department of Orthopaedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Fukuoka, Kurume City, Fukuoka, 830-0011, Japan
| | - Masafumi Gotoh
- Department of Orthopaedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Fukuoka, Kurume City, Fukuoka, 830-0011, Japan
| | - Keisuke Ohta
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka, 830-0011, Japan
| | - Naoto Shiba
- Department of Orthopaedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Fukuoka, Kurume City, Fukuoka, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka, 830-0011, Japan
| |
Collapse
|
27
|
Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 2016; 142:4191-204. [PMID: 26672092 DOI: 10.1242/dev.114777] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tendons and ligaments are extracellular matrix (ECM)-rich structures that interconnect muscles and bones. Recent work has shown how tendon fibroblasts (tenocytes) interact with muscles via the ECM to establish connectivity and strengthen attachments under tension. Similarly, ECM-dependent interactions between tenocytes and cartilage/bone ensure that tendon-bone attachments form with the appropriate strength for the force required. Recent studies have also established a close lineal relationship between tenocytes and skeletal progenitors, highlighting the fact that defects in signals modulated by the ECM can alter the balance between these fates, as occurs in calcifying tendinopathies associated with aging. The dynamic fine-tuning of tendon ECM composition and assembly thus gives rise to the remarkable characteristics of this unique tissue type. Here, we provide an overview of the functions of the ECM in tendon formation and maturation that attempts to integrate findings from developmental genetics with those of matrix biology.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
28
|
Chanvorachote P, Luanpitpong S. Iron induces cancer stem cells and aggressive phenotypes in human lung cancer cells. Am J Physiol Cell Physiol 2016; 310:C728-39. [DOI: 10.1152/ajpcell.00322.2015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/17/2016] [Indexed: 12/20/2022]
Abstract
Evidence has accumulated in support of the critical impact of cancer stem cells (CSCs) behind the chemotherapeutic failure, cancer metastasis, and subsequent disease recurrence and relapse, but knowledge of how CSCs are regulated is still limited. Redox status of the cells has been shown to dramatically influence cell signaling and CSC-like aggressive behaviors. Here, we investigated how subtoxic concentrations of iron, which have been found to specifically induce cellular hydroxyl radical, affected CSC-like subpopulations of human non-small cell lung carcinoma (NSCLC). We reveal for the first time that subchronic iron exposure and higher levels of hydroxyl radical correlated well with increased CSC-like phenotypes. The iron-exposed NSCLC H460 and H292 cells exhibited a remarkable increase in propensities to form CSC spheroids and to proliferate, migrate, and invade in parallel with an increase in level of a well-known CSC marker, ABCG2. We further observed that such phenotypic changes induced by iron were not related to an epithelial-to-mesenchymal transition (EMT). Instead, the sex-determining region Y (SRY)-box 9 protein (SOX9) was substantially linked to iron treatment and hydroxyl radical level. Using gene manipulations, including ectopic SOX9 overexpression and SOX9 short hairpin RNA knockdown, we have verified that SOX9 is responsible for CSC enrichment mediated by iron. These findings indicate a novel role of iron via hydroxyl radical in CSC regulation and its importance in aggressive cancer behaviors and likely metastasis through SOX9 upregulation.
Collapse
Affiliation(s)
- Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Cell-based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand; and
| | - Sudjit Luanpitpong
- Cell-based Drug and Health Products Development Research Unit, Chulalongkorn University, Bangkok, Thailand; and
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Taatjes DJ, Roth J. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review. Histochem Cell Biol 2016; 145:239-74. [PMID: 26878854 DOI: 10.1007/s00418-016-1417-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
|
30
|
Guo J, Chan KM, Zhang JF, Li G. Tendon-derived stem cells undergo spontaneous tenogenic differentiation. Exp Cell Res 2016; 341:1-7. [PMID: 26794903 DOI: 10.1016/j.yexcr.2016.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 12/30/2022]
Abstract
Tendon-derived stem cell (TDSC) is a subpopulation of residing stem cells within the intact tendon tissues, with the capacities of self-renewal, clonogenicity, and three-lineage differentiation. Compared with bone marrow derived mesenchymal stem cells (BMSCs), TDSCs are superior for tendon injuries repair as they remain some tendon tissue-specific differentiation properties. In the present study, TDSC was found to undergo spontaneous tenogenic differentiation in which the expression of tenogenic markers were increased while the expression of stemness markers decreased with time in TDSCs culture (without tenogenic induction medium). The further collagen synthesis ability was correspondingly increased during this process. After a longer period of culture, the monolayer of TDSCs formed a "3D" layers with rich extracellular matrices of typical tendon tissues. In addition, the key tenogenic transcription factors, such as Scx, Mkx, Egr1 and Eya1 were all up-regulated in this process. Finally, we compared the spontaneous tenogenic differentiation with TGF-β1-induced tenogenic differentiation of TDSCs, and the results showed that the spontaneous tenogenic differentiation of TDSCs was general character of TDSCs, similar to but weaker than the effect of TDSCs under tenogenic induction. Taken together, the present study identified that TDSCs had the potential of spontaneous tenogenic differentiation, which may be a better cell source for the treatment of tendon injury.
Collapse
Affiliation(s)
- Jia Guo
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China
| | - Kai-Ming Chan
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China; Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jin-Fang Zhang
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China; Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, PR China; Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China; Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, PR China; The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, PR China.
| |
Collapse
|
31
|
The tumor suppressor BTG1 is expressed in the developing digits and regulates skeletogenic differentiation of limb mesodermal progenitors in high density cultures. Cell Tissue Res 2015; 364:299-308. [PMID: 26662056 DOI: 10.1007/s00441-015-2331-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023]
Abstract
In the developing limb, differentiation of skeletal progenitors towards distinct connective tissues of the digits is correlated with the establishment of well-defined domains of Btg1 gene expression. Zones of high expression of Btg1 include the earliest digit blastemas, the condensing mesoderm at the tip of the growing digits, the peritendinous mesenchyme, and the chondrocytes around the developing interphalangeal joints. Gain- and loss-of function experiments in micromass cultures of skeletal progenitors reveal a negative influence of Btg1 in cartilage differentiation accompanied by up-regulation of Ccn1, Scleraxis and PTHrP. Previous studies have assigned a role to these factors in the aggregation of progenitors in the digit tips (Ccn1), in the differentiation of tendon blastemas (Scleraxis) and repressing hypertrophic cartilage differentiation (PTHrP). Overexpression of Btg1 up-regulates the expression of retinoic acid and thyroid hormone receptors, but, different from other systems, the influence of BTG1 in connective tissue differentiation appears to be independent of retinoic acid and thyroid hormone signaling.
Collapse
|
32
|
Killian ML, Thomopoulos S. Scleraxis is required for the development of a functional tendon enthesis. FASEB J 2015; 30:301-11. [PMID: 26443819 DOI: 10.1096/fj.14-258236] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/08/2015] [Indexed: 11/11/2022]
Abstract
The attachment of dissimilar materials is a major engineering challenge, yet this challenge is seemingly overcome in biology. This study aimed to determine how the transcription factor Scleraxis (Scx) influences the development and maturation of the tendon-to-bone attachment (enthesis). Mice with conditional knockout (cKO) for Scx (Scx(flx/-), Prx1Cre(+)) and wild-type [(WT) Scx(flx/+) or Scx(flx/flx)] littermates were killed at postnatal days 7-56 (P7-P56). Enthesis morphometry, histology, and collagen alignment were investigated throughout postnatal growth. Enthesis tensile mechanical properties were also assessed. Laser microdissection of distinct musculoskeletal tissues was performed at P7 for WT, cKO, and muscle-unloaded (botulinum toxin A treated) attachments for quantitative PCR. cKO mice were smaller, with altered bone shape and impaired enthesis morphology, morphometry, and organization. Structural alterations led to altered mechanical properties; cKO entheses demonstrated reduced strength and stiffness. In P7 attachments, cKO mice had reduced expression of transforming growth factor (TGF) superfamily genes in fibrocartilage compared with WT mice. In conclusion, deletion of Scx led to impairments in enthesis structure, which translated into impaired functional (i.e., mechanical) outcomes. These changes may be driven by transient signaling cues from mechanical loading and growth factors.
Collapse
Affiliation(s)
- Megan L Killian
- Department of Orthopedic Surgery, Washington University, St. Louis, Missouri, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Li Y, Ramcharan M, Zhou Z, Leong DJ, Akinbiyi T, Majeska RJ, Sun HB. The Role of Scleraxis in Fate Determination of Mesenchymal Stem Cells for Tenocyte Differentiation. Sci Rep 2015; 5:13149. [PMID: 26289033 PMCID: PMC4542341 DOI: 10.1038/srep13149] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/02/2015] [Indexed: 01/02/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent cells that primarily differentiate into osteocytes, chondrocytes, and adipocytes. Recent studies indicate that MSCs can also be induced to generate tenocyte-like cells; moreover, MSCs have been suggested to have great therapeutic potential for tendon pathologies. Yet the precise molecular cascades governing tenogenic differentiation of MSCs remain unclear. We demonstrate scleraxis, a transcription factor critically involved in embryonic tendon development and formation, plays a pivotal role in the fate determination of MSC towards tenocyte differentiation. Using murine C3H10T1/2 pluripotent stem cells as a model system, we show scleraxis is extensively expressed in the early phase of bone morphogenetic protein (BMP)-12-triggered tenocytic differentiation. Once induced, scleraxis directly transactivates tendon lineage-related genes such as tenomodulin and suppresses osteogenic, chondrogenic, and adipogenic capabilities, thus committing C3H10T1/2 cells to differentiate into the specific tenocyte-like lineage, while eliminating plasticity for other lineages. We also reveal that mechanical loading-mediated tenocytic differentiation follows a similar pathway and that BMP-12 and cyclic uniaxial strain act in an additive fashion to augment the maximal response by activating signal transducer Smad8. These results provide critical insights into the determination of multipotent stem cells to the tenocyte lineage induced by both chemical and physical signals.
Collapse
Affiliation(s)
- Yonghui Li
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, New York, NY 10029
| | - Melissa Ramcharan
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, New York, NY 10029.,Department of Biomedical Engineering, City College of New York, New York, NY 10031
| | - Zuping Zhou
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, New York, NY 10029
| | - Daniel J Leong
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, New York, NY 10029.,Department of Biomedical Engineering, City College of New York, New York, NY 10031.,Department of Orthopedic Surgery, Albert Einstein College of Medicine, Bronx, NY 10461.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Takintope Akinbiyi
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, New York, NY 10029
| | - Robert J Majeska
- Department of Biomedical Engineering, City College of New York, New York, NY 10031
| | - Hui B Sun
- Leni and Peter W. May Department of Orthopedics, Mount Sinai School of Medicine, New York, NY 10029.,Department of Orthopedic Surgery, Albert Einstein College of Medicine, Bronx, NY 10461.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
34
|
Wada S, Ideno H, Shimada A, Kamiunten T, Nakamura Y, Nakashima K, Kimura H, Shinkai Y, Tachibana M, Nifuji A. H3K9MTase G9a is essential for the differentiation and growth of tenocytes in vitro. Histochem Cell Biol 2015; 144:13-20. [PMID: 25812847 DOI: 10.1007/s00418-015-1318-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Cell differentiation is controlled by specific transcription factors. The functions and expression levels of these transcription factors are regulated by epigenetic modifications, such as histone modifications and cytosine methylation of the genome. In tendon tissue, tendon-specific transcription factors have been shown to play functional roles in the regulation of tenocyte differentiation. However, the effects of epigenetic modifications on gene expression and differentiation in tenocytes are unclear. In this study, we investigated the epigenetic regulation of tenocyte differentiation, focusing on the enzymes mediating histone 3 lysine 9 (H3K9) methylation. In primary mouse tenocytes, six H3K9 methyltransferase (H3K9MTase) genes, i.e., G9a, G9a-like protein (GLP), PR domain zinc finger protein 2 (PRDM2), SUV39H1, SUV39H2, and SETDB1/ESET were all expressed, with increased mRNA levels observed during tenocyte differentiation. In mouse embryos, G9a and Prdm2 mRNAs were expressed in tenocyte precursor cells, which were overlapped with or were adjacent to cells expressing a tenocyte-specific marker, tenomodulin. Using tenocytes isolated from G9a-flox/flox mice, we deleted G9a by infecting the cells with Cre-expressing adenoviruses. Proliferation of G9a-null tenocytes was significantly decreased compared with that of control cells infected with GFP-expressing adenoviruses. Moreover, the expression levels of tendon transcription factors gene, i.e., Scleraxis (Scx), Mohawk (Mkx), Egr1, Six1, and Six2 were all suppressed in G9a-null tenocytes. The tendon-related genes Col1a1, tenomodulin, and periostin were also downregulated. Consistent with this, Western blot analysis showed that tenomodulin protein expression was significantly suppressed by G9a deletion. These results suggested that expression of the H3K9MTase G9a was essential for the differentiation and growth of tenocytes and that H3K9MTases may play important roles in tendinogenesis.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Pharmacology, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, 230-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Costa-Almeida R, Gonçalves AI, Gershovich P, Rodrigues MT, Reis RL, Gomes ME. Tendon Stem Cell Niche. TISSUE-SPECIFIC STEM CELL NICHE 2015. [DOI: 10.1007/978-3-319-21705-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
36
|
Diaz-Mendoza MJ, Lorda-Diez CI, Montero JA, Garcia-Porrero JA, Hurle JM. Reelin/DAB-1 Signaling in the Embryonic Limb Regulates the Chondrogenic Differentiation of Digit Mesodermal Progenitors. J Cell Physiol 2014; 229:1397-404. [DOI: 10.1002/jcp.24576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/05/2014] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV; Universidad de Cantabria; Santander Spain
| |
Collapse
|
37
|
Serão NVL, Matika O, Kemp RA, Harding JCS, Bishop SC, Plastow GS, Dekkers JCM. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J Anim Sci 2014; 92:2905-21. [PMID: 24879764 DOI: 10.2527/jas.2014-7821] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant disease impacting pig production in North America, Europe, and Asia, causing reproductive losses such as increased rates of stillbirth and mummified piglets. The objective of this study was to explore the genetic basis of host response to the PRRS virus (PRRSV) in a commercial multiplier sow herd before and after a PRRS outbreak, using antibody response and reproductive traits. Reproductive data comprising number born alive (NBA), number alive at 24 h (NA24), number stillborn (NSB), number born mummified (NBM), proportion born dead (PBD), number born dead (NBD), number weaned (NW), and number of mortalities through weaning (MW) of 5,227 litters from 1,967 purebred Landrace sows were used along with a pedigree comprising 2,995 pigs. The PRRS outbreak date was estimated from rolling averages of farrowing traits and was used to split the data into a pre-PRRS phase and a PRRS phase. All 641 sows in the herd during the outbreak were blood sampled 46 d after the estimated outbreak date and were tested for anti-PRRSV IgG using ELISA (sample-to-positive [S/P] ratio). Genetic parameters of traits were estimated separately for the pre-PRRS and PRRS phase data sets. Sows were genotyped using the PorcineSNP60 BeadChip, and genome-wide association studies (GWAS) were performed using method Bayes B. Heritability estimates for reproductive traits ranged from 0.01 (NBM) to 0.12 (NSB) and from 0.01 (MW) to 0.12 (NBD) for the pre-PRRS and PRRS phases, respectively. S/P ratio had heritability (0.45) and strong genetic correlations with most traits, ranging from -0.72 (NBM) to 0.73 (NBA). In the pre-PRRS phase, regions associated with NSB and PBD explained 1.6% and 3% of the genetic variance, respectively. In the PRRS phase, regions associated with NBD, NSB, and S/P ratio explained 0.8%, 11%, and 50.6% of the genetic variance, respectively. For S/P ratio, 2 regions on SSC 7 (SSC7) separated by 100 Mb explained 40% of the genetic variation, including a region encompassing the major histocompatibility complex, which explained 25% of the genetic variance. These results indicate a significant genomic component associated with PRRSV antibody response and NSB in this data set. Also, the high heritability and genetic correlation estimates for S/P ratio during the PRRS phase suggest that S/P ratio could be used as an indicator of the impact of PRRS on reproductive traits.
Collapse
Affiliation(s)
- N V L Serão
- Department of Animal Science, Iowa State University, Ames 50011
| | - O Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - R A Kemp
- Genesus, Oakville, MB R0H 0Y0, Canada
| | - J C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A1, Canada
| | - S C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - G S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - J C M Dekkers
- Department of Animal Science, Iowa State University, Ames 50011
| |
Collapse
|
38
|
Wei A, Shen B, Williams L, Diwan A. Mesenchymal stem cells: potential application in intervertebral disc regeneration. Transl Pediatr 2014; 3:71-90. [PMID: 26835326 PMCID: PMC4729108 DOI: 10.3978/j.issn.2224-4336.2014.03.05] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain is one of the leading public health problems in developed countries. Degeneration of the intervertebral disc (IVD) is a major pathological process implicated in low back pain, which is characterized by cellular apoptosis and senescence with reduced synthesis of extracellular matrix (ECM). Currently, there is no clinical therapy targeting the reversal of disc degeneration. Recent advances in cellular and molecular biology have provided an exciting approach to disc regeneration that focuses on the delivery of viable cells to the degenerative disc. Adult mesenchymal stem cells (MSCs) are multipotent stem cells with self-renewal capacities and are able to differentiate into diverse specialized cell types, including chondrocyte lineages. The potential of stem cell therapy in disc degeneration is to repopulate the disc with viable cells capable of producing the ECM and restoring damaged tissue. The present literature review summarizes recent advances in basic research and clinical trials of MSCs to provide an outline of the key roles of MSCs therapies in disc repair. The review also discusses the controversies, challenges and therapeutic concepts for the future.
Collapse
Affiliation(s)
- Aiqun Wei
- 1 Department of Orthopaedic Research, Orthopaedic Research Institute, St George Hospital University of New South Wales, Sydney, Australia ; 2 Department of Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney, Australia
| | - Bojiang Shen
- 1 Department of Orthopaedic Research, Orthopaedic Research Institute, St George Hospital University of New South Wales, Sydney, Australia ; 2 Department of Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney, Australia
| | - Lisa Williams
- 1 Department of Orthopaedic Research, Orthopaedic Research Institute, St George Hospital University of New South Wales, Sydney, Australia ; 2 Department of Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney, Australia
| | - Ashish Diwan
- 1 Department of Orthopaedic Research, Orthopaedic Research Institute, St George Hospital University of New South Wales, Sydney, Australia ; 2 Department of Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
39
|
Lorda-Diez CI, Montero JA, Garcia-Porrero JA, Hurle JM. Divergent differentiation of skeletal progenitors into cartilage and tendon: lessons from the embryonic limb. ACS Chem Biol 2014; 9:72-9. [PMID: 24228739 DOI: 10.1021/cb400713v] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Repairing damaged cartilage and tendons is a major challenge of regenerative medicine. There has been great progress in the past decade toward obtaining stem cells for regenerative purposes from a variety of sources. However, the development of procedures to direct and maintain the differentiation of progenitors into cartilage or tendon is still a hurdle to overcome in regenerative medicine of the musculoskeletal system. This is because connective tissues often lack stable phenotypes and retain plasticity to return to the initial stages of differentiation or to transdifferentiate into another connective tissue cell lineage. This makes it necessary to unravel the molecular basis that is responsible for the differentiation of connective tissue cell lineages. In this review, we summarize the investigations performed in the past two decades to unravel the signals that regulate the differentiation of skeletal cell progenitors into cartilage and tendons during embryonic limb development. The data obtained in those studies demonstrate that Tgfβ, BMP, FGF, and Wnt establish a complex signaling network that directs the differentiation of skeletal cell progenitors. Remarkably, in the embryonic digit model, the divergent differentiation of progenitors depends on the temporal coordination of those signals, rather than being specified by an individual signaling pathway. Due to its potential medical relevance, we highlight the importance of the coordinate influence of the Tgfβ and BMP pathways in the differentiation of cell progenitors into tendon or cartilage.
Collapse
Affiliation(s)
- Carlos I. Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan A. Montero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan A. Garcia-Porrero
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander 39011, Spain
| |
Collapse
|
40
|
Abstract
The intrasynovial bone-tendon interface is a gradual transition from soft tissue to bone, with two intervening zones of uncalcified and calcified fibrocartilage. Following injury, the native anatomy is not restored, resulting in inferior mechanical properties and an increased risk of re-injury. Recent in vivo studies provide evidence of improved healing when surgical repair of the bone-tendon interface is augmented with cells capable of undergoing chondrogenesis. In particular, cellular therapy in bone-tendon healing can promote fibrocartilage formation and associated improvements in mechanical properties. Despite these promising results in animal models, cellular therapy in human patients remains largely unexplored. This review highlights the development and structure-function relationship of normal bone-tendon insertions. The natural healing response to injury is discussed, with subsequent review of recent research on cellular approaches for improved healing. Finally, opportunities for translating in vivo findings into clinical practice are identified.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- Center for Cellular and Molecular Engineering; Department of Orthopaedic Surgery; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering; Department of Orthopaedic Surgery; University of Pittsburgh School of Medicine; Pittsburgh, PA USA
| |
Collapse
|
41
|
Shwartz Y, Blitz E, Zelzer E. One load to rule them all: Mechanical control of the musculoskeletal system in development and aging. Differentiation 2013; 86:104-11. [DOI: 10.1016/j.diff.2013.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/01/2013] [Accepted: 07/12/2013] [Indexed: 12/24/2022]
|
42
|
Mitani G, Sato M, Yamato M, Kokubo M, Takagaki T, Ebihara G, Okano T, Mochida J. Potential utility of cell sheets derived from the anterior cruciate ligament and synovium fabricated in temperature-responsive culture dishes. J Biomed Mater Res A 2013; 102:2927-33. [DOI: 10.1002/jbm.a.34962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 09/09/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Genya Mitani
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Mami Kokubo
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Tomonori Takagaki
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Goro Ebihara
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Joji Mochida
- Department of Orthopaedic Surgery, Surgical Science; Tokai University School of Medicine; 143 Shimokasuya Isehara Kanagawa 259-1193 Japan
| |
Collapse
|
43
|
Blitz E, Sharir A, Akiyama H, Zelzer E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development 2013; 140:2680-90. [PMID: 23720048 DOI: 10.1242/dev.093906] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The assembly of the musculoskeletal system requires the formation of an attachment unit between a bone and a tendon. Tendons are often inserted into bone eminences, superstructures that improve the mechanical resilience of the attachment of muscles to the skeleton and facilitate movement. Despite their functional importance, little is known about the development of bone eminences and attachment units. Here, we show that bone eminence cells are descendants of a unique set of progenitors and that superstructures are added onto the developing long bone in a modular fashion. First, we show that bone eminences emerge only after the primary cartilage rudiments have formed. Cell lineage analyses revealed that eminence cells are not descendants of chondrocytes. Moreover, eminence progenitors were specified separately and after chondroprogenitors of the primary cartilage. Fields of Sox9-positive, Scx-positive, Col2a1-negative cells identified at presumable eminence sites confirm the identity and specificity of these progenitors. The loss of eminences in limbs in which Sox9 expression was blocked in Scx-positive cells supports the hypothesis that a distinct pool of Sox9- and Scx-positive progenitors forms these superstructures. We demonstrate that TGFβ signaling is necessary for the specification of bone eminence progenitors, whereas the SCX/BMP4 pathway is required for the differentiation of these progenitors to eminence-forming cells. Our findings suggest a modular model for bone development, involving a distinct pool of Sox9- and Scx-positive progenitor cells that form bone eminences under regulation of TGFβ and BMP4 signaling. This model offers a new perspective on bone morphogenesis and on attachment unit development during musculoskeletal assembly.
Collapse
Affiliation(s)
- Einat Blitz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
44
|
Lu HH, Thomopoulos S. Functional attachment of soft tissues to bone: development, healing, and tissue engineering. Annu Rev Biomed Eng 2013; 15:201-26. [PMID: 23642244 DOI: 10.1146/annurev-bioeng-071910-124656] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue-to-bone interface, and concludes with a summary of challenges and future directions.
Collapse
Affiliation(s)
- Helen H Lu
- Columbia University, Department of Biomedical Engineering, New York, NY 10027, USA.
| | | |
Collapse
|
45
|
Schwartz AG, Pasteris JD, Genin GM, Daulton TL, Thomopoulos S. Mineral distributions at the developing tendon enthesis. PLoS One 2012; 7:e48630. [PMID: 23152788 PMCID: PMC3494702 DOI: 10.1371/journal.pone.0048630] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/03/2012] [Indexed: 01/08/2023] Open
Abstract
Tendon attaches to bone across a functionally graded interface, “the enthesis”. A gradient of mineral content is believed to play an important role for dissipation of stress concentrations at mature fibrocartilaginous interfaces. Surgical repair of injured tendon to bone often fails, suggesting that the enthesis does not regenerate in a healing setting. Understanding the development and the micro/nano-meter structure of this unique interface may provide novel insights for the improvement of repair strategies. This study monitored the development of transitional tissue at the murine supraspinatus tendon enthesis, which begins postnatally and is completed by postnatal day 28. The micrometer-scale distribution of mineral across the developing enthesis was studied by X-ray micro-computed tomography and Raman microprobe spectroscopy. Analyzed regions were identified and further studied by histomorphometry. The nanometer-scale distribution of mineral and collagen fibrils at the developing interface was studied using transmission electron microscopy (TEM). A zone (∼20 µm) exhibiting a gradient in mineral relative to collagen was detected at the leading edge of the hard-soft tissue interface as early as postnatal day 7. Nanocharacterization by TEM suggested that this mineral gradient arose from intrinsic surface roughness on the scale of tens of nanometers at the mineralized front. Microcomputed tomography measurements indicated increases in bone mineral density with time. Raman spectroscopy measurements revealed that the mineral-to-collagen ratio on the mineralized side of the interface was constant throughout postnatal development. An increase in the carbonate concentration of the apatite mineral phase over time suggested possible matrix remodeling during postnatal development. Comparison of Raman-based observations of localized mineral content with histomorphological features indicated that development of the graded mineralized interface is linked to endochondral bone formation near the tendon insertion. These conserved and time-varying aspects of interface composition may have important implications for the growth and mechanical stability of the tendon-to-bone attachment throughout development.
Collapse
Affiliation(s)
- Andrea G. Schwartz
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, United States of America
| | - Jill D. Pasteris
- Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri, United States of America
| | - Guy M. Genin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Tyrone L. Daulton
- Center for Materials Innovation, Washington University, St. Louis, Missouri, United States of America
- Department of Physics, Washington University, St. Louis, Missouri, United States of America
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Washington University, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
46
|
Lorda-Diez CI, Montero JA, Diaz-Mendoza MJ, Garcia-Porrero JA, Hurle JM. βig-h3 potentiates the profibrogenic effect of TGFβ signaling on connective tissue progenitor cells through the negative regulation of master chondrogenic genes. Tissue Eng Part A 2012; 19:448-57. [PMID: 22924741 DOI: 10.1089/ten.tea.2012.0188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tendons and cartilage are specialized forms of connective tissues originated from common progenitor cells. Initial stages of differentiation of these tissues are characterized by the formation of cell aggregates, which share many molecular markers. Once differentiated, these cells retain considerable plasticity, and chondral metaplasia of tendon and fibrous connective tissues and eventual ossification often accompany degenerative diseases in the adult musculoskeletal system. While this fact is of great relevance for regenerative medicine and aging biology, its molecular basis remains to be elucidated. Gene expression analysis in several physiological and experimental paradigms suggests that differentiation of tendon and cartilage is regulated by a balance in the expression of chondrogenic versus tenogenic genes in the connective tissue cell precursors. Transforming growth factor β (TGFβ) may function both as a profibrogenic or as a prochondrogenic factor for embryonic limb mesoderm and mesenchymal stem cell cultures, but mice that are null for TGFβ 2 and 3 lack tendons. Here, we identify βig-h3 as a factor downstream TGFβ signaling regulated by Smad 2 and 3, which is highly expressed in the differentiating tendons and joint capsules. Furthermore, gain- and loss-of-function experiments using limb mesoderm micromass cultures show that βig-h3 downregulates the expression of cartilage master genes, including Sox9, type II collagen, and Hif-1α. Positive regulation of Sox9 and type II Collagen observed in micromass cultures grown under hypoxic conditions is prevented by exogenous administration of βIG-H3, and the antichondrogenic influence of βIG-H3 is lost after Hif-1α silencing with shRNA. Collectively, our findings indicate that βig-h3 promotes the fibrogenic influence of TGFβ signaling, neutralizing the prochondrogenic influence of the hypoxic-inducible factor 1 activated by the hypoxic microenvironment characteristic of limb mesenchymal aggregates.
Collapse
Affiliation(s)
- Carlos I Lorda-Diez
- Departamento de Anatomía y Biología Celular and IFIMAV, Universidad de Cantabria, Santander, Spain
| | | | | | | | | |
Collapse
|
47
|
Bobick BE, Cobb J. Shox2 regulates progression through chondrogenesis in the mouse proximal limb. J Cell Sci 2012; 125:6071-83. [DOI: 10.1242/jcs.111997] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In humans, loss of SHOX gene function is responsible for the mesomelic short stature characteristic of Turner syndrome, Leri-Weill dyschondrosteosis, and Langer dysplasia. In a mouse model of SHOX deficiency, Prrx1-Cre-driven limb-specific deletion of the paralogous gene Shox2 results in severe rhizomelia. In this study, we show that Col2a1-Cre-driven deletion of Shox2 in developing chondrocytes also results in shortening of the stylopodial skeleton (i.e. humerus, femur) and that this rhizomelia is due to precocious chondrocyte maturation and hypertrophy. We demonstrate, using the micromass culture model system, that increased BMP activity triggers accelerated maturation and hypertrophy in Col2a1-Cre Shox2 mutant chondrocytes and we confirm in vivo that elevated transcript levels and expanded expression domains of Bmp2 and 4 are associated with premature formation of the hypertrophic zone in mutant humeri. In micromass cultures of Prrx1-Cre Shox2 mutant limb cells, we find that Shox2 deletion in undifferentiated mesenchymal cells results in increased BMP activity that enhances early chondrogenesis, but is insufficient to provoke chondrocyte maturation and hypertrophy. Similarly, shRNA-mediated Shox2 knockdown in multipotent C3H10T1/2 cells and primary mouse bone marrow mesenchymal stem cells results in spontaneous chondrogenesis in the absence of chondrostimulation, but again fails to induce progression through the later stages of chondrogenic differentiation. Importantly, exogenous BMP supplementation can overcome the block to maturation and hypertrophy caused by Shox2 depletion prior to overt chondrogenesis. Thus, we provide evidence that Shox2 regulates progression through chondrogenesis at two distinct stages – the onset of early differentiation and the transition to maturation and hypertrophy.
Collapse
|
48
|
Abstract
Rotator cuff repair is a common orthopedic procedure. Despite advances in surgical technique, the rotator cuff tendons often fail to heal after surgery. In recent years, a number of biologic strategies have been developed and tested to augment healing after rotator cuff repair. These strategies include allograft, extracellular matrices (ECMs), platelet rich plasma (PRP), growth factors, stem cells, and gene therapy. This chapter reviews the most current research on biologic augmentation of rotator cuff repair using these methods.
Collapse
Affiliation(s)
- Scott R Montgomery
- Orthopaedic Surgery Education Office, David Geffen School of Medicine at UCLA, Room 76-143 CHS 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
49
|
Alberton P, Popov C, Prägert M, Kohler J, Shukunami C, Schieker M, Docheva D. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev 2011; 21:846-58. [PMID: 21988170 DOI: 10.1089/scd.2011.0150] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tendons and ligaments (T/L) are dense connective tissues of mesodermal origin. During embryonic development, the tendon-specific cells descend from a sub-set of mesenchymal progenitors condensed in the syndetome, a dorsolateral domain of the sclerotome. These cells are defined by the expression of the transcription factor scleraxis (Scx), which regulates tendon formation and several other characteristic genes, such as collagen type I, decorin, fibromodulin, and tenomodulin (Tnmd). In contrast to other mesenchymal progenitors, the genealogy and biology of the tenogenic lineage is not yet fully understood due to the lack of simple and efficient protocols enabling generation of progenitors in vitro. Here, we investigated whether the expression of Scx can lead to the direct commitment of mesenchymal stem cells (MSCs) into tendon progenitors. First, MSC derived from human bone marrow (hMSC) were lentivirally transduced with FLAG-Scx cDNA to establish 2 clonal cell lines, hMSC-Scx and hMSC-Mock. Subsequent to Scx transduction, hMSC underwent cell morphology change and had significantly reduced proliferation and clonogenicity. Gene expression analysis demonstrated that collagen type I and several T/L-related proteoglycans were upregulated in hMSC-Scx cells. When stimulated toward 3 different mesenchymal lineages, hMSC-Scx cells failed to differentiate into chondrocytes and osteoblasts, whereas adipogenic differentiation still occurred. Lastly, we detected a remarkable upregulation of the T/L differentiation gene Tnmd in hMSC-Scx. From these results, we conclude that Scx delivery results in the direct programming of hMSC into tendon progenitors and that the newly generated hMSC-Scx cell line can be a powerful and useful tool in T/L research.
Collapse
Affiliation(s)
- Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Gulotta LV, Rodeo SA. Emerging ideas: Evaluation of stem cells genetically modified with scleraxis to improve rotator cuff healing. Clin Orthop Relat Res 2011; 469:2977-80. [PMID: 21132407 PMCID: PMC3171546 DOI: 10.1007/s11999-010-1727-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/22/2010] [Indexed: 01/31/2023]
Abstract
BACKGROUND Rotator cuffs heal with an interposed layer of scar tissue that makes repairs prone to failure. Cell-based biologic therapies have the potential to augment this healing process. Scleraxis (Scx) is a transcription factor that is involved in tendon development during embryogenesis, and may help drive stem cells toward tenocyte differentiation in adults. QUESTIONS/HYPOTHESIS: (1) Overexpression of Scx with adenoviral-mediated gene transfer in stem cells will drive pluripotent stem cells toward tenoblastogenic lineages in vitro; (2) the application of these genetically modified cells will result in improved histologic and biomechanical healing of rotator cuff repairs. METHOD OF STUDY For the first hypothesis, we will determine whether stem cells derived from various sources can differentiate into tenocytes when genetically modified with Scx in vitro. We will assess morphologic features of cells with light microscopy, and gene expression analyses to confirm phenotypes consistent with tenocyte differentiation. For the second hypothesis, we will determine whether these genetically modified cells augment rotator cuff repairs in a rat model based on histology and biomechanical outcomes. SIGNIFICANCE Development of this technology may substantially advance our ability to repair large to massive rotator cuff tears while limiting the rates of anatomic failure.
Collapse
Affiliation(s)
- Lawrence V. Gulotta
- Sports Medicine/Shoulder Service, Hospital for Special Surgery, New York, NY USA ,Hospital for Special Surgery, 535 E 70th Street, New York, NY 10021 USA
| | - Scott A. Rodeo
- Sports Medicine/Shoulder Service, Hospital for Special Surgery, New York, NY USA
| |
Collapse
|