1
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
2
|
Thuner J, Coutant F. IFN-γ: An overlooked cytokine in dermatomyositis with anti-MDA5 antibodies. Autoimmun Rev 2023; 22:103420. [PMID: 37625674 DOI: 10.1016/j.autrev.2023.103420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Dermatomyositis with anti-melanoma differentiation-associated gene 5 antibody (anti-MDA5 DM) is a rare autoimmune disease, often complicated by life-threatening, rapidly progressive interstitial lung disease. Additional manifestations of the disease include skin lesions, vascular abnormalities, joints and muscles pain. Despite its clinical significance, the pathogenesis of anti-MDA5 DM remains largely unknown. Currently, the disease is perceived as driven by type I interferon (IFN) whose expression is increased in most of the patients. Importantly, the regulation of IFN-γ is also altered in anti-MDA5 DM as evidenced by the presence of IFN-γ positive histiocytes in the lungs of patients, and the identification of autoantibodies that directly stimulate the production of IFN-γ by mononuclear cells. This review critically examines the pathogenesis of the disease, shedding light on recent findings that emphasize a potential role of IFN-γ. A novel conceptual framework is proposed, which integrates the molecular mechanisms altering IFN-γ regulation in anti-MDA5 DM with the known functional effects of IFN-γ on key tissues affected during the disease, such as the lungs, skin, and vessels. Understanding the precise role and relevance of IFN-γ in the pathogenesis of the disease will not only enhance the selection of available therapies for anti-MDA5 DM patients but also pave the way for the development of new therapeutic approaches targeting the altered molecular pathways.
Collapse
Affiliation(s)
- Jonathan Thuner
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, Lyon, France; Internal medicine Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Frédéric Coutant
- Immunogenomics and Inflammation Research Team, University of Lyon, Edouard Herriot Hospital, Lyon, France; Immunology Department, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France.
| |
Collapse
|
3
|
Zhuang S, Russell A, Guo Y, Xu Y, Xiao W. IFN-γ blockade after genetic inhibition of PD-1 aggravates skeletal muscle damage and impairs skeletal muscle regeneration. Cell Mol Biol Lett 2023; 28:27. [PMID: 37016287 PMCID: PMC10071770 DOI: 10.1186/s11658-023-00439-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Innate immune responses play essential roles in skeletal muscle recovery after injury. Programmed cell death protein 1 (PD-1) contributes to skeletal muscle regeneration by promoting macrophage proinflammatory to anti-inflammatory phenotype transition. Interferon (IFN)-γ induces proinflammatory macrophages that appear to hinder myogenesis in vitro. Therefore, we tested the hypothesis that blocking IFN-γ in PD-1 knockout mice may dampen inflammation and promote skeletal muscle regeneration via regulating the macrophage phenotype and neutrophils. METHODS Anti-IFN-γ antibody was administered in PD-1 knockout mice, and cardiotoxin (CTX) injection was performed to induce acute skeletal muscle injury. Hematoxylin and eosin (HE) staining was used to view morphological changes of injured and regenerated skeletal muscle. Masson's trichrome staining was used to assess the degree of fibrosis. Gene expressions of proinflammatory and anti-inflammatory factors, fibrosis-related factors, and myogenic regulator factors were determined by real-time polymerase chain reaction (PCR). Changes in macrophage phenotype were examined by western blot and real-time PCR. Immunofluorescence was used to detect the accumulation of proinflammatory macrophages, anti-inflammatory macrophages, and neutrophils. RESULTS IFN-γ blockade in PD-1 knockout mice did not alleviate skeletal muscle damage or improve regeneration following acute cardiotoxin-induced injury. Instead, it exacerbated skeletal muscle inflammation and fibrosis, and impaired regeneration via inhibiting macrophage accumulation, blocking macrophage proinflammatory to anti-inflammatory transition, and enhancing infiltration of neutrophils. CONCLUSION IFN-γ is crucial for efficient skeletal muscle regeneration in the absence of PD-1.
Collapse
Affiliation(s)
- Shuzhao Zhuang
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai, China
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Yifan Guo
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai, China
| | - Yingying Xu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai, China
| | - Weihua Xiao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China.
- Key Laboratory of Exercise and Health Sciences, Shanghai University of Sport, Ministry of Education, Shanghai, China.
| |
Collapse
|
4
|
Pferdehirt L, Guo P, Lu A, Huard M, Guilak F, Huard J. In vitro analysis of genome-engineered muscle-derived stem cells for autoregulated anti-inflammatory and antifibrotic activity. J Orthop Res 2022; 40:2937-2946. [PMID: 35293626 PMCID: PMC9477979 DOI: 10.1002/jor.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Traumatic muscle injury leads to chronic and pathologic fibrosis in skeletal muscles, primarily driven through upregulation of transforming growth factor-β1 (TGF-β1). Cell-based therapies, such as injection of muscle-derived stem cells (MDSCs), have shown promise in muscle repair. However, injected MDSCs in injured skeletal muscle can differentiate into myofibroblasts under the influence of TGF-β1, and contribute to the development of fibrosis, limiting their regenerative potential. In this study, we created a "smart" cell-based drug delivery system using CRISPR-Cas9 to genetically engineer MDSCs capable of sensing TGF-β1 and producing an antifibrotic biologic, decorin. These gene-edited smart cells, capable of inhibiting fibrosis in a dose-dependent and autoregulating manner, show anti-inflammatory and antifibrotic properties in vitro, without changing the expression of myogenic and stem cell markers as well as their cell proliferation and myogenic differentiation. Additionally, differentiation down a fibrotic lineage is reduced or eliminated in response to TGF-β1. Our results show that gene editing can be used to successfully create smart stem cells capable of producing biologic drugs with antifibrotic capabilities in a controlled and localized manner. This system provides a tool for cell-based drug delivery as the basis for a novel therapeutic approach for a variety of diseases.
Collapse
Affiliation(s)
- Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University,
St. Louis, MO 63110, USA
- Shriners Hospitals for Children – St. Louis, St.
Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St.
Louis, MO 63110, USA
| | - Ping Guo
- Center for Regenerative & Personalized Medicine,
Steadman Philippon Research Institute; Vail, CO, 81657, USA
| | - Aiping Lu
- Center for Regenerative & Personalized Medicine,
Steadman Philippon Research Institute; Vail, CO, 81657, USA
| | - Mathew Huard
- Center for Regenerative & Personalized Medicine,
Steadman Philippon Research Institute; Vail, CO, 81657, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University,
St. Louis, MO 63110, USA
- Shriners Hospitals for Children – St. Louis, St.
Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington
University, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St.
Louis, MO 63110, USA
| | - Johnny Huard
- Center for Regenerative & Personalized Medicine,
Steadman Philippon Research Institute; Vail, CO, 81657, USA
| |
Collapse
|
5
|
Song Y, Li M, Lei S, Hao L, Lv Q, Liu M, Wang G, Wang Z, Fu X, Wang L. Silk sericin patches delivering miRNA-29-enriched extracellular vesicles-decorated myoblasts (SPEED) enhances regeneration and functional repair after severe skeletal muscle injury. Biomaterials 2022; 287:121630. [PMID: 35816980 DOI: 10.1016/j.biomaterials.2022.121630] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Severe skeletal muscle injuries usually lead to a series of poor recovery issues, such as massive myofibers loss, scar tissue formation, significant muscle function impairment, etc. Here, a silk sericin patch delivering miRNA-29-enriched extracellular vesicles-decorated myoblasts (SPEED) is designed for the rapid regeneration and functional repair after severe skeletal muscle injury. Specifically, miR29-enriched extracellular vesicles (miR29-EVs) are prepared and used to deliver miR29 into primary myoblasts, which promote the myotube formation of myoblasts and increase the expression of myogenic genes while inhibiting the expression of fibrotic genes. Our results indicate that miR29-EVs promote the integration of primary myoblasts and host muscle in a severe mouse tibialis anterior (TA) muscle injury model. Moreover, implantation of SPEED drastically stimulates skeletal muscle regeneration, inhibits fibrosis of injured muscles, and leads to significant improvement of muscle contraction forces and motor ability of mice about 3 weeks after treatment. Subsequently, we further evaluate the transcriptomes of TA muscles and find that SPEED can significantly ameliorate energy metabolism and muscular microenvironment of TA muscles on day 9 after implantation. Additionally, bioinformatic analysis and comprehensive molecular biology studies also reveal that the down-regulation of CDC20-MEF2C signaling axis may participate in the muscle repair process. Together, SPEED may serve as an effective alternative for the rapid repair of severe skeletal muscle injuries in the future.
Collapse
Affiliation(s)
- Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaomiao Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shijun Lei
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Hao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Grassi A, Dal Fabbro G, Zaffagnini S. Orthobiologics for the Treatment of Muscle Lesions. ORTHOBIOLOGICS 2022:287-299. [DOI: 10.1007/978-3-030-84744-9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Brightwell CR, Kulkarni AS, Paredes W, Zhang K, Perkins JB, Gatlin KJ, Custodio M, Farooq H, Zaidi B, Pai R, Buttar RS, Tang Y, Melamed ML, Hostetter TH, Pessin JE, Hawkins M, Fry CS, Abramowitz MK. Muscle fibrosis and maladaptation occur progressively in CKD and are rescued by dialysis. JCI Insight 2021; 6:150112. [PMID: 34784301 PMCID: PMC8783691 DOI: 10.1172/jci.insight.150112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Skeletal muscle maladaptation accompanies chronic kidney disease (CKD) and negatively impacts physical function. Emphasis in CKD has historically been placed on muscle fiber intrinsic deficits, such as altered protein metabolism and atrophy. However, targeted treatment of fiber intrinsic dysfunction has produced limited improvement, whereas alterations within the fiber extrinsic environment have scarcely been examined. METHODS We investigated alterations to the skeletal muscle interstitial environment with deep cellular phenotyping of biopsies from patients with CKD compared to age-matched control participants and performed transcriptome profiling to define the molecular underpinnings of CKD-associated muscle impairments. We further examined changes in the observed muscle maladaptation following initiation of dialysis therapy for kidney failure. RESULTS Patients with CKD exhibited a progressive fibrotic muscle phenotype, which was associated with impaired regenerative capacity and lower vascular density. The severity of these deficits was strongly associated with the degree of kidney dysfunction. Consistent with these profound deficits, CKD was associated with broad alterations to the muscle transcriptome, including altered extracellular matrix organization, downregulated angiogenesis, and altered expression of pathways related to stem cell self-renewal. Remarkably, despite the seemingly advanced nature of this fibrotic transformation, dialysis treatment rescued these deficits, restoring a healthier muscle phenotype. Furthermore, after accounting for muscle atrophy, strength and endurance improved after dialysis initiation. CONCLUSION These data identify a dialysis-responsive muscle fibrotic phenotype in CKD and suggest that the early dialysis window presents a unique opportunity of improved muscle regenerative capacity during which targeted interventions may achieve maximal impact. TRIAL REGISTRATION NCT01452412FUNDING. NIH.
Collapse
Affiliation(s)
- Camille R Brightwell
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, United States of America
| | - Ameya S Kulkarni
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - William Paredes
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Kehao Zhang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Jaclyn B Perkins
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, Galveston, United States of America
| | - Knubian J Gatlin
- Department of Nutrition and Metabolism, The University of Texas Medical Branch, Galveston, United States of America
| | - Matthew Custodio
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Hina Farooq
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Bushra Zaidi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Rima Pai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Rupinder S Buttar
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Yan Tang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Michal L Melamed
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Thomas H Hostetter
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, United States of America
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | - Meredith Hawkins
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| | | | - Matthew K Abramowitz
- Department of Medicine, Albert Einstein College of Medicine, Bronx, United States of America
| |
Collapse
|
8
|
Haas G, Dunn A, Madsen J, Genovese P, Chauvin H, Au J, Ziemkiewicz N, Johnson D, Paoli A, Lin A, Pullen N, Garg K. Biomimetic sponges improve muscle structure and function following volumetric muscle loss. J Biomed Mater Res A 2021; 109:2280-2293. [PMID: 33960118 PMCID: PMC9838030 DOI: 10.1002/jbm.a.37212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 01/17/2023]
Abstract
Skeletal muscle is inept in regenerating after traumatic injuries such as volumetric muscle loss (VML) due to significant loss of various cellular and acellular components. Currently, there are no approved therapies for the treatment of muscle tissue following trauma. In this study, biomimetic sponges composed of gelatin, collagen, laminin-111, and FK-506 were used for the treatment of VML in a rodent model. We observed that biomimetic sponge treatment improved muscle structure and function while modulating inflammation and limiting the extent of fibrotic tissue deposition. Specifically, sponge treatment increased the total number of myofibers, type 2B fiber cross-sectional area, myosin: collagen ratio, myofibers with central nuclei, and peak isometric torque compared to untreated VML injured muscles. As an acellular scaffold, biomimetic sponges may provide a promising clinical therapy for VML.
Collapse
Affiliation(s)
- Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Josh Madsen
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Peter Genovese
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Hannah Chauvin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jeffrey Au
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - David Johnson
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Allison Paoli
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Andrew Lin
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Nicholas Pullen
- School of Biological Sciences, College of Natural and Health Sciences, University of Northern Colorado, Greeley, Colorado
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
9
|
Scala P, Rehak L, Giudice V, Ciaglia E, Puca AA, Selleri C, Della Porta G, Maffulli N. Stem Cell and Macrophage Roles in Skeletal Muscle Regenerative Medicine. Int J Mol Sci 2021; 22:10867. [PMID: 34639203 PMCID: PMC8509639 DOI: 10.3390/ijms221910867] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022] Open
Abstract
In severe muscle injury, skeletal muscle tissue structure and functionality can be repaired through the involvement of several cell types, such as muscle stem cells, and innate immune responses. However, the exact mechanisms behind muscle tissue regeneration, homeostasis, and plasticity are still under investigation, and the discovery of pathways and cell types involved in muscle repair can open the way for novel therapeutic approaches, such as cell-based therapies involving stem cells and peripheral blood mononucleate cells. Indeed, peripheral cell infusions are a new therapy for muscle healing, likely because autologous peripheral blood infusion at the site of injury might enhance innate immune responses, especially those driven by macrophages. In this review, we summarize current knowledge on functions of stem cells and macrophages in skeletal muscle repairs and their roles as components of a promising cell-based therapies for muscle repair and regeneration.
Collapse
Affiliation(s)
- Pasqualina Scala
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
| | - Laura Rehak
- Athena Biomedical innovations, Viale Europa 139, 50126 Florence, Italy;
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
| | - Elena Ciaglia
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
| | - Annibale Alessandro Puca
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Cardiovascular Research Unit, IRCCS MultiMedica, Via Milanese 300, 20138 Milan, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, Largo Città d’Ippocrate 1, 84131 Salerno, Italy
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Interdepartment Centre BIONAM, University of Salerno, Via Giovanni Paolo I, 84084 Fisciano, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy; (P.S.); (V.G.); (E.C.); (A.A.P.); (C.S.); (N.M.)
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
| |
Collapse
|
10
|
Schilling BK, Baker JS, Komatsu C, Marra KG. Intramuscular injection of skeletal muscle derived extracellular matrix mitigates denervation atrophy after sciatic nerve transection. J Tissue Eng 2021; 12:20417314211032491. [PMID: 34567507 PMCID: PMC8458676 DOI: 10.1177/20417314211032491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Peripheral nerve injury and the associated muscle atrophy has an estimated annual healthcare burden of $150 billion dollars in the United States. When considering the total annual health-related spending of $3.5 trillion, these pathologies alone occupy about 4.3%. The prevalence of these ailments is rooted, at least in part, in the lack of specific preventative therapies that can be administered to muscle while it remains in the denervated state. To address this, skeletal muscle-derived ECM (skECM) was injected directly in denervated muscle with postoperative analysis performed at 20 weeks, including gait analysis, force production, cytokine quantification, and histological analysis. skECM was shown to be superior against non-injected muscle controls showing no difference in contraction force to uninjured muscle at 20 weeks. Cytokines IL-1β, IL-18, and IFNγ appeared to mediate regeneration with statistical regression implicating these cytokines as strong predictors of muscle contraction, showing significant linear correlation.
Collapse
Affiliation(s)
- Benjamin K Schilling
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jocelyn S Baker
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiaki Komatsu
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kacey G Marra
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Marine T, Marielle S, Graziella M, Fabio RMV. Macrophages in Skeletal Muscle Dystrophies, An Entangled Partner. J Neuromuscul Dis 2021; 9:1-23. [PMID: 34542080 PMCID: PMC8842758 DOI: 10.3233/jnd-210737] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While skeletal muscle remodeling happens throughout life, diseases that result in its dysfunction are accountable for many deaths. Indeed, skeletal muscle is exceptionally capable to respond to stimuli modifying its homeostasis, such as in atrophy, hypertrophy, regeneration and repair. In particular conditions such as genetic diseases (muscular dystrophies), skeletal muscle’s capacity to remodel is strongly affected and undergoes continuous cycles of chronic damage. This induces scarring, fatty infiltration, as well as loss of contractibility and of the ability to generate force. In this context, inflammation, primarily mediated by macrophages, plays a central pathogenic role. Macrophages contribute as the primary regulators of inflammation during skeletal muscle regeneration, affecting tissue-resident cells such as myogenic cells and endothelial cells, but also fibro-adipogenic progenitors, which are the main source of the fibro fatty scar. During skeletal muscle regeneration their function is tightly orchestrated, while in dystrophies their fate is strongly disturbed, resulting in chronic inflammation. In this review, we will discuss the latest findings on the role of macrophages in skeletal muscle diseases, and how they are regulated.
Collapse
Affiliation(s)
- Theret Marine
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| | - Saclier Marielle
- Department of Biosciences, University of Milan, via Celoria, Milan, Italy
| | - Messina Graziella
- Department of Biosciences, University of Milan, via Celoria, Milan, Italy
| | - Rossi M V Fabio
- School of Biomedical Engineering, Department of Medical Genetics, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
12
|
Tsai WC, Yu TY, Chang GJ, Chang HN, Lin LP, Lin MS, Pang JHS. Use of Platelet-Rich Plasma Plus Suramin, an Antifibrotic Agent, to Improve Muscle Healing After Injuries. Am J Sports Med 2021; 49:3102-3112. [PMID: 34351815 DOI: 10.1177/03635465211030295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The increasing use of platelet-rich plasma (PRP) to treat muscle injuries raises concerns because transforming growth factor-beta (TGF-β) in PRP may promote fibrosis in the injured muscle and thus impair muscle regeneration. PURPOSE To investigate whether suramin (a TGF-β inhibitor) can reduce muscle fibrosis to improve healing of the injured muscle after PRP treatment and identify the underlying molecular mechanism. STUDY DESIGN Controlled laboratory study. METHODS Myoblasts isolated from the gastrocnemius muscle of Sprague Dawley rats were treated with PRP or PRP plus suramin. MTT assays were performed to evaluate cell viability. The expression of fibrosis-associated proteins (such as type I collagen and fibronectin), Smad2, and phosphorylated Smad2 was determined using Western blot analysis and immunofluorescent staining. An anti-TGF-β antibody was employed to verify the role of TGF-β in fibronectin expression. Gastrocnemius muscles were injured through a partial transverse incision and then treated using PRP or PRP plus suramin. Hematoxylin and eosin staining was conducted to evaluate the healing process 7 days after the injury. Immunofluorescent staining was performed to evaluate fibronectin expression. Muscle contractile properties-fast-twitch and tetanic strength-were evaluated through electric stimulation. RESULTS PRP plus 25 μg/mL of suramin promoted myoblast proliferation. PRP induced fibronectin expression in myoblasts, but suramin reduced this upregulation. The anti-TGF-β antibody also reduced the upregulation of fibronectin expression in the presence of PRP. The upregulation of phosphorylated Smad2 by PRP was reduced by either the anti-TGF-β antibody or suramin. In the animal study, no significant difference was discovered in muscle healing between the PRP versus PRP plus suramin groups. However, the PRP plus suramin group had reduced fibronectin expression at the injury site. Fast-twitch strength and tetanic strength were significantly higher in the injured muscle treated using PRP or PRP plus suramin. CONCLUSION Simultaneous PRP and suramin use reduced fibrosis in the injured muscle and promoted healing without negatively affecting the muscle's contractile properties. The underlying molecular mechanism may be associated with the phosphorylated Smad2 pathway. CLINICAL RELEVANCE Simultaneous PRP and suramin use may reduce muscle fibrosis without compromising muscle contractile properties and thus improve muscle healing.
Collapse
Affiliation(s)
- Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Gwo-Jyh Chang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Hsiang-Ning Chang
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Miao-Sui Lin
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Jong-Hwei S Pang
- Department of Physical Medicine and Rehabilitation, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
13
|
The linkage between inflammation and fibrosis in muscular dystrophies: The axis autotaxin-lysophosphatidic acid as a new therapeutic target? J Cell Commun Signal 2021; 15:317-334. [PMID: 33689121 PMCID: PMC8222483 DOI: 10.1007/s12079-021-00610-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Muscular dystrophies (MDs) are a diverse group of severe disorders characterized by increased skeletal muscle feebleness. In many cases, respiratory and cardiac muscles are also compromised. Skeletal muscle inflammation and fibrosis are hallmarks of several skeletal muscle diseases, including MDs. Until now, several keys signaling pathways and factors that regulate inflammation and fibrosis have been identified. However, no curative treatments are available. Therefore, it is necessary to find new therapeutic targets to fight these diseases and improve muscle performance. Lysophosphatidic acid (LPA) is an active glycerophospholipid mainly synthesized by the secreted enzyme autotaxin (ATX), which activates six different G protein-coupled receptors named LPA1 to LPA6 (LPARs). In conjunction, they are part of the ATX/LPA/LPARs axis, involved in the inflammatory and fibrotic response in several organs-tissues. This review recapitulates the most relevant aspects of inflammation and fibrosis in MDs. It analyzes experimental evidence of the effects of the ATX/LPA/LPARs axis on inflammatory and fibrotic responses. Finally, we speculate about its potential role as a new therapeutic pharmacological target to treat these diseases.
Collapse
|
14
|
Belair DG, Lee JS, Kellner AV, Huard J, Murphy WL. Receptor mimicking TGF-β1 binding peptide for targeting TGF-β1 signaling. Biomater Sci 2021; 9:645-652. [PMID: 33289741 PMCID: PMC9254699 DOI: 10.1039/d0bm01374a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prolonged and elevated transforming growth factor-β1 (TGF-β1) signaling can lead to undesired scar formation during tissue repair and fibrosis that is often a result of chronic inflammation in the lung, kidney, liver, heart, skin, and joints. We report new TGF-β1 binding peptides that interfere with TGF-β1 binding to its cognate receptors and thus attenuate its biological activity. We identified TGF-β1 binding peptides from the TGF-β1 binding domains of TGF-β receptors and engineered their sequences to facilitate chemical conjugation to biomaterials using molecular docking simulations. The in vitro binding studies and cell-based assays showed that RIPΔ, which was derived from TGF-β type I receptor, bound TGF-β1 in a sequence-specific manner and reduced the biological activity of TGF-β1 when the peptide was presented either in soluble form or conjugated to a commonly used synthetic biomaterial. This approach may have implications for clinical applications such as treatment of various fibrotic diseases and soft tissue repair and offer a design strategy for peptide antibodies based on the biomimicry of ligand-receptor interactions.
Collapse
Affiliation(s)
- David G Belair
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jae Sung Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna V Kellner
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, USA
| | - William L Murphy
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. and Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA and Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
15
|
Zhang C, Cheng N, Qiao B, Zhang F, Wu J, Liu C, Li Y, Du J. Age-related decline of interferon-gamma responses in macrophage impairs satellite cell proliferation and regeneration. J Cachexia Sarcopenia Muscle 2020; 11:1291-1305. [PMID: 32725722 PMCID: PMC7567146 DOI: 10.1002/jcsm.12584] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/18/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Impaired muscle regeneration and increased muscle fibrosis are observed in aged muscle accompanied by progressive loss of muscle mass (sarcopenia). However, the underlying mechanism is still unclear. METHODS The differentiated expressed genes in young and aged muscles after acute injury by cardiotoxin were identified by RNA-sequence analysis. Single-cell RNA-sequence analysis was used to identify cell clusters and functions in young muscle after acute injury, and flow cytometry analysis and sorting were used to validate the function. The proliferation and differentiation functions of satellite cells were accessed by immunostaining with 5-ethynyl-2'-deoxyuridine and embryonic myosin heavy chain (eMyHC), respectively. Muscle regeneration ability was accessed by histopathological and molecular biological methods. RESULTS Gene expression patterns associated with responses to interferon-gamma (IFN-γ) (15 genes; false discovery rate < 0.001) were significantly down-regulated during muscle regeneration in aged mice (P = 2.25e-7). CD8+ T cells were the main source of increased IFN-γ after injury, adoptive transfer of wild-type CD8+ T cells to IFN-γ-deficient young mice resulted in 78% increase in cross-sectional areas (CSAs) of regenerated myofibres (P < 0.05) and 63% decrease in muscle fibrosis (P < 0.05) after injury. Single-cell RNA-sequence analysis identified a novel subset of macrophages [named as IFN-responsive macrophages (IFNRMs)] that specifically expressed IFN-responsive genes (Ifit3, Isg15, Irf7, etc.) in young mice at 3 days after injury, and the number of this macrophage subset was ~20% lower in aged mice at the same time (P < 0.05). IFNRMs secreted cytokine C-X-C motif chemokine 10 (CXCL10) that promoted the proliferation and differentiation of satellite cells via its receptor, CXCR3. Intramuscular recombinant CXCL10 treatment in aged mice rejuvenated the proliferation of satellite cells (80% increase in Ki-67+ Pax7+ cells, P < 0.01) and resulted in 27% increase in CSA of regenerated myofibres (P < 0.01) and 29% decrease in muscle fibrosis (P < 0.05). CONCLUSIONS Our study indicates that decline in IFN-γ response in a novel subset of macrophage contributes to satellite cells dysfunctions in aged skeletal muscles and demonstrates that this mechanism can be targeted to restore age-associated myogenesis.
Collapse
Affiliation(s)
- Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Naixuan Cheng
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Bokang Qiao
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Fan Zhang
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jian Wu
- Section of Physiology and Biochemistry of Sports, Capital University of Physical Education and Sports, Beijing, China
| | - Chang Liu
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education; Beijing Collaborative Innovation Center for Cardiovascular Disorders; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
16
|
Zhu Z, Hou Q, Li M, Fu X. Molecular mechanism of myofibroblast formation and strategies for clinical drugs treatments in hypertrophic scars. J Cell Physiol 2019; 235:4109-4119. [PMID: 31612497 DOI: 10.1002/jcp.29302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022]
Abstract
Hypertrophic scars (HTS) commonly occurred after burn and trauma. It was characterized by the excessive deposition of extracellular matrix with the inadequate remodeling, which could result in severe physiological and psychological problems. However, the effective available prevention and treatment measures were still limited. The main pathological feature of HTS was the excessive formation of myofibroblasts, and they persist in the repaired tissue. To better understand the mechanics of this process, this review focused on the characteristics and formation of myofibroblasts, the main effector cells in HTS. We summarized the present theories and opinions on myofibroblasts formation from the perspective of related signaling pathways and epigenetic regulation, such as DNA methylation, miRNA/lncRNA/ceRNA action, histone modification, and so forth for a better understanding on the development of HTS. This information might assist in developing effective experimental and clinical treatment strategies. Additionally, we also summarized currently known clinical strategies for HTS treatment, including traditional drugs, molecular medicine, stem cells, and exosomes.
Collapse
Affiliation(s)
- Ziying Zhu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Qian Hou
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| | - Meirong Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China.,Central Laboratory, Trauma Treatment Center, Central Laboratory, Chinese PLA General Hospital Hainan Branch, Sanya, China
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Science, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Regulation of mitochondrial activity controls the duration of skeletal muscle regeneration in response to injury. Sci Rep 2019; 9:12249. [PMID: 31439911 PMCID: PMC6706433 DOI: 10.1038/s41598-019-48703-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Thyroid hormone is a major regulator of skeletal muscle development and repair, and also a key regulator of mitochondrial activity. We have previously identified a 43 kDa truncated form of the nuclear T3 receptor TRα1 (p43) which stimulates mitochondrial activity and regulates skeletal muscle features. However, its role in skeletal muscle regeneration remains to be addressed. To this end, we performed acute muscle injury induced by cardiotoxin in mouse tibialis in two mouse models where p43 is overexpressed in or depleted from skeletal muscle. The measurement of muscle fiber size distribution at different time point (up to 70 days) upon injury lead us to unravel requirement of the p43 signaling pathway for satellite cells dependent muscle regeneration; strongly delayed in the absence of p43; whereas the overexpression of the receptor enhances of the regeneration process. In addition, we found that satellite cells derived from p43-Tg mice display higher proliferation rates when cultured in vitro when compared to control myoblasts, whereas p43-/- satellites shows reduced proliferation capacity. These finding strongly support that p43 plays an important role in vivo by controling the duration of skeletal muscle regeneration after acute injury, possibly through the regulation of mitochondrial activity and myoblasts proliferation.
Collapse
|
18
|
Biz C, Crimi A, Fantoni I, Pozzuoli A, Ruggieri P. Muscle stem cells: what's new in orthopedics? ACTA BIO-MEDICA : ATENEI PARMENSIS 2019; 90:8-13. [PMID: 30714993 PMCID: PMC6503412 DOI: 10.23750/abm.v90i1-s.8078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIM OF THE WORK Adult stem cells were studied as a source of potentially useful development for tissue engineering and repair techniques. The aim of this review is to clarify the actual and possible uses of muscle stem cells in orthopedics. METHODS A selection of studies was made to obtain a homogeneous and up to date overview on the muscle stem cells applications. RESULTS In recent years muscle was studied as a good source of adult stem cells that can differentiate into different cell lineages. Muscle stem cells are a heterogeneous population of cells, which demonstrated in vitro a great potential for the regeneration and repair of muscle, bone and cartilage tissue. Among muscle stem cells, satellite stem cells are the most known progenitor cells: they can differentiate in osteoblasts, adipocytes, chondrocytes and myocytes. CONCLUSIONS Although muscle stem cells are a promising field of research, more pre-clinical studies in animal models are still needed to determine the safety and efficiency of the transplant procedures in humans.
Collapse
Affiliation(s)
- Carlo Biz
- Orthopaedic Clinic, Department of Surgery, Oncology and Gastroenterology DiSCOG, University of Padua, Padova, Italy.
| | | | | | | | | |
Collapse
|
19
|
Skeletal muscle fibrosis: an overview. Cell Tissue Res 2018; 375:575-588. [DOI: 10.1007/s00441-018-2955-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
|
20
|
de Lázaro I, Yilmazer A, Nam Y, Qubisi S, Razak FMA, Degens H, Cossu G, Kostarelos K. Non-viral, Tumor-free Induction of Transient Cell Reprogramming in Mouse Skeletal Muscle to Enhance Tissue Regeneration. Mol Ther 2018; 27:59-75. [PMID: 30470628 DOI: 10.1016/j.ymthe.2018.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/14/2023] Open
Abstract
Overexpression of Oct3/4, Klf4, Sox2, and c-Myc (OKSM) transcription factors can de-differentiate adult cells in vivo. While sustained OKSM expression triggers tumorigenesis through uncontrolled proliferation of toti- and pluripotent cells, transient reprogramming induces pluripotency-like features and proliferation only temporarily, without teratomas. We sought to transiently reprogram cells within mouse skeletal muscle with a localized injection of plasmid DNA encoding OKSM (pOKSM), and we hypothesized that the generation of proliferative intermediates would enhance tissue regeneration after injury. Intramuscular pOKSM administration rapidly upregulated pluripotency (Nanog, Ecat1, and Rex1) and early myogenesis genes (Pax3) in the healthy gastrocnemius of various strains. Mononucleated cells expressing such markers appeared in clusters among myofibers, proliferated only transiently, and did not lead to dysplasia or tumorigenesis for at least 120 days. Nanog was also upregulated in the gastrocnemius when pOKSM was administered 7 days after surgically sectioning its medial head. Enhanced tissue regeneration after reprogramming was manifested by the accelerated appearance of centronucleated myofibers and reduced fibrosis. These results suggest that transient in vivo reprogramming could develop into a novel strategy toward the acceleration of tissue regeneration after injury, based on the induction of transiently proliferative, pluripotent-like cells in situ. Further research to achieve clinically meaningful functional regeneration is warranted.
Collapse
Affiliation(s)
- Irene de Lázaro
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK
| | - Acelya Yilmazer
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK
| | - Yein Nam
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK
| | - Sara Qubisi
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK
| | - Fazilah Maizatul Abdul Razak
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health, Michael Smith Building, The University of Manchester, Manchester M13 9PL, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building, The University of Manchester, Manchester M13 9PT, UK; UCL School of Pharmacy, Faculty of Life Sciences, University College London (UCL), London WC1N 1AX, UK.
| |
Collapse
|
21
|
Sun Y, Sun X, Liu S, Liu L, Chen J. The overlap between regeneration and fibrosis in injured skeletal muscle is regulated by phosphatidylinositol 3-kinase/Akt signaling pathway - A bioinformatic analysis based on lncRNA microarray. Gene 2018; 672:79-87. [PMID: 29870770 DOI: 10.1016/j.gene.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/05/2018] [Accepted: 06/01/2018] [Indexed: 02/05/2023]
Abstract
Injured skeletal muscle would go through a sequence of the pathological phases of degeneration, myogenesis and fibrosis. Growing evidence indicated that fibrotic and myogenic phases might overlap within the injured skeletal muscle in the early time after injury. However, the mechanism underlying this overlapping remains unclear. Here, we performed an lncRNA microarray to identify the activated pathways in mice muscle seven days after contusion. KEGG analysis indicated that phosphatidylinositol 3-kinase/Akt (PI3K/Akt) signaling cascade was predicted to be activated by lncRNAs. The top genes targeted by lncRNAs in PI3K/Akt signaling were subunits of laminin, collagen 5, and collagen 6, which participated in either myogenic or fibrotic process. Reverse transcriptase-polymerase chain reaction analysis and immunohistochemical stain further confirmed the prediction in silico. These results suggested that the overlap might be related to an activated PI3K/Akt pathway by lncRNA regulation.
Collapse
Affiliation(s)
- Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Sun
- Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei Liu
- Institute of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Huard J, Bolia I, Briggs K, Utsunomiya H, Lowe WR, Philippon MJ. Potential Usefulness of Losartan as an Antifibrotic Agent and Adjunct to Platelet-Rich Plasma Therapy to Improve Muscle Healing and Cartilage Repair and Prevent Adhesion Formation. Orthopedics 2018; 41:e591-e597. [PMID: 30092110 DOI: 10.3928/01477447-20180806-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/23/2017] [Indexed: 02/03/2023]
Abstract
Postoperative tissue fibrosis represents a major complication in orthopedics. Transforming growth factor beta 1 is a key molecule in the development of postoperative fibrosis. High concentrations of transforming growth factor beta 1 have also been implicated in various diseases. Agents that counteract the actions of transforming growth factor beta 1 have been investigated as potential antifibrotic medications and as adjunct treatment to platelet-rich plasma injections (increased amounts of transforming growth factor beta 1) to improve their effectiveness and/or safety profile. Losartan blocks transforming growth factor beta 1 action and has attracted special interest in orthopedic research that focuses on how to reduce the risk of postoperative fibrosis. [Orthopedics. 2018; 41(5):e591-e597.].
Collapse
|
23
|
Rojas-Dotor S, Araujo-Monsalvo VM, Sánchez-Rojas MJ, Domínguez-Hernández VM. The monocyte locomotion inhibitory factor inhibits the expression of inflammation-induced cytokines following experimental contusion in rat tibia. Scand J Immunol 2018; 88:e12702. [PMID: 30226645 DOI: 10.1111/sji.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/22/2023]
Abstract
Entamoeba histolityca produces the monocyte locomotion inhibitory factor (MLIF), a pentapeptide with powerful anti-inflammatory properties. MLIF may regulate trauma-induced inflammation through the effects it exerts directly or indirectly on immune cells, modulating the production and/or expression of the cytokines involved in the inflammatory processes that occur after damage. The aim of the present study was to evaluate the effect of MLIF on production of pro/anti-inflammatory cytokines after contusion in the rat tibia. Fifty-four Wistar rats were subjected to controlled contusion with a special guillotine-type device, and 36 rats were injected with MLIF or tenoxicam into the tibia. Eighteen animals received saline; the animals were sacrificed 24 or 48 hours after injection. Cytokine mRNA and protein production were determined by reverse transcriptase-polymerase chain reaction (RT-PCR), immunofluorescence, and hematoxylin-eosin staining was performed to visualize cellular infiltration in the rats' injured tissue. Expression levels of the cytokines interferon gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) mRNA were inhibited significantly by MLIF at 24 hours post-contusion. MLIF significantly increased the expression levels of IL-10 at 24 hours compared with tenoxicam or the control group. These changes were associated with a significant decrease in protein production levels of TNF-α, IFN-γ, IL-6 and TGF-β at 24 hours. Histological evaluation showed the presence of infiltration by neutrophils, monocytes and leucocytes in control tissues. This infiltration was decreased after MLIF administration, and intense infiltration was observed in tenoxicam-treated group. MLIF inhibited the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokine IL-10.
Collapse
Affiliation(s)
- Sara Rojas-Dotor
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, Centro Médico Nacional Siglo XXI (CMN-SXXI), Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Víctor Manuel Araujo-Monsalvo
- Laboratorio de Biomecánica, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra" (INRLGII), Mexico City, Mexico
| | - Marco Julio Sánchez-Rojas
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | |
Collapse
|
24
|
Hara M, Yokota K, Saito T, Kobayakawa K, Kijima K, Yoshizaki S, Okazaki K, Yoshida S, Matsumoto Y, Harimaya K, Nakashima Y, Okada S. Periostin Promotes Fibroblast Migration and Inhibits Muscle Repair After Skeletal Muscle Injury. J Bone Joint Surg Am 2018; 100:e108. [PMID: 30106825 DOI: 10.2106/jbjs.17.01230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Skeletal muscle injury (SMI) can cause physical disability due to insufficient recovery of the muscle. The development of muscle fibrosis after SMI has been widely regarded as a principal cause of this failure to recover. Periostin (Postn) exacerbates tissue fibrosis in various organs. We investigated whether Postn is involved in the pathophysiology after SMI. METHODS Partial laceration injuries of the gastrocnemius were created in wild-type (WT) and Postn knockout (Postn) mice. We examined the expression of the Postn gene before and after SMI. Regeneration and fibrosis of skeletal muscle were evaluated by histological analyses, and recovery of muscle strength was measured by physiological testing. Immunohistochemistry was used to examine the number and proliferative potential of infiltrating fibroblasts in injured muscle. A trans-well migration assay was used to assess the migration capability of fibroblasts. Control immunoglobulin G (IgG) or Postn-neutralizing antibody (Postn-nAb) was injected into injured muscle at 7 and 14 days after injury (dpi). We evaluated the effects of Postn-nAb on muscle repair after SMI. RESULTS The expression of Postn was dramatically upregulated after SMI. Compared with WT mice, Postn mice had improved muscle recovery and attenuated fibrosis as well as a significantly reduced number of infiltrating fibroblasts. The proliferative potential of these fibroblasts in WT and Postn mice was comparable at 14 dpi; however, the migration capability of fibroblasts was significantly enhanced in the presence of Postn (mean, 258%; 95% confidence interval, 183% to 334%). Moreover, the administration of Postn-nAb inhibited fibroblast infiltration and promoted muscle repair after SMI. CONCLUSIONS Postn exacerbates fibrotic scar formation through the promotion of fibroblast migration into injured muscle after SMI. Treatment with Postn-nAb is effective for attenuating fibrosis and improving muscle recovery after SMI. CLINICAL RELEVANCE Our findings may provide a potential therapeutic strategy to enhance muscle repair and functional recovery after SMI.
Collapse
Affiliation(s)
- Masamitsu Hara
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuya Yokota
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeyuki Saito
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazu Kobayakawa
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Kijima
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shingo Yoshizaki
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ken Okazaki
- Department of Orthopaedic Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shigeo Yoshida
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Matsumoto
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsumi Harimaya
- Department of Orthopaedic Surgery, Kyushu University Beppu Hospital, Beppu, Japan
| | - Yasuharu Nakashima
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Seiji Okada
- Departments of Orthopaedic Surgery (M.H., K.Y., T.S., K. Kobayakawa, K. Kijima, S. Yoshizaki, Y.M., and Y.N.), Ophthalmology (S. Yoshida), and Advanced Medical Initiatives (S.O.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
25
|
Tsai WC, Yu TY, Chang GJ, Lin LP, Lin MS, Pang JHS. Platelet-Rich Plasma Releasate Promotes Regeneration and Decreases Inflammation and Apoptosis of Injured Skeletal Muscle. Am J Sports Med 2018; 46:1980-1986. [PMID: 29772187 DOI: 10.1177/0363546518771076] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet-rich plasma (PRP) contains various cytokines and growth factors that may be beneficial to the healing process of injured muscle. Based on the authors' previous study, PRP releasate can promote proliferation and migration of skeletal muscle cells in vitro, so animal studies are performed to support the use of PRP to treat muscle injury in vivo. PURPOSE To investigate the effect of PRP releasate on regeneration of injured muscle, as well as its effect on inflammatory reaction and cell apoptosis, in the early stages of the muscle-healing process. STUDY DESIGN Controlled laboratory study. METHODS The gastrocnemius muscles of Sprague-Dawley rats were injured by partial transverse incision and then treated with PRP releasate. Hematoxylin and eosin stain was used to evaluate the healing process of injured muscle at 2, 5, and 10 days after injury. TUNEL assay was used to evaluate the cell apoptosis of injured muscle after PRP releasate treatment. Immunohistochemistry was used to stain the CD68-positive cells during the healing process. Muscle contractile properties, including fast-twitch and tetanic strength, were evaluated by electric stimulation. RESULTS The results revealed that PRP releasate treatment could enhance the muscle-healing process and decrease CD68-positive cells and apoptotic cells. Furthermore, the tetanic strength was significantly higher in injured muscle treated with PRP releasate. CONCLUSION In conclusion, PRP releasate could enhance the healing process of injured muscle and decrease inflammatory cell infiltration as well as cell apoptosis. CLINICAL RELEVANCE PRP promotes skeletal muscle healing in association with decreasing inflammation and apoptosis of injured skeletal muscle. These findings provide in vivo evidence to support the use of PRP to treat muscle injury.
Collapse
Affiliation(s)
- Wen-Chung Tsai
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Tung-Yang Yu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Gwo-Jyh Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Li-Ping Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| | - Miao-Sui Lin
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan
| | - Jong-Hwei S Pang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taoyuan City, Taiwan.,Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
26
|
Abstract
Soft tissue trauma of skeletal muscle is one of the most common side effects in surgery. Muscle injuries are not only caused by accident-related injuries but can also be of an iatrogenic nature as they occur during surgical interventions when the anatomical region of interest is exposed. If the extent of trauma surpasses the intrinsic regenerative capacities, signs of fatty degeneration and formation of fibrotic scar tissue can occur, and, consequentially, muscle function deteriorates or is diminished. Despite research efforts to investigate the physiological healing cascade following trauma, our understanding of the early onset of healing and how it potentially determines success or failure is still only fragmentary. This review focuses on the initial physiological pathways following skeletal muscle trauma in comparison to bone and tendon trauma and what conclusions can be drawn from new scientific insights for the development of novel therapeutic strategies. Strategies to support regeneration of muscle tissue after injury are scarce, even though muscle trauma has a high incidence. Based on tissue specific differences, possible clinical treatment options such as local immune-modulatory and cell therapeutic approaches are suggested that aim to support the endogenous regenerative potential of injured muscle tissues.
Collapse
|
27
|
T reg cells limit IFN-γ production to control macrophage accrual and phenotype during skeletal muscle regeneration. Proc Natl Acad Sci U S A 2018; 115:E2585-E2593. [PMID: 29476012 DOI: 10.1073/pnas.1800618115] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscle regeneration is a highly orchestrated process that depends on multiple immune-system cell types, notably macrophages (MFs) and Foxp3+CD4+ regulatory T (Treg) cells. This study addressed how Treg cells rein in MFs during regeneration of murine muscle after acute injury with cardiotoxin. We first delineated and characterized two subsets of MFs according to their expression of major histocompatibility complex class II (MHCII) molecules, i.e., their ability to present antigens. Then, we assessed the impact of Treg cells on these MF subsets by punctually depleting Foxp3+ cells during the regenerative process. Treg cells controlled both the accumulation and phenotype of the two types of MFs. Their absence after injury promoted IFN-γ production, primarily by NK and effector T cells, which ultimately resulted in MF dysregulation and increased inflammation and fibrosis, pointing to compromised muscle repair. Thus, we uncovered an IFN-γ-centered regulatory layer by which Treg cells keep MFs in check and dampen inflammation during regeneration of skeletal muscle.
Collapse
|
28
|
Abreu P, Marzuca-Nassr GN, Hirabara SM, Curi R. Experimental Model of Skeletal Muscle Laceration in Rats. Methods Mol Biol 2018; 1735:397-401. [PMID: 29380330 DOI: 10.1007/978-1-4939-7614-0_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This is a modified experimental model previously developed in mouse to study skeletal muscle laceration in rats. All experimental procedures are performed during the light period, including anesthesia and surgery. The animals are randomly distributed into control and injured groups prior to the procedure. This experimental model can be used to investigate skeletal muscle laceration repair.
Collapse
Affiliation(s)
- Phablo Abreu
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.
| | | | - Sandro Massao Hirabara
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Brazil
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
29
|
Tissue Engineering to Repair Diaphragmatic Defect in a Rat Model. Stem Cells Int 2017; 2017:1764523. [PMID: 28928772 PMCID: PMC5592000 DOI: 10.1155/2017/1764523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 12/02/2022] Open
Abstract
Tissue engineering is an emerging strategy for repairing damaged tissues or organs. The current study explored using decellularized rat diaphragm scaffolds combined with human amniotic fluid-derived multipotent stromal cells (hAFMSC) to provide a scaffold, stem cell construct that would allow structural barrier function during tissue ingrowth/regeneration. We created an innovative cell infusion system that allowed hAFMSC to embed into scaffolds and then implanted the composite tissues into rats with surgically created left-sided diaphragmatic defects. Control rats received decellularized diaphragm scaffolds alone. We found that the composite tissues that combined hAFMSCs demonstrated improved physiological function as well as the muscular-tendon structure, compared with the native contralateral hemidiaphragm of the same rat. Our results indicate that the decellularized diaphragm scaffolds are a potential support material for diaphragmatic hernia repair and the composite grafts with hAFMSC are able to accelerate the functional recovery of diaphragmatic hernia.
Collapse
|
30
|
Sun Y, Li Y, Wang H, Li H, Liu S, Chen J, Ying H. miR-146a-5p acts as a negative regulator of TGF-β signaling in skeletal muscle after acute contusion. Acta Biochim Biophys Sin (Shanghai) 2017; 49:628-634. [PMID: 28510617 DOI: 10.1093/abbs/gmx052] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 02/05/2023] Open
Abstract
Growing evidence suggests the importance of microRNAs (miRNAs) in stress signaling pathways. Transforming growth factor-β (TGF-β) is a potent cytokine that promotes the development of skeletal muscle fibrosis after acute contusion. However, how miRNAs are involved in TGF-β signaling and confer the robustness of TGF-β-induced fibrotic response remains to be fully elucidated. Here, we demonstrated that miR-146a-5p (miR-146) levels were reduced in a fibrotic mouse model after acute muscle contusion. It was also found that TGF-β treatment decreased the expression of miR-146 in vitro in a dose- and time-dependent manner. In addition, overexpression of Smad3 and Samd4, two key players in TGF-β signaling, suppressed the expression of miR-146 in muscle cells. Overexpression of miR-146 inhibited the expressions of fibrosis markers both in vitro and in vivo. Moreover, increase in the expression of miR-146 in muscle cells was able to attenuate the effect of TGF-β on the expressions of fibrosis markers. Mechanistic analysis revealed that Smad4 is a direct target of miR-146 in muscle cells. Furthermore, the anti-fibrotic effect of miR-146 could be blocked by overexpression of Smad4 in vivo. These results suggest that Smad4 is down-regulated by miR-146 in skeletal muscle. Taken together, our results indicate that the anti-fibrotic miR-146 is a component of TGF-β signaling. It is down-regulated by Smad protein, and can inhibit the expression of Smad4. Our study suggests that miR-146 might have a therapeutic potential to reduce skeletal muscle fibrosis after injury.
Collapse
Affiliation(s)
- Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongyun Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
31
|
Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects. Stem Cells Int 2017; 2017:1609685. [PMID: 28607559 PMCID: PMC5451778 DOI: 10.1155/2017/1609685] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/15/2017] [Accepted: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical studies using BMA concentrate-enhanced marrow stimulation are discussed.
Collapse
|
32
|
Macrophage Depletion Impairs Skeletal Muscle Regeneration: the Roles of Pro-fibrotic Factors, Inflammation, and Oxidative Stress. Inflammation 2017; 39:2016-2028. [PMID: 27605219 DOI: 10.1007/s10753-016-0438-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Muscle contusion is one of the most common muscle injuries in sports medicine. Macrophages play complex roles in the regeneration of skeletal muscle. However, the roles of macrophages, especially the mechanisms involved, in the regeneration of muscle contusion are still not fully understood. We hypothesize that the depletion of macrophages impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may be involved in the process. To test these hypotheses, we constructed a muscle contusion injury and a macrophage depletion model and followed it up with morphological and gene expression analyses. The data showed that fibrotic scars were formed in the muscle of contusion injury, and they deteriorated in the mice of macrophage depletion. Furthermore, the sizes of regenerating myofibers were significantly reduced by macrophage depletion. Pro-fibrotic factors, inflammatory cytokines, chemokines, and oxidative stress-related enzymes increased significantly after muscle injury. Moreover, the expression of these factors was delayed by macrophage depletion. Most of them were still significantly higher in the later stage of regeneration. These results suggest that macrophage depletion impairs skeletal muscle regeneration and that pro-fibrotic factors, inflammation, and oxidative stress may play important roles in the process.
Collapse
|
33
|
Delaney K, Kasprzycka P, Ciemerych MA, Zimowska M. The role of TGF-β1 during skeletal muscle regeneration. Cell Biol Int 2017; 41:706-715. [PMID: 28035727 DOI: 10.1002/cbin.10725] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023]
Abstract
The injury of adult skeletal muscle initiates series of well-coordinated events that lead to the efficient repair of the damaged tissue. Any disturbances during muscle myolysis or reconstruction may result in the unsuccessful regeneration, characterised by strong inflammatory response and formation of connective tissue, that is, fibrosis. The switch between proper regeneration of skeletal muscle and development of fibrosis is controlled by various factors. Amongst them are those belonging to the transforming growth factor β family. One of the TGF-β family members is TGF-β1, a multifunctional cytokine involved in the regulation of muscle repair via satellite cells activation, connective tissue formation, as well as regulation of the immune response intensity. Here, we present the role of TGF-β1 in myogenic differentiation and muscle repair. The understanding of the mechanisms controlling these processes can contribute to the better understanding of skeletal muscle atrophy and diseases which consequence is fibrosis disrupting muscle function.
Collapse
Affiliation(s)
- Kamila Delaney
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Paulina Kasprzycka
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| | - Malgorzata Zimowska
- Faculty of Biology, Department of Cytology, Institute of Zoology, University of Warsaw, 1 Miecznikowa St., 02-096 Warsaw, Poland
| |
Collapse
|
34
|
van der Made AD, Reurink G, Tol JL, Marotta M, Rodas G, Kerkhoffs GM. Emerging Biological Approaches to Muscle Injuries. BIO-ORTHOPAEDICS 2017:227-238. [DOI: 10.1007/978-3-662-54181-4_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Kobayashi M, Ota S, Terada S, Kawakami Y, Otsuka T, Fu FH, Huard J. The Combined Use of Losartan and Muscle-Derived Stem Cells Significantly Improves the Functional Recovery of Muscle in a Young Mouse Model of Contusion Injuries. Am J Sports Med 2016; 44:3252-3261. [PMID: 27501834 DOI: 10.1177/0363546516656823] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although muscle injuries tend to heal uneventfully in most cases, incomplete functional recovery commonly occurs as a result of scar tissue formation at the site of injury, even after treatment with muscle-derived stem cells (MDSCs). HYPOTHESIS The transplantation of MDSCs in the presence of a transforming growth factor β1 (TGF-β1) antagonist (losartan) would result in decreased scar tissue formation and enhance muscle regeneration after contusion injuries in a mouse model. STUDY DESIGN Controlled laboratory study. METHODS An animal model of muscle contusion was developed using the tibialis anterior muscle in 48 healthy mice at 8 to 10 weeks of age. After sustaining muscle contusion injuries, the mice were divided into 4 groups: (1) saline injection group (control group; n = 15), (2) MDSC transplantation group (MDSC group; n = 15), (3) MDSC transplantation plus oral losartan group (MDSC/losartan group; n = 15), and (4) healthy uninjured group (healthy group; n = 3). Losartan was administrated systemically beginning 3 days after injury and continued until the designated endpoint (1, 2, or 4 weeks after injury). MDSCs were transplanted 4 days after injury. Muscle regeneration and fibrotic scar formation were evaluated by histology, and the expression of follistatin, MyoD, Smad7, and Smad2/3 were analyzed by immunohistochemistry and reverse transcription polymerase chain reaction analysis. Functional recovery was measured via electrical stimulation of the peroneal nerve. RESULTS When compared with MDSC transplantation alone, MDSC/losartan treatment resulted in significantly decreased scar formation, an increase in the number of regenerating myofibers, and improved functional recovery after muscle contusions. In support of these findings, the expression levels of Smad7 and MyoD were significantly increased in the group treated with both MDSCs and losartan. CONCLUSION When compared with MDSCs alone, the simultaneous treatment of muscle contusions with MDSCs and losartan significantly reduced scar formation, increased the number of regenerating myofibers, and improved the functional recovery of muscle; these effects were caused, at least in part, by the losartan-mediated upregulation of Smad7 and MyoD. Increased levels of Smad7 and MyoD together reduced the deposition of scar tissue (via the inhibition of TGF-β1 by Smad7) and committed the transplanted MDSCs toward a myogenic lineage (via Smad7-regulated MyoD expression). CLINICAL RELEVANCE The study findings contribute to the development of biological treatments to accelerate and improve the quality of muscle healing after injury.
Collapse
Affiliation(s)
- Makoto Kobayashi
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shusuke Ota
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Satoshi Terada
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yohei Kawakami
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Takanobu Otsuka
- Department of Orthopaedic Surgery, Nagoya City University, Nagoya, Japan
| | - Freddie H Fu
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Johnny Huard
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh, Pittsburgh, Pennsylvania, USA .,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, Colorado, USA
| |
Collapse
|
36
|
Huard J, Lu A, Mu X, Guo P, Li Y. Muscle Injuries and Repair: What's New on the Horizon! Cells Tissues Organs 2016; 202:227-236. [PMID: 27825155 DOI: 10.1159/000443926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Although we recognize the many advantages of improved musculoskeletal health, we also note that our ability to sustain this health and to maintain quality of life in an aging population is currently deficient. However, global efforts have produced numerous advances in tissue engineering and regenerative medicine that will collectively serve to fill this deficiency in the near future. The purpose of this review is to highlight our current knowledge, to outline our recent advances, and to discuss the evolving paradigms in skeletal muscle injury and repair.
Collapse
|
37
|
Helal MAM, Shaheen NEM, Abu Zahra FA. Immunomodulatory capacity of the local mesenchymal stem cells transplantation after severe skeletal muscle injury in female rats. Immunopharmacol Immunotoxicol 2016; 38:414-422. [PMID: 27560658 DOI: 10.1080/08923973.2016.1222617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT Cell therapy technique with stem cells is a very attractive strategy for the treatment of muscle disorders. OBJECTIVE The objective of this study was to investigate the mechanism of local transplantation of mesenchymal stem cells (MSCs) which could contribute to skeletal muscle healing. MATERIALS AND METHODS Female rats were divided into three equal groups as the following: group 1, the negative control group (untreated group), group 2, sham-treated group, rats with muscle injuries involving volumetric muscle loss (VML) of adductor brevis muscle and injected locally with phosphate-buffered saline (PBS) 0.5 ml without stem cells after 7 d of muscle injury, group 3, treated group, rats with VML and injected locally (intramuscular) with 1.5 × 106 bone marrow MSCs suspended in PBS 0.5 ml (1) after 7 d of muscle tissue injury. All animals were sacrificed after 4 weeks of stem cell transplantation. RESULTS In vitro culture the morphology of MSCs reached confluence and appeared as long spindle in shape on 9-14 d. Most of the cells did not express the hematopoietic cell marker, CD34 and CD45 but expressed MSCs marker CD44, CD90 and CD105. The remarkable increase of proliferating cell nuclear antigen positive nucleus was recorded in MSCs group as compared to PBS group. After 28 d of injection, administration of only PBS into the site of muscle injury caused up-regulation in the levels of interleukins IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-β1), interferon alpha (IFN-α) and down-regulate the level of IL-10 in muscular tissue comparing to the untreated control. Bone marrow MSCs + PBS injected at the site of muscle injury significantly down-regulate the inflammatory cytokines levels IL-1β and IL-6 and TNF-α, TGF-β1 and IFN-α and up-regulate the level of IL-10. Collagen concentrations in the injured skeletal muscle estimated by enzyme-linked immuno sorbent assay and stained with Masson trichrome stain were increased with PBS group and decreased after transplantation of bone marrow MSCs in the site of injury. Muscle sections stained with H&E showed a higher number of centronucleated regenerating myofibers in the stem-cell-treated group than in the (PBS) and untreated control group. Microvasculature of skeletal muscle was decreased as demonstrated by immunostaining technique for CD34 in PBS group from untreated control. The MSCs group showed angiogenesis and marked increase of skeletal muscle microvasculature than PBS group. CONCLUSION MSCs can modify the local immunological responses and improve muscle regeneration by suppressing of inflammatory cytokines, activating of the anti-inflammatory cytokine, restoration of muscle fibers and angiogenesis. By means of increase in TGF-β production in response to muscle injury prevent the repair of injured fibers and increase connective tissue production (collagen fibers), thus propagating skeletal muscle weakness and fibrosis whereas MSCs + PBS injected at the site of muscle injury significantly down-regulate (TGF-β1) and hence the level of collagen (fibrosis or scar areas). MSCs are able to block the fibrotic signaling cascade by declining TGF-β1 and scar areas in the injured muscle.
Collapse
Affiliation(s)
- Mona A M Helal
- a Department of Zoology, Faculty of Women for Arts, Science & Education , Ain Shams University , Cairo , Egypt
| | - Noura E M Shaheen
- a Department of Zoology, Faculty of Women for Arts, Science & Education , Ain Shams University , Cairo , Egypt
| | - Fatma A Abu Zahra
- b Molecular Biology and Tissue Culture , Medical Research Center, Ain Shams University , Cairo , Egypt
| |
Collapse
|
38
|
Xue M, Gong S, Dai J, Chen G, Hu J. The Treatment of Fibrosis of Joint Synovium and Frozen Shoulder by Smad4 Gene Silencing in Rats. PLoS One 2016; 11:e0158093. [PMID: 27351864 PMCID: PMC4924824 DOI: 10.1371/journal.pone.0158093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 06/10/2016] [Indexed: 11/19/2022] Open
Abstract
Soft tissue fibrosis at the joint induced by inflammation is the pathological basis of frozen shoulder. In the present study, we utilized a lentiviral approach to silence the Smad4 gene in an in vitro fibrosis model of fibroblasts and an in vivo frozen shoulder model. We observed the change in the fibrosis process and the biological indicators of frozen shoulder. The in vitro fibrosis models (Rat myoblasts L6, Rat synovial cell RSC-364 and Rat chondrocytes RCs) were established using TGF-β1 induction, and the effect of Smad4 gene silencing on fibrosis was analyzed. The method of Kanno A was employed to establish a rat model of frozen shoulder, and Smad4 in the relevant part was knocked down with the lentiviral approach. We then examined the abduction and rotation angles and the length of synovial intima and measured the inflammatory factors in effusion and the fibrotic markers of tissues. We found that Smad4 knockdown suppressed the proliferation and expression of fibrotic markers in L6, RSC-364 and RCs cells induced by TGF-β1. MMP activity measurements showed that Smad4 knockdown significantly reversed the decrease in MMP activity in these three cell lines that were induced by TGF-β1. Furthermore, using lentivirus in the rat frozen shoulder model, we found that Smad4 silencing attenuated the inflammatory response and fibrosis. It significantly inhibited the increase of the Vimentin, α-SMA, collagen I and III, Lama1 and Timp1 proteins in synovial tissue as well as the inflammatory factors of TNF-a, IL-1α/β, IL-6 and IL-10 in effusion. MMP acidity assays revealed that Smad4 silencing inhibited MMP activity in the synovial, cartilage and ligament tissues in the model animals. The assessment of the phosphorylated Smad2/3 in the nuclei isolated from the synovial tissues showed that Smad4 silencing significantly inhibited the phosphorylation and subsequent nuclear translocation of Smad2/3 proteins. Moreover, Smad4-shRNA lentivirus inhibited the decrease in both the abduction and rotation angles caused by immobilization as well as the decrease in the length of the synovial intima. Based on shoulder movement data, Smad4 knockdown can increase the rotation limitation caused by immobilization. In summary, Smad4 silencing can suppress chronic inflammation and fibrosis in joint tissues by inhibiting the TGF-β/Smad pathway and can play a positive role in the prevention and treatment of joint stiffness.
Collapse
Affiliation(s)
- MingFeng Xue
- Department of Orthopaedic Surgery, Jiaxing Second Hospital, Jia Xing, 31400, China
| | - SuiLiang Gong
- Department of Orthopaedic Surgery, Jiaxing Second Hospital, Jia Xing, 31400, China
- * E-mail:
| | - JiaPing Dai
- Department of Orthopaedic Surgery, Jiaxing Second Hospital, Jia Xing, 31400, China
| | - Gang Chen
- Department of Orthopaedic Surgery, Jiaxing Second Hospital, Jia Xing, 31400, China
| | - JunYu Hu
- Department of Orthopaedic Surgery, Jiaxing Second Hospital, Jia Xing, 31400, China
| |
Collapse
|
39
|
Chapman MA, Meza R, Lieber RL. Skeletal muscle fibroblasts in health and disease. Differentiation 2016; 92:108-115. [PMID: 27282924 DOI: 10.1016/j.diff.2016.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
Abstract
As the primary producer of extracellular matrix (ECM) proteins in skeletal muscle, fibroblasts play an important role providing structural support to muscle. Skeletal muscle ECM is vital for force transduction from muscle cells to tendons and bones to create movement. It is these ECM connections that allow the movement created in muscle to be transmitted to our skeleton. This review discusses how fibroblasts participate in maintaining this healthy ECM within skeletal muscle. Additionally, from a basic science perspective, we discuss current methods to identify and study skeletal muscle fibroblasts, as this is critical to bettering our understanding of these important cells. Finally, skeletal muscle fibrosis is discussed, which is a devastating clinical condition characterized by an overproduction of ECM within skeletal muscle. We discuss the role that fibroblasts and other cells play in muscle fibrosis as well as the implications of this work.
Collapse
Affiliation(s)
- Mark A Chapman
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Rachel Meza
- Department of Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Richard L Lieber
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States; Department of Orthopaedic Surgery, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0863, United States; Department of Veteran's Affairs, 9500 Gilman Drive, La Jolla, CA 92093-0863, United States; Rehabilitation Institute of Chicago, 345 East Superior Street, Chicago, IL 60611, United States.
| |
Collapse
|
40
|
Customized platelet-rich plasma with transforming growth factor β1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials 2016; 87:147-156. [PMID: 26923362 DOI: 10.1016/j.biomaterials.2016.02.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 01/18/2023]
Abstract
UNLABELLED The formation of fibrous tissue during the healing of skeletal muscle injuries leads to incomplete recovery of the injured muscle. Platelet-rich-plasma (PRP) contains beneficial growth factors for skeletal muscle repair; however, it also contains deleterious cytokines and growth factors, such as TGF-β1, that can cause fibrosis and inhibit optimal muscle healing. OBJECTIVE To test if neutralizing TGF-β1's action within PRP, through neutralization antibodies, could improve PRP's beneficial effect on skeletal muscle repair. METHODS PRP was isolated from in-bred Fisher rats. TGF-β1 neutralization antibody (Ab) was used to block the TGF-β1 within the PRP prior to injection. The effects of customized PRP (TGF-β1 neutralized PRP) on muscle healing was tested on a cardiotoxin (CTX) induced muscle injury model. RESULTS A significant increase in the numbers of regenerative myofibers was observed in the PRP and customized PRP groups compared to the untreated control. A significant decrease in collagen deposition was observed in customized PRP groups when compared to the control and PRP groups. Significantly enhanced angiogenesis and more Pax-7 positive satellite cells were found in the PRP and customized PRP groups compared to the control group. Macrophage infiltration was increased in the customized PRP groups when compared with the PRP group. More M2 macrophages were recruited to the injury site in the customized PRP groups when compared with the PRP and control groups. CONCLUSION Neutralizing TGF-β1 within PRP significantly promotes muscle regeneration while significantly reducing fibrosis. Not only did the neutralization reduce fibrosis, it enhanced angiogenesis, prolonged satellite cell activation, and recruited a greater number of M2 macrophages to the injury site which also contributed to the efficacy that the customized PRP had on muscle healing.
Collapse
|
41
|
Therapeutic Effect of Losartan, an Angiotensin II Type 1 Receptor Antagonist, on CCl₄-Induced Skeletal Muscle Injury. Int J Mol Sci 2016; 17:227. [PMID: 26867195 PMCID: PMC4783959 DOI: 10.3390/ijms17020227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
TGF-β1 is known to inhibit muscle regeneration after muscle injury. However, it is unknown if high systemic levels of TGF-β can affect the muscle regeneration process. In the present study, we demonstrated the effect of a CCl₄ intra-peritoneal injection and losartan (an angiotensin II type 1 receptor antagonist) on skeletal muscle (gastrocnemius muscle) injury and regeneration. Male C57BL/6 mice were grouped randomly as follows: control (n = 7), CCl₄-treatment group (n = 7), and CCl₄ + losartan treatment group (n = 7). After CCl₄ treatment for a 16-week period, the animals were sacrificed and analyzed. The expression of dystrophin significantly decreased in the muscle tissues of the control group, as compared with that of the CCl₄ + losartan group (p < 0.01). p(phospho)-Smad2/3 expression significantly increased in the muscles of the control group compared to that in the CCl₄ + losartan group (p < 0.01). The expressions of Pax7, MyoD, and myogenin increased in skeletal muscles of the CCl₄ + losartan group compared to the corresponding levels in the control group (p < 0.01). We hypothesize that systemically elevated TGF-β1 as a result of CCl₄-induced liver injury causes skeletal muscle injury, while losartan promotes muscle repair from injury via blockade of TGF-β1 signaling.
Collapse
|
42
|
Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone 2015; 80:131-142. [PMID: 26453502 PMCID: PMC4600538 DOI: 10.1016/j.bone.2015.03.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Priya Londhe
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
43
|
Chen L, Liao J, Klineberg E, Leung VYL, Huang S. Small leucine-rich proteoglycans (SLRPs): characteristics and function in the intervertebral disc. J Tissue Eng Regen Med 2015; 11:602-608. [PMID: 26370612 DOI: 10.1002/term.2067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/16/2015] [Accepted: 06/12/2015] [Indexed: 02/05/2023]
Affiliation(s)
- Lili Chen
- Research Centre for Human Tissues and Organs Degeneration; Shenzhen Institute of Advanced Technology, Chinese Academy of Science; Shenzhen 518055 China
| | - Jingwen Liao
- School of Materials Science and Engineering; South China University of Technology; Guangzhou China
| | - Eric Klineberg
- Department of Orthopaedics; University of California at Davis; Sacramento California USA
| | - Victor YL Leung
- Department of Orthopaedics and Traumatology; Li Ka Shing Faculty of Medicine, The University of Hong Kong; Hong Kong
| | - Shishu Huang
- Department of Orthopaedic Surgery; West China Hospital; State Key Laboratory of Oral Diseases, Sichuan University; Chengdu China
- Research Centre for Human Tissues and Organs Degeneration; Shenzhen Institute of Advanced Technology, Chinese Academy of Science; Shenzhen 518055 China
| |
Collapse
|
44
|
Andrade BM, Baldanza MR, Ribeiro KC, Porto A, Peçanha R, Fortes FSA, Zapata-Sudo G, Campos-de-Carvalho AC, Goldenberg RCS, Werneck-de-Castro JP. Bone marrow mesenchymal cells improve muscle function in a skeletal muscle re-injury model. PLoS One 2015; 10:e0127561. [PMID: 26039243 PMCID: PMC4454438 DOI: 10.1371/journal.pone.0127561] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/16/2015] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle injury is the most common problem in orthopedic and sports medicine, and severe injury leads to fibrosis and muscle dysfunction. Conventional treatment for successive muscle injury is currently controversial, although new therapies, like cell therapy, seem to be promise. We developed a model of successive injuries in rat to evaluate the therapeutic potential of bone marrow mesenchymal cells (BMMC) injected directly into the injured muscle. Functional and histological assays were performed 14 and 28 days after the injury protocol by isometric tension recording and picrosirius/Hematoxilin & Eosin staining, respectively. We also evaluated the presence and the fate of BMMC on treated muscles; and muscle fiber regeneration. BMMC treatment increased maximal skeletal muscle contraction 14 and 28 days after muscle injury compared to non-treated group (4.5 ± 1.7 vs 2.5 ± 0.98 N/cm2, p<0.05 and 8.4 ± 2.3 vs. 5.7 ± 1.3 N/cm2, p<0.05 respectively). Furthermore, BMMC treatment increased muscle fiber cross-sectional area and the presence of mature muscle fiber 28 days after muscle injury. However, there was no difference in collagen deposition between groups. Immunoassays for cytoskeleton markers of skeletal and smooth muscle cells revealed an apparent integration of the BMMC within the muscle. These data suggest that BMMC transplantation accelerates and improves muscle function recovery in our extensive muscle re-injury model.
Collapse
Affiliation(s)
- Bruno M. Andrade
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Marcelo R. Baldanza
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Karla C. Ribeiro
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Anderson Porto
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ramon Peçanha
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Fabio S. A. Fortes
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Gisele Zapata-Sudo
- Departamento de Farmacologia Básica e Clínica, Universidade Federal do Rio de Janeiro, Centro de Ciências e Saúde, Bloco J, Ilha do Fundão, Rio de Janeiro, Brasil
| | - Antonio C. Campos-de-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - Regina C. S. Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências e Saúde, Universidade Federal do Rio de Janeiro, Bloco G, Ilha do Fundão, Rio de Janeiro, RJ, Brasil
| | - João Pedro Werneck-de-Castro
- Laboratório de Biologia do Exercício, Instituto de Biofísica Carlos Chagas Filho e Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
45
|
Garg K, Corona BT, Walters TJ. Therapeutic strategies for preventing skeletal muscle fibrosis after injury. Front Pharmacol 2015; 6:87. [PMID: 25954202 PMCID: PMC4404830 DOI: 10.3389/fphar.2015.00087] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/04/2015] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle repair after injury includes a complex and well-coordinated regenerative response. However, fibrosis often manifests, leading to aberrant regeneration and incomplete functional recovery. Research efforts have focused on the use of anti-fibrotic agents aimed at reducing the fibrotic response and improving functional recovery. While there are a number of mediators involved in the development of post-injury fibrosis, TGF-β1 is the primary pro-fibrogenic growth factor and several agents that inactivate TGF-β1 signaling cascade have emerged as promising anti-fibrotic therapies. A number of these agents are FDA approved for other conditions, clearing the way for rapid translation into clinical treatment. In this article, we provide an overview of muscle's host response to injury with special emphasis on the cellular and non-cellular mediators involved in the development of fibrosis. This article also reviews the findings of several pre-clinical studies that have utilized anti-fibrotic agents to improve muscle healing following most common forms of muscle injuries. Although some studies have shown positive results with anti-fibrotic treatment, others have indicated adverse outcomes. Some concerns and questions regarding the clinical potential of these anti-fibrotic agents have also been presented.
Collapse
Affiliation(s)
- Koyal Garg
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| | - Benjamin T Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| | - Thomas J Walters
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine Houston, TX, USA
| |
Collapse
|
46
|
Abstract
Injuries to the musculoskeletal system are common, debilitating and expensive. In many cases, healing is imperfect, which leads to chronic impairment. Gene transfer might improve repair and regeneration at sites of injury by enabling the local, sustained and potentially regulated expression of therapeutic gene products; such products include morphogens, growth factors and anti-inflammatory agents. Proteins produced endogenously as a result of gene transfer are nascent molecules that have undergone post-translational modification. In addition, gene transfer offers particular advantages for the delivery of products with an intracellular site of action, such as transcription factors and noncoding RNAs, and proteins that need to be inserted into a cell compartment, such as a membrane. Transgenes can be delivered by viral or nonviral vectors via in vivo or ex vivo protocols using progenitor or differentiated cells. The first gene transfer clinical trials for osteoarthritis and cartilage repair have already been completed. Various bone-healing protocols are at an advanced stage of development, including studies with large animals that could lead to human trials. Other applications in the repair and regeneration of skeletal muscle, intervertebral disc, meniscus, ligament and tendon are in preclinical development. In addition to scientific, medical and safety considerations, clinical translation is constrained by social, financial and logistical issues.
Collapse
|
47
|
Effects of low-level laser therapy on skeletal muscle repair: a systematic review. Am J Phys Med Rehabil 2015; 93:1073-85. [PMID: 25122099 DOI: 10.1097/phm.0000000000000158] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A review of the literature was performed to demonstrate the most current applicability of low-level laser therapy (LLLT) for the treatment of skeletal muscle injuries, addressing different lasers, irradiation parameters, and treatment results in animal models. Searches were performed in the PubMed/MEDLINE, SCOPUS, and SPIE Digital Library databases for studies published from January 2006 to August 2013 on the use of LLLT for the repair of skeletal muscle in any animal model. All selected articles were critically appraised by two independent raters. Seventeen of the 36 original articles on LLLT and muscle injuries met the inclusion criteria and were critically evaluated. The main effects of LLLT were a reduction in the inflammatory process, the modulation of growth factors and myogenic regulatory factors, and increased angiogenesis. The studies analyzed demonstrate the positive effects of LLLT on the muscle repair process, which are dependent on irradiation and treatment parameters. The findings suggest that LLLT is an excellent therapeutic resource for the treatment of skeletal muscle injuries in the short-term.
Collapse
|
48
|
Increased CCN2, substance P and tissue fibrosis are associated with sensorimotor declines in a rat model of repetitive overuse injury. J Cell Commun Signal 2015; 9:37-54. [PMID: 25617052 DOI: 10.1007/s12079-015-0263-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/14/2015] [Indexed: 01/24/2023] Open
Abstract
Key clinical features of cumulative trauma disorders include pain, muscle weakness, and tissue fibrosis, although the etiology is still under investigation. Here, we characterized the temporal pattern of altered sensorimotor behaviors and inflammatory and fibrogenic processes occurring in forearm muscles and serum of young adult, female rats performing an operant, high repetition high force (HRHF) reaching and grasping task for 6, 12, or 18 weeks. Palmar mechanical sensitivity, cold temperature avoidance and spontaneous behavioral changes increased, while grip strength declined, in 18-week HRHF rats, compared to controls. Flexor digitorum muscles had increased MCP-1 levels after training and increased TNFalpha in 6-week HRHF rats. Serum had increased IL-1beta, IL-10 and IP-10 after training. Yet both muscle and serum inflammation resolved by week 18. In contrast, IFNγ increased at week 18 in both muscle and serum. Given the anti-fibrotic role of IFNγ, and to identify a mechanism for the continued grip strength losses and behavioral sensitivities, we evaluated the fibrogenic proteins CCN2, collagen type I and TGFB1, as well as the nociceptive/fibrogenic peptide substance P. Each increased in and around flexor digitorum muscles and extracellular matrix in the mid-forearm, and in nerves of the forepaw at 18 weeks. CCN2 was also increased in serum at week 18. At a time when inflammation had subsided, increases in fibrogenic proteins correlated with sensorimotor declines. Thus, muscle and nerve fibrosis may be critical components of chronic work-related musculoskeletal disorders. CCN2 and substance P may serve as potential targets for therapeutic intervention, and CCN2 as a serum biomarker of fibrosis progression.
Collapse
|
49
|
Garg K, Corona BT, Walters TJ. Losartan administration reduces fibrosis but hinders functional recovery after volumetric muscle loss injury. J Appl Physiol (1985) 2014; 117:1120-31. [PMID: 25257876 DOI: 10.1152/japplphysiol.00689.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Losartan is a Food and Drug Administration approved antihypertensive medication that is recently emerging as an antifibrotic therapy. Previously, losartan has been successfully used to reduce fibrosis and improve both muscle regeneration and function in several models of recoverable skeletal muscle injuries, such as contusion and laceration. In this study, the efficacy of losartan treatment in reducing fibrosis and improving regeneration was determined in a Lewis rat model of volumetric muscle loss (VML) injury. VML has been defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment. It is among the top 10 causes for wounded service members to be medically retired from the military. This study shows that, after several weeks of recovery, VML injury results in little to no muscle regeneration, but is marked by persistent inflammation, chronic upregulation of profibrotic markers and extracellular matrix (i.e., collagen type I), and fat deposition at the defect site, which manifest irrecoverable deficits in force production. Losartan administration at 10 mg·kg(-1)·day(-1) was able to modulate the gene expression of fibrotic markers and was also effective at reducing fibrosis (i.e., the deposition of collagen type I) in the injured muscle. However, there were no improvements in muscle regeneration, and deleterious effects on muscle function were observed instead. We propose that, in the absence of regeneration, reduction in fibrosis worsens the ability of the VML injured muscle to transmit forces, which ultimately results in decreased muscle function.
Collapse
Affiliation(s)
- Koyal Garg
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Benjamin T Corona
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| | - Thomas J Walters
- US Army Institute of Surgical Research, Extremity Trauma and Regenerative Medicine, Fort Sam Houston, Texas
| |
Collapse
|
50
|
Grzelkowska-Kowalczyk K, Wicik Z, Majewska A, Tokarska J, Grabiec K, Kozłowski M, Milewska M, Błaszczyk M. Transcriptional regulation of important cellular processes in skeletal myogenesis through interferon-γ. J Interferon Cytokine Res 2014; 35:89-99. [PMID: 25237846 DOI: 10.1089/jir.2014.0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The purpose of the present study was to investigate the effect of interferon (IFN)-γ on the transcriptomic profile of differentiating mouse C2C12 myogenic cells. Global gene expression was evaluated using whole mouse genome oligonucleotide microarrays, and the results were validated through real-time PCR. IFN-γ (1 ng/mL) increased myoblast proliferation but decreased cell respiration and myosin heavy chain content and slightly decreased the fusion index in differentiating C2C12 cell cultures. The genes upregulated through IFN-γ were involved in cell cycle; regulation of cell proliferation; programmed cell death; chemotaxis; and cytokine, growth factor, and peptidase activity, whereas the genes downregulated through IFN-γ primarily contributed to the regulation of transcription, cell-cell signaling, nitrogen compound biosynthesis, ser/thr protein kinase signaling, and regulation of the Wnt pathway. In conclusion, IFN-γ affects the expression of numerous genes associated with the regulation of several processes in myogenesis. The effects of IFN-γ on cellular transcription include (1) alteration of cytokine/growth factor expression, promoting cell proliferation and migration but inhibiting differentiation, (2) impairment of pro-myogenic transcription, (3) disruption of cell adhesion and sarcolemma/cytoskeleton organization, and (4) increased peptidase activity leading to enhanced proteolysis and apoptosis.
Collapse
Affiliation(s)
- Katarzyna Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW) , Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|