1
|
García-Ayllón MS, Botella-López A, Cuchillo-Ibañez I, Rábano A, Andreasen N, Blennow K, Ávila J, Sáez-Valero J. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain. Mol Neurobiol 2016; 54:188-199. [PMID: 26738850 DOI: 10.1007/s12035-015-9644-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022]
Abstract
The human natural killer-1 (HNK-1), 3-sulfonated glucuronic acid, is a glycoepitope marker of cell adhesion that participates in cell-cell and cell-extracellular matrix interactions and in neurite growth. Very little is known about the regulation of the HNK-1 glycan in neurodegenerative disease, particularly in Alzheimer's disease (AD). In this study, we investigate changes in the levels of HNK-1 carrier glycoproteins in AD. We demonstrate an overall decrease in HNK-1 immunoreactivity in glycoproteins extracted from the frontal cortex of AD subjects, compared with levels from non-demented controls (NDC). Immunoblotting of ventricular post-mortem and lumbar ante-mortem cerebrospinal fluid with HNK-1 antibodies indicate similar levels of carrier glycoproteins in AD and NDC samples. Decrease in HNK-1 carrier glycoproteins were not paralleled by changes in messenger RNA (mRNA) levels of the enzymes involved in the synthesis of the glycoepitope, β-1,4-galactosyltransferase (β4GalT), glucuronyltransferases GlcAT-P and GlcAT-S, or sulfotransferase HNK-1ST. Over-expression of amyloid precursor protein in Tg2576 transgenic mice and in vitro treatment of SH-SY5Y neuroblastoma cells with the amyloidogenic Aβ42 peptide resulted in a decrease in HNK-1 immunoreactivity levels in brain and cellular extracts, whereas the levels of soluble HNK-1 glycoproteins detected in culture media were not affected by Aβ treatment. HNK-1 levels remain unaffected in the brain extracts of Tg-VLW mice, a model of mutant hyperphosphorylated tau, and in SH-SY5Y cells over-expressing hyperphosphorylated wild-type tau. These results provide evidence that cellular levels of HNK-1 carrier glycoforms are decreased in the brain of AD subjects, probably influenced by the β-amyloid protein.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain. .,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain.
| | - Arancha Botella-López
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Alberto Rábano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.,Banco de Tejidos de la Fundación CIEN, CIEN Foundation, Carlos III Institute of Health, Alzheimer Center Reina Sofia Foundation, Madrid, Spain
| | - Niels Andreasen
- Karolinska Institute-Alzheimer Disease Research center, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.,Centro de Biología Molecular "Severo Ochoa", Universidad, Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| |
Collapse
|
2
|
Abbott KL, Matthews RT, Pierce M. Receptor tyrosine phosphatase beta (RPTPbeta) activity and signaling are attenuated by glycosylation and subsequent cell surface galectin-1 binding. J Biol Chem 2008; 283:33026-35. [PMID: 18838383 DOI: 10.1074/jbc.m803646200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
O-Mannosyl-linked glycosylation is abundant within the central nervous system, yet very few glycoproteins with this glycan modification have been identified. Congenital diseases with significant neurological defects arise from inactivating mutations found within the glycosyltransferases that act early in the O-mannosyl glycosylation pathway. The N-acetylglucosaminyltransferase known as GnT-Vb or -IX is highly expressed in brain and branches O-mannosyl-linked glycans. Our results using SH-SY5Y neuroblastoma cells indicate that GnT-Vb activity promotes the addition of the O-mannosyl-linked HNK-1 modification found on the developmentally regulated and neuron-specific receptor protein-tyrosine phosphatase beta (RPTPbeta). These changes in glycosylation accompany decreased cell-cell adhesion and increased rates of migration on laminin. In addition, we show that expression of GnT-Vb promotes its dimerization and inhibits RPTPbeta intrinsic phosphatase activity, resulting in higher levels of phosphorylated beta-catenin, suggesting a mechanism by which GnT-Vb glycosylation couples to changes in cell adhesion. GnT-Vb-mediated glycosylation of RPTPbeta promotes galectin-1 binding and RPTPbeta levels of retention on the cell surface. N-Acetyllactosamine, but not sucrose, treatment of cells results in decreased RPTP retention, showing that galectin-1 binding contributes to the increased retention after GnT-Vb expression. These results place GnT-Vb as a regulator of RPTPbeta signaling that influences cell-cell and cell-matrix interactions in the developing nervous system.
Collapse
Affiliation(s)
- Karen L Abbott
- Department of Biochemistry, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA.
| | | | | |
Collapse
|
3
|
Botella-López A, Burgaya F, Gavín R, García-Ayllón MS, Gómez-Tortosa E, Peña-Casanova J, Ureña JM, Del Río JA, Blesa R, Soriano E, Sáez-Valero J. Reelin expression and glycosylation patterns are altered in Alzheimer's disease. Proc Natl Acad Sci U S A 2006; 103:5573-8. [PMID: 16567613 PMCID: PMC1414634 DOI: 10.1073/pnas.0601279103] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Indexed: 01/24/2023] Open
Abstract
Reelin is a glycoprotein that is essential for the correct cytoarchitectonic organization of the developing CNS. Its function in the adult brain is less understood, although it has been proposed that Reelin is involved in signaling pathways linked to neurodegeneration. Here we analyzed Reelin expression in brains and cerebrospinal fluid (CSF) from Alzheimer's disease (AD) patients and nondemented controls. We found a 40% increase in the Reelin protein levels in the cortex of AD patients compared with controls. Similar increases were detected at the Reelin mRNA transcriptional level. This expression correlates with parallel increases in CSF but not in plasma samples. Next, we examined whether CSF Reelin levels were also altered in neurological diseases, including frontotemporal dementia, progressive supranuclear palsy, and Parkinson's disease. The Reelin 180-kDa band increased in all of the neurodegenerative disorders analyzed. Moreover, the 180-kDa Reelin levels correlated positively with Tau protein in CSF. Finally, we studied the pattern of Reelin glycosylation by using several lectins and the anti-HNK-1 antibody. Glycosylation differed in plasma and CSF. Furthermore, the pattern of Reelin lectin binding differed between the CSF of controls and in AD. Our results show that Reelin is up-regulated in the brain and CSF in several neurodegenerative diseases and that CSF and plasma Reelin have distinct cellular origins, thereby supporting that Reelin is involved in the pathogenesis of a number of neurodegenerative diseases.
Collapse
Affiliation(s)
- Arancha Botella-López
- *Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, E-03550 Sant Joan d’Alacant, Spain
| | - Ferran Burgaya
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - Rosalina Gavín
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - M. Salud García-Ayllón
- *Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, E-03550 Sant Joan d’Alacant, Spain
| | - Estrella Gómez-Tortosa
- Neurology Department, Fundación Jiménez Díaz, Brain Bank for Neurological Research, Complutense University, E-28040 Madrid, Spain
| | - Jordi Peña-Casanova
- Neurology Department, Hospital del Mar, Institut Municipal d’Assistencia Sanitaria, E-08003 Barcelona, Spain; and
| | - Jesús M. Ureña
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - José A. Del Río
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - Rafael Blesa
- Neurology Department, Hospital de la Santa Creu i Sant Pau, E-08025 Barcelona, Spain
| | - Eduardo Soriano
- Institut de Recerca Biomèdica/Parc Cientific de Barcelona and Department of Cell Biology, University of Barcelona, E-08028 Barcelona, Spain
| | - Javier Sáez-Valero
- *Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, E-03550 Sant Joan d’Alacant, Spain
| |
Collapse
|
4
|
Allory Y, Commo F, Boccon-Gibod L, Sibony M, Callard P, Ronco P, Debiec H. Sulfated HNK-1 Epitope in Developing and Mature Kidney: A New Marker for Thin Ascending Loop of Henle and Tubular Injury in Acute Tubular Necrosis. J Histochem Cytochem 2006; 54:575-84. [PMID: 16401697 DOI: 10.1369/jhc.5a6791.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The HNK-1 carbohydrate epitope is a 3-sulfo-glucuronyl residue attached to lactosamine structures on glycoproteins, proteoglycans, or glycolipids mostly expressed in the nervous system. Here, using monoclonal antibodies against the sulfated HNK-1 carbohydrate epitope, we first examined its distribution in developing and adult kidneys, then its expression in kidneys with tubular necrosis and renal neoplasms. This HNK-1 epitope was expressed in the human, rabbit, and rat, but not mouse kidney. It was detected within a subset of epithelial cells in the renal vesicle and in comma- and S-shaped bodies during early stages of nephrogenesis. In ureteral bud derivatives, the epitope was present transiently in the area where the collecting duct fused with the nephron. In the adult kidney, expression of the HNK-1 epitope became mainly restricted to the thin ascending loop of Henle where this epitope was carried by heparan- and chondro-proteoglycan. In pathological conditions, HNK-1 epitope expression increased dramatically in proximal epithelial tubule cells in kidneys with acute tubular necrosis. In tumors, the HNK-1 epitope was expressed in the epithelial component of nephroblastomas and in a subgroup of papillary renal cell carcinomas. These data suggest that molecules carrying the sulfated HNK-1 carbohydrate epitope may play an important role in critical stages of renal development and in the physiology of thin ascending loop of Henle. (J Histochem Cytochem 54:575-584, 2006)
Collapse
Affiliation(s)
- Yves Allory
- Institut National de la Santé et de la Recherche Médicale U702 (INSERM), Paris, France
| | | | | | | | | | | | | |
Collapse
|