1
|
Krigers A, Moser P, Fritsch H, Demetz M, Kerschbaumer J, Brawanski KR, Thomé C, Freyschlag CF. The relationship between connexin-43 expression and Ki67 in non-glial central nervous system tumors. Int J Biol Markers 2023; 38:46-52. [PMID: 36726335 DOI: 10.1177/03936155221143138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Advanced intercellular communication is a known oncogenic factor. In the central nervous system, Connexin-43 (Cx43) forms this junctional networking. Moreover, it correlates with the proliferation rate, and thus behavior, of gliomas. We assessed the expression of Cx43 and its relationship to Ki67 in other common central nervous system tumors. METHODS The expression of Cx43 and Ki67 were assessed in formalin-fixed paraffin embedded samples of human brain metastases, meningiomas, and neurinomas using immunohistochemistry. Neurinomas and meningiomas were jointly evaluated due to similar non-malignant behavior. RESULTS A total of 14 metastases of different extracerebral carcinomas, 6 meningiomas, and 10 neurinomas were evaluated. Five (36%) metastases and 5 (31%) meningiomas/neurinomas showed minor expression, whereas 6 (43%) metastases and 2 (13%) meningiomas/neurinomas showed no Cx43 expression at all. In 3 (21%) metastases and 9 (56%) meningiomas/neurinomas, moderate or strong expression of Cx43 was identified. The higher expression of Cx43 in meningiomas and neurinomas directly correlated with Ki67, r = 0.53 (P = 0.034). For metastases no significant correlation was found. Mitotic index in meningiomas/neurinomas correlated with Ki67 expression, r = 0.74 (P < 0.001), but did not show statistically significant correlation with Cx43 expression in these tumors. CONCLUSIONS The expression of Cx43 as a marker of cell-to-cell networking exposed a significant correlation with the Ki67-defined proliferation index in case of primary central nervous system neuroectodermal neoplasms. However, it does not seem to play a comparable role in metastases with extracerebral origin.
Collapse
Affiliation(s)
- Aleksandrs Krigers
- Department of Neurosurgery, 27280Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- Department of Neuropathology, 31445University Hospital of Innsbruck, Innsbruck, Austria
| | - Helga Fritsch
- Department of Anatomy, Histology and Embryology, 31445Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias Demetz
- Department of Neurosurgery, 27280Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Kerschbaumer
- Department of Neurosurgery, 27280Medical University of Innsbruck, Innsbruck, Austria
| | | | - Claudius Thomé
- Department of Neurosurgery, 27280Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
2
|
The advanced development of Cx43 and GAP-43 mediated intercellular networking in IDH1 wildtype diffuse and anaplastic gliomas with lower mitotic rate. J Cancer Res Clin Oncol 2021; 147:3003-3009. [PMID: 34173871 DOI: 10.1007/s00432-021-03711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The biologic behavior and the therapeutic resistance of diffuse and anaplastic gliomas varies greatly. This may be explained by differences in cell-to-cell communication, determined by the Cx43-associated junctional activity and the microtubules-defined network, in which GAP-43 is the dominant structural component. We assessed the expression of these crucial communication proteins in samples of patients harboring WHO°II and III gliomas, graded according to the current 4th revised WHO classification. METHODS Tissue of adult patients with WHO°II and III gliomas, who underwent surgery between 2014 and 2018, were selected from our institutional biobank. GAP-43 and Cx43 expression was analyzed using IHC. Routine clinical and neuropathological findings were additionally retrieved from our institutional prospective database. RESULTS 43 (57%) males and 33 (43%) females with a median age of 47 (IqR: 35-61) years were selected. IDH1 wildtype tumors showed a significantly higher expression of Cx43 (p = 0.014) and a tendency for increased GAP-43 production. Advanced Cx43 expression significantly correlated with lower mitosis rate (p = 0.014): more in IDH1 wildtype (r = - 0.57, p = 0.003) than in mutated gliomas (r = - 0.37, p = 0.019). There was no difference in Cx43 or GAP-43 expression in relation to anaplastic phenotype, Gadolinum-contrasted enhancement (CE) on MRI and advanced EGFR or p53 expression. CONCLUSIONS Intercellular communication tends to be more relevant in slower proliferating, e.g. lower malignant tumors. They could have more time to establish this network, providing longitudinally acquired resistance against specific oncological therapy. This feature matches the unfavorable IDH1 wildtype status of glioma and supports the noted malignant behavior of these tumors in the upcoming 5th WHO classification of gliomas.
Collapse
|
3
|
Rapin G, Caballero N, Gaponenko I, Ziegler B, Rawleigh A, Moriggi E, Giamarchi T, Brown SA, Paruch P. Roughness and dynamics of proliferating cell fronts as a probe of cell-cell interactions. Sci Rep 2021; 11:8869. [PMID: 33893343 PMCID: PMC8065107 DOI: 10.1038/s41598-021-86684-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/05/2021] [Indexed: 12/22/2022] Open
Abstract
Juxtacellular interactions play an essential but still not fully understood role in both normal tissue development and tumour invasion. Using proliferating cell fronts as a model system, we explore the effects of cell-cell interactions on the geometry and dynamics of these one-dimensional biological interfaces. We observe two distinct scaling regimes of the steady state roughness of in-vitro propagating Rat1 fibroblast cell fronts, suggesting different hierarchies of interactions at sub-cell lengthscales and at a lengthscale of 2-10 cells. Pharmacological modulation significantly affects the proliferation speed of the cell fronts, and those modulators that promote cell mobility or division also lead to the most rapid evolution of cell front roughness. By comparing our experimental observations to numerical simulations of elastic cell fronts with purely short-range interactions, we demonstrate that the interactions at few-cell lengthscales play a key role. Our methodology provides a simple framework to measure and characterise the biological effects of such interactions, and could be useful in tumour phenotyping.
Collapse
Affiliation(s)
- Guillaume Rapin
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
| | - Nirvana Caballero
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
| | - Iaroslav Gaponenko
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Benedikt Ziegler
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
| | - Audrey Rawleigh
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Ermanno Moriggi
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland
| | - Steven A Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Patrycja Paruch
- Department of Quantum Matter Physics, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
4
|
Delgado‐Martín B, Medina MÁ. Advances in the Knowledge of the Molecular Biology of Glioblastoma and Its Impact in Patient Diagnosis, Stratification, and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902971. [PMID: 32382477 PMCID: PMC7201267 DOI: 10.1002/advs.201902971] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/24/2020] [Indexed: 05/07/2023]
Abstract
Gliomas are the most common primary brain tumors in adults. They arise in the glial tissue and primarily occur in the brain. Low-grade tumors of World Health Organization (WHO) grade II tend to progress to high-grade gliomas of WHO grade III and, eventually, glioblastoma of WHO grade IV, which is the most common and deadly glioma, with a median survival of 12-15 months after final diagnosis. Knowledge of the molecular biology and genetics of glioblastoma has increased significantly in the past few years, giving rise to classification methods that can help in management and stratification of glioblastoma patients. However, glioblastoma remains an incurable disease. Glioblastoma cells have acquired genetic and metabolic adaptations in order to sustain tumor growth and progression, including changes in energetic metabolism, invasive capacity, migration, and angiogenesis, that make it very difficult to find suitable therapeutic targets and to develop effective drugs. The current standard of care for glioblastoma patients is surgery followed by radiotherapy plus concomitant and adjuvant chemotherapy with temozolomide. Although progress in glioblastoma therapies in recent years has been more limited than in other tumors, numerous drugs and targets are being proposed and many clinical trials are underway to develop effective subtype-specific treatments.
Collapse
Affiliation(s)
- Belén Delgado‐Martín
- Department of Molecular Biology and BiochemistryFaculty of SciencesCampus de Teatinos s/nUniversity of MálagaMálagaE‐29071Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and BiochemistryFaculty of SciencesCampus de Teatinos s/nUniversity of MálagaMálagaE‐29071Spain
- IBIMA (Biomedical Research Institute of Málaga)MálagaE‐29071Spain
- CIBER de Enfermedades Raras (CIBERER)MálagaE‐29071Spain
| |
Collapse
|
5
|
Kuang JY, Guo YF, Chen Y, Wang J, Duan JJ, He XL, Li L, Yu SC, Bian XW. Connexin 43 C-terminus directly inhibits the hyperphosphorylation of Akt/ERK through protein-protein interactions in glioblastoma. Cancer Sci 2018; 109:2611-2622. [PMID: 29931708 PMCID: PMC6113504 DOI: 10.1111/cas.13707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Although the deregulation of epidermal growth factor receptor (EGFR) is one of the most common molecular mechanisms of glioblastoma (GBM) pathogenesis, the efficacy of anti-EGFR therapy is limited. Additionally, response to anti-EGFR therapy is not solely dependent on EGFR expression and is more promising in patients with reduced activity of EGFR downstream signaling pathways. Thus, there is considerable interest in identifying the compensatory regulatory factors of the EGFR signaling pathway to improve the efficacy of anti-EGFR therapies for GBM. In this study, we confirmed the low efficacy of EGFR inhibitors in GBM patients by meta-analysis. We then identified a negative correlation between connexin 43 (Cx43) expression and Akt/ERK activation, which was caused by the direct interactions between Akt/ERK and Cx43. By comparing the interactions between Akt/ERK and Cx43 using a series of truncated and mutated Cx43 variants, we revealed that the residues T286/A305/Q308/Y313 and S272/S273 at the carboxy terminus of Cx43 are critical for its binding with Akt and ERK, respectively. In addition, Kaplan-Meier survival analysis using data from The Cancer Genome Atlas datasets indicated that the expression of Cx43 significantly improved the prognosis of GBM patients who express EGFR. Together, our results suggested that Cx43 acts as an inhibitory regulator of the activation of growth factor receptor downstream signaling pathways, indicating the potential of Cx43 as a marker for predicting the efficacy of EGFR inhibitor treatments for GBM. Targeting the interaction between the carboxy terminus of Cx43 and Akt/ERK could be an effective therapeutic strategy against GBM.
Collapse
Affiliation(s)
- Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Ying Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Xiao-Li He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Lin Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing, China
| |
Collapse
|
6
|
Dong H, Zhou XW, Wang X, Yang Y, Luo JW, Liu YH, Mao Q. Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma‑associated epileptic discharge (Review). Mol Med Rep 2017; 16:7890-7900. [PMID: 28983585 DOI: 10.3892/mmr.2017.7618] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/19/2017] [Indexed: 02/05/2023] Open
Abstract
Connexin (Cx)43 is a multifunction protein which forms gap junction channels and hemi‑channels. It also contains abundant binding domains which possess the ability to interact with certain Cx43‑associated proteins and therefore serve a fundamental role in various physiological and pathological functions. However, the understanding of the association between cancer and Cx43 along with Cx43‑gap junctions (GJ) remains unclear. All available data illustrate that Cx43 and its associated GJ serve important functions in cancers. The expression levels of Cx43 demonstrate a downward trend and an increase in the levels of malignancy, particularly in astrocytomas. The GJ intercellular communication activity in glioma cells can be adjusted via Cx43 phosphorylation and through the combination of Cx43 and its associated protein. Available evidence reveals Cx43 as a tumor‑inhibiting factor that suppresses glioma growth and proliferation. However, its mechanism is also regarded as complicated and ambiguous. Furthermore, it is apparent that Cx43‑GJ and the carboxyl tail may contribute to glioma growth and proliferation too. However, this valuable role could be weakened by its effects on migration and invasiveness. The detailed mechanism remains unclear and full of controversies. Cx43 can enhance the motor ability and invasiveness of astrocytic glioma cells. It is also able to influence glioma cells to detach from the tumor core to the peritumoral neocortex. This peritumoral region has recently been regarded as the basic focus of glioma‑associated seizure. Thus, Cx43 may take part in the onset and development of glioma‑associated epileptic discharge. In addition, change and increase of Cx43 expression in GJs has been observed in seizure perilesional tissue, which is associated with brain tumors. Cx43 or GJ/hemi‑channels exert enduring effects in the promotion of glioma‑associated epileptic release through direct mass effects and change of the tumor microenvironment. However, there are still a number of issues concerning this aspect that require further exploration. Cx43, as a potential treatment target against this incurable disease and its common symptom of epilepsy, requires further investigation.
Collapse
Affiliation(s)
- Hui Dong
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xing-Wang Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie-Wen Luo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Hui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qing Mao
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
7
|
Moore D, Walker SI, Levin M. Cancer as a disorder of patterning information: computational and biophysical perspectives on the cancer problem. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2017. [DOI: 10.1088/2057-1739/aa8548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Ferguson EA, Matthiopoulos J, Insall RH, Husmeier D. Statistical inference of the mechanisms driving collective cell movement. J R Stat Soc Ser C Appl Stat 2016. [DOI: 10.1111/rssc.12203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Hong X, Sin WC, Harris AL, Naus CC. Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget 2016; 6:15566-77. [PMID: 25978028 PMCID: PMC4558171 DOI: 10.18632/oncotarget.3904] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/22/2015] [Indexed: 01/09/2023] Open
Abstract
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.
Collapse
Affiliation(s)
- Xiaoting Hong
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada.,Department of Pharmacology & Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - Wun Chey Sin
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| | - Andrew L Harris
- Department of Pharmacology & Physiology, New Jersey Medical School, Rutgers University, Newark, New Jersey, 07103, USA
| | - Christian C Naus
- Department of Cellular and Physiological Sciences, The Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, V6T1Z3, Canada
| |
Collapse
|
10
|
Rimkutė L, Jotautis V, Marandykina A, Sveikatienė R, Antanavičiūtė I, Skeberdis VA. The role of neural connexins in HeLa cell mobility and intercellular communication through tunneling tubes. BMC Cell Biol 2016; 17:3. [PMID: 26758208 PMCID: PMC4710989 DOI: 10.1186/s12860-016-0080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Membranous tunneling tubes (TTs) are a recently discovered new form of communication between remote cells allowing their electrical synchronization, migration, and transfer of cellular materials. TTs have been identified in the brain and share similarities with neuronal processes. TTs can be open-ended, close-ended or contain functional gap junctions at the membrane interface. Gap junctions are formed of two unapposed hemichannels composed of six connexin (Cx) subunits. There are evidences that Cxs also play channel-independent role in cell adhesion, migration, division, differentiation, formation of neuronal networks and tumorigenicity. These properties of Cxs and TTs may synergetically determine the cellular and intercellular processes. Therefore, we examined the impact of Cxs expressed in the nervous system (Cx36, Cx40, Cx43, Cx45, and Cx47) on: 1) cell mobility; 2) formation and properties of TTs; and 3) transfer of siRNA between remote cells through TTs. Results We have identified two types of TTs between HeLa cells: F-actin rich only and containing F-actin and α-tubulin. The morphology of TTs was not influenced by expression of examined connexins; however, Cx36-EGFP-expressing cells formed more TTs while cells expressing Cx43-EGFP, Cx45, and Cx47 formed fewer TTs between each other compared with wt and Cx40-CFP-expressing cells. Also, Cx36-EGFP and Cx40-CFP-expressing HeLa cells were more mobile compared with wt and other Cxs-expressing cells. TTs containing Cx40-CFP, Cx43-EGFP, or Cx47 gap junctions were capable of transmitting double-stranded small interfering RNA; however, Cx36-EGFP and Cx45 were not permeable to it. In addition, we show that Cx43-EGFP-expressing HeLa cells and laryngeal squamous cell carcinoma cells can couple to the mesenchymal stem cells through TTs. Conclusions Different Cxs may modulate the mobility of cells and formation of TTs in an opposite manner; siRNA transfer through the GJ-containing TTs is Cx isoform-dependent. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0080-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Vaidas Jotautis
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Alina Marandykina
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Renata Sveikatienė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Ieva Antanavičiūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| |
Collapse
|
11
|
Kirschstein T, Köhling R. Animal models of tumour-associated epilepsy. J Neurosci Methods 2015; 260:109-17. [PMID: 26092434 DOI: 10.1016/j.jneumeth.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/26/2023]
Abstract
Brain tumours cause a sizeable proportion of epilepsies in adulthood, and actually can be etiologically responsible also for childhood epilepsies. Conversely, seizures are often first clinical signs of a brain tumour. Nevertheless, several issues of brain-tumour associated seizures and epilepsies are far from understood, or clarified regarding clinical consensus. These include both the specific mechanisms of epileptogenesis related to different tumour types, the possible relationship between malignancy and seizure emergence, the interaction between tumour mass and surrounding neuronal networks, and - not least - the best treatment options depending on different tumour types. To investigate these issues, experimental models of tumour-induced epilepsies are necessary. This review concentrates on the description of currently used models, focusing on methodological aspects. It highlights advantages and shortcomings of these models, and identifies future experimental challenges.
Collapse
Affiliation(s)
- Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany.
| |
Collapse
|
12
|
Tabernero A, Gangoso E, Jaraíz-Rodríguez M, Medina JM. The role of connexin43-Src interaction in astrocytomas: A molecular puzzle. Neuroscience 2015; 323:183-94. [PMID: 25711938 DOI: 10.1016/j.neuroscience.2015.02.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Connexin43 (Cx43) as a building block of gap junction channels and hemichannels exerts important functions in astrocytes. When these cells acquire a malignant phenotype Cx43 protein but not mRNA levels are downregulated, being negligible in high-grade astrocytoma or glioblastoma multiforme, the most common and deadliest of malignant primary brain tumors in adults. Some microRNAs associated to glioma target Cx43 and could explain the lack of correlation between mRNA and protein levels of Cx43 found in some high-grade astrocytomas. More importantly, these microRNAs could be a promising therapeutic target. A great number of studies have confirmed the relationship between cancer and connexins that was proposed by Loewenstein more than 40years ago, but these studies have also revealed that this is a very complex relationship. Indeed, restoring Cx43 to glioma cells reduces their rate of proliferation and their tumorigenicity but this tumor suppressor effect could be counterbalanced by its effects on invasiveness, adhesion and migration. The mechanisms underlying these effects suggest the participation of a great variety of proteins that bind to different regions of Cx43. The present review focuses on an intrinsically disordered region of the C-terminal domain of Cx43 in which converges the interaction of several proteins, including the proto-oncogene Src. We summarize data that indicate that Cx43-Src interaction inhibits the oncogenic activity of Src and promotes a conformational change in the structure of Cx43 that allosterically modifies the binding to other important signaling proteins. As a consequence, crucial cell functions, such as proliferation or migration, could be strongly affected. We propose that the knowledge of the structural basis of the antitumorigenic effect of Cx43 on astrocytomas could help to design new therapies against this incurable disease.
Collapse
Affiliation(s)
- A Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Spain.
| | - E Gangoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Spain
| | - M Jaraíz-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Spain
| | - J M Medina
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Spain
| |
Collapse
|
13
|
Gangoso E, Thirant C, Chneiweiss H, Medina JM, Tabernero A. A cell-penetrating peptide based on the interaction between c-Src and connexin43 reverses glioma stem cell phenotype. Cell Death Dis 2014; 5:e1023. [PMID: 24457967 PMCID: PMC4040690 DOI: 10.1038/cddis.2013.560] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 01/09/2023]
Abstract
Connexin43 (Cx43), the main gap junction channel-forming protein in astrocytes, is downregulated in malignant gliomas. These tumors are composed of a heterogeneous population of cells that include many with stem-cell-like properties, called glioma stem cells (GSCs), which are highly tumorigenic and lack Cx43 expression. Interestingly, restoring Cx43 reverses GSC phenotype and consequently reduces their tumorigenicity. In this study, we investigated the mechanism by which Cx43 exerts its antitumorigenic effects on GSCs. We have focused on the tyrosine kinase c-Src, which interacts with the intracellular carboxy tail of Cx43. We found that Cx43 regulates c-Src activity and proliferation in human GSCs expanded in adherent culture. Thus, restoring Cx43 in GSCs inhibited c-Src activity, which in turn promoted the downregulation of the inhibitor of differentiation Id1. Id1 sustains stem cell phenotype as it controls the expression of Sox2, responsible for stem cell self-renewal, and promotes cadherin switching, which has been associated to epithelial–mesenchymal transition. Our results show that both the ectopic expression of Cx43 and the inhibition of c-Src reduced Id1, Sox2 expression and promoted the switch from N- to E-cadherin, suggesting that Cx43, by inhibiting c-Src, downregulates Id1 with the subsequent changes in stem cell phenotype. On the basis of this mechanism, we found that a cell-penetrating peptide, containing the region of Cx43 that interacts with c-Src, mimics the effect of Cx43 on GSC phenotype, confirming the relevance of the interaction between Cx43 and c-Src in the regulation of the malignant phenotype and pinpointing this interaction as a promising therapeutic target.
Collapse
Affiliation(s)
- E Gangoso
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - C Thirant
- Laboratoire Plasticité Gliale, Centre de Psychiatrie et de Neuroscience-INSERM U894, Paris 75014, France
| | - H Chneiweiss
- Laboratoire Plasticité Gliale, Centre de Psychiatrie et de Neuroscience-INSERM U894, Paris 75014, France
| | - J M Medina
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| | - A Tabernero
- Departamento de Bioquímica y Biología Molecular, Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
14
|
Defamie N, Chepied A, Mesnil M. Connexins, gap junctions and tissue invasion. FEBS Lett 2014; 588:1331-8. [PMID: 24457198 DOI: 10.1016/j.febslet.2014.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
Formation of metastases negatively impacts the survival prognosis of cancer patients. Globally, if the various steps involved in their formation are relatively well identified, the molecular mechanisms responsible for the emergence of invasive cancer cells are still incompletely resolved. Elucidating what are the mechanisms that allow cancer cells to evade from the tumor is a crucial point since it is the first step of the metastatic potential of a solid tumor. In order to be invasive, cancer cells have to undergo transformations such as down-regulation of cell-cell adhesions, modification of cell-matrix adhesions and acquisition of proteolytic properties. These transformations are accompanied by the capacity to "activate" stromal cells, which may favor the motility of the invasive cells through the extracellular matrix. Since modulation of gap junctional intercellular communication is known to be involved in cancer, we were interested to consider whether these different transformations necessary for the acquisition of invasive phenotype are related with gap junctions and their structural proteins, the connexins. In this review, emerging roles of connexins and gap junctions in the process of tissue invasion are proposed.
Collapse
Affiliation(s)
- Norah Defamie
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Amandine Chepied
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Marc Mesnil
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| |
Collapse
|
15
|
Pinkernelle J, Fansa H, Ebmeyer U, Keilhoff G. Prolonged minocycline treatment impairs motor neuronal survival and glial function in organotypic rat spinal cord cultures. PLoS One 2013; 8:e73422. [PMID: 23967343 PMCID: PMC3742532 DOI: 10.1371/journal.pone.0073422] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 07/21/2013] [Indexed: 11/28/2022] Open
Abstract
Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients.
Collapse
Affiliation(s)
- Josephine Pinkernelle
- Institute of Biochemistry and Cell Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | | | | | | |
Collapse
|
16
|
Gap junction channels and hemichannels in the CNS: regulation by signaling molecules. Neuropharmacology 2013; 75:567-82. [PMID: 23499663 DOI: 10.1016/j.neuropharm.2013.02.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 02/08/2013] [Accepted: 02/26/2013] [Indexed: 11/20/2022]
Abstract
Coordinated interaction among cells is critical to develop the extremely complex and dynamic tasks performed by the central nervous system (CNS). Cell synchronization is in part mediated by connexins and pannexins; two different protein families that form gap junction channels and hemichannels. Whereas gap junction channels connect the cytoplasm of contacting cells and coordinate electric and metabolic activities, hemichannels communicate intra- and extra-cellular compartments and serve as diffusional pathways for ions and small molecules. Cells in the CNS depend on paracrine/autocrine communication via several extracellular signaling molecules, such as, cytokines, growth factors, transmitters and free radical species to sense changes in microenvironment as well as to adapt to them. These signaling molecules modulate crucial processes of the CNS, including, cellular migration and differentiation, synaptic transmission and plasticity, glial activation, cell viability and microvascular blood flow. Gap junction channels and hemichannels are affected by different signaling transduction pathways triggered by these paracrine/autocrine signaling molecules. Most of the modulatory effects induced by these signaling molecules are specific to the cell type and the connexin and pannexin subtype expressed in different brain areas. In this review, we summarized and discussed most of the relevant and recently published information on the effects of signaling molecules on connexin or pannexin based channels and their possible relevance in CNS physiology and pathology. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.
Collapse
|
17
|
Opposing roles of connexin43 in glioma progression. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2058-67. [DOI: 10.1016/j.bbamem.2011.10.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/17/2011] [Accepted: 10/24/2011] [Indexed: 12/12/2022]
|
18
|
Yu SC, Xiao HL, Jiang XF, Wang QL, Li Y, Yang XJ, Ping YF, Duan JJ, Jiang JY, Ye XZ, Xu SL, Xin YH, Yao XH, Chen JH, Chu WH, Sun W, Wang B, Wang JM, Zhang X, Bian XW. Connexin 43 reverses malignant phenotypes of glioma stem cells by modulating E-cadherin. Stem Cells 2012; 30:108-20. [PMID: 22131169 DOI: 10.1002/stem.1685] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Malfunctioned gap junctional intercellular communication (GJIC) has been thought associated with malignant transformation of normal cells. However, the role of GJIC-related proteins such as connexins in sustaining the malignant behavior of cancer stem cells remains unclear. In this study, we obtained tumorspheres formed by glioma stem cells (GSCs) and adherent GSCs and then examined their GJIC. All GSCs showed reduced GJIC, and differentiated glioma cells had more gap junction-like structures than GSCs. GSCs expressed very low level of connexins, Cx43 in particular, which are key components of gap junction. We observed hypermethylation in the promoter of gap junction protein α1, which encodes Cx43 in GSCs. Reconstitution of Cx43 in GSCs inhibited their capacity of self-renewal, invasiveness, and tumorigenicity via influencing E-cadherin and its coding protein, which leads to changes in the expression of Wnt/β-catenin targeting genes. Our results suggest that GSCs require the low expression of Cx43 for maintaining their malignant phenotype, and upregulation of Cx43 might be a potential strategy for treatment of malignant glioma.
Collapse
Affiliation(s)
- Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gap junction proteins on the move: connexins, the cytoskeleton and migration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:94-108. [PMID: 22613178 DOI: 10.1016/j.bbamem.2012.05.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/25/2012] [Accepted: 05/04/2012] [Indexed: 01/08/2023]
Abstract
Connexin43 (Cx43) has roles in cell-cell communication as well as channel independent roles in regulating motility and migration. Loss of function approaches to decrease Cx43 protein levels in neural cells result in reduced migration of neurons during cortical development in mice and impaired glioma tumor cell migration. In other cell types, correlations between Cx43 expression and cell morphology, adhesion, motility and migration have been noted. In this review we will discuss the common themes that have been revealed by a detailed comparison of the published results of neuronal cells with that of other cell types. In brief, these comparisons clearly show differences in the stability and directionality of protrusions, polarity of movement, and migration, depending on whether a) residual Cx43 levels remain after siRNA or shRNA knockdown, b) Cx43 protein levels are not detectable as in cells from Cx43(-/-) knockout mice or in cells that normally have no endogenous Cx43 expression, c) gain-of-function approaches are used to express Cx43 in cells that have no endogenous Cx43 and, d) Cx43 is over-expressed in cells that already have low endogenous Cx43 protein levels. What is clear from our comparisons is that Cx43 expression influences the adhesiveness of cells and the directionality of cellular processes. These observations are discussed in light of the ability of cells to rearrange their cytoskeleton and move in an organized manner. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.
Collapse
|
20
|
Mendoza-Naranjo A, Cormie P, Serrano AE, Hu R, O'Neill S, Wang CM, Thrasivoulou C, Power KT, White A, Serena T, Phillips ARJ, Becker DL. Targeting Cx43 and N-cadherin, which are abnormally upregulated in venous leg ulcers, influences migration, adhesion and activation of Rho GTPases. PLoS One 2012; 7:e37374. [PMID: 22615994 PMCID: PMC3352877 DOI: 10.1371/journal.pone.0037374] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 04/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background Venous leg ulcers can be very hard to heal and represent a significant medical need with no effective therapeutic treatment currently available. Principal Findings In wound edge biopsies from human venous leg ulcers we found a striking upregulation of dermal N-cadherin, Zonula Occludens-1 and the gap junction protein Connexin43 (Cx43) compared to intact skin, and in stark contrast to the down-regulation of Cx43 expression seen in acute, healing wounds. We targeted the expression of these proteins in 3T3 fibroblasts to evaluate their role in venous leg ulcers healing. Knockdown of Cx43 and N-cadherin, but not Zonula Occludens-1, accelerated cell migration in a scratch wound-healing assay. Reducing Cx43 increased Golgi reorientation, whilst decreasing cell adhesion and proliferation. Furthermore, Connexin43 and N-cadherin knockdown led to profound effects on fibroblast cytoskeletal dynamics after scratch-wounding. The cells exhibited longer lamelipodial protrusions lacking the F-actin belt seen at the leading edge in wounded control cells. This phenotype was accompanied by augmented activation of Rac-1 and RhoA GTPases, as revealed by Förster Resonance Energy Transfer and pull down experiments. Conclusions Cx43 and N-cadherin are potential therapeutic targets in the promotion of healing of venous leg ulcers, by acting at least in part through distinct contributions of cell adhesion, migration, proliferation and cytoskeletal dynamics.
Collapse
Affiliation(s)
- Ariadna Mendoza-Naranjo
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail: (DLB); (AMN)
| | - Peter Cormie
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Antonio E. Serrano
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Rebecca Hu
- CoDa Therapeutics, Auckland, New Zealand
| | | | - Chiuhui Mary Wang
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Kieran T. Power
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | | - Thomas Serena
- Newbridge Medical Research Corp, Warren, Pennsylvania, United States of America
| | | | - David L. Becker
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail: (DLB); (AMN)
| |
Collapse
|
21
|
Onishi M, Ichikawa T, Kurozumi K, Date I. Angiogenesis and invasion in glioma. Brain Tumor Pathol 2011; 28:13-24. [PMID: 21221826 DOI: 10.1007/s10014-010-0007-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 09/22/2010] [Indexed: 10/18/2022]
Abstract
Despite advances in surgical and medical therapy, glioblastoma consistently remains a fatal disease. Over the last 20 years, no significant increase in survival has been achieved for patients with this disease. The formation of abnormal tumor vasculature and glioma cell invasion along white matter tracts are believed to be the major factors responsible for the resistance of these tumors to treatment. Therefore, investigation of angiogenesis and invasion in glioblastoma is essential for the development of a curative therapy. In our report, we first reviewed certain histopathological studies that focus on angiogenesis and invasion of human malignant gliomas. Second, we considered several animal models of glioma available for studying angiogenesis and invasion, including our novel animal models. Third, we focused on the molecular aspects of glioma angiogenesis and invasion, and the key mediators of these processes. Finally, we discussed the recent and ongoing clinical trials targeting tumor angiogenesis and invasion in glioma patients. A better understanding of the mechanism of glioma angiogenesis and invasion will lead to the development of new treatment methods.
Collapse
Affiliation(s)
- Manabu Onishi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | | | | | | |
Collapse
|
22
|
Badoual M, Deroulers C, Aubert M, Grammaticos B. Modelling intercellular communication and its effects on tumour invasion. Phys Biol 2010; 7:046013. [PMID: 21178241 DOI: 10.1088/1478-3975/7/4/046013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We present a model aiming at the description of intercellular communication on the invasive character of gliomas. We start from a previous model of ours based on a cellular automaton and develop a new version of it in a three-dimensional geometry. Introducing the hydrodynamic limit of the automaton we obtain a macroscopic model involving a nonlinear diffusion equation. We show that this macroscopic model is quite adequate for the description of realistic situations. Comparison of the simulations with experimental results shows agreement with the finding that the inhibition of intercellular communication (through gap junctions) tends to decrease migration. As an application of our model we estimated the possible increase in life expectancy, due to reduced cell migration mediated by the inhibition of intercellular communication, on patients suffering from gliomas. We find that the obtained increase may amount to a 20% gain in the case of unresectable tumours.
Collapse
Affiliation(s)
- M Badoual
- IMNC, Université Paris VII-Paris XI, CNRS, UMR 8165, Bât. 440, 91406 Orsay, France.
| | | | | | | |
Collapse
|
23
|
Marins M, Xavier AL, Viana NB, Fortes FS, Fróes MM, Menezes JR. Gap junctions are involved in cell migration in the early postnatal subventricular zone. Dev Neurobiol 2009; 69:715-30. [DOI: 10.1002/dneu.20737] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Abstract
In recent years the argument has been made that malignant tumors represent complex dynamic and self-organizing biosystems. Furthermore, there is increasing evidence that collective cell migration is common during invasion and metastasis of malignant tumors. Here, we argue that cancer systems may be capable of developing multicellular collective patterns that resemble evolved adaptive behavior known from other biological systems including collective sensing of environmental conditions and collective decision-making. We present a concept as to how these properties could arise in tumors and why the emergence of such swarm-like patterns would confer advantageous properties to the spatiotemporal expansion of tumors, and consequently, why understanding and ultimately targeting such collectivity should be of interest for basic and clinical cancer research alike.
Collapse
Affiliation(s)
- Thomas S Deisboeck
- Complex Biosystems Modeling Laboratory, Harvard-MIT (HST) Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | |
Collapse
|
25
|
Defranco BH, Nickel BM, Baty CJ, Martinez JS, Gay VL, Sandulache VC, Hackam DJ, Murray SA. Migrating cells retain gap junction plaque structure and function. ACTA ACUST UNITED AC 2008; 15:273-88. [PMID: 18979295 DOI: 10.1080/15419060802198298] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cell migration is an essential process in organ development, differentiation, and wound healing, and it has been hypothesized that gap junctions play a pivotal role in these cell processes. However, the changes in gap junctions and the capacity for cell communication as cells migrate are unclear. To monitor gap junction plaques during cell migration, adrenocortical cells were transfected with cDNA encoding for the connexin 43-green fluorescent protein. Time-lapse imaging was used to analyze cell movements and concurrent gap junction plaque dynamics. Immunocytochemistry was used to analyze gap junction morphology and distribution. Migration was initiated by wounding the cell monolayer and diffusional coupling was demonstrated by monitoring Lucifer yellow dye transfer and fluorescence recovery after photobleaching (FRAP) in cells at the wound edge and in cells located some distance from the wound edge. Gap junction plaques were retained at sites of contact while cells migrated in a "sheet-like" formation, even when cells dramatically changed their spatial relationship to one another. Consistent with this finding, cells at the leading edge retained their capacity to communicate with contacting cells. When cells detached from one another, gap junction plaques were internalized just prior to cell process detachment. Although gap junction plaque internalization clearly was a method of gap junction removal during cell separation, cells retained gap junction plaques and continued to communicate dye while migrating.
Collapse
Affiliation(s)
- Bado Hewa Defranco
- Department of Cell Biology and Physiology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Aubert M, Badoual M, Christov C, Grammaticos B. A model for glioma cell migration on collagen and astrocytes. J R Soc Interface 2008; 5:75-83. [PMID: 17567554 PMCID: PMC2605504 DOI: 10.1098/rsif.2007.1070] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a model for the migration of glioma cells on substrates of collagen and astrocytes. The model is based on a cellular automaton where the various dynamical effects are introduced through adequate evolution rules. Using our model, we investigate the role of homotype and heterotype gap junction communication and show that it is possible to reproduce the corresponding experimental migration patterns. In particular, we confirm the experimental findings that inhibition of homotype gap junctions favours migration while heterotype inhibition hinders it. Moreover, the effect of heterotype gap junction inhibition dominates that of homotype inhibition.
Collapse
Affiliation(s)
- M Aubert
- IMNC, Universités Paris VII-Paris XI, CNRS, UMR 8165, Bâtiment 104, 91406 Orsay, France.
| | | | | | | |
Collapse
|
27
|
Mansury Y, Diggory M, Deisboeck TS. Evolutionary game theory in an agent-based brain tumor model: Exploring the ‘Genotype–Phenotype’ link. J Theor Biol 2006; 238:146-56. [PMID: 16081108 DOI: 10.1016/j.jtbi.2005.05.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 05/04/2005] [Indexed: 11/26/2022]
Abstract
To investigate the genotype-phenotype link in a polyclonal cancer cell population, here we introduce evolutionary game theory into our previously developed agent-based brain tumor model. We model the heterogeneous cell population as a mixture of two distinct genotypes: the more proliferative Type A and the more migratory Type B. Our agent-based simulations reveal a phase transition in the tumor's velocity of spatial expansion linking the tumor fitness to genotypic composition. Specifically, velocity initially falls as rising payoffs reward the interactions among the more stationary Type A cells, but unexpectedly accelerates again when these A-A payoffs increase even further. At this latter accelerating stage, fewer migratory Type B cells appear to confer a competitive advantage in terms of the tumor's spatial aggression over the overall numerically dominating Type A cells, which in turn leads to an acceleration of the overall tumor dynamics while its surface roughness declines. We discuss potential implications of our findings for cancer research.
Collapse
Affiliation(s)
- Yuri Mansury
- Complex Biosystems Modeling Laboratory, HST-Biomedical Engineering Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
28
|
Köhling R, Senner V, Paulus W, Speckmann EJ. Epileptiform activity preferentially arises outside tumor invasion zone in glioma xenotransplants. Neurobiol Dis 2005; 22:64-75. [PMID: 16309916 DOI: 10.1016/j.nbd.2005.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/15/2022] Open
Abstract
Seizures occur commonly with brain tumors. The underlying mechanisms are not understood. We analyzed network and cellular excitability changes in tumor-invaded and sham neocortical tissue in vitro using a rat glioblastoma model. Rat C6 glioma cells were transplanted into rat neocortex, yielding diffusely invading gliomas resembling human glioblastomas. We hypothesized that network excitability would increase in regions neighboring the tumor, and that initiation of epileptic discharges might be correlated to a higher density of intrinsically bursting neurones. Voltage-sensitive dye imaging revealed epileptic activity to be initiated in paratumoral zones (1-2 mm from main tumor mass), in contrast to control tissue, where epileptic foci appeared randomly throughout the neocortex. Neuronal firing patterns revealed significantly more intrinsically bursting neurones within these initiation zones than in regions directly adjacent to the tumor or in control tissue. We conclude that gliomas are associated with a higher density of intrinsically bursting neurones, and that these may preferentially initiate epileptiform events.
Collapse
Affiliation(s)
- Rüdiger Köhling
- Institute of Physiology, University of Münster, Robert-Koch-Str. 27a, 48149 Münster, Germany.
| | | | | | | |
Collapse
|
29
|
Abstract
Gliomas are the most common intracranial tumors. In the US, approximately 15,000 patients die with glioblastoma per year (CBTRUS 2002). Despite modern diagnostics and treatments the median survival time does not exceed 15 months. However, it has long been observed that after surgical removal, tumors recur predominantly within 1 cm of the resection cavity. This is mainly due to the fact that at the time of surgery, cells from the bulk tumor have already invaded normal brain tissue. Decades ago Matsukado showed that more than 50% of untreated brain tumors had already reached the contralateral hemisphere (J Neurosurg 18: 636-644, 1961). Therefore one of the most important hallmarks of malignant gliomas is their invasive behavior. Dandy already recognized the highly invasive characteristics of this tumor type and performed hemispherectomy in patients with preoperative hemiplegia (J Am Med Assoc 90: 823-825, 1928). Despite his and others' heroic efforts, recurrence was detected as early as 3 months after surgery (Bell, LJ: J Neurosurg 6: 285-293, 1949), leading to the discontinuation of this radical approach. Diffuse gliomas remain a particularly challenging clinical management problem. Over the last 20 years no significant increase in survival of patients suffering from this disease has been achieved. Even drugs directed against newly identified targets like MMPs or angiogenesis-related targets fail to increase survival duration (Tonn, Goldbrunner: Acta Neurochir Suppl 88: 163-167, 2003) Furthermore, anti-angiogenic drugs have been shown to increase glioma invasiveness, finally leading to gliomatosis cerebri. (Lamszus et al.: Acta Neurochir Suppl 88: 169-177, 2003). In this review we focus on the main features which may underlie the invasive phenotype of human gliomas, and offer a biological basis for optimism towards therapeutic advances to come.
Collapse
Affiliation(s)
- Tim Demuth
- TGen, The Translational Genomics Research Institute, Phoenix, Arizona 85004, USA
| | | |
Collapse
|
30
|
Pu P, Xia Z, Yu S, Huang Q. Altered expression of Cx43 in astrocytic tumors. Clin Neurol Neurosurg 2004; 107:49-54. [PMID: 15567553 DOI: 10.1016/j.clineuro.2004.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 03/11/2004] [Accepted: 03/22/2004] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To evaluate the Cx43 expression of astrocytic tumors and correlate their expression with degrees of malignancy and proliferation activity of tumors. METHODS Cx43 expression in eight normal brain tissues, 44 freshly resected astrocytic tumor specimens and four malignant glioma cell lines were examined by Northern blot analysis and immunohistochemical staining. The proliferation activity of tumors was measured by Ki67 labeling index (Ki67LI) with immunostaining. Scrape loading and dye transfer assay was used for examination of gap junction intercellular communication (GJIC) in glioma cell lines. RESULTS Twenty-three out of 44 astrocytic tumors (52%) expressed both Cx43 mRNA and Protein. Cx43 expression was decreased with the ascending of tumor grade and negatively correlated with Ki67LI. GJIC was interrupted in glioma cell lines deficient in Cx43 expression. CONCLUSIONS Cx43 expression level is inversely correlated with the tumor grade and proliferation activity of tumor, suggesting the potential role of Cx43 in the malignant progression of astrocytic tumors.
Collapse
Affiliation(s)
- Peiyu Pu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, PR China.
| | | | | | | |
Collapse
|
31
|
Ozog MA, Bernier SM, Bates DC, Chatterjee B, Lo CW, Naus CCG. The complex of ciliary neurotrophic factor-ciliary neurotrophic factor receptor alpha up-regulates connexin43 and intercellular coupling in astrocytes via the Janus tyrosine kinase/signal transducer and activator of transcription pathway. Mol Biol Cell 2004; 15:4761-74. [PMID: 15342787 PMCID: PMC524725 DOI: 10.1091/mbc.e04-03-0271] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cytokines regulate numerous cell processes, including connexin expression and gap junctional coupling. In this study, we examined the effect of ciliary neurotrophic factor (CNTF) on connexin43 (Cx43) expression and intercellular coupling in astrocytes. Murine cortical astrocytes matured in vitro were treated with CNTF (20 ng/ml), soluble ciliary neurotrophic factor receptor alpha (CNTFRalpha) (200 ng/ml), or CNTF-CNTFRalpha. Although CNTF and CNTFRalpha alone had no effect on Cx43 expression, the heterodimer CNTF-CNTFRalpha significantly increased both Cx43 mRNA and protein levels. Cx43 immunostaining correlated with increased intercellular coupling as determined by dye transfer analysis. By using the pharmacological inhibitor alpha-cyano-(3,4-dihydroxy)-N-benzylcinnamide (AG490), the increase in Cx43 was found to be dependent on the Janus tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) pathway. Immunocytochemical analysis revealed that CNTF-CNTFRalpha treatment produced nuclear localization of phosphorylated STAT3, whereas CNTF treatment alone did not. Transient transfection of constructs containing various sequences of the Cx43 promoter tagged to a LacZ reporter into ROS 17/2.8 cells confirmed that the promoter region between -838 to -1693 was deemed necessary for CNTF-CNTFRalpha to induce heightened expression. CNTF-CNTFRalpha did not alter Cx30 mRNA levels, suggesting selectivity of CNTF-CNTFRalpha for connexin signaling. Together in the presence of soluble receptor, CNTF activates the JAK/STAT pathway leading to enhanced Cx43 expression and intercellular coupling.
Collapse
Affiliation(s)
- Mark A Ozog
- Department of Anatomy and Cell Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Barresi V, Belluardo N, Sipione S, Mudò G, Cattaneo E, Condorelli DF. Transplantation of prodrug-converting neural progenitor cells for brain tumor therapy. Cancer Gene Ther 2003; 10:396-402. [PMID: 12719709 DOI: 10.1038/sj.cgt.7700580] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since neural progenitor cells can engraft stably into brain tumors and differentiate along the neuronal and glial line, we tested the hypothesis that transplanted cytosine deaminase (CD)-expressing ST14A cells (an immortalized neural progenitor cell line) can convert locally 5-fluorocytosine (5-FC) into 5-fluorouracil (5-FU) and produce a regression of glioma tumors. ST14A, retrovirally transduced with the E. coli CD gene, showed a strong bystander effect on glioma cells as assessed by in vitro assay. Intracerebral injection of C6 glioma cells generated a rapidly growing tumoral mass. DiI prelabeled ST14A, coinjected into the rat brain with C6 glioma cells, survived in the tumoral mass up to 10 days and their number was not affected by in vivo 5-FC treatment. In contrast, a significant decrease of the glioma tumoral mass (-50%) was observed in 5-FC-treated rats. 5-FC had no effect on the tumor in the absence of CD-expressing ST14A cells. Our results support the feasibility of systems based on intratumoral transplantation of prodrug-converting cells for brain tumor therapy.
Collapse
|
33
|
Abstract
Gap junctions are transcellular pathways that enable a dynamic metabolic coupling and a selective exchange of biological signaling mediators. Throughout the course of the brain development these intercellular channels are assembled into regionally and temporally defined patterns. The present review summarizes the possibilities of heterocellular gap junctional pairing in the brain parenchyma, involving glial cells, neurons and neural precursors as well as it highlights on the meaningfulness of these coupled arrays to the concept of brain functional compartments.
Collapse
Affiliation(s)
- M M Fróes
- Laboratório de Neuroanatomia Celular, Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro, Brazil.
| | | |
Collapse
|
34
|
de Boüard S, Christov C, Guillamo JS, Kassar-Duchossoy L, Palfi S, Leguerinel C, Masset M, Cohen-Hagenauer O, Peschanski M, Lefrançois T. Invasion of human glioma biopsy specimens in cultures of rodent brain slices: a quantitative analysis. J Neurosurg 2002; 97:169-76. [PMID: 12134908 DOI: 10.3171/jns.2002.97.1.0169] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The reliable assessment of the invasiveness of gliomas in vitro has proved elusive, because most invasion assays inadequately model in vivo invasion in its complexity. Recently, organotypical brain cultures were successfully used in short-term invasion studies on glioma cell lines. In this paper the authors report that the invasiveness of human glioma biopsy specimens directly implanted into rodent brain slices by using the intraslice implantation system (ISIS) can be quantified with precision. The model was first validated by the demonstration that, in long-term studies, established glioma cells survive in the ISIS and follow pathways of invasion similar to those in vivo. METHODS Brain slices (400 microm thick) from newborn mice were maintained on millicell membranes for 15 days. Cells from two human and one rodent glioblastoma multiforme (GBM) cell lines injected into the ISIS were detected by immunohistochemistry or after transfection with green fluorescent protein-containing vectors. Preferential migration along blood vessels was identified using confocal and fluorescent microscopy. Freshly isolated (< or = 24 hours after removal) 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-prelabeled human glioma biopsy specimens were successfully implanted in 19 (83%) of 23 cases, including 12 GBMs and seven lower grade gliomas (LGGs). Morphometric quantification of distance and density of tumor cell invasion showed that the GBMs were two to four times more invasive than the LGGs. Heterogeneity of invasion was also observed among GBMs and LGGs. Directly implanted glioma fragments were more invasive than spheroids derived from the same biopsy specimen. CONCLUSIONS The ISIS combines a high success rate, technical simplicity, and detailed quantitative measurements and may, therefore, be used to study the invasiveness of biopsy specimens of gliomas of different grades.
Collapse
Affiliation(s)
- Sophie de Boüard
- Institut Nationale de la Santé et de la Recherche Médicale, Unité 421, Faculté de Médecine, Créteil, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Errede M, Benagiano V, Girolamo F, Flace P, Bertossi M, Roncali L, Virgintino D. Differential expression of connexin43 in foetal, adult and tumour-associated human brain endothelial cells. THE HISTOCHEMICAL JOURNAL 2002; 34:265-71. [PMID: 12769257 DOI: 10.1023/a:1023344106815] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Connexin43 (Cx43), the main protein constituting the gap junctions between astrocytes, has previously been demonstrated in endothelial cells of somatic vessels where the intercellular coupling that it provides plays a role in endothelial proliferation and migration. In this study, Cx43 expression was analysed in human brain microvascular endothelial cells of the cortical plate of 18-week foetal telencephalon, in adult cerebral cortex and glioma (astrocytomas). The study was carried out by immunocytochemistry utilizing a Cx43 monoclonal antibody and a polyclonal antibody anti-GLUT1 (glucose transporter isoform 1) to identify the endothelial cells and to localize Cx43. Endothelial Cx43 is differently expressed in the cortical plate, cerebral cortex and astrocytoma. Within the cortical plate and tumour, Cx43 is highly expressed in microvascular endothelial cells whereas it is virtually absent in the cerebral cortex microvessels. The high expression of the gap junction protein in developing brain, as well as in brain tumours, may be related to the growth status of the microvessels during brain and tumour angiogenesis. The lack of endothelial Cx43 in the cerebral cortex is in agreement with the characteristics of the mature brain endothelial cells that are sealed by tight junctions. In conclusion, the results indicate that endothelial Cx43 expression is developmentally regulated in the normal human brain and suggest that it is controlled by the microenvironment in both normal and tumour-related conditions.
Collapse
Affiliation(s)
- Mariella Errede
- Department of Human Anatomy and Histology, University of Bari Medical School, Polyclinics, piazza Giulio Cesare, 70124 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Damstrup L, Wandahl Pedersen M, Bastholm L, Elling F, Skovgaard Poulsen H. Epidermal growth factor receptor mutation type III transfected into a small cell lung cancer cell line is predominantly localized at the cell surface and enhances the malignant phenotype. Int J Cancer 2002; 97:7-14. [PMID: 11774237 DOI: 10.1002/ijc.1572] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present study we transfected the epidermal growth factor receptor (EGFR)-negative small cell lung cancer cell line, GLC3, with the type III EGFR mutation (EGFRvIII). The EGFRvIII protein could be detected by Western blot analysis as a 145-kDa protein, which by immunohistochemistry appeared to be localized at the cell surface. Ultrastructurally EGFRvIII was expressed mainly at the cell surface with clusters at cell-cell contacts. In the in vitro invasion assay, GLC3-EGFRvIII cells had a approximately 5-fold increased invasion compared with uninduced GLC3-EGFRvIII, GLC3-Tet-On and the parental cell line. GLC3-Tet-On appeared uniform in size with adherence junctions at cell-cell contacts. In uninduced GLC3-EGFRvIII cells adherence junctions were also present but less distinct. In doxycycline-pretreated GLC3-EGFRvIII cells, adherence junctions were absent. We conclude that the expression of EGFRvIII results in a more malignant phenotype. This effect appears to involve the disruption of adherence junctions.
Collapse
Affiliation(s)
- Lars Damstrup
- Department of Radiation Biology, The Finsen Center, University Hospital Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
37
|
Pérez-Armendariz EM, Lamoyi E, Mason JI, Cisneros-Armas D, Luu-The V, Bravo Moreno JF. Developmental regulation of connexin 43 expression in fetal mouse testicular cells. THE ANATOMICAL RECORD 2001; 264:237-46. [PMID: 11596006 DOI: 10.1002/ar.1164] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple connexins have been identified in testicular cells. Several lines of evidences indicate that, among them, connexin 43 (Cx43) may be unique for control of gonad development and spermatogenesis. To date, however, it is not known whether Cx43 is expressed in the fetal testis and what possible types of cellular interactions mediated by this connexin are critical to male fertility. In the present work, expression of Cx43 was investigated at various developmental ages in cryosections from mouse testis by using specific antibodies against Cx43. In serial or double-labeled sections, Cx43 localization was compared with immunocytochemical distribution of steroidogenic enzyme, 3beta-hydroxysteroid dehydrogenase (3betaHSD), Mullerian inhibitory hormone (MIH), and germinal nuclear cell antigen (GCNA1), which are specific markers, respectively, of interstitial Leydig, Sertoli, and germinal cells. Sections were analyzed by fluorescence microscopy. We found that Cx43 immunofluorescence (IF) was uniformly distributed in the undifferentiated gonad at 11.5 days post coitus (dpc) and in cells of the mesonephric tubules. In the undifferentiated gonad, Cx43 was localized between primordial germ cells and somatic cells. At 12.5 dpc, when the gonad has undergone sexual differentiation, in the interstitium Cx43 was localized in Leydig cells and in the seminiferous cord it was localized between adjacent Sertoli cells. In Leydig and Sertoli cells, Cx43 labeling increased at 14.5, 16.5, and 18.5 dpc. From day 12.5 up to 18.5 dpc, Cx43 was also localized in cell borders between germinal and Sertoli cells. In conclusion, this study demonstrates that from the earliest stages of gonadal development, Cx43 is expressed in the principal cell types that participate in the control of male fertility. It also shows that Cx43 expression in Leydig and Sertoli cells increase during fetal life. Finally, it provides evidence that, throughout embryonic life, Cx43 forms gap junctions between Sertoli and germinal cells.
Collapse
Affiliation(s)
- E M Pérez-Armendariz
- Departamento de Biología Celular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D. F., 04510.
| | | | | | | | | | | |
Collapse
|
38
|
Kaczarek E, Zapf S, Bouterfa H, Tonn JC, Westphal M, Giese A. Dissecting glioma invasion: interrelation of adhesion, migration and intercellular contacts determine the invasive phenotype. Int J Dev Neurosci 1999; 17:625-41. [PMID: 10571423 DOI: 10.1016/s0736-5748(99)00047-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The invasive cellular behavior of malignant gliomas is determined by receptor mediated cell-substratum contacts and cell-cell interaction as well as cellular locomotion. This study attempts to break down the complex phenomena of the invasive process into their components of attachment to neighboring cells, aggregate formation, adhesion to matrix substratum, migration and invasion into three-dimensional cellular aggregates separately analyzed in different in vitro assay systems. Using a panel of 13 glioma cell lines, adhesion to non-specifically or merosin coated surfaces was correlated to monolayer cell migration and dissemination of tumor cells from aggregates plated on these substrates. The formation kinetics of aggregates were determined and compared to the ability of these cells to rapidly attach and form mechanically stable cell-cell contacts. The motility rates in the different assay systems as well as cell-cell attachment was correlated to invasion of re-aggregated tumor cells into fetal rat brain. A tight positive correlation was found for substrate adhesion and monolayer migration. In contrast, cell-substratum contacts had little influence on dissemination of cells out of three-dimensional aggregates and no association between monolayer migration and migration of cells out of aggregates was detected. The ability of glioma cells to rapidly form aggregates was associated with enhanced migration out of aggregates. The capacity to invade fetal rat brain aggregates was correlated with the capacity to form stable intercellular adhesion as measured in a cell-cell adhesion assay. Invasion in this system was not found to be associated with migration in monolayer or with migration out of tumor aggregates. This study highlights that current in vitro assays for invasion only represent isolated aspects of the multi-cascade process which is involved in tumor cell invasion.
Collapse
Affiliation(s)
- E Kaczarek
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|