1
|
Kayyal H, Cruciani F, Chandran SK, Edry E, Schif-Zuck S, Koren T, Yiannakas A, Rolls A, Ariel A, Rosenblum K. Retrieval of conditioned immune response in male mice is mediated by an anterior-posterior insula circuit. Nat Neurosci 2025; 28:589-601. [PMID: 39870921 DOI: 10.1038/s41593-024-01864-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/05/2024] [Indexed: 01/29/2025]
Abstract
To protect the body from infections, the brain has evolved the ability to coordinate behavioral and immunological responses. The conditioned immune response (CIR) is a form of Pavlovian conditioning wherein a sensory (for example, taste) stimulus, when paired with an immunomodulatory agent, evokes aversive behavior and an anticipatory immune response after re-experiencing the taste. Although taste and its valence are represented in the anterior insular cortex and immune response in the posterior insula and although the insula is pivotal for CIRs, the precise circuitry underlying CIRs remains unknown. Here, we demonstrated that a bidirectional circuit connecting the anterior and posterior (aIC-pIC) insula mediates the CIR in male mice. Retrieving the behavioral dimension of the association requires activity of aIC-to-pIC neurons, whereas modulating the anticipatory immunological dimension requires bidirectional projections. These results illuminate a mechanism by which experience shapes interactions between sensory internal representations and the immune system. Moreover, this newly described intrainsular circuit contributes to the preservation of brain-dependent immune homeostasis.
Collapse
Affiliation(s)
- Haneen Kayyal
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
| | - Federica Cruciani
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
| | | | - Efrat Edry
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel
| | - Sagie Schif-Zuck
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Departments of Human Biology, University of Haifa, Haifa, Israel
| | - Tamar Koren
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adonis Yiannakas
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
- European University of Cyprus Medical School, Frankfurt am Main, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Amiram Ariel
- Department of Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
- Departments of Human Biology, University of Haifa, Haifa, Israel
| | - Kobi Rosenblum
- Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.
- Center for Gene Manipulation in the Brain, University of Haifa, Haifa, Israel.
| |
Collapse
|
2
|
Rueckels M, Picard-Mareau M. Differential gene expression during recall of behaviorally conditioned immune enhancement in rats: a pilot study. F1000Res 2025; 11:1405. [PMID: 39834660 PMCID: PMC11745302 DOI: 10.12688/f1000research.123975.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
Background Behaviorally conditioned immune functions are suggested to be regulated by bidirectional interactions between CNS and peripheral immune system via the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic nervous system (SNS), and the parasympathetic nervous system (PNS). Since the current knowledge about biochemical pathways triggering conditioned immune enhancement is limited, the aim of this pilot study was gaining more insights into that. Methods Rats were conditioned with camphor smell and poly I:C injection, mimicking a viral infection. Following stimulus re-exposure, animals were sacrificed at different time points, and neural tissues along the HPA axis was analyzed with a rat genome array together with plasma protein using Luminex analysis. Results In the hypothalamus, we observed a strong upregulation of genes related to Wnt/β-catenin signaling (Otx2, Spp1, Fzd6, Zic1), monoaminergic transporter Slc18a2 and opioid-inhibitory G-protein Gpr88 as well as downregulation of dopaminergic receptors, vasoactive intestinal peptide Vip, and pro-melanin-concentrating hormone Pmch. In the pituitary, we recognized mostly upregulation of steroid synthesis in combination with GABAergic, cholinergic and opioid related neurotransmission, in adrenal glands, altered genes showed a pattern of activated metabolism plus upregulation of adrenoceptors Adrb3 and Adra1a. Data obtained from spleen showed a strong upregulation of immunomodulatory genes, chemo-/cytokines and glutamatergic/cholinergic neurotransmission related genes, as also confirmed by increased chemokine and ACTH levels in plasma. Conclusions Our data indicate that in addition to the classic HPA axis, there could be additional pathways as e.g. the cholinergic anti-inflammatory pathway (CAIP), connecting brain and immune system, modulating and finetuning communication between brain and immune system.
Collapse
Affiliation(s)
- Markus Rueckels
- Lisa-Kolk-Stiftung, Berg. Neukirchen, North Rhine Westphalia, 51381, Germany
| | | |
Collapse
|
3
|
Hadamitzky M, Lückemann L, Pacheco-López G, Schedlowski M. Pavlovian Conditioning of Immunological and Neuroendocrine Functions. Physiol Rev 2020; 100:357-405. [DOI: 10.1152/physrev.00033.2018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The phenomenon of behaviorally conditioned immunological and neuroendocrine functions has been investigated for the past 100 yr. The observation that associative learning processes can modify peripheral immune functions was first reported and investigated by Ivan Petrovic Pavlov and his co-workers. Their work later fell into oblivion, also because so little was known about the immune system’s function and even less about the underlying mechanisms of how learning, a central nervous system activity, could affect peripheral immune responses. With the employment of a taste-avoidance paradigm in rats, this phenomenon was rediscovered 45 yr ago as one of the most fascinating examples of the reciprocal functional interaction between behavior, the brain, and peripheral immune functions, and it established psychoneuroimmunology as a new research field. Relying on growing knowledge about efferent and afferent communication pathways between the brain, neuroendocrine system, primary and secondary immune organs, and immunocompetent cells, experimental animal studies demonstrate that cellular and humoral immune and neuroendocrine functions can be modulated via associative learning protocols. These (from the classical perspective) learned immune responses are clinically relevant, since they affect the development and progression of immune-related diseases and, more importantly, are also inducible in humans. The increased knowledge about the neuropsychological machinery steering learning and memory processes together with recent insight into the mechanisms mediating placebo responses provide fascinating perspectives to exploit these learned immune and neuroendocrine responses as supportive therapies, the aim being to reduce the amount of medication required, diminishing unwanted drug side effects while maximizing the therapeutic effect for the patient’s benefit.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gustavo Pacheco-López
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany; Health Sciences Department, Metropolitan Autonomous University (UAM), Campus Lerma, Mexico; and Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Wendt L, Albring A, Schedlowski M. Learned placebo responses in neuroendocrine and immune functions. Handb Exp Pharmacol 2014; 225:159-181. [PMID: 25304532 DOI: 10.1007/978-3-662-44519-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The phenomenon of learned placebo responses in neuroendocrine and immune functions is a fascinating example of communication between the brain and both the endocrine and peripheral immune systems. In this chapter, we will give a short overview of afferent and efferent communication pathways, as well as the central mechanisms, which steer the behavioral conditioned immune response. Subsequently, we will focus on data that provides evidence for learned immune responses in experimental animals and learned neuroendocrine and immune placebo responses in humans. Finally, we will take a critical look at these learning protocols, to determine whether or not they can be considered a viable additional treatment option to pharmacological regimens in clinical routine. This is fundamental, since there are still a number of issues, which need to be solved, such as the potential reproducibility, predictability, and extinction of the learned neuroendocrine and immune responses. Together, these findings not only provide an excellent basis to increase our understanding of human biology but may also have far reaching clinical implications. They pave the way for the ultimate aim of employing associative learning protocols as supportive treatment strategies in pharmacological regimens. As a result, medication levels may be reduced, as well as their unwanted side effects, providing a maximized therapeutic outcome to the benefit of the patient.
Collapse
Affiliation(s)
- Laura Wendt
- Institute of Medical Psychology and Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, D-45122, Essen, Germany
| | | | | |
Collapse
|
5
|
Shen LK, Huang HM, Yang PC, Huang YK, Wang PDY, Leung TK, Chen CJ, Chang WJ. A static magnetic field attenuates lipopolysaccharide-induced neuro-inflammatory response via IL-6-mediated pathway. Electromagn Biol Med 2013; 33:132-8. [PMID: 23781996 DOI: 10.3109/15368378.2013.794734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An effective method for controlling brain damage and neurodegeneration caused by inflammation remains elusive. Down-expression of the lipopolysaccharide (LPS)-induced inflammatory cytokines resulting in endotoxin tolerance is reported as an alternative anti-infection treatment. Nonetheless, because the dosage and action site are hard to control, endotoxin tolerance caused by low-dose LPS injection in brain tissue may induce side effects. The aim of this study was to test the hypothesis that static magnetic fields (SMF) stimulate endotoxin tolerance in brain tissue. In this study, survival rate and pathological changes in brain tissues of LPS-challenged mice were examined with and without SMF treatment. In addition, the effects of SMF exposure on growth rate and cytokine expression of LPS-challenged BV-2 microglia cells were monitored. Our results showed that SMF pre-exposure had positive effects on the survival rate and histological outcomes of LPS-treated mice. Furthermore, SMF exposure significantly decreased IL-6 expression in BV-2 cells (p < 0.05) by a phenomenon similar to endotoxin tolerance. We suggest that SMF has potential as an alternative simulation source for controlling LPS-induced excess neuro-inflammatory response.
Collapse
Affiliation(s)
- Li-Kuo Shen
- Department of Radiology, Shuang Ho Hospital, Taipei Medical University , New Taipei City , Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Grigoleit JS, Kullmann JS, Winkelhaus A, Engler H, Wegner A, Hammes F, Oberbeck R, Schedlowski M. Single-trial conditioning in a human taste-endotoxin paradigm induces conditioned odor aversion but not cytokine responses. Brain Behav Immun 2012; 26:234-8. [PMID: 21925260 DOI: 10.1016/j.bbi.2011.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/31/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022] Open
Abstract
Immunological responses to bacterial endotoxin can be behaviorally conditioned in rodents. However, it is unclear whether an acute systemic inflammatory response can be behaviorally conditioned in humans. Thus, in a double-blind placebo-controlled study, 20 healthy, male subjects received either a single injection of lipopolysaccharide (LPS) or saline together with a novel tasting beverage (conditioned stimulus, CS). Five days later, all subjects received a saline injection and were re-exposed to the CS. Blood was drawn prior to as well as 0.5, 1.5, 3, 4, 6, and 24 h after LPS administration or CS re-exposure. Endotoxin administration led to transient increases in plasma concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α and to a significant rise in body temperature. Sole presentation of the CS during evocation did induce neither alterations in body temperature nor changes in plasma cytokine levels. However, subjects in the experimental group rated the smell of the CS significantly more aversive compared to the control group. Employing endotoxin as a US in a single trial taste-immune conditioning paradigm in humans shows a behaviorally conditioned smell aversion but no learned alterations in cytokine levels.
Collapse
Affiliation(s)
- Jan-Sebastian Grigoleit
- Institute of Medical Psychology & Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, D-45122 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Backward conditioning of tumor necrosis factor-α in a single trial: Changing intervals between exposures to lipopolysaccharide and saccharin taste. Physiol Behav 2011; 102:239-44. [DOI: 10.1016/j.physbeh.2010.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 10/18/2010] [Accepted: 11/08/2010] [Indexed: 11/18/2022]
|
8
|
Doenlen R, Krügel U, Wirth T, Riether C, Engler A, Prager G, Engler H, Schedlowski M, Pacheco-López G. Electrical activity in rat cortico-limbic structures after single or repeated administration of lipopolysaccharide or staphylococcal enterotoxin B. Proc Biol Sci 2010; 278:1864-72. [PMID: 21106598 DOI: 10.1098/rspb.2010.2040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Immune-to-brain communication is essential for an individual to aptly respond to challenging internal and external environments. However, the specificity by which the central nervous system detects or 'senses' peripheral immune challenges is still poorly understood. In contrast to post-mortem c-Fos mapping, we recorded neural activity in vivo in two specific cortico-limbic regions relevant for processing visceral inputs and associating it with other sensory signalling, the amygdala (Am) and the insular cortex (IC). Adult rats were implanted with deep-brain monopolar electrodes and electrical activity was monitored unilaterally before and after administration of two different immunogens, the T-cell-independent antigen lipopolysaccharide (LPS) or the T-cell-dependent antigen staphylococcal enterotoxin B (SEB). In addition, the neural activity of the same individuals was analysed after single as well as repeated antigen administration, the latter inducing attenuation of the immune response. Body temperature and circulating cytokine levels confirmed the biological activity of the antigens and the success of immunization and desensitization protocols. More importantly, the present data demonstrate that neural activity of the Am and IC is not only specific for the type of immune challenge (LPS versus SEB) but seems to be also sensitive to the different immune state (naive versus desensitization). This indicates that the forebrain expresses specific patterns of electrical activity related to the type of peripheral immune activation as well as to the intensity of the stimulation, substantiating associative learning paradigms employing antigens as unconditioned stimuli. Overall, our data support the view of an intensive immune-to-brain communication, which may have evolved to achieve the complex energetic balance necessary for mounting effective immunity and improved individual adaptability by cognitive functions.
Collapse
Affiliation(s)
- Raphael Doenlen
- Swiss Federal Institute of Technology (ETH), Zurich 8092, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schedlowski M, Pacheco-López G. The learned immune response: Pavlov and beyond. Brain Behav Immun 2010; 24:176-85. [PMID: 19698779 DOI: 10.1016/j.bbi.2009.08.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/10/2009] [Accepted: 08/14/2009] [Indexed: 01/26/2023] Open
Abstract
The ability to associate physiological changes with a specific flavor was most likely acquired during evolution as an adaptive strategy aimed at protecting the organism while preparing it for danger. The behaviorally conditioned or learned immune response is an exquisite example of the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. How is it possible that specific immuno-modulating properties of a drug or substance (unconditioned stimulus) can be re-enlisted just by the mere re-exposure to a particular taste, odor or environment (conditioned stimulus)? To answer this key question, we review the neurobiological mechanism mediating this type of associative learning, as well as the pathways and mechanisms employed by the brain to harness the immune system during the execution of the conditioned immune response. Finally, we focus on the potential therapeutic relevance of such learned immune responses, and their re-conceptualization within the framework of "learned placebo effects".
Collapse
Affiliation(s)
- Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University of Duisburg-Essen, Medical Faculty, 45122 Essen, Germany.
| | | |
Collapse
|
10
|
Pacheco-Lopez G, Niemi MB, Engler H, Engler A, Riether C, Doenlen R, Espinosa E, Oberbeck R, Schedlowski M. Weakened [corrected] taste-LPS association during endotoxin tolerance. Physiol Behav 2007; 93:261-6. [PMID: 17920645 DOI: 10.1016/j.physbeh.2007.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 07/25/2007] [Accepted: 08/29/2007] [Indexed: 11/27/2022]
Abstract
In naive individuals, the administration of bacterial lipopolysaccharide (LPS) provokes a rapid systemic increase in pro-inflammatory cytokines such as tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6, inducing an acute phase response including sickness behavior. Strong associative learning occurs when relevant gustatory/olfactory stimuli precede the activation of the immune system, affecting long-term individual food selection and nutritional strategies. Repeated LPS administration results in the development of an endotoxin tolerance status, characterized by a drastic reduction in the LPS-induced cytokine response. Here we investigated how the postprandial categorization of a relevant taste (0.2% saccharin) changed after administration of a high dose of LPS (0.5 mg/kg i.p.) in LPS-tolerant animals. Determination of the consummatory fluid intake revealed that, in contrast to LPS-naive rats, taste-LPS association did not occur during endotoxin tolerance. Ninety minutes after the single association trial, the plasma responses of TNF-alpha, IL-1beta and IL-6 were completely blunted in LPS-tolerant animals, which also resulted in low LPS-adipsogenic and LPS-anorexic effects. These findings indicate that an identical immune challenge can result in completely different neuro-behavioral consequences depending on the immune history of the individual, thus revealing part of the complex interconnection between the immune and neuro-endocrine systems in regulating food selection and consumption during the infectious process.
Collapse
Affiliation(s)
- G Pacheco-Lopez
- Chair of Psychology and Behavioral Immunobiology, Institute for Behavioral Sciences, ETH Zurich, 8092 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pacheco-López G, Niemi MB, Kou W, Baum S, Hoffman M, Altenburger P, del Rey A, Besedovsky HO, Schedlowski M. Central blockade of IL-1 does not impair taste-LPS associative learning. Neuroimmunomodulation 2007; 14:150-6. [PMID: 18073507 DOI: 10.1159/000110639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
After saccharin intake is associated with the consequences of peripheral lipopolysaccharide (LPS) administration, rats develop a strong conditioned avoidance behavior against this gustatory stimulus. To investigate the role of central interleukin-1 (IL-1) as a key signal during taste-LPS engram formation, rats were chronically infused with IL-1 receptor antagonist into the lateral ventricle of the brain before, during and after a single association trial. The results indicate that a stable taste-LPS engram can be formed even under the chronic blockade of central IL-1 signaling during engram formation and consolidation. More importantly, our data show that animals which did not experience a fever response during association phase (due to the LPS encounter) were unable to elicit hyperthermia as part of the conditioned response. These data indicate that pairing a relevant taste stimulus with an immune challenge, such as LPS, might result in the formation of multiple engrams, specifically codifying independent information.
Collapse
Affiliation(s)
- Gustavo Pacheco-López
- Chair of Psychology and Behavioral Immunobiology, Institute for Behavioral Sciences, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Goebel MU, Hübell D, Kou W, Janssen OE, Katsarava Z, Limmroth V, Schedlowski M. Behavioral conditioning with interferon beta-1a in humans. Physiol Behav 2005; 84:807-14. [PMID: 15885259 DOI: 10.1016/j.physbeh.2005.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2004] [Revised: 01/22/2005] [Accepted: 03/30/2005] [Indexed: 10/25/2022]
Abstract
Behavioral conditioning is one of the most impressive demonstrations of brain-immune system interaction. Numerous animal studies have demonstrated behavioral conditioned effects on immune functions, however, human studies are rare. We investigated whether it is possible to behaviorally condition the acute response to interferon (IFN)beta-1a. In a double-blind placebo-controlled study, 30 healthy subjects received a single injection of IFN(beta)-1a (6MIU of REBIF, Serono International) (unconditioned stimulus, UCS) together with a novel drink (conditioned stimulus, CS). Blood was drawn at baseline, 4, 8, and 24 h after drug administration. Within the first 8 h peripheral granulocytes significantly increased, while monocytes, lymphocytes, T-, B- and natural killer (NK) cell numbers were significantly reduced. In parallel, body temperature, heart rate, norepinephrine and interleukin (IL)-6 plasma levels were heightened within 8 h after injection. 8 days later, all previously IFN(beta)-treated subjects received a subcutaneous placebo (NaCl) injection, but only 15 subjects were re-exposed to the CS (experimental group), while a control group (N=15) drank water and an additional group of subjects (n=8) remained untreated (untreated group). Blood sampling was performed at baseline and at 4, 8, and 24 h. Re-exposition to the CS did not elicit conditioned responses in the experimental group. Moreover, no differences were observed between groups. These data provide negative findings regarding behavioral conditioning of cytokine effects in humans employing a one-trial learning paradigm.
Collapse
Affiliation(s)
- Marion U Goebel
- Department of Medical Psychology, Medical Faculty, University of Duisburg-Essen, Hufelandstr. 55, 45122 Essen, Germany
| | | | | | | | | | | | | |
Collapse
|