1
|
Pombal MA, Megías M, Lozano D, López JM. Neuromeric Distribution of Nicotinamide Adenine Dinucleotide Phosphate-Diaphorase Activity in the Adult Lamprey Brain. Front Neuroanat 2022; 16:826087. [PMID: 35197830 PMCID: PMC8859838 DOI: 10.3389/fnana.2022.826087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
This study reports for the first time the distribution and morphological characterization of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d; a reliable marker of nitric oxide synthase activity) positive elements in the central nervous system of the adult river lamprey (Lampetra fluviatilis) on the framework of the neuromeric model and compares their cytoarchitectonic organization with that of gnathostomes. Both NADPH-d exhibiting cells and fibers were observed in all major divisions of the lamprey brain as well as in the spinal cord. In the secondary prosencephalon, NADPH-d positive cells were observed in the mitral cell layer of the olfactory bulb, evaginated pallium, amygdala, dorsal striatum, septum, lateral preoptic nucleus, caudal paraventricular area, posterior entopeduncular nucleus, nucleus of the stria medullaris, hypothalamic periventricular organ and mamillary region sensu lato. In the lamprey diencephalon, NADPH-d labeled cells were observed in several nuclei of the prethalamus, epithalamus, pretectum, and the basal plate. Especially remarkable was the staining observed in the right habenula and several pretectal nuclei. NADPH-d positive cells were also observed in the following mesencephalic areas: optic tectum (two populations), torus semicircularis, nucleus M5 of Schöber, and a ventral tegmental periventricular nucleus. Five different cell populations were observed in the isthmic region, whereas the large sensory dorsal cells, some cells located in the interpeduncular nucleus, the motor nuclei of most cranial nerves, the solitary tract nucleus, some cells of the reticular nuclei, and small cerebrospinal fluid-contacting (CSF-c) cells were the most evident stained cells of the rhombencephalon proper. Finally, several NADPH-d positive cells were observed in the rostral part of the spinal cord, including the large sensory dorsal cells, numerous CSF-c cells, and some dorsal and lateral interneurons. NADPH-d positive fibers were observed in the olfactory pathways (primary olfactory fibers and stria medullaris), the fasciculus retroflexus, and the dorsal column tract. Our results on the distribution of NADPH-d positive elements in the brain of the adult lamprey L. fluviatilis are significantly different from those previously reported in larval lampreys and demonstrated that these animals possess a complex nitrergic system readily comparable to those of other vertebrates, although important specific differences also exist.
Collapse
Affiliation(s)
- Manuel A. Pombal
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
- *Correspondence: Manuel A. Pombal,
| | - Manuel Megías
- Neurolam Group, Facultade de Bioloxía-IBIV, Departamento de Bioloxía Funcional e Ciencias da Saúde, Universidade de Vigo, Vigo, Spain
| | - Daniel Lozano
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| | - Jesús M. López
- Department of Cellular Biology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
López JM, Lozano D, Morona R, González A. Organization of the nitrergic neuronal system in the primitive bony fishes Polypterus senegalus and Erpetoichthys calabaricus (Actinopterygii: Cladistia). J Comp Neurol 2015; 524:1770-804. [PMID: 26517971 DOI: 10.1002/cne.23922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/22/2023]
Abstract
Cladistians are a group of basal actinopterygian fishes that constitute a good model for studying primitive brain features, most likely present in the ancestral bony fishes. The analysis of the nitrergic neurons (with the enzyme nitric oxide synthase; NOS) has helped in understanding important aspects of brain organization in all vertebrates studied. We investigated the nitrergic system of two cladistian species by means of specific antibodies against NOS and NADPH-diaphorase (NADPH-d) histochemistry, which, with the exception of the primary olfactory and terminal nerve fibers, labeled only for NADPH-d, yielded identical results. Double immunohistochemistry was conducted for simultaneous detection of NOS with tyrosine hydroxylase, choline acetyltransferase, calbindin, calretinin, and serotonin, to establish accurately the localization of the nitrergic neurons and fibers and to assess possible interactions between these neuroactive substances. The pattern of distribution in both species showed only subtle differences in the density of labeled cells. Distinct groups of NOS-immunoreactive cells were observed in pallial and subpallial areas, paraventricular region, tuberal and retromammillary hypothalamic areas, posterior tubercle, prethalamic and thalamic areas, optic tectum, torus semicircularis, mesencephalic tegmentum, interpeduncular nucleus, superior and middle reticular nuclei, magnocellular vestibular nucleus, solitary tract nucleus, nucleus medianus magnocellularis, the spinal cord and amacrine cells in the retina. Large neurons in cranial nerve sensory ganglia were also labeled. The comparison of these results with those from other vertebrates, using a neuromeric analysis, reveals a conserved pattern of organization of the nitrergic system from this primitive fish group to amniotes, including mammals.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, 28040, Madrid, Spain
| |
Collapse
|
3
|
Huynh P, Boyd SK. Nitric Oxide Synthase and NADPH Diaphorase Distribution in the Bullfrog (Rana catesbeiana) CNS: Pathways and Functional Implications. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:145-63. [PMID: 17595535 DOI: 10.1159/000104306] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/07/2006] [Indexed: 11/19/2022]
Abstract
The gas nitric oxide (NO) is emerging as an important regulator of normal physiology and pathophysiology in the central nervous system (CNS). The distribution of cells releasing NO is poorly understood in non-mammalian vertebrates. Nitric oxide synthase immunocytochemistry (NOS ICC) was thus used to identify neuronal cells that contain the enzyme required for NO production in the amphibian brain and spinal cord. NADPH-diaphorase (NADPHd) histochemistry was also used because the presence of NADPHd serves as a reliable indicator of nitrergic cells. Both techniques revealed stained cells in all major structures and pathways in the bullfrog brain. Staining was identified in the olfactory glomeruli, pallium and subpallium of the telencephalon; epithalamus, thalamus, preoptic area, and hypothalamus of the diencephalon; pretectal area, optic tectum, torus semicircularis, and tegmentum of the mesencephalon; all layers of the cerebellum; reticular formation; nucleus of the solitary tract, octaval nuclei, and dorsal column nuclei of the medulla; and dorsal and motor fields of the spinal cord. In general, NADPHd histochemistry provided better staining quality, especially in subpallial regions, although NOS ICC tended to detect more cells in the olfactory bulb, pallium, ventromedial thalamus, and cerebellar Purkinje cell layer. NOS ICC was also more sensitive for motor neurons and consistently labeled them in the vagus nucleus and along the length of the rostral spinal cord. Thus, nitrergic cells were ubiquitously distributed throughout the bullfrog brain and likely serve an essential regulatory function.
Collapse
Affiliation(s)
- Phuong Huynh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
4
|
Keilhoff G, Seidel B, Reiser M, Stanarius A, Huang PL, Bogerts B, Wolf G, Bernstein HG. Lack of neuronal NOS has consequences for the expression of POMC and POMC-derived peptides in the mouse pituitary. Acta Histochem 2001; 103:397-412. [PMID: 11700945 DOI: 10.1078/0065-1281-00611] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The relevance of NO in neuroendocrine signalling has been investigated by analysis of cellular expression of pro-opiomelanocortin (POMC) and the POMC-derived peptides beta-endorphin, alpha-melanocyte stimulating hormone and adrenocorticotropin. Expression patterns were studied in the pituitary gland of 150-day old wild-type and neuronal-NOS (nNOS) knock-out mice by using immunohistochemistry, in situ hybridization and Northern blot analysis. Remaining NO-generating capacities in the knock-out mice were demonstrated by immunohistochemical localization of inducible, endothelial and neuronal NOS isoforms. Quantitative analysis revealed that cellular expression of POMC mRNA was drastically reduced in the pituitary of knock-out mice in comparison to controls. In situ hybridization studies demonstrated that this reduction was most pronounced in the intermediate lobe, while the anterior lobe was much less affected. Immunostaining for the proteolytic fragments of POMC was significantly reduced in the intermediate lobe cells of knock-out mice. A moderate reduction of immunostaining for these peptides was also observed in adenopituitary cells of nNOS knock-out mice. Our data demonstrate that the lack of nNOS substantially affects cellular levels of pituitary opioid peptides, which may have consequences for the response of these animals to stress and pain.
Collapse
Affiliation(s)
- G Keilhoff
- Institute of Medical Neurobiology, University of Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kramer BM, Kolk SM, Berghs CA, Tuinhof R, Ubink R, Jenks BG, Roubos EW. Dynamics and plasticity of peptidergic control centres in the retino-brain-pituitary system of Xenopus laevis. Microsc Res Tech 2001; 54:188-99. [PMID: 11458401 DOI: 10.1002/jemt.1132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review deals particularly with the recent literature on the structural and functional aspects of the retino-brain-pituitary system that controls the physiological process of background adaptation in the aquatic toad Xenopus laevis. Taking together the large amount of multidisciplinary data, a consistent picture emerges of a highly plastic system that efficiently responds to changes in the environmental light condition by releasing POMC-derived peptides, such as the peptide alpha-melanophore-stimulating hormone (alpha-MSH), into the circulation. This plasticity is exhibited by both the central nervous system and the pituitary pars intermedia, at the level of molecules, subcellular structures, synapses, and cells. Signal transduction in the pars intermedia of the pituitary gland of Xenopus laevis appears to be a complex event, involving various environmental factors (e.g., light and temperature) that act via distinct brain centres and neuronal messengers converging on the melanotrope cells. In the melanotropes, these messages are translated by specific receptors and second messenger systems, in particular via Ca(2+) oscillations, controlling main secretory events such as gene transcription, POMC-precursor translation and processing, posttranslational peptide modifications, and release of a bouquet of POMC-derived peptides. In conclusion, the Xenopus hypothalamo-hypophyseal system involved in background adaptation reveals how neuronal plasticity at the molecular, cellular and organismal levels, enable an organism to respond adequately to the continuously changing environmental factors demanding physiological adaptation.
Collapse
Affiliation(s)
- B M Kramer
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences, Institute for Cellular Signalling, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
6
|
Castel H, Jégou S, Tonon MC, Vaudry H. Regulation of the GABA(A) receptor by nitric oxide in frog pituitary melanotrophs. Endocrinology 2000; 141:3451-60. [PMID: 10965918 DOI: 10.1210/endo.141.9.7686] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) is implicated in the regulation of various endocrine functions, but the effect of NO on GABA(A) receptor transmission has never been reported in endocrine cells. In the present study, we have investigated the effects of various agents acting on the NO transduction pathway on GABA(A) receptor function in frog pituitary melanotrophs. Histochemical studies using the NADPH-diaphorase reaction and immunohistochemical labeling with antibodies against neuronal NO synthase (nNOS) revealed that nNOS is expressed in the intermediate lobe of the pituitary and in cultured melanotrophs. Whole-cell patch-clamp recordings showed that the specific substrate of NOS L-arginine (L-Arg, 10(-4) M) or the NO donor sodium nitroprusside (10(-5) M) provoked a long-lasting inhibition of the current evoked by GABA (5 x 10(-6) M). The NOS inhibitor L-nitroarginine (10(-5) M) produced a biphasic effect, i.e. a transient decrease followed by a delayed increase of the GABA-evoked current amplitude. Similarly, the specific nNOS inhibitor 7-nitroindazole and the specific inducible NOS (iNOS) inhibitor aminoguanidine (10(-5) M each) provoked a transient depression of the current followed by a sustained potentiation. Formation of cGMP in neurointermediate lobes was enhanced by L-Arg (10(-4) M) and by the calcium-releasing agent caffeine (10(-4) M), and inhibited by the calmodulin (CaM)/Ca2+ complex blocker W7 (10(-5) M). The GABA-evoked current was potentiated by the guanylyl cyclase inhibitor ODQ (10(-8)-10(-7) M) and inhibited by the protein kinase G (PKG) activator 8pCPT-cGMP (3 x 10(-7)-3 x 10(-5) M). The present data indicate that NO, produced by a CaM/Ca2+-dependent NOS in frog melanotrophs, exerts an autocrine inhibitory effect on the GABA-evoked current. The action of NO on the GABA(A) receptor function is mediated through activation of the cGMP/PKG pathway.
Collapse
Affiliation(s)
- H Castel
- Institut National de la Santé et de la Recherche Médicale U-413, Unité Affiliée au Centre National de la Recherche Scientifique, University of Rouen, Mont-Saint-Aignan, France
| | | | | | | |
Collapse
|
7
|
Allaerts W, Koopman WJ, Verlaan BP, Buzzi M, Steerenberg PA. Endogenous production of nitric oxide and effects of nitric oxide and superoxide on melanotrope functioning in the pituitary pars intermedia of Xenopus laevis. Nitric Oxide 2000; 4:15-28. [PMID: 10733869 DOI: 10.1006/niox.1999.0266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have focused on the immunohistochemical detection of a nitric oxide (NO)-cyclic 3',5'-monophosphate (cGMP) pathway in the brain and pituitary of the aquatic toad Xenopus laevis. We here investigate the endogenous production and possible involvement of NO signaling in the regulation of melanotrope cell activity in the pituitary pars intermedia of this amphibian. Using immunohistochemical staining of cultured cells with a polyclonal antiserum against inducible NO synthase (iNOS), immunoreactivity was observed both in melanotropes and in stellate-shaped cells. Part of these stellate-shaped cells is characterized as folliculo-stellate cells by their capacity of beta-Ala-Lys-N(epsilon)-AMCA uptake. Using chemiluminescence detection we demonstrate the presence of NO and reaction products like nitrite (NO(-)(2)) or peroxynitrite (ONOO(-)) in the incubation medium of cultured melanotropes. Bacterial lipopolysaccharide (LPS) stimulates the generation of NO and reaction products, the effect of which was blocked by S-methyl-l-thiocitrulline hydrochloride, a potent general NOS inhibitor. With [(3)H]lysine incorporation and a superfusion technique, it is shown that peptide release from melanotropes is stimulated by administration of superoxide dismutase (SOD), which was added to the superfusion medium to prevent scavenging of NO by superoxide anions. Pretreating the cells with the general NOS inhibitor l-nitroarginine methyl ester for 48 h attenuated the SOD-induced stimulation, but did not affect the stimulation by sodium nitroprusside (SNP) or 3-morpholinylsydnoneimine chloride (SIN-1), whereas hemoglobin blocked the combined effect of SOD plus NO donors. The soluble guanylate cyclase inhibitor 1H-[1,2, 4]oxadiazolo[4,3a]-quinoxaline-1-one did not inhibit but even significantly potentiated the effect of NO donors on peptide release without affecting the SOD-induced stimulation of peptide release. In addition to the previously described neuronal NOS (nNOS) immunoreactivity in nerve fibers in the pars intermedia of Xenopus, the present data reveal iNOS and nNOS as potential sources of endogenous NO production in cultured cells of the pars intermedia. Our study shows that also in nonmammalian vertebrates endogenous NO production may be physiologically relevant under conditions where protection against oxidative damage is needed. The endocrine cells of the pars intermedia themselves, as well as the folliculo-stellate cells, under such conditions may dispose of a protective mechanism against oxidative stress. The sensitivity of the endogenous NO production to LPS suggests that NO may also play a role during systemic inflammation.
Collapse
Affiliation(s)
- W Allaerts
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences, University of Nijmegen, Toernooiveld 1, Nijmegen, 6525 ED, The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Chapter X Nitric oxide-cGMP signaling in the rat brain. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80064-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Allaerts W, De Vente J, Markerink-Van Ittersum M, Tuinhof R, Roubos EW. Topographical relationship between neuronal nitric oxide synthase immunoreactivity and cyclic 3',5'-guanosine monophosphate accumulation in the brain of the adult Xenopus laevis. J Chem Neuroanat 1998; 15:41-56. [PMID: 9710148 DOI: 10.1016/s0891-0618(98)00031-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous immunohistochemical staining procedures of the brain and pituitary in Xenopus laevis, using an antiserum against neuronal nitric oxide (NO) synthase (nNOS) and nicotinamide adenine dinucleotide phosphate-diaphorase histochemistry, have revealed NOS activity in neurons and fibers in a number of brain areas, as well as in fibers in the pituitary. In the present study we have localized the target structures of the NOergic system in the Xenopus brain by visualizing the sites of NO-sensitive cyclic 3',5'-guanosine monophosphate (cGMP) accumulation, according to a method for cGMP visualization in rat brain slices. Brain slices of unfixed Xenopus are incubated in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine and the NO donor sodium nitroprusside, followed by fixation and cryosectioning. Sections were then processed for immunohistochemistry using rabbit and sheep antisera against cGMP and a sheep antiserum against nNOS. Visualization of single and double labeling of cGMP immunoreactive and/or nNOS immunoreactive structures was performed with combined CY3/fluorescein isothiocyanate fluorescence microscopy. Following this procedure, we provide immunohistochemical evidence for the distribution of cGMP-accumulating neurons in the brain of adult Xenopus. In most brain areas, the distribution of nNOS and cGMP immunoreactive structures (neuron somata and fibers) is distinct and separate, for instance in the dorsal pallium, the lateral thalamic nuclei, the optic tectum, the locus coeruleus and the reticular formation. However, nNOS and cGMP immunoreactive structures are often found in the vicinity of each other, and in the optic tectum even in adjacent neuron fibers and somata. The present observations are in line with the presence of an NO-dependent soluble guanylate cyclase in distinct brain areas of Xenopus laevis, corroborating similar data in the mammalian brain. Further, our observations may add to the understanding of the anatomical connectivity pattern and functional relevance of the NOergic system in the amphibian brain.
Collapse
Affiliation(s)
- W Allaerts
- Department of Cellular Animal Physiology, Nijmegen Institute for Neurosciences, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|