1
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Ballal S, Naidu KS, Bareja L, Chahar M, Gupta S, Sameer HN, Yaseen A, Athab ZH, Adil M. Exploring preventive and treatment strategies for oral cancer: Modulation of signaling pathways and microbiota by probiotics. Gene 2025; 952:149380. [PMID: 40089085 DOI: 10.1016/j.gene.2025.149380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/11/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
The evidence suggests that the microbiome plays a crucial role in cancer development. The oral cavity has many microorganisms that can influence oral cancer progression. Understanding the mechanisms and signaling pathways of the oral, gum, and teeth microbiome in tumor progression can lead to new treatment strategies. Probiotics, which are friendly microorganisms, have shown potential as anti-cancer agents. These positive characteristics of probiotic strains make them suitable for cancer prevention or treatment. The oral-gut microbiome axis supports health and homeostasis, and imbalances in the oral microbiome can disrupt immune signaling pathways, epithelial barriers, cell cycles, apoptosis, genomic stability, angiogenesis, and metabolic processes. Changes in the oral microbiome in oral cancer may suggest using probiotics-based treatments for their direct or indirect positive roles in cancer development, progression, and metastasis, specifically oral squamous cell carcinoma (OSCC). Here, reported relationships between probiotics, oral microbiota, and oral cancer are summarized.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003 Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Lakshay Bareja
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401 Punjab, India
| | - Mamata Chahar
- Department of Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Sofia Gupta
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Pérez Escriva P, Correia Tavares Bernardino C, Letellier E. De-coding the complex role of microbial metabolites in cancer. Cell Rep 2025; 44:115358. [PMID: 40023841 DOI: 10.1016/j.celrep.2025.115358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/11/2024] [Accepted: 02/06/2025] [Indexed: 03/04/2025] Open
Abstract
The human microbiome, an intricate ecosystem of trillions of microbes residing across various body sites, significantly influences cancer, a leading cause of morbidity and mortality worldwide. Recent studies have illuminated the microbiome's pivotal role in cancer development, either through direct cellular interactions or by secreting bioactive compounds such as metabolites. Microbial metabolites contribute to cancer initiation through mechanisms such as DNA damage, epithelial barrier dysfunction, and chronic inflammation. Furthermore, microbial metabolites exert dual roles on cancer progression and response to therapy by modulating cellular metabolism, gene expression, and signaling pathways. Understanding these complex interactions is vital for devising new therapeutic strategies. This review highlights microbial metabolites as promising targets for cancer prevention and treatment, emphasizing their impact on therapy responses and underscoring the need for further research into their roles in metastasis and therapy resistance.
Collapse
Affiliation(s)
- Pau Pérez Escriva
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Catarina Correia Tavares Bernardino
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
3
|
Scarmelotto A, Delprat V, Michiels C, Lucas S, Heuskin AC. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin Transl Radiat Oncol 2024; 49:100860. [PMID: 39381632 PMCID: PMC11458961 DOI: 10.1016/j.ctro.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
FLASH radiotherapy is attracting increasing interest because it maintains tumor control while inflicting less damage to normal tissues compared to conventional radiotherapy. This sparing effect, the so-called FLASH effect, is achieved when radiation is delivered at ultra-high dose rates (≥40 Gy/s). Although the FLASH effect has already been demonstrated in several preclinical models, a complete mechanistic description explaining why tumors and normal tissues respond differently is still missing. None of the current hypotheses fully explains the experimental evidence. A common point between many of these is the role of oxygen, which is described as a major factor, either through transient hypoxia in the form of dissolved molecules, or reactive oxygen species (ROS). Therefore, this review focuses on both forms of this molecule, retracing old and more recent theories, while proposing new mechanisms that could provide a complete description of the FLASH effect based on preclinical and experimental evidence. In addition, this manuscript describes a set of experiments designed to provide the FLASH community with new tools for exploring the post-irradiation fate of ROS and their potential biological implications.
Collapse
Affiliation(s)
- Andrea Scarmelotto
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Victor Delprat
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute For Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
- Ion Beam Application (IBA), Chemin du Cyclotron, 6, B-1348 Louvain-La-Neuve, Belgium
| | - Anne-Catherine Heuskin
- Laboratory for Analysis by Nuclear Reaction (LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
4
|
Hamamah S, Lobiuc A, Covasa M. Antioxidant Role of Probiotics in Inflammation-Induced Colorectal Cancer. Int J Mol Sci 2024; 25:9026. [PMID: 39201713 PMCID: PMC11354872 DOI: 10.3390/ijms25169026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) continues to be a significant contributor to global morbidity and mortality. Emerging evidence indicates that disturbances in gut microbial composition, the formation of reactive oxygen species (ROS), and the resulting inflammation can lead to DNA damage, driving the pathogenesis and progression of CRC. Notably, bacterial metabolites can either protect against or contribute to oxidative stress by modulating the activity of antioxidant enzymes and influencing signaling pathways that govern ROS-induced inflammation. Additionally, microbiota byproducts, when supplemented through probiotics, can affect tumor microenvironments to enhance treatment efficacy and selectively mediate the ROS-induced destruction of CRC cells. This review aims to discuss the mechanisms by which taxonomical shifts in gut microbiota and related metabolites such as short-chain fatty acids, secondary bile acids, and trimethylamine-N-oxide influence ROS concentrations to safeguard or promote the onset of inflammation-mediated CRC. Additionally, we focus on the role of probiotic species in modulating ROS-mediated signaling pathways that influence both oxidative status and inflammation, such as Nrf2-Keap1, NF-κB, and NLRP3 to mitigate carcinogenesis. Overall, a deeper understanding of the role of gut microbiota on oxidative stress may aid in delaying or preventing the onset of CRC and offer new avenues for adjunct, CRC-specific therapeutic interventions such as cancer immunotherapy.
Collapse
Affiliation(s)
- Sevag Hamamah
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Internal Medicine, Scripps Mercy Hospital, San Diego, CA 92103, USA
| | - Andrei Lobiuc
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| | - Mihai Covasa
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91766, USA;
- Department of Medicine and Biomedical Sciences, College of Medicine and Biological Science, University of Suceava, 7200229 Suceava, Romania;
| |
Collapse
|
5
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
6
|
Boeder AM, Spiller F, Carlstrom M, Izídio GS. Enterococcus faecalis: implications for host health. World J Microbiol Biotechnol 2024; 40:190. [PMID: 38702495 DOI: 10.1007/s11274-024-04007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The microbiota represents a crucial area of research in maintaining human health due to its potential for uncovering novel biomarkers, therapies, and molecular mechanisms relevant to population identification and experimental model characterization. Among these microorganisms, Enterococcus faecalis, a Gram-positive bacterium found in the gastrointestinal tract of humans and animals, holds particular significance. Strains of this bacterial species have sparked considerable debate in the literature due to their dual nature; they can either be utilized as probiotics in the food industry or demonstrate resistance to antibiotics, potentially leading to severe illness, disability, and death. Given the diverse characteristics of Enterococcus faecalis strains, this review aims to provide a comprehensive understanding of their impact on various systems within the host, including the immunological, cardiovascular, metabolic, and nervous systems. Furthermore, we summarize the bacterium-host interaction characteristics and molecular effects to highlight their targets, features, and overall impact on microbial communities and host health.
Collapse
Affiliation(s)
- Ariela Maína Boeder
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Geison Souza Izídio
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, Florianópolis, Brazil.
- Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Barcelona, Spain.
- Laboratório de Genética do Comportamento, Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Biologia Celular, Embriologia e Genética, Florianopolis, SC, Brazil.
| |
Collapse
|
7
|
Bilski K, Żeber-Lubecka N, Kulecka M, Dąbrowska M, Bałabas A, Ostrowski J, Dobruch A, Dobruch J. Microbiome Sex-Related Diversity in Non-Muscle-Invasive Urothelial Bladder Cancer. Curr Issues Mol Biol 2024; 46:3595-3609. [PMID: 38666955 PMCID: PMC11048804 DOI: 10.3390/cimb46040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Sex-specific discrepancies in bladder cancer (BCa) are reported, and new studies imply that microbiome may partially explain the diversity. We aim to provide characterization of the bladder microbiome in both sexes diagnosed with non-muscle-invasive BCa with specific insight into cancer grade. In our study, 16S rRNA next-generation sequencing was performed on midstream urine, bladder tumor sample, and healthy-appearing bladder mucosa. Bacterial DNA was isolated using QIAamp Viral RNA Mini Kit. Metagenomic analysis was performed using hypervariable fragments of the 16S rRNA gene on Ion Torrent Personal Genome Machine platform. Of 41 sample triplets, 2153 taxa were discovered: 1739 in tumor samples, 1801 in healthy-appearing bladder mucosa and 1370 in midstream urine. Women were found to have smaller taxa richness in Chao1 index than men (p = 0.03). In comparison to low-grade tumors, patients with high-grade lesions had lower bacterial diversity and richness in urine. Significant differences between sexes in relative abundance of communities at family level were only observed in high-grade tumors.
Collapse
Affiliation(s)
- Konrad Bilski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | | | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| |
Collapse
|
8
|
Rayan M, Sayed TS, Hussein OJ, Therachiyil L, Maayah ZH, Maccalli C, Uddin S, Prehn JHM, Korashy HM. Unlocking the secrets: exploring the influence of the aryl hydrocarbon receptor and microbiome on cancer development. Cell Mol Biol Lett 2024; 29:33. [PMID: 38448800 PMCID: PMC10918910 DOI: 10.1186/s11658-024-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 03/08/2024] Open
Abstract
Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers. Moreover, some microbiotas of the gut and oral cavity have been reported to infect tumors, initiate metastasis, and promote the spread of cancer to distant organs, thereby influencing the clinical outcome of cancer patients. The gut microbiome has recently been reported to interact with environmental factors such as diet and exposure to environmental toxicants. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs) induces a shift in the gut microbiome metabolic pathways, favoring a proinflammatory microenvironment. In addition, other studies have also correlated cancer incidence with exposure to PAHs. PAHs are known to induce organ carcinogenesis through activating a ligand-activated transcriptional factor termed the aryl hydrocarbon receptor (AhR), which metabolizes PAHs to highly reactive carcinogenic intermediates. However, the crosstalk between AhR and the microbiome in mediating carcinogenesis is poorly reviewed. This review aims to discuss the role of exposure to environmental pollutants and activation of AhR on microbiome-associated cancer progression and explore the underlying molecular mechanisms involved in cancer development.
Collapse
Affiliation(s)
- Menatallah Rayan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Tahseen S Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Zaid H Maayah
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar
| | | | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
9
|
Pandey M, Bhattacharyya J. Gut microbiota and epigenetics in colorectal cancer: implications for carcinogenesis and therapeutic intervention. Epigenomics 2024; 16:403-418. [PMID: 38410915 DOI: 10.2217/epi-2023-0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The occurrence of CRC is associated with various genetic and epigenetic mutations in intestinal epithelial cells that transform them into adenocarcinomas. There is increasing evidence indicating the gut microbiota plays a crucial role in the regulation of host physiological processes. Alterations in gut microbiota composition are responsible for initiating carcinogenesis through diverse epigenetic modifications, including histone modifications, ncRNAs and DNA methylation. This work was designed to comprehensively review recent findings to provide insight into the associations between the gut microbiota and CRC at an epigenetic level. These scientific insights can be used in the future to develop effective strategies for early detection and treatment of CRC.
Collapse
Affiliation(s)
- Monu Pandey
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, 110608, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, 110016, India
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, 110608, India
| |
Collapse
|
10
|
Sun Y, Wang X, Li L, Zhong C, Zhang Y, Yang X, Li M, Yang C. The role of gut microbiota in intestinal disease: from an oxidative stress perspective. Front Microbiol 2024; 15:1328324. [PMID: 38419631 PMCID: PMC10899708 DOI: 10.3389/fmicb.2024.1328324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Recent studies have indicated that gut microbiota-mediated oxidative stress is significantly associated with intestinal diseases such as colorectal cancer, ulcerative colitis, and Crohn's disease. The level of reactive oxygen species (ROS) has been reported to increase when the gut microbiota is dysregulated, especially when several gut bacterial metabolites are present. Although healthy gut microbiota plays a vital role in defending against excessive oxidative stress, intestinal disease is significantly influenced by excessive ROS, and this process is controlled by gut microbiota-mediated immunological responses, DNA damage, and intestinal inflammation. In this review, we discuss the relationship between gut microbiota and intestinal disease from an oxidative stress perspective. In addition, we also provide a summary of the most recent therapeutic approaches for preventing or treating intestinal diseases by modifying gut microbiota.
Collapse
Affiliation(s)
- Yiqi Sun
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xurui Wang
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- Department of Anorectal Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Zhong
- Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Zhang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, China
| | - Xiangdong Yang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, Chengdu, China
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Yang
- Surgery of Traditional Chinese Medicine Department, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A, El Gaaied ABA. Gut microbiota, an emergent target to shape the efficiency of cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:240-265. [PMID: 37205307 PMCID: PMC10185446 DOI: 10.37349/etat.2023.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 05/21/2023] Open
Abstract
It is now well-acknowledged that microbiota has a profound influence on both human health and illness. The gut microbiota has recently come to light as a crucial element that influences cancer through a variety of mechanisms. The connections between the microbiome and cancer therapy are further highlighted by a number of preclinical and clinical evidence, suggesting that these complicated interactions may vary by cancer type, treatment, or even by tumor stage. The paradoxical relationship between gut microbiota and cancer therapies is that in some cancers, the gut microbiota may be necessary to maintain therapeutic efficacy, whereas, in other cancers, gut microbiota depletion significantly increases efficacy. Actually, mounting research has shown that the gut microbiota plays a crucial role in regulating the host immune response and boosting the efficacy of anticancer medications like chemotherapy and immunotherapy. Therefore, gut microbiota modulation, which aims to restore gut microbial balance, is a viable technique for cancer prevention and therapy given the expanding understanding of how the gut microbiome regulates treatment response and contributes to carcinogenesis. This review will provide an outline of the gut microbiota's role in health and disease, along with a summary of the most recent research on how it may influence the effectiveness of various anticancer medicines and affect the growth of cancer. This study will next cover the newly developed microbiota-targeting strategies including prebiotics, probiotics, and fecal microbiota transplantation (FMT) to enhance anticancer therapy effectiveness, given its significance.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Oumaima Zidi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Department of Biologu, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Henda Rais
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
- Service d’Oncologie Médicale, Hôpital Salah-Azaïz, Tunis 1006, Tunisia
| | - Aida Ayadi
- Department of Pathology, Abderrahman Mami Hospital, University of Tunis El Manar, Ariana 2080, Tunisia
| | - Farhat Ben Ayed
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Amor Mosbah
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
12
|
Pandey H, Tang DWT, Wong SH, Lal D. Gut Microbiota in Colorectal Cancer: Biological Role and Therapeutic Opportunities. Cancers (Basel) 2023; 15:cancers15030866. [PMID: 36765824 PMCID: PMC9913759 DOI: 10.3390/cancers15030866] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths worldwide. While CRC is thought to be an interplay between genetic and environmental factors, several lines of evidence suggest the involvement of gut microbiota in promoting inflammation and tumor progression. Gut microbiota refer to the ~40 trillion microorganisms that inhabit the human gut. Advances in next-generation sequencing technologies and metagenomics have provided new insights into the gut microbial ecology and have helped in linking gut microbiota to CRC. Many studies carried out in humans and animal models have emphasized the role of certain gut bacteria, such as Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli, in the onset and progression of CRC. Metagenomic studies have opened up new avenues for the application of gut microbiota in the diagnosis, prevention, and treatment of CRC. This review article summarizes the role of gut microbiota in CRC development and its use as a biomarker to predict the disease and its potential therapeutic applications.
Collapse
Affiliation(s)
- Himani Pandey
- Redcliffe Labs, Electronic City, Noida 201301, India
| | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Correspondence: (S.H.W.); (D.L.)
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi 110007, India
- Correspondence: (S.H.W.); (D.L.)
| |
Collapse
|
13
|
Kumar A, Ali A, Kapardar RK, Dar GM, Nimisha, Apurva, Sharma AK, Verma R, Sattar RSA, Ahmad E, Mahajan B, Saluja SS. Implication of gut microbes and its metabolites in colorectal cancer. J Cancer Res Clin Oncol 2023; 149:441-465. [PMID: 36572792 DOI: 10.1007/s00432-022-04422-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer with a significant impact on loss of life. In 2020, nearly 1.9 million new cases and over 9,35,000 deaths were reported. Numerous microbes that are abundant in the human gut benefit host physiology in many ways. Although the underlying mechanism is still unknown, their association appears to be crucial in the beginning and progression of CRC. Diet has a significant impact on the microbial composition and may increase the chance of getting CRC. Increasing evidence points to the gut microbiota as the primary initiator of colonic inflammation, which is connected to the development of colonic tumors. However, it is unclear how the microbiota contributes to the development of CRCs. Patients with CRC have been found to have dysbiosis of the gut microbiota, which can be identified by a decline in commensal bacterial species, such as those that produce butyrate, and a concurrent increase in harmful bacterial populations, such as opportunistic pathogens that produce pro-inflammatory cytokines. We believe that using probiotics or altering the gut microbiota will likely be effective tools in the fight against CRC treatment. PURPOSE In this review, we revisited the association between gut microbiota and colorectal cancer whether cause or effect. The various factors which influence gut microbiome in patients with CRC and possible mechanism in relation with development of CRC. CONCLUSION The clinical significance of the intestinal microbiota may aid in the prevention and management of CRC.
Collapse
Affiliation(s)
- Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Raj Kishore Kapardar
- Microbial Biotechnology Division, The Energy and Resource Institute (TERI), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
- Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
14
|
Hembus J, Rößler L, Springer A, Frank M, Klinder A, Bader R, Zietz C, Enz A. Experimental Investigation of Material Transfer on Bearings for Total Hip Arthroplasty-A Retrieval Study on Ceramic and Metallic Femoral Heads. J Clin Med 2022; 11:3946. [PMID: 35887710 PMCID: PMC9318345 DOI: 10.3390/jcm11143946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Metallic deposition is a commonly observed phenomenon on the surface of revised femoral heads in total hip arthroplasty and can lead to increased wear due to third bodies. In order to find out the origin and composition of the transfer material, 98 retrieved femoral heads of different materials were examined with regard to the cause of revision, localization, pattern and composition of the transfer material by energy dispersive X-ray spectroscopy. We found that in 53.1%, the deposition was mostly in the region of the equator and the adjacent pole of the femoral heads. The most common cause for revision of heads with metallic deposition was polyethylene wear (43.9%). Random stripes (44.9%), random patches (41.8%) and solid patches (35.7%) were most prevalent on retrieved femoral heads. Random patches were a typical pattern in ceramic-on-ceramic bearing couples. The solid patch frequently occurred in association with dislocation of the femoral head (55%). The elemental analysis of the depositions showed a variety of different materials. In most cases, titanium was an element of the transferred material (76.5%). In addition to metallic components, several non-metallic components were also detected, such as carbon (49%) or sulfur (4.1%). Many of the determined elements could be assigned with regard to their origin with the help of the associated revision cause. Since the depositions lead to an introduction of third-body particles and thus to increased wear, the depositions on the bearing surfaces should be avoided in any case.
Collapse
Affiliation(s)
- Jessica Hembus
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Lisa Rößler
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Armin Springer
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Strempelstrasse 14, 18057 Rostock, Germany; (A.S.); (M.F.)
| | - Marcus Frank
- Medical Biology and Electron Microscopy Center, Rostock University Medical Center, Strempelstrasse 14, 18057 Rostock, Germany; (A.S.); (M.F.)
| | - Annett Klinder
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Carmen Zietz
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany; (L.R.); (A.K.); (R.B.); (C.Z.)
| | - Andreas Enz
- Orthopedic Clinic and Policlinic, Rostock University Medical Center, Doberaner Str. 142, 18057 Rostock, Germany;
| |
Collapse
|
15
|
Cellular Carcinogenesis: Role of Polarized Macrophages in Cancer Initiation. Cancers (Basel) 2022; 14:cancers14112811. [PMID: 35681791 PMCID: PMC9179569 DOI: 10.3390/cancers14112811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Inflammation is a hallmark of many cancers. Macrophages are key participants in innate immunity and important drivers of inflammation. When chronically polarized beyond normal homeostatic responses to infection, injury, or aging, macrophages can express several pro-carcinogenic phenotypes. In this review, evidence supporting polarized macrophages as endogenous sources of carcinogenesis is discussed. In addition, the depletion or modulation of macrophages by small molecule inhibitors and probiotics are reviewed as emerging strategies in cancer prevention. Abstract Inflammation is an essential hallmark of cancer. Macrophages are key innate immune effector cells in chronic inflammation, parainflammation, and inflammaging. Parainflammation is a form of subclinical inflammation associated with a persistent DNA damage response. Inflammaging represents low-grade inflammation due to the dysregulation of innate and adaptive immune responses that occur with aging. Whether induced by infection, injury, or aging, immune dysregulation and chronic macrophage polarization contributes to cancer initiation through the production of proinflammatory chemokines/cytokines and genotoxins and by modulating immune surveillance. This review presents pre-clinical and clinical evidence for polarized macrophages as endogenous cellular carcinogens in the context of chronic inflammation, parainflammation, and inflammaging. Emerging strategies for cancer prevention, including small molecule inhibitors and probiotic approaches, that target macrophage function and phenotype are also discussed.
Collapse
|
16
|
Parra-Grande M, Oré-Arce M, Martínez-Priego L, D’Auria G, Rosselló-Mora R, Lillo M, Sempere A, Lumbreras B, Sánchez-Hellín V. Profiling the Bladder Microbiota in Patients With Bladder Cancer. Front Microbiol 2022; 12:718776. [PMID: 35197936 PMCID: PMC8859159 DOI: 10.3389/fmicb.2021.718776] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Evidence suggests that microbiota may contribute to the pathogenesis of several diseases, including cancer. In the case of bladder cancer, preliminary studies have found alterations in the urinary microbiota of patients with urothelial carcinoma compared with healthy individuals. Conversely, the urinary microbiota differ between men and women, and it has been hypothesized that these differences are associated with the lower incidence of bladder cancers in women. The objective of this study was to characterize the bladder microbiota in paired samples of tumor and non-tumor mucosa of patients with malignant bladder neoplasia using next-generation sequencing. In addition, we aimed to study potential differences in microbial composition in tumor samples according to clinical and pathological variables, and to determine possible microbial profiles. We found significant differences in microbial richness at the genus level, with a higher richness observed in the non-tumor compared with the tumor mucosa. It was also shown that Actinobacteria were significantly more enriched in the non-tumor compared with the tumor mucosa (P = 0.014). In the multivariate analysis, we found significant differences in microbial composition according to tumor grade (P = 0.03 and 0.04 at the phylum and genus levels, respectively). Moreover, we detected a higher microbial richness in non-tumor vs. tumor tissues which agrees with the global assumption that microbial richness is an indicator of health. The greater abundance of members of the Actinobacteria phylum in the non-neoplastic bladder mucosa samples supports the hypothesis that a higher abundance of Actinomycetes is associated with a lower rate of bladder cancer in women and suggests a protective role for these microbiota. We detected a microbial profile that was enriched for Enterococcus in low-grade tumors. Finally, we identified the presence of two clusters in the microbial composition of the tumor mucosa samples, significantly enriched for the genera Barnesiella, Parabacteroides, Prevotella, Alistipes, and Lachnospiracea_incertae_sedis (Cluster 1), or Staphylococcus (Cluster 2). Further longitudinal studies are needed to assess the role of the bladder microbiota in carcinogenesis.
Collapse
Affiliation(s)
- Mónica Parra-Grande
- Department of Microbiology, Hospital General Universitario de Elche, Elche, Spain
| | - Martín Oré-Arce
- Departament of Oncology, Hospital Marina Baixa de La Vila Joiosa, Villajoyosa, Spain
| | - Llúcia Martínez-Priego
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, FISABIO, Valencia, Spain
| | - Giuseppe D’Auria
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Health and Biomedical Research of Valencia Region, FISABIO, Valencia, Spain
| | - Ramón Rosselló-Mora
- Marine Microbiology Group, Institut Mediterrani d’Estudis Avançats (CSIC-UIB), Esporles, Spain
| | - Marta Lillo
- Biobank, Hospital General Universitario de Elche, Elche, Spain
| | - Andrea Sempere
- Biobank, Hospital General Universitario de Elche, Elche, Spain
| | - Blanca Lumbreras
- Departament of Public Health, Hystory of Science and Gynecology, CIBER en Epidemiología y Salud Pública (CIBERESP), Miguel Hernández University, Elche, Spain
| | - Victoria Sánchez-Hellín
- Department of Microbiology, Hospital General Universitario de Elche, Elche, Spain
- *Correspondence: Victoria Sánchez-Hellín,
| |
Collapse
|
17
|
Kim J, Lee HK. Potential Role of the Gut Microbiome In Colorectal Cancer Progression. Front Immunol 2022; 12:807648. [PMID: 35069592 PMCID: PMC8777015 DOI: 10.3389/fimmu.2021.807648] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
An increasing number of studies have revealed that the progression of colorectal cancer (CRC) is related to gut microbiome composition. Under normal conditions, the gut microbiome acts as a barrier to other pathogens or infections in the intestine and modulates inflammation by affecting the host immune system. These gut microbiota are not only related to the intestinal inflammation associated with tumorigenesis but also modulation of the anti-cancer immune response. Thus, they are associated with tumor progression and anti-cancer treatment efficacy. Studies have shown that the gut microbiota can be used as biomarkers to predict the effect of immunotherapy and improve the efficacy of immunotherapy in treating CRC through modulation. In this review, we discuss the role of the gut microbiome as revealed by recent studies of the growth and progression of CRC along with its synergistic effect with anti-cancer treatment modalities.
Collapse
Affiliation(s)
- Jaeho Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
18
|
The Many Faces of Enterococcus spp.-Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021; 9:microorganisms9091900. [PMID: 34576796 PMCID: PMC8470767 DOI: 10.3390/microorganisms9091900] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
Enterococcus spp. are Gram-positive, facultative, anaerobic cocci, which are found in the intestinal flora and, less frequently, in the vagina or mouth. Enterococcus faecalis and Enterococcus faecium are the most common species found in humans. As commensals, enterococci colonize the digestive system and participate in the modulation of the immune system in humans and animals. For many years reference enterococcal strains have been used as probiotic food additives or have been recommended as supplements for the treatment of intestinal dysbiosis and other conditions. The use of Enterococcus strains as probiotics has recently become controversial due to the ease of acquiring different virulence factors and resistance to various classes of antibiotics. Enterococci are also seen as opportunistic pathogens. This problem is especially relevant in hospital environments, where enterococcal outbreaks often occur. Their ability to translocate from the gastro-intestinal tract to various tissues and organs as well as their virulence and antibiotic resistance are risk factors that hinder eradication. Due to numerous reports on the plasticity of the enterococcal genome and the acquisition of pathogenic microbial features, we ask ourselves, how far is this commensal genus from acquiring pathogenicity? This paper discusses both the beneficial properties of these microorganisms and the risk factors related to their evolution towards pathogenicity.
Collapse
|
19
|
Fan X, Jin Y, Chen G, Ma X, Zhang L. Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion 2021; 102:508-515. [PMID: 32932258 DOI: 10.1159/000508328] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/29/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND The gut microbiota is a diverse community of microbes that maintain the stability of the intestinal environment. Dysbiosis of the gut microbiota has been linked to gastrointestinal diseases, such as colorectal cancer (CRC) - a leading cause of death for cancer patients. SUMMARY Candidate pathogens have been identified using bacterial culture and high-throughput sequencing techniques. Currently, there is evidence to show that specific intestinal microbes drive CRC development and progression, yet their pathogenic mechanisms are still unclear. Key Messages: In this review, we describe the known healthy gut microbiota and its changes in CRC. We especially focus on exploring the pathogenic mechanisms of gut microbiota dysbiosis in CRC. This is crucial for explaining how gut microbiota dysbiosis drives the process of colorectal carcinogenesis and tumor progression. Evaluation of changes in the gut microbiota during CRC development and progression offers a new strategy for the diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Xiaoyan Fan
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China.,Department of Neurology, Taizhou Second People's Hospital, Taizhou, China
| | - Yuelei Jin
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Guang Chen
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, Taizhou, China
| | - Xueqiang Ma
- Department of Gastrointestinal Surgery, Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, China
| | - Lixia Zhang
- Department of Neurology, Taizhou Second People's Hospital, Taizhou, China,
| |
Collapse
|
20
|
Halliwell B, Adhikary A, Dingfelder M, Dizdaroglu M. Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chem Soc Rev 2021; 50:8355-8360. [PMID: 34128512 PMCID: PMC8328964 DOI: 10.1039/d1cs00044f] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent publications have suggested that oxidative DNA damage mediated by hydroxyl radical (˙OH) is unimportant in vivo, and that carbonate anion radical (CO3˙-) plays the key role. We examine these claims and summarize the evidence that ˙OH does play a key role as an important member of the reactive oxygen species (ROS) in vivo.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Centre for Life Sciences, #05-01A, 28 Medical Drive, 117456, Singapore.
| | | | | | | |
Collapse
|
21
|
Wang X, Undi RB, Ali N, Huycke MM. It takes a village: microbiota, parainflammation, paligenosis and bystander effects in colorectal cancer initiation. Dis Model Mech 2021; 14:dmm048793. [PMID: 33969420 PMCID: PMC10621663 DOI: 10.1242/dmm.048793] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sporadic colorectal cancer (CRC) is a leading cause of worldwide cancer mortality. It arises from a complex milieu of host and environmental factors, including genetic and epigenetic changes in colon epithelial cells that undergo mutation, selection, clonal expansion, and transformation. The gut microbiota has recently gained increasing recognition as an additional important factor contributing to CRC. Several gut bacteria are known to initiate CRC in animal models and have been associated with human CRC. In this Review, we discuss the factors that contribute to CRC and the role of the gut microbiota, focusing on a recently described mechanism for cancer initiation, the so-called microbiota-induced bystander effect (MIBE). In this cancer mechanism, microbiota-driven parainflammation is believed to act as a source of endogenous mutation, epigenetic change and induced pluripotency, leading to the cancerous transformation of colon epithelial cells. This theory links the gut microbiota to key risk factors and common histologic features of sporadic CRC. MIBE is analogous to the well-characterized radiation-induced bystander effect. Both phenomena drive DNA damage, chromosomal instability, stress response signaling, altered gene expression, epigenetic modification and cellular proliferation in bystander cells. Myeloid-derived cells are important effectors in both phenomena. A better understanding of the interactions between the gut microbiota and mucosal immune effector cells that generate bystander effects can potentially identify triggers for parainflammation, and gain new insights into CRC prevention.
Collapse
Affiliation(s)
- Xingmin Wang
- Nantong Institute of Genetics and Reproductive Medicine, Nantong Maternity and Child Healthcare Hospital, Nantong University, Nantong, Jiangsu 226018, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ram Babu Undi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Naushad Ali
- Department of Internal Medicine, Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Mark M. Huycke
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Cheng Y, Ling Z, Li L. The Intestinal Microbiota and Colorectal Cancer. Front Immunol 2020; 11:615056. [PMID: 33329610 PMCID: PMC7734048 DOI: 10.3389/fimmu.2020.615056] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
The intestinal microbiota, composed of a large population of microorganisms, is often considered a "forgotten organ" in human health and diseases. Increasing evidence indicates that dysbiosis of the intestinal microbiota is closely related to colorectal cancer (CRC). The roles for intestinal microorganisms that initiated and facilitated the CRC process are becoming increasingly clear. Hypothesis models have been proposed to illustrate the complex relationship between the intestinal microbiota and CRC. Recent studies have identified Streptococcus bovis, enterotoxigenic Bacteroides fragilis, Fusobacterium nucleatum, Enterococcus faecalis, Escherichia coli, and Peptostreptococcus anaerobius as CRC candidate pathogens. In this review, we summarized the mechanisms involved in microbiota-related colorectal carcinogenesis, including inflammation, pathogenic bacteria, and their virulence factors, genotoxins, oxidative stress, bacterial metabolites, and biofilm. We also described the clinical values of intestinal microbiota and novel strategies for preventing and treating CRC.
Collapse
Affiliation(s)
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Djorić D, Minton NE, Kristich CJ. The enterococcal PASTA kinase: A sentinel for cell envelope stress. Mol Oral Microbiol 2020; 36:132-144. [PMID: 32945615 DOI: 10.1111/omi.12313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Enterococci are Gram-positive, opportunistic pathogens that reside throughout the gastrointestinal tracts of most terrestrial organisms. Enterococci are resistant to many antibiotics, which makes enterococcal infections difficult to treat. Enterococci are also particularly hardy bacteria that can tolerate a variety of environmental stressors. Understanding how enterococci sense and respond to the extracellular environment to enact adaptive biological responses may identify new targets that can be exploited for development of treatments for enterococcal infections. Bacterial eukaryotic-like serine/threonine kinases (eSTKs) and cognate phosphatases (STPs) are important signaling systems that mediate biological responses to extracellular stimuli. Some bacterial eSTKs are transmembrane proteins that contain a series of extracellular repeats of the penicillin-binding and Ser/Thr kinase-associated (PASTA) domain, leading to their designation as "PASTA kinases." Enterococcal genomes encode a single PASTA kinase and its cognate phosphatase. Investigations of the enterococcal PASTA kinase revealed its importance in resistance to antibiotics and other cell wall stresses, in enterococcal colonization of the mammalian gut, clues about its mechanism of signal transduction, and its integration with other enterococcal signal transduction systems. In this review, we describe the current state of knowledge of PASTA kinase signaling in enterococci and describe important gaps that still need to be addressed to provide a better understanding of this important signaling system.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nicole E Minton
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
24
|
Léger L, Budin-Verneuil A, Cacaci M, Benachour A, Hartke A, Verneuil N. β-Lactam Exposure Triggers Reactive Oxygen Species Formation in Enterococcus faecalis via the Respiratory Chain Component DMK. Cell Rep 2020; 29:2184-2191.e3. [PMID: 31747593 DOI: 10.1016/j.celrep.2019.10.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023] Open
Abstract
Whereas the primary actions of β-lactams are well characterized, their downstream effects are less well understood. Although their targets are extracellular, β-lactams stimulate respiration in Escherichia coli leading to increased intracellular accumulation of reactive oxygen species (ROS). Here, we show that β-lactams over a large concentration range trigger a strong increase in ROS production in Enterococcus faecalis under aerobic, but not anaerobic, conditions. Both amoxicillin, to which the bacterium is susceptible, and cefotaxime, to which E. faecalis is resistant, triggers this response. This stimulation of ROS formation depends mainly on demethylmenaquinone (DMK), a component of the E. faecalis respiratory chain, but in contrast to E. coli is observed only in the absence of respiration. Our results suggest that in E. faecalis, β-lactams increase electron flux through the respiratory chain, thereby stimulating the auto-oxidation of reduced DMK in the absence of respiration, which triggers increased extracellular ROS production.
Collapse
Affiliation(s)
- Loïc Léger
- UR Risques Microbiens, Normandie Univ, UNICAEN, U2RM, 14000 Caen, France
| | | | - Margherita Cacaci
- Università Cattolica del Sacro Cuore, Instituto di Microbiologia, Rome, Italy
| | - Abdellah Benachour
- UR Risques Microbiens, Normandie Univ, UNICAEN, U2RM, 14000 Caen, France
| | - Axel Hartke
- UR Risques Microbiens, Normandie Univ, UNICAEN, U2RM, 14000 Caen, France.
| | - Nicolas Verneuil
- UR Risques Microbiens, Normandie Univ, UNICAEN, U2RM, 14000 Caen, France
| |
Collapse
|
25
|
Watson KM, Gaulke CA, Tsikitis VL. Understanding the microbiome: a primer on the role of the microbiome in colorectal neoplasia. Ann Gastroenterol 2020; 33:223-236. [PMID: 32382225 PMCID: PMC7196612 DOI: 10.20524/aog.2020.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer-related death internationally, with mounting evidence pointing to the role of the microbiome in adenoma and cancer development. This article aims to provide clinicians with a foundation for understanding the field of research into the microbiome. We also illustrate the various ways in which the microbiota have been linked to colorectal cancer, with a specific focus on microbiota with identified virulence factors, and also on the ways that byproducts of microbiota metabolism may result in oncogenesis. We also review strategies for manipulating the microbiome for therapeutic effects.
Collapse
Affiliation(s)
- Katherine M. Watson
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| | | | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| |
Collapse
|
26
|
Risks associated with enterococci as probiotics. Food Res Int 2019; 129:108788. [PMID: 32036912 DOI: 10.1016/j.foodres.2019.108788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/07/2019] [Accepted: 10/29/2019] [Indexed: 01/01/2023]
Abstract
Probiotics are naturally occurring microorganisms that confer health benefits by altering host commensal microbiota, modulating immunity, enhancing intestinal barrier function, or altering pain perception. Enterococci are human and animal intestinal commensals that are used as probiotics and in food production. These microorganisms, however, express many virulence traits including cytolysin, proteases, aggregation substance, capsular polysaccharide, enterococcal surface protein, biofilm formation, extracellular superoxide, intestinal translocation, and resistance to innate immunity that can lead to serious hospital-acquired infections. In addition, enterococci are facile in acquiring antibiotic resistance genes to many clinically important antibiotics encoded on a wide variety of conjugative plasmids, transposons, and bacteriophages. The pathogenicity and disease burden caused by enterococci render them poor choices as probiotics. No large, randomized, placebo-controlled clinical trials have demonstrated the safety and efficacy of any enterococcal probiotic. As a result, no enterococcal probiotic has been approved by the United States Food and Drug Administration for the treatment, cure, or amelioration of human disease. In 2007, the European Food Safety Authority concluded that enterococci do not meet the standard for "Qualified Presumption of Safety". Enterococcal strains used or proposed for use as probiotics should be carefully screened for efficacy and safety.
Collapse
|
27
|
Montalban-Arques A, Scharl M. Intestinal microbiota and colorectal carcinoma: Implications for pathogenesis, diagnosis, and therapy. EBioMedicine 2019; 48:648-655. [PMID: 31631043 PMCID: PMC6838386 DOI: 10.1016/j.ebiom.2019.09.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/06/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers and leading cause of cancer-related deaths worldwide. In recent years, there has been a growing realisation that lifestyle plays a major role for CRC development and that intestinal microbiota, which are shaped by lifestyle and nutrition habits, may be critically involved in the pathogenesis of CRC. Although the precise mechanisms for how the microbiota contribute to CRC development and progression remain elusive, increasing evidence suggests a direct causative role for the intestinal microbiota in modulating signalling pathways, anti-tumour immune responses and cell proliferation. Recent advances in understanding host-microbe interactions have shed light onto the putative use of intestinal microbiota as a powerful tool in CRC diagnosis and therapy. Here, we will discuss the role of the intestinal microbiota in CRC pathogenesis, their potential utility as diagnostic markers, and consider how microbes could be used in therapeutic approaches for the treatment of CRC.
Collapse
Affiliation(s)
- Ana Montalban-Arques
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
28
|
Lesiów MK, Pietrzyk P, Kyzioł A, Komarnicka UK. Cu(II) Complexes with FomA Protein Fragments of Fusobacterium Nucleatum Increase Oxidative Stress and Malondialdehyde Level. Chem Res Toxicol 2019; 32:2227-2237. [DOI: 10.1021/acs.chemrestox.9b00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Monika K. Lesiów
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Piotr Pietrzyk
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Agnieszka Kyzioł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Urszula K. Komarnicka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
29
|
Peixoto MJ, Domingues A, Batista S, Gonçalves JFM, Gomes AM, Cunha S, Valente LMP, Costas B, Ozório ROA. Physiopathological responses of sole (Solea senegalensis) subjected to bacterial infection and handling stress after probiotic treatment with autochthonous bacteria. FISH & SHELLFISH IMMUNOLOGY 2018; 83:348-358. [PMID: 30227256 DOI: 10.1016/j.fsi.2018.09.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to evaluate the protective effects of four autochthonous bacteria isolated from juvenile sole (Solea senegalensis) intestine as dietary probiotic supplement against bacterial pathogen infection and handling/transport stressors. Growth performance and immune responses were evaluated after 85 days of feeding trial. Sole (IBW = 16.07 ± 0.11 g) were fed six experimental diets, a control diet (CTRL, without the dietary probiotic supplementation), and five diets supplemented with probiotic bacteria: PB1 (Shewanella hafniensis), PB2 (Enterococcus raffinosus), PB3 (Shewanella hafniensis + Arthrobacter soli), PB4 (Pseudomonas protegens + Arthrobacter soli) and PB5 (Shewanella hafniensis + Arthrobacter soli + Enterococcus raffinosus). All bacteria were selected based on their in vitro antimicrobial activity. After the growth trial, fish were submitted to a stress factor (transport) and then each dietary group was divided in two additional groups: non-infected (placebo) and infected with Photobacterium damselae subsp. piscicida. Immune and antioxidant responses were evaluated at day 10 post-infection. In infection trial A, fish were infected on the same day of transport, whereas in trial B fish were infected after a 7-day recovery from the transport stress. At the end of the feeding trial, fish fed with PB2 and PB4 showed lower final body weight when compared with the other dietary groups. Respiratory burst activity and nitric oxide production were not affected by probiotic supplementation. Fish fed with PB5 presented lower peroxidase activity compared to CTRL. Lysozyme and alternative complement pathway activity (ACH50) showed no significant differences between treatments. The innate immune responses were significantly affected after handling stress and bacterial infection. In trial A, the ACH50 levels of infected fish were significantly lower than the placebo groups. On the other hand, in trial B fish infected with Pdp demonstrated higher ACH50 levels when compared to placebos. Peroxidase levels were strongly modulated by bacterial infection and handling stress. In trials A and B, infection had a clear downgrade effect in peroxidase levels. Lipid peroxidation, catalase, glutathione S-transferase and glutathione reductase were altered by both bacterial infection and transport. Overall, dietary probiotic supplementation did not influence growth performance of sole. The immune and oxidative defenses of sole responded differently to infection depending on the probiotic and the synergy between pathogen infection and transport.
Collapse
Affiliation(s)
- M J Peixoto
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
| | - A Domingues
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ESTM - Escola Superior de Turismo e Tecnologia do Mar, Instituto Politécnico de Leiria, Santuário Nossa Senhora dos Remédios, 2520-641, Peniche, Portugal
| | - S Batista
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade de Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - J F M Gonçalves
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade de Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - A M Gomes
- CBQF - Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquitecto Lobão Vital, 4200-072, Porto, Portugal
| | - S Cunha
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino Almeida, 400, 4200-072, Porto, Portugal; Departamento de Biología Funcional y Ciencias de la Salud, Universidad de Vigo, Ciudad Universitaria de Vigo, Campus Universitario Lagoas-Marcosende, s/n, 36310, Vigo, Pontevedra, Spain
| | - L M P Valente
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade de Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - B Costas
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade de Porto, Rua Jorge Viterbo Ferreira n.º 228, 4050-313, Porto, Portugal
| | - R O A Ozório
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
30
|
Liu C, Zhang J, Li M, Zhao L, Ji C, Ma Q. Alterations and structural resilience of the gut microbiota under dietary fat perturbations. J Nutr Biochem 2018; 61:91-100. [DOI: 10.1016/j.jnutbio.2018.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/01/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023]
|
31
|
Skowron KB, Shogan BD, Rubin DT, Hyman NH. The New Frontier: the Intestinal Microbiome and Surgery. J Gastrointest Surg 2018; 22:1277-1285. [PMID: 29633119 DOI: 10.1007/s11605-018-3744-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/12/2018] [Indexed: 01/31/2023]
Abstract
The microbiome exerts a remarkable effect on human physiology. The study of the human-microbiome relationship is a burgeoning field with great potential to improve our understanding of health and disease. In this review, we address common surgical problems influenced by the human microbiome and explore what is thus far known about this relationship. These include inflammatory bowel disease, colorectal neoplasms, and diverticular disease. We will also discuss the effect of the microbiome on surgical complications, specifically anastomotic leak. We hope that further research in this field will enlighten our management of these and other surgical problems.
Collapse
Affiliation(s)
- Kinga B Skowron
- Department of Surgery, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 5095, Chicago, IL, 60637, USA
| | - Benjamin D Shogan
- Department of Surgery, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 5095, Chicago, IL, 60637, USA.
| | - David T Rubin
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medicine, Chicago, IL, USA
| | - Neil H Hyman
- Department of Surgery, University of Chicago Medicine, 5841 S. Maryland Avenue, MC 5095, Chicago, IL, 60637, USA
| |
Collapse
|
32
|
Druzhinin VG, Matskova LV, Fucic A. Induction and modulation of genotoxicity by the bacteriome in mammals. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:70-77. [PMID: 29807578 DOI: 10.1016/j.mrrev.2018.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
The living environment is a multilevel physical and chemical xenobiotic complex with potentially mutagenic effects and health risks. In addition to inorganic exposures, all terrestrial and aquatic living forms interact with microbiota as selectively established communities of bacteria, viruses and fungi. Along these lines, the human organism should then be considered a "meta-organism" with complex dynamics of interaction between the environment and microbiome. Bacterial communities within the microbiome, bacteriome, by its mass, symbiotic or competitive position and composition are in a fragile balance with the host organisms and have a crucial impact on their homeostasis. Bacteriome taxonomic composition is modulated by age, sex and host genetic profile and may be changed by adverse environmental exposures and life style factors such as diet or drug intake. A changed and/or misbalanced bacteriome has genotoxic potential with significant impact on the pathogenesis of acute, chronic and neoplastic diseases in the host organism. Bacteria may produce genotoxins, express a variety of pathways in which they generate free radicals or affect DNA repair causing genome damage, cell cycle arrest and apoptosis, modulate immune response and launch carcinogenesis in the host organism. Future investigations should focus on the interplay between exposure to xenobiotics and bacteriome composition, immunomodulation caused by misbalanced bacteriome, impact of the environment on bacteriome composition in children and its lifelong effect on health risks.
Collapse
Affiliation(s)
- V G Druzhinin
- Department of Genetics, Kemerovo State University, Kemerovo. Russia; Federal Research Center of Coal and Coal Chemistry of Siberian Branch of the Russian Academy of Sciences, Kemerovo, Russia
| | - L V Matskova
- Department of Microbiology and Tumor Biology, Karolinska Institute, Stockholm. Sweden
| | - A Fucic
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
33
|
The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol 2017; 32:62-73. [PMID: 28687194 DOI: 10.1016/j.smim.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
Commensal microbes inhabit barrier surfaces, providing a first line of defense against invading pathogens, aiding in metabolic function of the host, and playing a vital role in immune development and function. Several recent studies have demonstrated that commensal microbes influence systemic immune function and homeostasis. For patients with extramucosal cancers, or cancers occurring distal to barrier surfaces, the role of commensal microbes in influencing tumor progression is beginning to be appreciated. Extrinsic factors such as chronic inflammation, antibiotics, and chemotherapy dysregulate commensal homeostasis and drive tumor-promoting systemic inflammation through a variety of mechanisms, including disruption of barrier function and bacterial translocation, release of soluble inflammatory mediators, and systemic changes in metabolic output. Conversely, it has also been demonstrated that certain immune therapies, immunogenic chemotherapies, and checkpoint inhibitors rely on the commensal microbiota to facilitate anti-tumor immune responses. Thus, it is evident that the mechanisms associated with commensal microbe facilitation of both pro- and anti-tumor immune responses are context dependent and rely upon a variety of factors present within the tumor microenvironment and systemic periphery. The goal of this review is to highlight the various contexts during which commensal microbes orchestrate systemic immune function with a focus on describing possible scenarios where the loss of microbial homeostasis enhances tumor progression.
Collapse
|
34
|
Hypotheses on the Potential of Rice Bran Intake to Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress. Int J Mol Sci 2017; 18:ijms18071352. [PMID: 28672811 PMCID: PMC5535845 DOI: 10.3390/ijms18071352] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 12/15/2022] Open
Abstract
Previous studies have suggested the potential involvement of oxidative stress in gastrointestinal cancers. In light of this, research efforts have been focused on the potential of dietary antioxidant intake to prevent gastrointestinal cancer through the modulation of oxidative stress. Rice bran, a by-product of rice milling, has been shown to contain an abundance of phytochemicals, which are dietary antioxidants. To date, a number of studies have shown the antioxidative effect of rice bran intake, and some demonstrated that such an effect may contribute to gastrointestinal cancer prevention, largely through the antioxidative properties of rice bran phytochemicals. In addition, these phytochemicals were shown to provide protection against cancer through mechanisms linked to oxidative stress, including β-catenin-mediated cell proliferation and inflammation. The present article provides an overview of current evidence for the antioxidative properties of rice bran and its phytochemicals, and for the potential of such properties in cancer prevention through the oxidative-stress-linked mechanisms mentioned above. The article also highlights the need for an evaluation of the effectiveness of rice bran dietary interventions among cancer survivors in ameliorating oxidative stress and reducing the level of gastrointestinal cancer biomarkers, thereby establishing the potential of such interventions among these individuals in the prevention of cancer recurrence.
Collapse
|
35
|
Gyuraszova M, Kovalcikova A, Gardlik R. Association between oxidative status and the composition of intestinal microbiota along the gastrointestinal tract. Med Hypotheses 2017; 103:81-85. [DOI: 10.1016/j.mehy.2017.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/19/2017] [Indexed: 02/08/2023]
|
36
|
Wang X, Yang Y, Huycke MM. Microbiome-driven carcinogenesis in colorectal cancer: Models and mechanisms. Free Radic Biol Med 2017; 105:3-15. [PMID: 27810411 DOI: 10.1016/j.freeradbiomed.2016.10.504] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death and archetype for cancer as a genetic disease. However, the mechanisms for genetic change and their interactions with environmental risk factors have been difficult to unravel. New hypotheses, models, and methods are being used to investigate a complex web of risk factors that includes the intestinal microbiome. Recent research has clarified how the microbiome can generate genomic change in CRC. Several phenotypes among a small group of selected commensals have helped us better understand how mutations and chromosomal instability (CIN) are induced in CRC (e.g., toxin production, metabolite formation, radical generation, and immune modulation leading to a bystander effect). This review discusses recent hypotheses, models, and mechanisms by which the intestinal microbiome contributes to the initiation and progression of sporadic and colitis-associated forms of CRC. Overall, it appears the microbiome can initiate and/or promote CRC at all stages of tumorigenesis by acting as an inducer of DNA damage and CIN, regulating cell growth and death, generating epigenetic changes, and modulating host immune responses. Understanding how the microbiome interacts with other risk factors to define colorectal carcinogenesis will ultimately lead to more accurate risk prediction. A deeper understanding of CRC etiology will also help identify new targets for prevention and treatment and help accelerate the decline in mortality for this common cancer.
Collapse
Affiliation(s)
- Xingmin Wang
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, USA; Muchmore Laboratories for Infectious Diseases Research, Oklahoma City VA Health Care System, USA
| | - Yonghong Yang
- Gansu Province Children's Hospital, Lanzhou, China; Key Laboratory of Gastrointestinal Cancer, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Mark M Huycke
- Muchmore Laboratories for Infectious Diseases Research, Oklahoma City VA Health Care System, USA; Department of Internal Medicine, PO Box 26901, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126-0901, USA.
| |
Collapse
|
37
|
Mandal P. Potential biomarkers associated with oxidative stress for risk assessment of colorectal cancer. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:557-565. [PMID: 28229171 DOI: 10.1007/s00210-017-1352-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023]
Abstract
Cells are continuously threatened by the damage caused by reactive oxygen/nitrogen species (ROS/RNS), which are produced during physiological oxygen metabolism. In our review, we will summarize the latest reports on the role of oxidative stress and oxidative stress-induced signaling pathways in the etiology of colorectal cancer. The differences in ROS generation may influence the levels of oxidized proteins, lipids, and DNA damage, thus contributing to the higher susceptibility of colon. Reactive species (RS) of various types are formed and are powerful oxidizing agents, capable of damaging DNA and other biomolecules. Increased formation of RS can promote the development of malignancy, and the "normal" rates of RS generation may account for the increased risk of cancer development in the aged. In this review, we focus on the role of oxidative stress in the etiology of colorec-tal cancer and discuss free radicals and free radical-stimulated pathways in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Paramita Mandal
- Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
38
|
Van Hecke T, Van Camp J, De Smet S. Oxidation During Digestion of Meat: Interactions with the Diet andHelicobacter pyloriGastritis, and Implications on Human Health. Compr Rev Food Sci Food Saf 2017; 16:214-233. [DOI: 10.1111/1541-4337.12248] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Van Hecke
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| | - John Van Camp
- the Unit of Food Chemistry and Human Nutrition; Ghent Univ.; Ghent Belgium
| | - Stefaan De Smet
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| |
Collapse
|
39
|
Gagnaire A, Nadel B, Raoult D, Neefjes J, Gorvel JP. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol 2017; 15:109-128. [DOI: 10.1038/nrmicro.2016.171] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Moore DR, Kotake Y, Huycke MM. Effects of Iron and Phytic Acid on Production of Extracellular Radicals by Enterococcus faecalis. Exp Biol Med (Maywood) 2016; 229:1186-95. [PMID: 15564446 DOI: 10.1177/153537020422901114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Enterococcus faecalis is a human intestinal commensal that produces extracellular superoxide, hydrogen peroxide, and hydroxyl radical while colonizing the intestinal tract. To determine whether dietary factors implicated in colorectal cancer affect oxidant production by E. faecalis, radicals were measured in rats colonized with this microorganism while on diets supplemented with iron or phytic acid. Hydroxyl radical activity was measured by assaying for aromatic hydroxylation products of D-phenylalanine using reverse-phase high-performance liquid chromatography and electrochemical detection. In vitro, as expected, iron enhanced, and phytic acid decreased, hydroxyl radical formation by E. faecalis. For rats colonized with E. faecalis given supplemental dietary iron (740 mg elemental iron as ferric phosphate per kg diet) or phytic acid (1.2% w/w), no differences were found in concentrations of urinary ortho- or meta- isomers of D-phenylalanine compared to rats on a basal diet. Aqueous radicals in colonic contents were further assessed ex vivo by electron spin resonance using 5,5-dimethyl-1-pyrroline-N-oxide as a spin trap. Mixtures of thiyl (sulfur-centered) and oxygen-centered radicals were detected across all diets. In vitro, similar spectra were observed when E. faecalis was incubated with hydrogen sulfide, air-oxidized cysteine, or an alkylsulfide, as typical sulfur-containing compounds that might occur in colonic contents. In conclusion, intestinal colonization with E. faecalis in a rat model generates both thiyl and oxygen-centered radicals in colonic contents. Radical formation, however, was not significantly altered by short-term dietary supplementation with iron or phytic acid.
Collapse
Affiliation(s)
- Danny R Moore
- The Muchmore Laboratories for Infectious Diseases Research, Research Service, Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
41
|
Differential fecal microbiota are retained in broiler chicken lines divergently selected for fatness traits. Sci Rep 2016; 6:37376. [PMID: 27876778 PMCID: PMC5120256 DOI: 10.1038/srep37376] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/28/2016] [Indexed: 02/06/2023] Open
Abstract
Our study combined 16S rRNA-pyrosequencing and whole genome sequencing to analyze the fecal metagenomes of the divergently selected lean (LL) and fat (FL) line chickens. Significant structural differences existed in both the phylogenic and functional metagenomes between the two chicken lines. At phylum level, the FL group had significantly less Bacteroidetes. At genus level, fourteen genera of different relative abundance were identified, with some known short-chain fatty acid producers (including Subdoligranulum, Butyricicoccus, Eubacterium, Bacteroides, Blautia) and a potentially pathogenic genus (Enterococcus). Redundancy analysis identified 190 key responsive operational taxonomic units (OTUs) that accounted for the structural differences between the phylogenic metagenome of the two groups. Four Cluster of Orthologous Group (COG) categories (Amino acid transport and metabolism, E; Nucleotide transport and metabolism, F; Coenzyme transport and metabolism, H; and Lipid transport and metabolism, I) were overrepresented in LL samples. Fifteen differential metabolic pathways (Biosynthesis of amino acids, Pyruvate metabolism, Nitrotoluene degradation, Lipopolysaccharide biosynthesis, Peptidoglycan biosynthesis, Pantothenate and CoA biosynthesis, Glycosaminoglycan degradation, Thiamine metabolism, Phosphotransferase system, Two-component system, Bacterial secretion system, Flagellar assembly, Bacterial chemotaxis, Ribosome, Sulfur relay system) were identified. Our data highlighted interesting variations between the gut metagenomes of these two chicken lines.
Collapse
|
42
|
A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal 2016; 11:193-201. [PMID: 27416730 DOI: 10.1017/s1751731116001397] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recent studies indicate that intestinal oxidative stress and microbiota imbalance is involved in weaning-induced intestinal dysfunction in piglets. We have investigated the effect of feeding a carvacrol-thymol blend supplemented diet on intestinal redox status, selected microbial populations and the intestinal barrier in weaning piglets. The piglets (weaned at 21 days of age) were randomly allocated to two groups with six pens per treatment and 10 piglets per pen. At weaning day (21 days of age), six piglets were sacrificed before weaning to serve as the preweaning group. The weaned group was fed with a basal diet, while the weaned-CB group was fed with the basal diet supplemented with 100 mg/kg carvacrol-thymol (1 : 1) blend for 14 days. On day 7 post-weaning, six piglets from each group were sacrificed to determine intestinal redox status, selected microbial populations, messenger RNA (mRNA) transcript levels of proinflammatory cytokines and biomarkers of intestinal barrier function. Weaning resulted in intestinal oxidative stress, indicated by the increased concentration of reactive oxygen species and thiobarbituric acid-reactive substances present in the intestine. Weaning also reduced the population of Lactobacillus genus and increased the populations of Enterococcus genus and Escherichia coli in the jejunum, and increased mRNA levels of tumor necrosis factor α (TNF-α), interleukin 1β and interleukin 6 (IL-6). In addition, decreased mRNA levels of zonula occludens and occludin in the jejunal mucosa and increased plasma diamine oxidase concentrations indicated that weaning induced dysfunction of the intestinal barrier. On day 7 post-weaning, supplementation with the carvacrol-thymol blend restored weaning-induced intestinal oxidative stress. Compared with the weaned group, the weaned-CB group had an increased population of Lactobacillus genus but reduced populations of Enterococcus genus and E. coli in the jejunum and decreased mRNA levels of TNF-α. The results indicated that weaning induced intestinal oxidative stress and dysfunction of the intestinal barrier. Dietary supplementation with 100 mg/kg carvacrol-thymol (1 : 1) decreased the intestinal oxidative stress and influenced selected microbial populations without changing the biomarkers of intestinal barrier in weaning piglets.
Collapse
|
43
|
Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, Bringer MA, Pezet D, Bonnet M. Gut microbiota imbalance and colorectal cancer. World J Gastroenterol 2016; 22:501-518. [PMID: 26811603 PMCID: PMC4716055 DOI: 10.3748/wjg.v22.i2.501] [Citation(s) in RCA: 542] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/06/2015] [Accepted: 10/17/2015] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota acts as a real organ. The symbiotic interactions between resident micro-organisms and the digestive tract highly contribute to maintain the gut homeostasis. However, alterations to the microbiome caused by environmental changes (e.g., infection, diet and/or lifestyle) can disturb this symbiotic relationship and promote disease, such as inflammatory bowel diseases and cancer. Colorectal cancer is a complex association of tumoral cells, non-neoplastic cells and a large amount of micro-organisms, and the involvement of the microbiota in colorectal carcinogenesis is becoming increasingly clear. Indeed, many changes in the bacterial composition of the gut microbiota have been reported in colorectal cancer, suggesting a major role of dysbiosis in colorectal carcinogenesis. Some bacterial species have been identified and suspected to play a role in colorectal carcinogenesis, such as Streptococcus bovis, Helicobacter pylori, Bacteroides fragilis, Enterococcus faecalis, Clostridium septicum, Fusobacterium spp. and Escherichia coli. The potential pro-carcinogenic effects of these bacteria are now better understood. In this review, we discuss the possible links between the bacterial microbiota and colorectal carcinogenesis, focusing on dysbiosis and the potential pro-carcinogenic properties of bacteria, such as genotoxicity and other virulence factors, inflammation, host defenses modulation, bacterial-derived metabolism, oxidative stress and anti-oxidative defenses modulation. We lastly describe how bacterial microbiota modifications could represent novel prognosis markers and/or targets for innovative therapeutic strategies.
Collapse
|
44
|
Abstract
For years the human microbiota has been implicated in the etiology of colorectal cancer (CRC). However, identifying the molecular mechanisms for how aneuploidy and chromosomal instability (CIN) arise in sporadic and colitis-associated CRC has been difficult. In this Addendum we review recent work from our laboratory that explore mechanisms by which intestinal commensals polarize colon macrophages to an M1 phenotype to generate a bystander effect (BSE) that leads to mutations, spindle malfunction, cell cycle arrest, tetraploidy, and aneuploidy in epithelial cells. BSE represents the application of a phenomenon initially described in the radiation biology field. The result of commensal-driven BSE on colon epithelial cells is aneuploidy, chromosomal instability (CIN), expression of stem cell and tumor stem cell markers and, ultimately, malignant transformation. Our findings provide a conceptual framework for integrating the microbiota with aging, cyclooxygenase (COX)-2, and inflammation as risk factors for CRC.
Collapse
Affiliation(s)
- Xingmin Wang
- Department of Radiation Oncology; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA
| | - Mark M Huycke
- Department of Medicine; University of Oklahoma Health Sciences Center; Oklahoma City, OK USA,The Muchmore Laboratories for Infectious Diseases Research; Oklahoma City VA Health Care System; Oklahoma City, OK USA,Correspondence to: Mark M Huycke;
| |
Collapse
|
45
|
Molnár GA, Kun S, Sélley E, Kertész M, Szélig L, Csontos C, Böddi K, Bogár L, Miseta A, Wittmann I. Role of Tyrosine Isomers in Acute and Chronic Diseases Leading to Oxidative Stress - A Review. Curr Med Chem 2016; 23:667-85. [PMID: 26785996 PMCID: PMC4997921 DOI: 10.2174/0929867323666160119094516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/05/2016] [Accepted: 01/18/2016] [Indexed: 12/19/2022]
Abstract
Oxidative stress plays a major role in the pathogenesis of a variety of acute and chronic diseases. Measurement of the oxidative stress-related end products may be performed, e.g. that of structural isomers of the physiological para-tyrosine, namely meta- and ortho-tyrosine, that are oxidized derivatives of phenylalanine. Recent data suggest that in sepsis, serum level of meta-tyrosine increases, which peaks on the 2(nd) and 3(rd) days (p<0.05 vs. controls), and the kinetics follows the intensity of the systemic inflammation correlating with serum procalcitonin levels. In a similar study subset, urinary meta-tyrosine excretion correlated with both need of daily insulin dose and the insulin-glucose product in non-diabetic septic cases (p<0.01 for both). Using linear regression model, meta-tyrosine excretion, urinary meta-tyrosine/para-tyrosine, urinary ortho-tyrosine/para-tyrosine and urinary (meta- + orthotyrosine)/ para-tyrosine proved to be markers of carbohydrate homeostasis. In a chronic rodent model, we tried to compensate the abnormal tyrosine isomers using para-tyrosine, the physiological amino acid. Rats were fed a standard high cholesterol-diet, and were given para-tyrosine or vehicle orally. High-cholesterol feeding lead to a significant increase in aortic wall meta-tyrosine content and a decreased vasorelaxation of the aorta to insulin and the glucagon-like peptide-1 analogue, liraglutide, that both could be prevented by administration of para-tyrosine. Concluding, these data suggest that meta- and ortho-tyrosine are potential markers of oxidative stress in acute diseases related to oxidative stress, and may also interfere with insulin action in septic humans. Competition of meta- and ortho-tyrosine by supplementation of para-tyrosine may exert a protective role in oxidative stress-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - István Wittmann
- 2nd Department of Medicine and Nephrological Center, Medical School, University of Pécs, Pacsirta str. 1., H-7624 Pécs, Hungary.
| |
Collapse
|
46
|
Wei HK, Chen G, Wang RJ, Peng J. Oregano essential oil decreased susceptibility to oxidative stress-induced dysfunction of intestinal epithelial barrier in rats. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
47
|
Manzat-Saplacan RM, Mircea PA, Balacescu L, Chira RI, Berindan-Neagoe I, Balacescu O. Can we change our microbiome to prevent colorectal cancer development? Acta Oncol 2015; 54:1085-95. [PMID: 26073561 DOI: 10.3109/0284186x.2015.1054949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colorectal cancer represents an important disease as one of the major causes of death worldwide. Although a lot of genetic and epigenetic research has been conducted, all the pieces of the puzzle of colorectal cancer carcinogenesis have not yet been identified. New recent data has highlighted that gut microbiota could have an influence on colorectal carcinogenesis. Gut microbiota represents the microbe population living in the human intestine and contains tens of trillions of microorganisms. MATERIAL AND METHODS A systematic search in Medline and PubMed for studies reporting the influence of gut microbiota and inflammation on patients with colorectal cancer was made. RESULTS In this review we discuss many of the specific bacteria, as well as their metabolites which may have an important role in development of colorectal cancer. Furthermore, we emphasize the molecular mechanisms modulated by gut microbiota, which promote inflammation, toxic metabolites, DNA damaging and pro-carcinogenic compounds, as support for colorectal carcinogenesis. The interrelation between microbiota and inflammation is complex because bacteria and inflammation could mutually impact upon each other. In this context, both endogenous and exogenous miRNAs may have an important role to modulate tumor-related inflammation in colorectal cancer. CONCLUSIONS Better understanding of the role of gut microbiota in colorectal carcinogenesis could provide promising new directions to improve both prevention and treatment of colorectal cancer. Moreover, the discovery of novel biomarkers in the gut microbiome in order to detect colorectal cancer in an early stage or even in a precancerous stage is of outmost importance.
Collapse
Affiliation(s)
- Roberta M Manzat-Saplacan
- a University of Medicine and Pharmacy "Iuliu Hatieganu" Cluj-Napoca, 1st Medical Clinic , Cluj-Napoca , Romania
| | | | | | | | | | | |
Collapse
|
48
|
Oxidative stress enhances cephalosporin resistance of Enterococcus faecalis through activation of a two-component signaling system. Antimicrob Agents Chemother 2014; 59:159-69. [PMID: 25331701 DOI: 10.1128/aac.03984-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is a low-GC Gram-positive bacterium, a normal resident of the gastrointestinal (GI) tract, and an important hospital-acquired pathogen. An important risk factor for hospital-acquired enterococcal infections is prior therapy with broad-spectrum cephalosporins, antibiotics that impair cell wall biosynthesis by inhibiting peptidoglycan cross-linking. Enterococci are intrinsically resistant to cephalosporins; however, environmental factors that modulate cephalosporin resistance have not been described. While searching for the genetic determinants of cephalosporin resistance in E. faecalis, we unexpectedly discovered that oxidative stress, whether from external sources or derived from endogenous metabolism, drives enhanced intrinsic resistance to cephalosporins. A particular source of oxidative stress, H2O2, activates signaling through the CroR-CroS two-component signaling system, a known determinant of cephalosporin resistance in E. faecalis. We find that CroR-CroS is required for adaptation to H2O2 stress and that H2O2 potentiates the activities of cephalosporins against E. faecalis when the CroR-CroS signaling system is nonfunctional. Rather than directly detecting H2O2, our data suggest that the CroR-CroS system responds to cell envelope damage caused by H2O2 exposure in order to promote cell envelope repair and enhanced cephalosporin resistance.
Collapse
|
49
|
Li X, Qiao J, Yang L, Li X, Qiao S, Pang X, Tian F, Chen H, He C. Mutation of alkyl hydroperoxide reductase gene ahpC of Xanthomonas oryzae pv. oryzae affects hydrogen peroxide accumulation during the rice-pathogen interaction. Res Microbiol 2014; 165:605-11. [PMID: 25084557 DOI: 10.1016/j.resmic.2014.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 07/22/2014] [Indexed: 01/16/2023]
Abstract
Hydrogen peroxide (H2O2) is usually generated by normal aerobic respiration of pathogens and by the host defense response during plant-pathogen interactions. In this study, histochemical localization of H2O2 accumulation in rice inoculated with the wild-type strain (PXO99(A)) and the gene deletion mutant (ΔahpC) of alkyl hydroperoxide reductase subunit C (AhpC) of Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, was analyzed. The ΔahpC mutant displayed a significant decrease in endogenous H2O2 accumulation which was induced by the compensatory increase in H2O2 scavenging activity. The change in the bacterial endogenous H2O2 level affected the total amount of H2O2 accumulation during the interaction with rice plants. These results suggested that Xoo contributes to H2O2 accumulation in rice in a compatible interaction, and pathogen-driving H2O2 is in association with cell collapse of rice.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jiaju Qiao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Lipeng Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Xinling Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China.
| | - Suyu Qiao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xinyue Pang
- Medical Technology and Engineering College, Henan University of Science and Technology, Luoyang 471003, China.
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
50
|
Kamodyová N, Minárik G, Hodosy J, Celec P. Single consumption of Bryndza cheese temporarily affects oral microbiota and salivary markers of oxidative stress. Curr Microbiol 2014; 69:716-24. [PMID: 24997802 DOI: 10.1007/s00284-014-0649-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/16/2014] [Indexed: 01/12/2023]
Abstract
Several oral diseases are associated with changes in oral microbiota and higher oxidative stress. Enterococcus faecalis has been hypothesized to directly contribute to the oxidative stress in oral cavity. The aim of this study was to examine the effect of single consumption of unpasteurized Bryndza cheese containing enterococci on changes of microbiota and oxidative status in saliva. Fourteen healthy volunteers aged 23-30 years were asked to eat 100 g of Bryndza cheese. Saliva samples were collected before and 1, 10, 100 min, and 24 h after Bryndza cheese consumption. Species-specific PCR and terminal restriction fragment length polymorphism (T-RFLP) analysis were used to characterize oral microbiota. Markers of oxidative stress and antioxidant status were measured in saliva. PCR identified E. faecium in 36 % of probands saliva up to 1 day after consumption of enterococci containing Bryndza cheese. E. faecalis was detected in 57 % of probands saliva up to 10 min and in one proband up to 100 min after Bryndza cheese consumption. T-RFLP analysis confirmed short-term changes in composition of oral microbiota after Bryndza cheese ingestion. Nevertheless, the microbiota was completely restored after 24 h. One minute after ingestion of Bryndza cheese, salivary advanced oxidation protein products were significantly increased (by 74.6 %, P < 0.001), and total antioxidant capacity was decreased (by 22.0 %, P < 0.05). This study shows that single consumption of enterococci containing Bryndza cheese can temporally affect the composition of oral microbiota and oxidative stress in saliva. Further studies should identify the impact of these changes to the pathogenesis of oral diseases.
Collapse
Affiliation(s)
- Natália Kamodyová
- Institute of Molecular BioMedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia,
| | | | | | | |
Collapse
|