1
|
Froudist-Walsh S, Bliss DP, Ding X, Rapan L, Niu M, Knoblauch K, Zilles K, Kennedy H, Palomero-Gallagher N, Wang XJ. A dopamine gradient controls access to distributed working memory in the large-scale monkey cortex. Neuron 2021; 109:3500-3520.e13. [PMID: 34536352 PMCID: PMC8571070 DOI: 10.1016/j.neuron.2021.08.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Dopamine is required for working memory, but how it modulates the large-scale cortex is unknown. Here, we report that dopamine receptor density per neuron, measured by autoradiography, displays a macroscopic gradient along the macaque cortical hierarchy. This gradient is incorporated in a connectome-based large-scale cortex model endowed with multiple neuron types. The model captures an inverted U-shaped dependence of working memory on dopamine and spatial patterns of persistent activity observed in over 90 experimental studies. Moreover, we show that dopamine is crucial for filtering out irrelevant stimuli by enhancing inhibition from dendrite-targeting interneurons. Our model revealed that an activity-silent memory trace can be realized by facilitation of inter-areal connections and that adjusting cortical dopamine induces a switch from this internal memory state to distributed persistent activity. Our work represents a cross-level understanding from molecules and cell types to recurrent circuit dynamics underlying a core cognitive function distributed across the primate cortex.
Collapse
Affiliation(s)
| | - Daniel P Bliss
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Xingyu Ding
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Meiqi Niu
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Kenneth Knoblauch
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| | - Karl Zilles
- Research Centre Jülich, INM-1, Jülich, Germany
| | - Henry Kennedy
- INSERM U846, Stem Cell & Brain Research Institute, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France; Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences (CAS), Key Laboratory of Primate Neurobiology CAS, Shanghai, China
| | - Nicola Palomero-Gallagher
- Research Centre Jülich, INM-1, Jülich, Germany; C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
2
|
Pedapati EV, Mooney LN, Wu SW, Erickson CA, Sweeney JA, Shaffer RC, Horn PS, Wink LK, Gilbert DL. Motor cortex facilitation: a marker of attention deficit hyperactivity disorder co-occurrence in autism spectrum disorder. Transl Psychiatry 2019; 9:298. [PMID: 31723120 PMCID: PMC6853984 DOI: 10.1038/s41398-019-0614-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/23/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023] Open
Abstract
The neural correlates distinguishing youth with Autism Spectrum Disorder (ASD-) and ASD with co-occurring Attention Deficit Hyperactivity Disorder (ASD+) are poorly understood despite significant phenotypic and prognostic differences. Paired-pulse transcranial magnetic stimulation (TMS) measures, including intracortical facilitation (ICF), short interval cortical inhibition (SICI), and cortical silent period (CSP) were measured in an age matched cohort of youth with ASD- (n = 20), ASD + (n = 29), and controls (TDC) (n = 24). ASD- and ASD+ groups did not differ by IQ or social functioning; however, ASD+ had significantly higher inattention and hyperactivity ratings. ICF (higher ratio indicates greater facilitation) in ASD+ (Mean 1.0, SD 0.19) was less than ASD- (Mean 1.3, SD 0.36) or TDC (Mean 1.2, SD 0.24) (F2,68 = 6.5, p = 0.003; post-hoc tests, ASD+ vs either TDC or ASD-, p ≤ 0.05). No differences were found between groups for SICI or age corrected active/resting motor threshold (AMT/RMT). Across all ASD youth (ASD- and ASD+), ICF was inversely correlated with worse inattention (Conners-3 Inattention (r = -0.41; p < 0.01) and ADHDRS-IV Inattention percentile (r = -0.422, p < 0.01) scores. ICF remains intact in ASD- but is impaired in ASD+. Lack of ICF is associated with inattention and executive function across ASD. Taken with the present findings, ADHD may have a distinct electrophysiological "signature" in ASD youth. ICF may constitute an emerging biomarker to study the physiology of ADHD in ASD, which may align with disease prognosis or treatment response.
Collapse
Affiliation(s)
- Ernest V. Pedapati
- 0000 0000 9025 8099grid.239573.9Divisions of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Lindsey N. Mooney
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,0000 0004 1936 9684grid.27860.3bDepartment of Psychology, University of California, Davis, CA USA
| | - Steve W. Wu
- 0000 0000 9025 8099grid.239573.9Divisions of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Craig A. Erickson
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - John A. Sweeney
- 0000 0001 2179 9593grid.24827.3bDepartment of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rebecca C. Shaffer
- 0000 0000 9025 8099grid.239573.9Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Paul S. Horn
- 0000 0000 9025 8099grid.239573.9Divisions of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,0000 0000 9025 8099grid.239573.9Divisions of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Logan K. Wink
- 0000 0000 9025 8099grid.239573.9Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Donald L. Gilbert
- 0000 0000 9025 8099grid.239573.9Divisions of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| |
Collapse
|
3
|
Differential involvement of excitatory and inhibitory neurons of cat motor cortex in coincident spike activity related to behavioral context. J Neurosci 2010; 30:8048-56. [PMID: 20534853 DOI: 10.1523/jneurosci.0770-10.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To assess temporal associations in spike activity between pairs of neurons in the primary motor cortex (MI) related to different behaviors, we compared the incidence of coincident spiking activity of task-related (TR) and non-task-related (NTR) neurons during a skilled motor task and sitting quietly in adult cats (Felis domestica). Chronically implanted microwires were used to record spike activity of MI neurons in four animals (two male and two female) trained to perform a skilled reaching task or sit quietly. Neurons were identified as TR if spike activity was modulated during the task (and NTR if not). Based on spike characteristics, they were also classified as either regular-spiking (RS, putatively excitatory) or fast-spiking (FS, putatively inhibitory) neurons. Temporal associations in the activities of simultaneously recorded neurons were evaluated using shuffle-corrected cross-correlograms. Pairs of NTR and TR neurons showed associations in their firing patterns over wide areas of MI (representing forelimb and hindlimb movements) during quiet sitting, more commonly involving RS neurons. During skilled task performance, however, significantly coincident firing was seen almost exclusively between TR neurons in a smaller part of MI (representing forelimb movements), involving mainly FS neurons. The findings of this study show evidence for widespread interactions in MI when the animal sits quietly, which changes to a more specific and restricted pattern of interactions during task performance. Different populations of excitatory and inhibitory neurons appear to be synchronized during skilled movement and quiet sitting.
Collapse
|
4
|
George O, Koob GF. Individual differences in prefrontal cortex function and the transition from drug use to drug dependence. Neurosci Biobehav Rev 2010; 35:232-47. [PMID: 20493211 DOI: 10.1016/j.neubiorev.2010.05.002] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 05/10/2010] [Accepted: 05/12/2010] [Indexed: 12/17/2022]
Abstract
Several neuropsychological hypotheses have been formulated to explain the transition to addiction, including hedonic allostasis, incentive salience, and the development of habits. A key feature of addiction that remains to be explored is the important individual variability observed in the propensity to self-administer drugs, the sensitivity to drug-associated cues, the severity of the withdrawal state, and the ability to quit. In this review, we suggest that the concept of self-regulation, combined with the concept of modularity of cognitive function, may aid in the understanding of the neural basis of individual differences in the vulnerability to drugs and the transition to addiction. The thesis of this review is that drug addiction involves a failure of the different subcomponents of the executive systems controlling key cognitive modules that process reward, pain, stress, emotion, habits, and decision-making. A subhypothesis is that the different patterns of drug addiction and individual differences in the transition to addiction may emerge from differential vulnerability in one or more of the subcomponents.
Collapse
Affiliation(s)
- Olivier George
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-2400, La Jolla, CA 92037, USA.
| | | |
Collapse
|
5
|
Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS. Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol 2008; 100:2348-60. [PMID: 18632882 DOI: 10.1152/jn.90396.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Differences in the developmental origin and relative proportions of biochemically distinct classes of cortical neurons have been found between rodents and primates. In addition, species differences in the properties of certain cell types, such as neurogliaform cells, have also been reported. Consequently, in this study we compared the anatomical and physiological properties of parvalbumin (PV)-positive basket interneurons in the prefrontal cortex of macaque monkeys and rats. The somal size, total dendritic length, and horizontal and vertical spans of the axonal arbor were similar in monkeys and rats. Physiologically, PV basket cells could be identified as fast-spiking interneurons in both species, based on their short spike and high-frequency firing without adaptation. However, important interspecies differences in the intrinsic physiological properties were found. In monkeys, basket cells had a higher input resistance and a lower firing threshold, and they generated more spikes at near-threshold current intensities than those in rats. Thus monkey basket cells appeared to be more excitable. In addition, rat basket cells consistently fired the first spike with a substantial delay and generated spike trains interrupted by quiescent periods more often than monkey basket cells. The frequency of miniature excitatory postsynaptic potentials in basket cells was considerably higher in rats than that in monkeys. These differences between rats and monkeys in the electrophysiological properties of PV-positive basket cells may contribute to the differential patterns of neuronal activation observed in rats and monkeys performing working-memory tasks.
Collapse
Affiliation(s)
- N V Povysheva
- University of Pittsburgh School of Arts and Sciences, Department of Psychiatry, Langley A210, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Tanaka S. Dysfunctional GABAergic inhibition in the prefrontal cortex leading to "psychotic" hyperactivation. BMC Neurosci 2008; 9:41. [PMID: 18439259 PMCID: PMC2387163 DOI: 10.1186/1471-2202-9-41] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 04/25/2008] [Indexed: 11/15/2022] Open
Abstract
Background The GABAergic system in the brain seems to be dysfunctional in various psychiatric disorders. Many studies have suggested so far that, in schizophrenia patients, GABAergic inhibition is selectively but consistently reduced in the prefrontal cortex (PFC). Results This study used a computational model of the PFC to investigate the dynamics of the PFC circuit with and without chandelier cells and other GABAergic interneurons. The inhibition by GABAergic interneurons other than chandelier cells effectively regulated the PFC activity with rather low or modest levels of dopaminergic neurotransmission. This activity of the PFC is associated with normal cognitive functions and has an inverted-U shaped profile of dopaminergic modulation. In contrast, the chandelier cell-type inhibition affected only the PFC circuit dynamics in hyperdopaminergic conditions. Reduction of chandelier cell-type inhibition resulted in bistable dynamics of the PFC circuit, in which the upper stable state is associated with a hyperactive mode. When both types of inhibition were reduced, this hyperactive mode and the conventional inverted-U mode merged. Conclusion The results of our simulation suggest that, in schizophrenia, a reduction of GABAergic inhibition increases vulnerability to psychosis by (i) producing the hyperactive mode of the PFC with hyperdopaminergic neurotransmission by dysfunctional chandelier cells and (ii) increasing the probability of the transition to the hyperactive mode from the conventional inverted-U mode by dysfunctional GABAergic interneurons.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Information and Communication Sciences, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554, Japan.
| |
Collapse
|
7
|
Bandyopadhyay S, Hablitz JJ. Dopaminergic modulation of local network activity in rat prefrontal cortex. J Neurophysiol 2007; 97:4120-8. [PMID: 17392423 DOI: 10.1152/jn.00898.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine modulates prefrontal cortex excitability in complex ways. Dopamine's net effect on local neuronal networks is therefore difficult to predict based on studies on pharmacologically isolated excitatory or inhibitory connections. In the present work, we have studied the effects of dopamine on evoked activity in acute rat brain slices when both excitation and inhibition are intact. Whole cell recordings from layer II/III pyramidal cells under conditions of normal synaptic transmission showed that bath-applied dopamine (30 microM) increased the outward inhibitory component of composite postsynaptic currents, whereas inward excitatory currents were not significantly affected. Optical imaging with the voltage-sensitive dye N-(3-(triethylammonium)propyl)-4-(4-(p-diethylaminophenyl)buta-dienyl)pyridinium dibromide revealed that bath application of dopamine significantly decreased the amplitude, duration, and lateral spread of activity in local cortical networks. This effect of dopamine was observed both with single and train (5 at 20 Hz) stimuli. The effect was mimicked by the D1-like receptor agonistR(+)-6-chloro-7,8-dihydroxy-1-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1 microM) and was blocked by R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (10 microM), a selective antagonist for D1-like receptors. The D2-like receptor agonist quinpirole (10 microM) had no significant effect on evoked dye signals. Our results suggest that dopamine's effect on inhibition dominates over that on excitation under conditions of normal synaptic transmission. Such neuromodulation by dopamine may be important for maintenance of stability in local neuronal networks in the prefrontal cortex.
Collapse
|
8
|
Tanaka S. Dopaminergic control of working memory and its relevance to schizophrenia: A circuit dynamics perspective. Neuroscience 2006; 139:153-71. [PMID: 16324800 DOI: 10.1016/j.neuroscience.2005.08.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 08/10/2005] [Accepted: 08/24/2005] [Indexed: 11/21/2022]
Abstract
This article argues how dopamine controls working memory and how the dysregulation of the dopaminergic system is related to schizophrenia. In the dorsolateral prefrontal cortex, which is the principal part of the working memory system, recurrent excitation is subtly balanced with intracortical inhibition. A potent controller of the dorsolateral prefrontal cortical circuit is the mesocortical dopaminergic system. To understand the characteristics of the dopaminergic control of working memory, the stability of the circuit dynamics under the influence of dopamine has been studied. Recent computational studies suggest that the hyperdopaminergic state is usually stable but the hypodopaminergic state tends to be unstable. The stability also depends on the efficacy of the glutamatergic transmission in the corticomesencephalic projections to dopamine neurons. When this cortical feedback is hypoglutamatergic, the circuit of the dorsolateral prefrontal cortex tends to be unstable, such that a slight increase in dopamine releasability causes a catastrophic jump of the dorsolateral prefrontal cortex activity from a low to a high level. This may account for the seemingly paradoxical overactivation of the dorsolateral prefrontal cortex observed in schizophrenic patients. Given that dopamine transmission is abnormal in the brains of patients with schizophrenia and working memory deficit is a core dysfunction in schizophrenia, the concept of circuit stability would be useful not only for understanding the mechanisms of working memory processing but for developing therapeutic strategies to enhance cognitive functions in schizophrenia.
Collapse
Affiliation(s)
- S Tanaka
- Department of Electrical and Electronics Engineering, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo 102-8554, Japan.
| |
Collapse
|
9
|
Povysheva NV, Gonzalez-Burgos G, Zaitsev AV, Kröner S, Barrionuevo G, Lewis DA, Krimer LS. Properties of excitatory synaptic responses in fast-spiking interneurons and pyramidal cells from monkey and rat prefrontal cortex. ACTA ACUST UNITED AC 2005; 16:541-52. [PMID: 16033926 DOI: 10.1093/cercor/bhj002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the prefrontal cortex (PFC) during working memory tasks fast-spiking (FS) interneurons might shape the spatial selectivity of pyramidal cell firing. In order to provide time control of pyramidal cell activity, incoming excitatory inputs should excite FS interneurons more vigorously than pyramidal cells. This can be achieved if subthreshold excitatory responses of interneurons are considerably stronger and faster than those in pyramidal neurons. Here we compared the functional properties of excitatory post-synaptic potentials (EPSPs) between pyramidal cells and FS interneurons in slices from monkey dorsolateral PFC and rat prelimbic cortex. Miniature, unitary (in connected pairs or by minimal stimulation) and compound (evoked by electrical stimulation of the white matter) EPSPs were recorded in whole cell mode. We found that EPSPs were significantly larger and faster in FS interneurons than those recorded from pyramidal cells, consistent with the idea of more efficient recruitment of FS interneurons compared to pyramidal neurons. Similar results were obtained in monkey and rat PFC, suggesting a stable role of FS interneurons in this circuitry across species.
Collapse
Affiliation(s)
- N V Povysheva
- Department of Psychiatry, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213-2593, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Vogel DD. A neural network model of memory and higher cognitive functions. Int J Psychophysiol 2005; 55:3-21. [PMID: 15598512 DOI: 10.1016/j.ijpsycho.2004.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 05/14/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
I first describe a neural network model of associative memory in a small region of the brain. The model depends, unconventionally, on disinhibition of inhibitory links between excitatory neurons rather than long-term potentiation (LTP) of excitatory projections. The model may be shown to have advantages over traditional neural network models both in terms of information storage capacity and biological plausibility. The learning and recall algorithms are independent of network architecture, and require no thresholds or finely graded synaptic strengths. Several copies of this local network are then connected by means of many, weak, reciprocal, excitatory projections that allow one region to control the recall of information in another to produce behaviors analogous to serial memory, classical and operant conditioning, secondary reinforcement, refabrication of memory, and fabrication of possible future events. The network distinguishes between perceived and recalled events, and can predicate its response on the absence as well as the presence of particular stimuli. Some of these behaviors are achieved in ways that seem to provide instances of self-awareness and imagination, suggesting that consciousness may emerge as an epiphenomenon in simple brains.
Collapse
Affiliation(s)
- David D Vogel
- Ross University, Portsmouth, Commonwealth of Dominica.
| |
Collapse
|
11
|
Miyashita S, Tabuchi Y, Tanaka S. Cortico-thalamocortical operations of multi-target spatial working memory. Neurocomputing 2003. [DOI: 10.1016/s0925-2312(02)00809-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
|
13
|
Constantinidis C, Goldman-Rakic PS. Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. J Neurophysiol 2002; 88:3487-97. [PMID: 12466463 DOI: 10.1152/jn.00188.2002] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurophysiological recordings have revealed that the discharges of nearby cortical cells are positively correlated in time scales that range from millisecond synchronization of action potentials to much slower firing rate co-variations, evident in rates averaged over hundreds of milliseconds. The presence of correlated firing can offer insights into the patterns of connectivity between neurons; however, few models of population coding have taken account of the neuronal diversity present in cerebral cortex, notably a distinction between inhibitory and excitatory cells. We addressed this question in the monkey dorsolateral prefrontal cortex by recording neuronal activity from multiple micro-electrodes, typically spaced 0.2-0.3 mm apart. Putative excitatory and inhibitory neurons were distinguished based on their action potential waveform and baseline discharge rate. We tested each pair of simultaneously recorded neurons for presence of significant cross-correlation peaks and measured the correlation of their averaged firing rates in successive trials. When observed, cross-correlation peaks were centered at time 0, indicating synchronous firing consistent with two neurons receiving common input. Discharges in pairs of putative inhibitory interneurons were found to be significantly more strongly correlated than in pairs of putative excitatory cells. The degree of correlated firing was also higher for neurons with similar spatial receptive fields and neurons active in the same epochs of the behavioral task. These factors were important in predicting the strength of both short time scale (<5 ms) correlations and of trial-to-trial discharge rate covariations. Correlated firing was only marginally accounted for by motor and behavioral variations between trials. Our findings suggest that nearby inhibitory neurons are more tightly synchronized than excitatory ones and account for much of the correlated discharges commonly observed in undifferentiated cortical networks. In contrast, the discharge of pyramidal neurons, the sole projection cells of the cerebral cortex, appears largely independent, suggesting that correlated firing may be a property confined within local circuits and only to a lesser degree propagated to distant cortical areas and modules.
Collapse
|
14
|
Tanaka S. Multi-directional representation of spatial working memory in a model prefrontal cortical circuit. Neurocomputing 2002. [DOI: 10.1016/s0925-2312(02)00503-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Correlation analysis of signal flow in a model prefrontal cortical circuit representing multiple target locations. Neurocomputing 2002. [DOI: 10.1016/s0925-2312(02)00419-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Abstract
This study addresses computationally how the prefrontal cortical circuit performs operations of multiple items in spatial working memory. The basic idea is that dopamine controls the circuit dynamics for the operations by changing the ratio of the NMDA-channel transmission to the AMPA-channel transmission. There is evidence that this ratio is a function of dopamine D1 receptor activation. The simulation shows that the model circuit performs several different operations of multi-target spatial working memory depending on this ratio. When the ratio is low, 'replacement' occurs from the previously loaded target to a new one. In intermediate levels of the ratio, a new target is 'added' to the previously loaded target, resulting in the coexistence of more than one target. For higher ratios, the circuit 'rejects' other succeedingly received target stimuli. This study suggests four important issues: First, the cortical circuit can perform operations of multi-target spatial working memory. Second, the circuit can switch the modes of the operations by changing the NMDA-to-AMPA ratio. Third, dopamine would have major roles in the operations of multi-target spatial working memory. Fourth, the intracortical inhibition (especially of the cross-directional) plays an important role in regulating the competition between targets.
Collapse
Affiliation(s)
- Shoji Tanaka
- Department of Electrical and Electronics Engineering. Sophia University, Tokyo, Japan.
| |
Collapse
|
17
|
Iida M, Tanaka S. Postsynaptic current analysis of a model prefrontal cortical circuit for multi-target spatial working memory. Neurocomputing 2002. [DOI: 10.1016/s0925-2312(02)00483-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Yamashita K, Tanaka S. Circuit simulation of memory field modulation by dopamine Dl receptor activation. Neurocomputing 2002. [DOI: 10.1016/s0925-2312(02)00508-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
|
20
|
Melchitzky DS, González-Burgos G, Barrionuevo G, Lewis DA. Synaptic targets of the intrinsic axon collaterals of supragranular pyramidal neurons in monkey prefrontal cortex. J Comp Neurol 2001; 430:209-21. [PMID: 11135257 DOI: 10.1002/1096-9861(20010205)430:2<209::aid-cne1026>3.0.co;2-#] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The principal axons of supragranular pyramidal neurons in the cerebral cortex travel through the white matter and terminate in other cortical areas, whereas their intrinsic axon collaterals course through the gray matter and form both local and long-distance connections within a cortical region. In the monkey prefrontal cortex (PFC), horizontally oriented, intrinsic axon collaterals from supragranular pyramidal neurons form a series of stripe-like clusters of axon terminals (Levitt et al. [1993] J Comp Neurol 338:360-376; Pucak et al. [1996] J Comp Neurol 376:614-630). The present study examined the synaptic targets of the intrinsic axon collaterals arising from supragranular pyramidal neurons within the same stripe (local projections). Approximately 50% of the within-stripe axon terminals in monkey PFC area 9 targeted dendritic spines. In contrast, for both the intrinsic axon collaterals that travel between stripes (long-range projections), and the axon terminals that project to other PFC areas (associational projections), over 92% of the postsynaptic structures were dendritic spines (Melchitzky et al. [1998] J Comp Neurol 390:211-224). The other 50% of the within-stripe terminals synapsed with dendritic shafts. Dual-labeling studies confirmed that these within-stripe terminals contacted gamma-aminobutyric acid-immunoreactive dendritic shafts, including the subpopulation that contains the calcium-binding protein parvalbumin. The functional significance of the differences in synaptic targets between local and long-range intrinsic axon collaterals was supported by whole-cell, patch clamp recordings in an in vitro slice preparation of monkey PFC. Specifically, the small amplitude responses observed in layer 3 pyramidal neurons during long-range, low-intensity stimulation were exclusively excitatory, whereas local stimulation also evoked di/polysynaptic inhibitory responses. These anatomic and electrophysiological findings suggest that intrinsic connections of the PFC differ from other cortical regions and that within the PFC, feedback (within-stripe) inhibition plays a greater role in regulating the activity of supragranular pyramidal neurons than does feedforward inhibition either between stripes or across regions.
Collapse
Affiliation(s)
- D S Melchitzky
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
21
|
Tanaka S. Computational approaches to the architecture and operations of the prefrontal cortical circuit for working memory. Prog Neuropsychopharmacol Biol Psychiatry 2001; 25:259-81. [PMID: 11263755 DOI: 10.1016/s0278-5846(00)00155-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. This article reviews recent progress in the computational studies towards the architecture and operations of the prefrontal cortical circuit, which are keys to understand the mechanisms of working memory processing. 2. The recurrent excitatory connections form closed-loop circuits, which contribute to the sustainment of delay-period activity. These connections subserve the cortical amplification of the activity. 3. Recent experimental studies (Wilson et al. 1994; Rao et al. 1999, 2000) suggested that at least two architectonically distinct types of intracortical inhibition, isodirectional and cross-directional inhibition, play significant roles in the formation of memory fields. 4. Computer simulations of a prefrontal cortical circuit model (Tanaka 1999, 2000a) showed that the isodirectional inhibition in the model regulated the amplitude of memory fields (i.e., the maximum firing rate) while the cross-directional inhibition contributed to the sharpening of the memory fields or the tuning curves. 5. The above characteristics enable the prefrontal cortical circuit to control memory fields, which would be necessary to general working memory processing. It would also be interesting to know whether different subtypes of the interneurons have distinct roles. 6. Another important issue is how neuromodulators contribute to working memory processing. Recent computer simulations by Durstewitz et al. (1999, 2000) showed that stronger dopamine action required stronger intervening input to destroy working memory, suggesting that dopamine contributes to the stabilization of working memory representation. 7. Further elucidation of these issues based on more detailed anatomical data of the cortical circuitry would make the architecture and operations of the prefrontal cortical circuit be more clearly described.
Collapse
Affiliation(s)
- S Tanaka
- Department of Electrical and Electronics Engineering, Sophia University Laboratory of Cortical Circuits and Computation, Sophia High-Tech Research Center, Tokyo, Japan.
| |
Collapse
|
22
|
|
23
|
Tanaka S. Roles of intracortical inhibition in the formation of spatially tuned delay-period activity of prefrontal cortical neurons: computational study. Prog Neuropsychopharmacol Biol Psychiatry 2000; 24:483-504. [PMID: 10958146 DOI: 10.1016/s0278-5846(00)00088-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. This paper proposes a computational circuit model of the prefrontal cortex, with which computer simulations of the delay-period activity of the prefrontal cortical neurons are made. 2. The aim of this study is to address the question as to how the two types of local inhibition (the parallel inhibition and the anti-parallel inhibition), which were suggested previously and are assumed in this model, contribute to the formation of spatially tuned delay-period activity. 3. The results suggest that the parallel inhibition regulates the level of the delay-period activity, while the anti-parallel inhibition contributes to the sharpening of the activity profile in the delay period. 4. This study found a new prediction that the weakened parallel inhibition causes stronger anti-parallel inhibition of the inactive pyramidal cells due to the disinhibition of the active pyramidal cells. 5. These results suggest the important roles of the intracortical inhibition in the formation and maintenance of spatial working memory.
Collapse
Affiliation(s)
- S Tanaka
- Department of Electrical and Electronics Engineering, Sophia University, Tokyo, Japan
| |
Collapse
|