1
|
Barbosa DJ, Carvalho C, Costa I, Silva R. Molecular Motors in Myelination and Their Misregulation in Disease. Mol Neurobiol 2025; 62:4705-4723. [PMID: 39477877 PMCID: PMC11880050 DOI: 10.1007/s12035-024-04576-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/21/2024] [Indexed: 03/05/2025]
Abstract
Molecular motors are cellular components involved in the intracellular transport of organelles and materials to ensure cell homeostasis. This is particularly relevant in neurons, where the synaptic components synthesized in the soma need to travel over long distances to their destination. They can walk on microtubules (kinesins and dyneins) or actin filaments (myosins), the major components of cell cytoskeleton. While kinesins mostly perform the anterograde transport of intracellular components toward the plus ends of microtubules located distally in cell processes, cytoplasmic dyneins allow the retrograde flux of intracellular cargo toward the minus ends of microtubules located at the cell soma. Axon myelination represents a major aspect of neuronal maturation and is essential for neuronal function, as it speeds up the transmission of electrical signals. Increasing evidence supports a role for molecular motors in the homeostatic control of myelination. This role includes the trafficking of myelin components along the processes of myelinating cells and local regulation of pathways that ensure axon wrapping. Dysfunctional control of the intracellular transport machinery has therefore been linked to several brain pathologies, including demyelinating diseases. These disorders include a broad spectrum of conditions characterized by pathological demyelination of axons within the nervous system, ultimately leading to axonal degeneration and neuronal death, with multiple sclerosis representing the most prevalent and studied condition. This review highlights the involvement of molecular motors in the homeostatic control of myelination. It also discusses studies that have yielded insights into the dysfunctional activity of molecular motors in the pathophysiology of multiple sclerosis.
Collapse
Affiliation(s)
- Daniel José Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116, Gandra, Portugal.
- UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116, Gandra, Portugal.
| | - Cátia Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313, Porto, Portugal
| | - Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| |
Collapse
|
2
|
Moffat A, Schuurmans C. The Control of Cortical Folding: Multiple Mechanisms, Multiple Models. Neuroscientist 2024; 30:704-722. [PMID: 37621149 PMCID: PMC11558946 DOI: 10.1177/10738584231190839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The cerebral cortex develops through a carefully conscripted series of cellular and molecular events that culminate in the production of highly specialized neuronal and glial cells. During development, cortical neurons and glia acquire a precise cellular arrangement and architecture to support higher-order cognitive functioning. Decades of study using rodent models, naturally gyrencephalic animal models, human pathology specimens, and, recently, human cerebral organoids, reveal that rodents recapitulate some but not all the cellular and molecular features of human cortices. Whereas rodent cortices are smooth-surfaced or lissencephalic, larger mammals, including humans and nonhuman primates, have highly folded/gyrencephalic cortices that accommodate an expansion in neuronal mass and increase in surface area. Several genes have evolved to drive cortical gyrification, arising from gene duplications or de novo origins, or by alterations to the structure/function of ancestral genes or their gene regulatory regions. Primary cortical folds arise in stereotypical locations, prefigured by a molecular "blueprint" that is set up by several signaling pathways (e.g., Notch, Fgf, Wnt, PI3K, Shh) and influenced by the extracellular matrix. Mutations that affect neural progenitor cell proliferation and/or neurogenesis, predominantly of upper-layer neurons, perturb cortical gyrification. Below we review the molecular drivers of cortical folding and their roles in disease.
Collapse
Affiliation(s)
- Alexandra Moffat
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Biological Sciences Platform, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Doobin DJ, Helmer P, Carabalona A, Bertipaglia C, Vallee RB. The Role of Nde1 phosphorylation in interkinetic nuclear migration and neural migration during cortical development. Mol Biol Cell 2024; 35:ar129. [PMID: 39167527 PMCID: PMC11481692 DOI: 10.1091/mbc.e24-05-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/18/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
Nde1 is a cytoplasmic dynein regulatory protein with important roles in vertebrate brain development. One noteworthy function is in the nuclear oscillatory behavior in neural progenitor cells, the control and mechanism of which remain poorly understood. Nde1 contains multiple phosphorylation sites for the cell cycle-dependent protein kinase CDK1, though the function of these sites is not well understood. To test their role in brain development, we expressed phosphorylation-state mutant forms of Nde1 in embryonic rat brains using in utero electroporation. We find that Nde1 T215 and T243 phosphomutants block apical interkinetic nuclear migration (INM) and, consequently, mitosis in radial glial progenitor cells. Another Nde1 phosphomutant at T246 also interfered with mitotic entry without affecting INM, suggesting a more direct role for Nde1 T246 in mitotic regulation. We also found that the Nde1 S214F mutation, which is associated with schizophrenia, inhibits Cdk5 phosphorylation at an adjacent residue which causes alterations in neuronal lamination. These results together identify important new roles for Nde1 phosphorylation in neocortical development and disease, and represent the first evidence for Nde1 phosphorylation roles in INM and neuronal lamination.
Collapse
Affiliation(s)
| | - Paige Helmer
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Aurelie Carabalona
- Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | | | - Richard B. Vallee
- Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
4
|
Tsai MH, Ke HC, Lin WC, Nian FS, Huang CW, Cheng HY, Hsu CS, Granata T, Chang CH, Castellotti B, Lin SY, Doniselli FM, Lu CJ, Franceschetti S, Ragona F, Hou PS, Canafoglia L, Tung CY, Lee MH, Wang WJ, Tsai JW. Novel lissencephaly-associated NDEL1 variant reveals distinct roles of NDE1 and NDEL1 in nucleokinesis and human cortical malformations. Acta Neuropathol 2024; 147:13. [PMID: 38194050 PMCID: PMC10776482 DOI: 10.1007/s00401-023-02665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
The development of the cerebral cortex involves a series of dynamic events, including cell proliferation and migration, which rely on the motor protein dynein and its regulators NDE1 and NDEL1. While the loss of function in NDE1 leads to microcephaly-related malformations of cortical development (MCDs), NDEL1 variants have not been detected in MCD patients. Here, we identified two patients with pachygyria, with or without subcortical band heterotopia (SBH), carrying the same de novo somatic mosaic NDEL1 variant, p.Arg105Pro (p.R105P). Through single-cell RNA sequencing and spatial transcriptomic analysis, we observed complementary expression of Nde1/NDE1 and Ndel1/NDEL1 in neural progenitors and post-mitotic neurons, respectively. Ndel1 knockdown by in utero electroporation resulted in impaired neuronal migration, a phenotype that could not be rescued by p.R105P. Remarkably, p.R105P expression alone strongly disrupted neuronal migration, increased the length of the leading process, and impaired nucleus-centrosome coupling, suggesting a failure in nucleokinesis. Mechanistically, p.R105P disrupted NDEL1 binding to the dynein regulator LIS1. This study identifies the first lissencephaly-associated NDEL1 variant and sheds light on the distinct roles of NDE1 and NDEL1 in nucleokinesis and MCD pathogenesis.
Collapse
Affiliation(s)
- Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Chen Ke
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wan-Cian Lin
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fang-Shin Nian
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Wei Huang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Haw-Yuan Cheng
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Sin Hsu
- Genomics Center for Clinical and Biotechnological Applications, Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tiziana Granata
- Department of Paediatric Neuroscience, European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chien-Hui Chang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Shin-Yi Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fabio M Doniselli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cheng-Ju Lu
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Silvana Franceschetti
- Integrated Diagnostics for Epilepsy, Department of Diagnostic and Technology, European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesca Ragona
- Department of Paediatric Neuroscience, European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Department of Diagnostic and Technology, European Reference Network EPIcare, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chien-Yi Tung
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Won-Jing Wang
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biochemistry and Molecule Biology, College of Life Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Advanced Therapeutics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Vassileva V, Georgieva M, Todorov D, Mishev K. Small Sized Yet Powerful: Nuclear Distribution C Proteins in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 13:119. [PMID: 38202427 PMCID: PMC10780334 DOI: 10.3390/plants13010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The family of Nuclear Distribution C (NudC) proteins plays a pivotal and evolutionarily conserved role in all eukaryotes. In animal systems, these proteins influence vital cellular processes like cell division, protein folding, nuclear migration and positioning, intracellular transport, and stress response. This review synthesizes past and current research on NudC family members, focusing on their growing importance in plants and intricate contributions to plant growth, development, and stress tolerance. Leveraging information from available genomic databases, we conducted a thorough characterization of NudC family members, utilizing phylogenetic analysis and assessing gene structure, motif organization, and conserved protein domains. Our spotlight on two Arabidopsis NudC genes, BOB1 and NMig1, underscores their indispensable roles in embryogenesis and postembryonic development, stress responses, and tolerance mechanisms. Emphasizing the chaperone activity of plant NudC family members, crucial for mitigating stress effects and enhancing plant resilience, we highlight their potential as valuable targets for enhancing crop performance. Moreover, the structural and functional conservation of NudC proteins across species suggests their potential applications in medical research, particularly in functions related to cell division, microtubule regulation, and associated pathways. Finally, we outline future research avenues centering on the exploration of under investigated functions of NudC proteins in plants.
Collapse
Affiliation(s)
- Valya Vassileva
- Department of Molecular Biology and Genetics, Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (D.T.)
| | | | | | - Kiril Mishev
- Department of Molecular Biology and Genetics, Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (M.G.); (D.T.)
| |
Collapse
|
6
|
Abstract
Cytoplasmic dynein drives the motility and force generation functions towards the microtubule minus end. The assembly of dynein with dynactin and a cargo adaptor in an active transport complex is facilitated by Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 relieves dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigate how human Nde1 and Lis1 regulate the assembly and subsequent motility of mammalian dynein using in vitro reconstitution and single molecule imaging. We find that Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin adaptor complexes. Nde1 can compete with the α2 subunit of platelet activator factor acetylhydrolase 1B (PAF-AH1B) for the binding of Lis1, which suggests that Nde1 may disrupt PAF-AH1B recruitment of Lis1 as a noncatalytic subunit, thus promoting Lis1 binding to dynein. Before the initiation of motility, the association of dynactin with dynein triggers the dissociation of Nde1 from dynein by competing against Nde1 binding to the dynein intermediate chain. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, 94709, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA
| | - Sena Oten
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, 94709, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94709, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA, 94709, USA.
| |
Collapse
|
7
|
Zhao Y, Oten S, Yildiz A. Nde1 Promotes Lis1-Mediated Activation of Dynein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.26.542537. [PMID: 37292665 PMCID: PMC10246013 DOI: 10.1101/2023.05.26.542537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytoplasmic dynein is the primary motor that drives the motility and force generation functions towards the microtubule minus end. The activation of dynein motility requires its assembly with dynactin and a cargo adaptor. This process is facilitated by two dynein-associated factors, Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 rescues dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigated how human Nde1 and Lis1 regulate the assembly and subsequent motility of the mammalian dynein/dynactin complex using in vitro reconstitution and single molecule imaging. We found that Nde1 promotes the assembly of active dynein complexes in two distinct ways. Nde1 competes with the α2 subunit of platelet activator factor acetylhydrolase (PAF-AH) 1B, which recruits Lis1 as a noncatalytic subunit and prevents its binding to dynein. Second, Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin-adaptor complexes. However, excess Nde1 inhibits dynein, presumably by competing against dynactin to bind the dynein intermediate chain. The association of dynactin with dynein triggers Nde1 dissociation before the initiation of dynein motility. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.
Collapse
Affiliation(s)
- Yuanchang Zhao
- Physics Department, University of California, Berkeley, CA, USA, 94709
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
| | - Sena Oten
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
| | - Ahmet Yildiz
- Physics Department, University of California, Berkeley, CA, USA, 94709
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA, 94709
- Biophysics Graduate Group, University of California, Berkeley, CA, USA, 94709
| |
Collapse
|
8
|
Garrott SR, Gillies JP, Siva A, Little SR, El Jbeily R, DeSantis ME. Ndel1 disfavors dynein-dynactin-adaptor complex formation in two distinct ways. J Biol Chem 2023; 299:104735. [PMID: 37086789 PMCID: PMC10248797 DOI: 10.1016/j.jbc.2023.104735] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023] Open
Abstract
Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
Collapse
Affiliation(s)
- Sharon R Garrott
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rita El Jbeily
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
9
|
Garrott SR, Gillies JP, Siva A, Little SR, Jbeily REI, DeSantis ME. Ndel1 modulates dynein activation in two distinct ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525437. [PMID: 36747695 PMCID: PMC9900795 DOI: 10.1101/2023.01.25.525437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynein is the primary minus-end-directed microtubule motor [1]. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex" [2, 3]. The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and adaptor [4, 5]. Ndel1 and its orthologue Nde1 are dynein and Lis1 binding proteins that help control where dynein localizes within the cell [6]. Cell-based assays suggest that Ndel1/Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear [6]. Using purified proteins and quantitative binding assays, we found that Ndel1's C-terminal region contributes to binding to dynein and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in Ndel1's C-terminal domain increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.
Collapse
Affiliation(s)
- Sharon R Garrott
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - John P Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aravintha Siva
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saffron R Little
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rita EI Jbeily
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Morgan E DeSantis
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Kholmanskikh S, Singh S, Ross ME. Activation of RhoC by regulatory ubiquitination is mediated by LNX1 and suppressed by LIS1. Sci Rep 2022; 12:16493. [PMID: 36192543 PMCID: PMC9529947 DOI: 10.1038/s41598-022-19740-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Regulation of Rho GTPases remains a topic of active investigation as they are essential participants in cell biology and the pathophysiology of many human diseases. Non-degrading ubiquitination (NDU) is a critical regulator of the Ras superfamily, but its relevance to Rho proteins remains unknown. We show that RhoC, but not RhoA, is a target of NDU by E3 ubiquitin ligase, LNX1. Furthermore, LNX1 ubiquitination of RhoC is negatively regulated by LIS1 (aka, PAFAH1B1). Despite multiple reports of functional interaction between LIS1 and activity of Rho proteins, a robust mechanism linking the two has been lacking. Here, LIS1 inhibition of LNX1 effects on RhoGDI-RhoC interaction provides a molecular mechanism underpinning the enhanced activity of Rho proteins observed upon reduction in LIS1 protein levels. Since LNX1 and RhoC are only found in vertebrates, the LIS1-LNX1-RhoC module represents an evolutionarily acquired function of the highly conserved LIS1. While these nearly identical proteins have several distinct RhoA and RhoC downstream effectors, our data provide a rare example of Rho-isoform specific, upstream regulation that opens new therapeutic opportunities.
Collapse
Affiliation(s)
- Stanislav Kholmanskikh
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th St, Box 240, New York, NY, 10021, USA.
| | - Shawn Singh
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th St, Box 240, New York, NY, 10021, USA
| | - M Elizabeth Ross
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 413 East 69th St, Box 240, New York, NY, 10021, USA.
| |
Collapse
|
11
|
Torisawa T, Kimura A. Sequential accumulation of dynein and its regulatory proteins at the spindle region in the Caenorhabditis elegans embryo. Sci Rep 2022; 12:11740. [PMID: 35817834 PMCID: PMC9273622 DOI: 10.1038/s41598-022-15042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Cytoplasmic dynein is responsible for various cellular processes during the cell cycle. The mechanism by which its activity is regulated spatially and temporarily inside the cell remains elusive. There are various regulatory proteins of dynein, including dynactin, NDEL1/NUD-2, and LIS1. Characterizing the spatiotemporal localization of regulatory proteins in vivo will aid understanding of the cellular regulation of dynein. Here, we focused on spindle formation in the Caenorhabditis elegans early embryo, wherein dynein and its regulatory proteins translocated from the cytoplasm to the spindle region upon nuclear envelope breakdown (NEBD). We found that (i) a limited set of dynein regulatory proteins accumulated in the spindle region, (ii) the spatial localization patterns were distinct among the regulators, and (iii) the regulatory proteins did not accumulate in the spindle region simultaneously but sequentially. Furthermore, the accumulation of NUD-2 was unique among the regulators. NUD-2 started to accumulate before NEBD (pre-NEBD accumulation), and exhibited the highest enrichment compared to the cytoplasmic concentration. Using a protein injection approach, we revealed that the C-terminal helix of NUD-2 was responsible for pre-NEBD accumulation. These findings suggest a fine temporal control of the subcellular localization of regulatory proteins.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan.
| |
Collapse
|
12
|
Chomiak AA, Guo Y, Kopsidas CA, McDaniel DP, Lowe CC, Pan H, Zhou X, Zhou Q, Doughty ML, Feng Y. Nde1 is required for heterochromatin compaction and stability in neocortical neurons. iScience 2022; 25:104354. [PMID: 35601919 PMCID: PMC9121328 DOI: 10.1016/j.isci.2022.104354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The NDE1 gene encodes a scaffold protein essential for brain development. Although biallelic NDE1 loss of function (LOF) causes microcephaly with profound mental retardation, NDE1 missense mutations and copy number variations are associated with multiple neuropsychiatric disorders. However, the etiology of the diverse phenotypes resulting from NDE1 aberrations remains elusive. Here we demonstrate Nde1 controls neurogenesis through facilitating H4K20 trimethylation-mediated heterochromatin compaction. This mechanism patterns diverse chromatin landscapes and stabilizes constitutive heterochromatin of neocortical neurons. We demonstrate that NDE1 can undergo dynamic liquid-liquid phase separation, partitioning to the nucleus and interacting with pericentromeric and centromeric satellite repeats. Nde1 LOF results in nuclear architecture aberrations and DNA double-strand breaks, as well as instability and derepression of pericentromeric satellite repeats in neocortical neurons. These findings uncover a pivotal role of NDE1/Nde1 in establishing and protecting neuronal heterochromatin. They suggest that heterochromatin instability predisposes a wide range of brain dysfunction.
Collapse
Affiliation(s)
- Alison A. Chomiak
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Yan Guo
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Superior Street, Chicago, IL 60611, USA
| | - Caroline A. Kopsidas
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Dennis P. McDaniel
- Biomedical Instrumentation Center, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clara C. Lowe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Xiaoming Zhou
- Department of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Qiong Zhou
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Martin L. Doughty
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Yuanyi Feng
- Department of Biochemistry and Molecular Biology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
13
|
Garrott SR, Gillies JP, DeSantis ME. Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport. Front Cell Dev Biol 2022; 10:871935. [PMID: 35493069 PMCID: PMC9041303 DOI: 10.3389/fcell.2022.871935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein’s interaction with cargo and modulate dynein’s ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein’s regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein’s important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1’s molecular effect on dynein activity.
Collapse
Affiliation(s)
- Sharon R. Garrott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Morgan E. DeSantis
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Morgan E. DeSantis,
| |
Collapse
|
14
|
Buttermore ED, Anderson NC, Chen PF, Makhortova NR, Kim KH, Wafa SMA, Dwyer S, Micozzi JM, Winden KD, Zhang B, Han MJ, Kleiman RJ, Brownstein CA, Sahin M, Gonzalez-Heydrich J. 16p13.11 deletion variants associated with neuropsychiatric disorders cause morphological and synaptic changes in induced pluripotent stem cell-derived neurons. Front Psychiatry 2022; 13:924956. [PMID: 36405918 PMCID: PMC9669751 DOI: 10.3389/fpsyt.2022.924956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
16p13.11 copy number variants (CNVs) have been associated with autism, schizophrenia, psychosis, intellectual disability, and epilepsy. The majority of 16p13.11 deletions or duplications occur within three well-defined intervals, and despite growing knowledge of the functions of individual genes within these intervals, the molecular mechanisms that underlie commonly observed clinical phenotypes remain largely unknown. Patient-derived, induced pluripotent stem cells (iPSCs) provide a platform for investigating the morphological, electrophysiological, and gene-expression changes that result from 16p13.11 CNVs in human-derived neurons. Patient derived iPSCs with varying sizes of 16p13.11 deletions and familial controls were differentiated into cortical neurons for phenotypic analysis. High-content imaging and morphological analysis of patient-derived neurons demonstrated an increase in neurite branching in patients compared with controls. Whole-transcriptome sequencing revealed expression level changes in neuron development and synaptic-related gene families, suggesting a defect in synapse formation. Subsequent quantification of synapse number demonstrated increased numbers of synapses on neurons derived from early-onset patients compared to controls. The identification of common phenotypes among neurons derived from patients with overlapping 16p13.11 deletions will further assist in ascertaining common pathways and targets that could be utilized for screening drug candidates. These studies can help to improve future treatment options and clinical outcomes for 16p13.11 deletion patients.
Collapse
Affiliation(s)
- Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Nickesha C Anderson
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Pin-Fang Chen
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Nina R Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Kristina H Kim
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States
| | - Syed M A Wafa
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Sean Dwyer
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - John M Micozzi
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Min-Joon Han
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States
| | - Robin J Kleiman
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Catherine A Brownstein
- The Manton Center of Orphan Disease Research, Boston Children's Hospital, Boston, MA, United States
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurology, Boston Children's Hospital, Boston, MA, United States.,Harvard Medical School Teaching Hospital, Boston, MA, United States
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Developmental Neuropsychiatry Research Program, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
15
|
Zhang Y, Chen Z, Wang F, Sun H, Zhu X, Ding J, Zhang T. Nde1 is a Rab9 effector for loading late endosomes to cytoplasmic dynein motor complex. Structure 2021; 30:386-395.e5. [PMID: 34793709 DOI: 10.1016/j.str.2021.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
Rab9 is mainly located on late endosomes and required for their intracellular transport to trans-Golgi network (TGN). The cytoplasmic dynein motor, together with its regulatory proteins Nde1/Ndel1 and Lis1, controls intracellular retrograde transport of membranous organelles along the microtubule network. How late endosomes are tethered to the microtubule-based motor dynein for their retrograde transport remains unclear. Here, we demonstrate that the guanosine triphosphate (GTP)-bound Rab9A/B specifically uses Nde1/Ndel1 as an effector to interact with the dynein motor complex. We determined the crystal structure of Rab9A-GTP in complex with the Rab9-binding region of Nde1. The functional roles of key residues involved in the Rab9A-Nde1 interaction are verified using biochemical and cell biology assays. Rab9A mutants unable to bind to Nde1 also failed to associate with dynein, Lis1, and dynactin. Therefore, Nde1 is a Rab9 effector that tethers Rab9-associated late endosomes to the dynein motor for their retrograde transport to the TGN.
Collapse
Affiliation(s)
- Yifan Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Ziyue Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Fang Wang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Honghua Sun
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xueliang Zhu
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Road, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, 393 Hua-Xia Zhong Road, Shanghai 201210, China.
| | - Jianping Ding
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Xiangshan Road, Hangzhou 310024, China; School of Life Science and Technology, ShanghaiTech University, 393 Hua-Xia Zhong Road, Shanghai 201210, China.
| | - Tianlong Zhang
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 500 Yonghe Road, Nantong 226011, China.
| |
Collapse
|
16
|
Bas H, Saylisoy S, Cilingir O, Gokalp EE, Kocagil S, Yarar C, Aras BD, Artan S. NDE1-related disorders: A recurrent NDE1 pathogenic variant causing Lissencephaly 4 can also be associated with microhydranencephaly. Am J Med Genet A 2021; 188:326-331. [PMID: 34562061 DOI: 10.1002/ajmg.a.62508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 11/08/2022]
Abstract
NudE Neurodevelopment Protein 1 (NDE1) gene encodes a protein required for microtubule organization, mitosis, and neuronal migration. Biallelic pathogenic variants of NDE1 gene are associated with structural central nervous system abnormalities, specifically microlissencephaly and microhydranencephaly. The root of these different phenotypes remains unclear. Here, we report a 20-year-old male patient referred to our clinics due to severe microcephaly, developmental delay, spastic quadriplegia, and dysmorphic features. The cranial computed tomography revealed abnormal brain structure and excess of cerebrospinal fluid, consistent with microhydranencephaly. A homozygous c.684_685del, p.(Pro229TrpfsTer85) change in NDE1 gene was found by clinical exome analysis. The variant has previously been reported in individuals with microlissencephaly, therefore we propose that the same variant within the gene may cause either microlissencephaly or microhydranencephaly phenotypes. There are only a few papers about NDE1-related disorders in the literature and the patient we described is important to clarify the phenotypic spectrum of the disease.
Collapse
Affiliation(s)
- Hasan Bas
- Faculty of Medicine, Department of Medical Genetics, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Suzan Saylisoy
- Faculty of Medicine, Department of Radiology, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Oguz Cilingir
- Faculty of Medicine, Department of Medical Genetics, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Ebru Erzurumluoglu Gokalp
- Faculty of Medicine, Department of Medical Genetics, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Sinem Kocagil
- Faculty of Medicine, Department of Medical Genetics, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Coskun Yarar
- Faculty of Medicine, Department of Pediatric Neurology, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Beyhan Durak Aras
- Faculty of Medicine, Department of Medical Genetics, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Sevilhan Artan
- Faculty of Medicine, Department of Medical Genetics, Eskisehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
17
|
Fokin AI, Gautreau AM. Assembly and Activity of the WASH Molecular Machine: Distinctive Features at the Crossroads of the Actin and Microtubule Cytoskeletons. Front Cell Dev Biol 2021; 9:658865. [PMID: 33869225 PMCID: PMC8047104 DOI: 10.3389/fcell.2021.658865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023] Open
Abstract
The Arp2/3 complex generates branched actin networks at different locations of the cell. The WASH and WAVE Nucleation Promoting Factors (NPFs) activate the Arp2/3 complex at the surface of endosomes or at the cell cortex, respectively. In this review, we will discuss how these two NPFs are controlled within distinct, yet related, multiprotein complexes. These complexes are not spontaneously assembled around WASH and WAVE, but require cellular assembly factors. The centrosome, which nucleates microtubules and branched actin, appears to be a privileged site for WASH complex assembly. The actin and microtubule cytoskeletons are both responsible for endosome shape and membrane remodeling. Motors, such as dynein, pull endosomes and extend membrane tubules along microtubule tracks, whereas branched actin pushes onto the endosomal membrane. It was recently uncovered that WASH assembles a super complex with dynactin, the major dynein activator, where the Capping Protein (CP) is exchanged from dynactin to the WASH complex. This CP swap initiates the first actin filament that primes the autocatalytic nucleation of branched actin at the surface of endosomes. Possible coordination between pushing and pulling forces in the remodeling of endosomal membranes is discussed.
Collapse
Affiliation(s)
- Artem I. Fokin
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Alexis M. Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
18
|
Fourel G, Boscheron C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 2020; 594:3409-3438. [PMID: 33064843 DOI: 10.1002/1873-3468.13958] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development (MCDs) are a group of severe brain malformations associated with intellectual disability and refractory childhood epilepsy. Human missense heterozygous mutations in the 9 α-tubulin and 10 β-tubulin isoforms forming the heterodimers that assemble into microtubules (MTs) were found to cause MCDs. However, how a single mutated residue in a given tubulin isoform can perturb the entire microtubule population in a neuronal cell remains a crucial question. Here, we examined 85 MCD-associated tubulin mutations occurring in TUBA1A, TUBB2, and TUBB3 and their location in a three-dimensional (3D) microtubule cylinder. Mutations hitting residues exposed on the outer microtubule surface are likely to alter microtubule association with partners, while alteration of intradimer contacts may impair dimer stability and straightness. Other types of mutations are predicted to alter interdimer and lateral contacts, which are responsible for microtubule cohesion, rigidity, and dynamics. MCD-associated tubulin mutations surprisingly fall into all categories, thus providing unexpected insights into how a single mutation may impair microtubule function and elicit dominant effects in neurons.
Collapse
|
19
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
20
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
21
|
Mechanistic insights into the interactions of dynein regulator Ndel1 with neuronal ankyrins and implications in polarity maintenance. Proc Natl Acad Sci U S A 2019; 117:1207-1215. [PMID: 31889000 DOI: 10.1073/pnas.1916987117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ankyrin-G (AnkG), a highly enriched scaffold protein in the axon initial segment (AIS) of neurons, functions to maintain axonal polarity and the integrity of the AIS. At the AIS, AnkG regulates selective intracellular cargo trafficking between soma and axons via interaction with the dynein regulator protein Ndel1, but the molecular mechanism underlying this binding remains elusive. Here we report that Ndel1's C-terminal coiled-coil region (CT-CC) binds to giant neuron-specific insertion regions present in both AnkG and AnkB with 2:1 stoichiometry. The high-resolution crystal structure of AnkB in complex with Ndel1 CT-CC revealed the detailed molecular basis governing the AnkB/Ndel1 complex formation. Mechanistically, AnkB binds with Ndel1 by forming a stable 5-helix bundle dominated by hydrophobic interactions spread across 6 distinct interaction layers. Moreover, we found that AnkG is essential for Ndel1 accumulation at the AIS. Finally, we found that cargo sorting at the AIS can be disrupted by blocking the AnkG/Ndel1 complex formation using a peptide designed based on our structural data. Collectively, the atomic structure of the AnkB/Ndel1 complex together with studies of cargo sorting through the AIS establish the mechanistic basis for AnkG/Ndel1 complex formation and for the maintenance of axonal polarity. Our study will also be valuable for future studies of the interaction between AnkB and Ndel1 perhaps at distal axonal cargo transport.
Collapse
|
22
|
Qiu R, Zhang J, Xiang X. LIS1 regulates cargo-adapter-mediated activation of dynein by overcoming its autoinhibition in vivo. J Cell Biol 2019; 218:3630-3646. [PMID: 31562232 PMCID: PMC6829669 DOI: 10.1083/jcb.201905178] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
Abstract
Deficiency of the LIS1 protein causes lissencephaly, a brain developmental disorder. Although LIS1 binds the microtubule motor cytoplasmic dynein and has been linked to dynein function in many experimental systems, its mechanism of action remains unclear. Here, we revealed its function in cargo-adapter-mediated dynein activation in the model organism Aspergillus nidulans Specifically, we found that overexpressed cargo adapter HookA (Hook in A. nidulans) missing its cargo-binding domain (ΔC-HookA) causes dynein and its regulator dynactin to relocate from the microtubule plus ends to the minus ends, and this relocation requires LIS1 and its binding protein, NudE. Astonishingly, the requirement for LIS1 or NudE can be bypassed to a significant extent by mutations that prohibit dynein from forming an autoinhibited conformation in which the motor domains of the dynein dimer are held close together. Our results suggest a novel mechanism of LIS1 action that promotes the switch of dynein from the autoinhibited state to an open state to facilitate dynein activation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University F. Edward Hébert School of Medicine, Bethesda, MD
| |
Collapse
|
23
|
Johnstone M, Vasistha NA, Barbu MC, Dando O, Burr K, Christopher E, Glen S, Robert C, Fetit R, Macleod KG, Livesey MR, Clair DS, Blackwood DHR, Millar K, Carragher NO, Hardingham GE, Wyllie DJA, Johnstone EC, Whalley HC, McIntosh AM, Lawrie SM, Chandran S. Reversal of proliferation deficits caused by chromosome 16p13.11 microduplication through targeting NFκB signaling: an integrated study of patient-derived neuronal precursor cells, cerebral organoids and in vivo brain imaging. Mol Psychiatry 2019; 24:294-311. [PMID: 30401811 PMCID: PMC6344377 DOI: 10.1038/s41380-018-0292-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 09/13/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023]
Abstract
The molecular basis of how chromosome 16p13.11 microduplication leads to major psychiatric disorders is unknown. Here we have undertaken brain imaging of patients carrying microduplications in chromosome 16p13.11 and unaffected family controls, in parallel with iPS cell-derived cerebral organoid studies of the same patients. Patient MRI revealed reduced cortical volume, and corresponding iPSC studies showed neural precursor cell (NPC) proliferation abnormalities and reduced organoid size, with the NPCs therein displaying altered planes of cell division. Transcriptomic analyses of NPCs uncovered a deficit in the NFκB p65 pathway, confirmed by proteomics. Moreover, both pharmacological and genetic correction of this deficit rescued the proliferation abnormality. Thus, chromosome 16p13.11 microduplication disturbs the normal programme of NPC proliferation to reduce cortical thickness due to a correctable deficit in the NFκB signalling pathway. This is the first study demonstrating a biologically relevant, potentially ameliorable, signalling pathway underlying chromosome 16p13.11 microduplication syndrome in patient-derived neuronal precursor cells.
Collapse
Affiliation(s)
- Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| | - Navneet A Vasistha
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Owen Dando
- UK Dementia Research Institute at University of Edinburgh, Edinburgh Medical School, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, UK
| | - Karen Burr
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh Medical School, Edinburgh, UK
| | - Edward Christopher
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sophie Glen
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Christelle Robert
- Royal (Dick) School of Veterinary Studies, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Rana Fetit
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Kenneth G Macleod
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Matthew R Livesey
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute at University of Edinburgh, Edinburgh Medical School, Edinburgh, UK
| | - David St Clair
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Douglas H R Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at University of Edinburgh, Edinburgh Medical School, Edinburgh, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, 15 George Square, Edinburgh, UK
| | - Eve C Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- UK Dementia Research Institute at University of Edinburgh, Edinburgh Medical School, Edinburgh, UK.
- Centre for Brain Development and Repair, Bangalore, India.
| |
Collapse
|
24
|
St Clair D, Johnstone M. Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0037. [PMID: 29352035 PMCID: PMC5790834 DOI: 10.1098/rstb.2017.0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
Abstract
Solid progress has occurred over the last decade in our understanding of the molecular genetic basis of neurodevelopmental disorders, and of schizophrenia and autism in particular. Although the genetic architecture of both disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Using the DISC1/NDE1 and CYFIP1/EIF4E loci as exemplars, we explore the opportunities and challenges of using animal models and human-induced pluripotent stem cell technologies to further understand/treat and potentially reverse the worst consequences of these debilitating disorders. This article is part of a discussion meeting issue ‘Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists’.
Collapse
Affiliation(s)
- David St Clair
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
25
|
Saade M, Blanco-Ameijeiras J, Gonzalez-Gobartt E, Martí E. A centrosomal view of CNS growth. Development 2018; 145:145/21/dev170613. [DOI: 10.1242/dev.170613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
Embryonic development of the central nervous system (CNS) requires the proliferation of neural progenitor cells to be tightly regulated, allowing the formation of an organ with the right size and shape. This includes regulation of both the spatial distribution of mitosis and the mode of cell division. The centrosome, which is the main microtubule-organizing centre of animal cells, contributes to both of these processes. Here, we discuss the impact that centrosome-mediated control of cell division has on the shape of the overall growing CNS. We also review the intrinsic properties of the centrosome, both in terms of its molecular composition and its signalling capabilities, and discuss the fascinating notion that intrinsic centrosomal asymmetries in dividing neural progenitor cells are instructive for neurogenesis. Finally, we discuss the genetic links between centrosome dysfunction during development and the aetiology of microcephaly.
Collapse
Affiliation(s)
- Murielle Saade
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Jose Blanco-Ameijeiras
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elena Gonzalez-Gobartt
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, Parc Científic de Barcelona, Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
26
|
NDE1 positively regulates oligodendrocyte morphological differentiation. Sci Rep 2018; 8:7644. [PMID: 29769557 PMCID: PMC5955916 DOI: 10.1038/s41598-018-25898-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
Oligodendrocytes, the myelin-forming cells in the central nervous system (CNS), undergo morphological differentiation characterized by elaborated branched processes to enwrap neuronal axons. However, the basic molecular mechanisms underlying oligodendrocyte morphogenesis remain unknown. Herein, we describe the essential roles of Nuclear Distribution E Homolog 1 (NDE1), a dynein cofactor, in oligodendrocyte morphological differentiation. In the mouse corpus callosum, Nde1 mRNA expression was detected in oligodendrocyte lineage cells at the postnatal stage. In vitro analysis revealed that downregulation of NDE1 by siRNA impaired the outgrowth and extensive branching of oligodendrocyte processes and led to a decrease in the expression of myelin-related markers, namely, CNPase and MBP. In myelinating co-cultures with dorsal root ganglion (DRG) neurons, NDE1-knockdown oligodendrocyte precursor cells (OPCs) failed to develop into MBP-positive oligodendrocytes with multiple processes contacting DRG axons. Immunoprecipitation studies showed that NDE1 interacts with the dynein intermediate chain (DIC) in oligodendrocytes, and an overexpressed DIC-binding region of NDE1 exerted effects on oligodendrocyte morphogenesis that were similar to those following NDE1 knockdown. Furthermore, NDE1-knockdown-impaired oligodendrocyte process formation was rescued by siRNA-resistant wild-type NDE1 but not by DIC-binding region-deficient NDE1 overexpression. These results suggest that NDE1 plays a crucial role in oligodendrocyte morphological differentiation via interaction with dynein.
Collapse
|
27
|
Karzbrun E, Kshirsagar A, Cohen SR, Hanna JH, Reiner O. Human Brain Organoids on a Chip Reveal the Physics of Folding. NATURE PHYSICS 2018; 14:515-522. [PMID: 29760764 PMCID: PMC5947782 DOI: 10.1038/s41567-018-0046-7] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/08/2018] [Indexed: 05/18/2023]
Abstract
Human brain wrinkling has been implicated in neurodevelopmental disorders and yet its origins remain unknown. Polymer gel models suggest that wrinkling emerges spontaneously due to compression forces arising during differential swelling, but these ideas have not been tested in a living system. Here, we report the appearance of surface wrinkles during the in vitro development and self-organization of human brain organoids in a micro-fabricated compartment that supports in situ imaging over a timescale of weeks. We observe the emergence of convolutions at a critical cell density and maximal nuclear strain, which are indicative of a mechanical instability. We identify two opposing forces contributing to differential growth: cytoskeletal contraction at the organoid core and cell-cycle-dependent nuclear expansion at the organoid perimeter. The wrinkling wavelength exhibits linear scaling with tissue thickness, consistent with balanced bending and stretching energies. Lissencephalic (smooth brain) organoids display reduced convolutions, modified scaling and a reduced elastic modulus. Although the mechanism here does not include the neuronal migration seen in in vivo, it models the physics of the folding brain remarkably well. Our on-chip approach offers a means for studying the emergent properties of organoid development, with implications for the embryonic human brain.
Collapse
Affiliation(s)
- Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Sidney R Cohen
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Jacob H Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| | - Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel, 7610001
| |
Collapse
|
28
|
Jheng GW, Hur SS, Chang CM, Wu CC, Cheng JS, Lee HH, Chung BC, Wang YK, Lin KH, Del Álamo JC, Chien S, Tsai JW. Lis1 dysfunction leads to traction force reduction and cytoskeletal disorganization during cell migration. Biochem Biophys Res Commun 2018; 497:869-875. [PMID: 29470990 DOI: 10.1016/j.bbrc.2018.02.151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/17/2018] [Indexed: 12/19/2022]
Abstract
Cell migration is a critical process during development, tissue repair, and cancer metastasis. It requires complex processes of cell adhesion, cytoskeletal dynamics, and force generation. Lis1 plays an important role in the migration of neurons, fibroblasts and other cell types, and is essential for normal development of the cerebral cortex. Mutations in human LIS1 gene cause classical lissencephaly (smooth brain), resulting from defects in neuronal migration. However, how Lis1 may affect force generation in migrating cells is still not fully understood. Using traction force microscopy (TFM) with live cell imaging to measure cellular traction force in migrating NIH3T3 cells, we showed that Lis1 knockdown (KD) by RNA interference (RNAi) caused reductions in cell migration and traction force against the extracellular matrix (ECM). Immunostaining of cytoskeletal components in Lis1 KD cells showed disorganization of microtubules and actin filaments. Interestingly, focal adhesions at the cell periphery were significantly reduced. These results suggest that Lis1 is important for cellular traction force generation through the regulation of cytoskeleton organization and focal adhesion formation in migrating cells.
Collapse
Affiliation(s)
- Guo-Wei Jheng
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Sung Sik Hur
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Chia-Ming Chang
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Chun-Chieh Wu
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Jia-Shing Cheng
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Hsiao-Hui Lee
- Department of Life Sciences and Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei 112, Taiwan, ROC
| | - Bon-Chu Chung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC
| | - Keng-Hui Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Juan C Del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, La Jolla, San Diego, CA 92093, USA
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jin-Wu Tsai
- Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, ROC; Brain Research Center (BRC) and Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan, ROC.
| |
Collapse
|
29
|
Simões PA, Celestino R, Carvalho AX, Gassmann R. NudE regulates dynein at kinetochores but is dispensable for other dynein functions in the C. elegans early embryo. J Cell Sci 2018; 131:jcs.212159. [PMID: 29192061 PMCID: PMC5818066 DOI: 10.1242/jcs.212159] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
In mitosis, the molecular motor dynein is recruited to kinetochores by the Rod-Zw10-Zwilch complex (RZZ) and Spindly to control spindle assembly checkpoint (SAC) signaling and microtubule attachment. How the ubiquitous dynein co-factors Lis1 and NudE contribute to these functions remains poorly understood. Here, we show that the C. elegans NudE homolog NUD-2 is dispensable for dynein- and LIS-1-dependent mitotic spindle assembly in the zygote. This facilitates functional characterization of kinetochore-localized NUD-2, which is recruited by the CENP-F-like proteins HCP-1 and HCP-2 independently of RZZ-Spindly and dynein-LIS-1. Kinetochore dynein levels are reduced in Δnud-2 embryos, and, as occurs upon RZZ inhibition, loss of NUD-2 delays the formation of load-bearing kinetochore-microtubule attachments and causes chromatin bridges in anaphase. Survival of Δnud-2 embryos requires a functional SAC, and kinetochores without NUD-2 recruit an excess of SAC proteins. Consistent with this, SAC signaling in early Δnud-2 embryos extends mitotic duration and prevents high rates of chromosome mis-segregation. Our results reveal that both NUD-2 and RZZ-Spindly are essential for dynein function at kinetochores, and that the gain in SAC strength during early embryonic development is relevant under conditions that mildly perturb mitosis.
Collapse
Affiliation(s)
- Patrícia A Simões
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ricardo Celestino
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana X Carvalho
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal .,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
30
|
Arai Y, Taverna E. Neural Progenitor Cell Polarity and Cortical Development. Front Cell Neurosci 2017; 11:384. [PMID: 29259543 PMCID: PMC5723293 DOI: 10.3389/fncel.2017.00384] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Neurons populating the cerebral cortex are generated during embryonic development from neural stem and progenitor cells in a process called neurogenesis. Neural stem and progenitor cells are classified into several classes based on the different location of mitosis (apical or basal) and polarity features (bipolar, monopolar and non-polar). The polarized architecture of stem cells is linked to the asymmetric localization of proteins, mRNAs and organelles, such as the centrosome and the Golgi apparatus (GA). Polarity affects stem cell function and allows stem cells to integrate environmental cues from distinct niches in the developing cerebral cortex. The crucial role of polarity in neural stem and progenitor cells is highlighted by the fact that impairment of cell polarity is linked to neurodevelopmental disorders such as Down syndrome, Fragile X syndrome, autism spectrum disorders (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Yoko Arai
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241/INSERM U1050, PSL Research University, Paris, France
| | - Elena Taverna
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPG), Leipzig, Germany
| |
Collapse
|
31
|
Gilbert J, Man HY. Fundamental Elements in Autism: From Neurogenesis and Neurite Growth to Synaptic Plasticity. Front Cell Neurosci 2017; 11:359. [PMID: 29209173 PMCID: PMC5701944 DOI: 10.3389/fncel.2017.00359] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/31/2017] [Indexed: 01/12/2023] Open
Abstract
Autism spectrum disorder (ASD) is a set of neurodevelopmental disorders with a high prevalence and impact on society. ASDs are characterized by deficits in both social behavior and cognitive function. There is a strong genetic basis underlying ASDs that is highly heterogeneous; however, multiple studies have highlighted the involvement of key processes, including neurogenesis, neurite growth, synaptogenesis and synaptic plasticity in the pathophysiology of neurodevelopmental disorders. In this review article, we focus on the major genes and signaling pathways implicated in ASD and discuss the cellular, molecular and functional studies that have shed light on common dysregulated pathways using in vitro, in vivo and human evidence. HighlightsAutism spectrum disorder (ASD) has a prevalence of 1 in 68 children in the United States. ASDs are highly heterogeneous in their genetic basis. ASDs share common features at the cellular and molecular levels in the brain. Most ASD genes are implicated in neurogenesis, structural maturation, synaptogenesis and function.
Collapse
Affiliation(s)
- James Gilbert
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States.,Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
32
|
Gutierrez PA, Ackermann BE, Vershinin M, McKenney RJ. Differential effects of the dynein-regulatory factor Lissencephaly-1 on processive dynein-dynactin motility. J Biol Chem 2017; 292:12245-12255. [PMID: 28576829 DOI: 10.1074/jbc.m117.790048] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/01/2017] [Indexed: 02/02/2023] Open
Abstract
Cytoplasmic dynein is the primary minus-end-directed microtubule motor protein in animal cells, performing a wide range of motile activities, including transport of vesicular cargos, mRNAs, viruses, and proteins. Lissencephaly-1 (LIS1) is a highly conserved dynein-regulatory factor that binds directly to the dynein motor domain, uncoupling the enzymatic and mechanical cycles of the motor and stalling dynein on the microtubule track. Dynactin, another ubiquitous dynein-regulatory factor, releases dynein from an autoinhibited state, leading to a dramatic increase in fast, processive dynein motility. How these opposing activities are integrated to control dynein motility is unknown. Here, we used fluorescence single-molecule microscopy to study the interaction of LIS1 with the processive dynein-dynactin-BicD2N (DDB) complex. Surprisingly, in contrast to the prevailing model for LIS1 function established in the context of dynein alone, we found that binding of LIS1 to DDB does not strongly disrupt processive motility. Motile DDB complexes bound up to two LIS1 dimers, and mutational analysis suggested that LIS1 binds directly to the dynein motor domains during DDB movement. Interestingly, LIS1 enhanced DDB velocity in a concentration-dependent manner, in contrast to observations of the effect of LIS1 on the motility of isolated dynein. Thus, LIS1 exerts concentration-dependent effects on dynein motility and can synergize with dynactin to enhance processive dynein movement. Our results suggest that the effect of LIS1 on dynein motility depends on both LIS1 concentration and the presence of other regulatory factors such as dynactin and may provide new insights into the mechanism of LIS1 haploinsufficiency in the neurodevelopmental disorder lissencephaly.
Collapse
Affiliation(s)
- Pedro A Gutierrez
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616
| | - Bryce E Ackermann
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616
| | - Michael Vershinin
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112; Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, California 95616.
| |
Collapse
|
33
|
Bradshaw NJ, Hayashi MAF. NDE1 and NDEL1 from genes to (mal)functions: parallel but distinct roles impacting on neurodevelopmental disorders and psychiatric illness. Cell Mol Life Sci 2017; 74:1191-1210. [PMID: 27742926 PMCID: PMC11107680 DOI: 10.1007/s00018-016-2395-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/13/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
NDE1 (Nuclear Distribution Element 1, also known as NudE) and NDEL1 (NDE-Like 1, also known as NudEL) are the mammalian homologues of the fungus nudE gene, with important and at least partially overlapping roles for brain development. While a large number of studies describe the various properties and functions of these proteins, many do not directly compare the similarities and differences between NDE1 and NDEL1. Although sharing a high degree structural similarity and multiple common cellular roles, each protein presents several distinct features that justify their parallel but also unique functions. Notably both proteins have key binding partners in dynein, LIS1 and DISC1, which impact on neurodevelopmental and psychiatric illnesses. Both are implicated in schizophrenia through genetic and functional evidence, with NDE1 also strongly implicated in microcephaly, as well as other neurodevelopmental and psychiatric conditions through copy number variation, while NDEL1 possesses an oligopeptidase activity with a unique potential as a biomarker in schizophrenia. In this review, we aim to give a comprehensive overview of the various cellular roles of these proteins in a "bottom-up" manner, from their biochemistry and protein-protein interactions on the molecular level, up to the consequences for neuronal differentiation, and ultimately to their importance for correct cortical development, with direct consequences for the pathophysiology of neurodevelopmental and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.
| | - Mirian A F Hayashi
- Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
34
|
Human NDE1 splicing and mammalian brain development. Sci Rep 2017; 7:43504. [PMID: 28266585 PMCID: PMC5339911 DOI: 10.1038/srep43504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 01/27/2017] [Indexed: 11/09/2022] Open
Abstract
Exploring genetic and molecular differences between humans and other close species may be the key to explain the uniqueness of our brain and the selective pressures under which it evolves. Recent discoveries unveiled the involvement of Nuclear distribution factor E-homolog 1 (NDE1) in human cerebral cortical neurogenesis and suggested a role in brain evolution; however the evolutionary changes involved have not been investigated. NDE1 has a different gene structure in human and mouse resulting in the production of diverse splicing isoforms. In particular, mouse uses the terminal exon 8 T, while Human uses terminal exon 9, which is absent in rodents. Through chimeric minigenes splicing assay we investigated the unique elements regulating NDE1 terminal exon choice. We found that selection of the terminal exon is regulated in a cell dependent manner and relies on gain/loss of splicing regulatory sequences across the exons. Our results show how evolutionary changes in cis as well as trans acting signals have played a fundamental role in determining NDE1 species specific splicing isoforms supporting the notion that alternative splicing plays a central role in human genome evolution, and possibly human cognitive predominance.
Collapse
|
35
|
Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun 2016; 7:12551. [PMID: 27553190 PMCID: PMC4999518 DOI: 10.1038/ncomms12551] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
Microcephaly is a cortical malformation disorder characterized by an abnormally small brain. Recent studies have revealed severe cases of microcephaly resulting from human mutations in the NDE1 gene, which is involved in the regulation of cytoplasmic dynein. Here using in utero electroporation of NDE1 short hairpin RNA (shRNA) in embryonic rat brains, we observe cell cycle arrest of proliferating neural progenitors at three distinct stages: during apical interkinetic nuclear migration, at the G2-to-M transition and in regulation of primary cilia at the G1-to-S transition. RNAi against the NDE1 paralogue NDEL1 has no such effects. However, NDEL1 overexpression can functionally compensate for NDE1, except at the G2-to-M transition, revealing a unique NDE1 role. In contrast, NDE1 and NDEL1 RNAi have comparable effects on postmitotic neuronal migration. These results reveal that the severity of NDE1-associated microcephaly results not from defects in mitosis, but rather the inability of neural progenitors to ever reach this stage. Human mutations in the NDE1 gene have been associated with cortical malformations and severe microcephaly. Here, the authors show in embryonic rat brains that NDE1-depleted neural progenitors arrest at three specific cell cycle stages before mitosis, resulting in a severe decrease in neurogenesis.
Collapse
|
36
|
Lee SH, Lee MS, Choi TI, Hong H, Seo JY, Kim CH, Kim J. MCRS1 associates with cytoplasmic dynein and mediates pericentrosomal material recruitment. Sci Rep 2016; 6:27284. [PMID: 27263857 PMCID: PMC4893664 DOI: 10.1038/srep27284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
MCRS1 is involved in multiple cellular activities, including mitotic spindle assembly, mTOR signaling and tumorigenesis. Although MCRS1 has been reported to bind to the dynein regulator NDE1, a functional interaction between MCRS1 and cytoplasmic dynein remains unaddressed. Here, we demonstrate that MCRS1 is required for dynein-dependent cargo transport to the centrosome and also plays a role in primary cilium formation. MCRS1 localized to centriolar satellites. Knockdown of MCRS1 resulted in a dispersion of centriolar satellites whose establishment depends on cytoplasmic dynein. By contrast, NDE1 was not necessary for the proper distribution of centriolar satellites, indicating a functional distinction between MCRS1 and NDE1. Unlike NDE1, MCRS1 played a positive role for the initiation of ciliogenesis, possibly through its interaction with TTBK2. Zebrafish with homozygous mcrs1 mutants exhibited a reduction in the size of the brain and the eye due to excessive apoptosis. In addition, mcrs1 mutants failed to develop distinct layers in the retina, and showed a defect in melatonin-induced aggregation of melanosomes in melanophores. These phenotypes are reminiscent of zebrafish dynein mutants. Reduced ciliogenesis was also apparent in the olfactory placode of mcrs1 mutants. Collectively, our findings identify MCRS1 as a dynein-interacting protein critical for centriolar satellite formation and ciliogenesis.
Collapse
Affiliation(s)
- Si-Hyung Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
37
|
Ou Y, Chan G, Zuo J, Rattner JB, van der Hoorn FA. Purinergic A2b Receptor Activation by Extracellular Cues Affects Positioning of the Centrosome and Nucleus and Causes Reduced Cell Migration. J Biol Chem 2016; 291:15388-403. [PMID: 27226580 DOI: 10.1074/jbc.m116.721241] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/20/2022] Open
Abstract
The tight, relative positioning of the nucleus and centrosome in mammalian cells is important for the regulation of cell migration. Under pathophysiological conditions, the purinergic A2b receptor can regulate cell motility, but the underlying mechanism remains unknown. Expression of A2b, normally low, is increased in tissues experiencing adverse physiological conditions, including hypoxia and inflammation. ATP is released from such cells. We investigated whether extracellular cues can regulate centrosome-nucleus positioning and cell migration. We discovered that hypoxia as well as extracellular ATP cause a reversible increase in the distance between the centrosome and nucleus and reduced cell motility. We uncovered the underlying pathway: both treatments act through the A2b receptor and specifically activate the Epac1/RapGef3 pathway. We show that cells lacking A2b do not respond in this manner to hypoxia or ATP but transfection of A2b restores this response, that Epac1 is critically involved, and that Rap1B is important for the relative positioning of the centrosome and nucleus. Our results represent, to our knowledge, the first report demonstrating that pathophysiological conditions can impact the distance between the centrosome and nucleus. Furthermore, we identify the A2b receptor as a central player in this process.
Collapse
Affiliation(s)
- Young Ou
- From the Departments of Biochemistry and Molecular Biology and
| | - Gordon Chan
- the Department of Oncology and Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Jeremy Zuo
- From the Departments of Biochemistry and Molecular Biology and
| | - Jerome B Rattner
- Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada and
| | | |
Collapse
|
38
|
Bradshaw NJ. Cloning of the promoter of NDE1, a gene implicated in psychiatric and neurodevelopmental disorders through copy number variation. Neuroscience 2016; 324:262-70. [PMID: 26975893 DOI: 10.1016/j.neuroscience.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/26/2016] [Accepted: 03/07/2016] [Indexed: 01/22/2023]
Abstract
Copy number variation at 16p13.11 has been associated with a range of neurodevelopmental and psychiatric conditions, with duplication of this region being more common in individuals with schizophrenia. A prominent candidate gene within this locus is NDE1 (Nuclear Distribution Element 1) given its known importance for neurodevelopment, previous associations with mental illness and its well characterized interaction with the Disrupted in Schizophrenia 1 (DISC1) protein. In order to accurately model the effect of NDE1 duplication, it is important to first gain an understanding of how the gene is expressed. The complex promoter system of NDE1, which produces three distinct transcripts, each encoding for the same full-length NDE1 protein (also known as NudE), was therefore cloned and tested in human cell lines. The promoter for the longest of these three NDE1 transcripts was found to be responsible for the majority of expression in these systems, with its extended 5' untranslated region (UTR) having a limiting effect on its expression. These results thus highlight and clone the promoter elements required to generate systems in which the NDE1 protein is exogenously expressed under its native promoter, providing a biologically relevant model of 16p13.11 duplication in major mental illness.
Collapse
Affiliation(s)
- N J Bradshaw
- Department of Neuropathology, Heinrich Heine University, Moorenstraße 5, 40225 Düsseldorf, Germany.
| |
Collapse
|
39
|
Fu Q, Wang W, Zhou T, Yang Y. Emerging roles of NudC family: from molecular regulation to clinical implications. SCIENCE CHINA-LIFE SCIENCES 2016; 59:455-62. [PMID: 26965524 DOI: 10.1007/s11427-016-5029-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022]
Abstract
Nuclear distribution gene C (NudC) was first found in Aspergillus nidulans as an upstream regulator of NudF, whose mammalian homolog is Lissencephaly 1 (Lis1). NudC is conserved from fungi to mammals. Vertebrate NudC has three homologs: NudC, NudC-like protein (NudCL), and NudC-like protein 2 (NudCL2). All members of the NudC family share a conserved p23 domain, which possesses chaperone activity both in conjunction with and independently of heat shock protein 90 (Hsp90). Our group and the others found that NudC homologs were involved in cell cycle regulation by stabilizing the components of the LIS1/dynein complex. Additionally, NudC plays important roles in cell migration, ciliogenesis, thrombopoiesis, and the inflammatory response. It has been reported that NudCL is essential for the stability of the dynein intermediate chain and ciliogenesis via its interaction with the dynein 2 complex. Our data showed that NudCL2 regulates the LIS1/dynein pathway by stabilizing LIS1 with Hsp90 chaperone. The fourth distantly related member of the NudC family, CML66, a tumor-associated antigen in human leukemia, contains a p23 domain and appears to promote oncogenesis by regulating the IGF-1R-MAPK signaling pathway. In this review, we summarize our current knowledge of the NudC family and highlight its potential clinical relevance.
Collapse
Affiliation(s)
- Qiqin Fu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Wei Wang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
40
|
Kuijpers M, van de Willige D, Freal A, Chazeau A, Franker M, Hofenk J, Rodrigues R, Kapitein L, Akhmanova A, Jaarsma D, Hoogenraad C. Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment. Neuron 2016; 89:461-71. [DOI: 10.1016/j.neuron.2016.01.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 06/15/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
41
|
Hori K, Nagai T, Shan W, Sakamoto A, Abe M, Yamazaki M, Sakimura K, Yamada K, Hoshino M. Heterozygous Disruption of Autism susceptibility candidate 2 Causes Impaired Emotional Control and Cognitive Memory. PLoS One 2015; 10:e0145979. [PMID: 26717414 PMCID: PMC4699902 DOI: 10.1371/journal.pone.0145979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/12/2015] [Indexed: 11/19/2022] Open
Abstract
Mutations in the Autism susceptibility candidate 2 gene (AUTS2) have been associated with a broad range of psychiatric illnesses including autism spectrum disorders, intellectual disability and schizophrenia. We previously demonstrated that the cytoplasmic AUTS2 acts as an upstream factor for the Rho family small GTPase Rac1 and Cdc42 that regulate the cytoskeletal rearrangements in neural cells. Moreover, genetic ablation of the Auts2 gene in mice has resulted in defects in neuronal migration and neuritogenesis in the developing cerebral cortex caused by inactivation of Rac1-signaling pathway, suggesting that AUTS2 is required for neural development. In this study, we conducted a battery of behavioral analyses on Auts2 heterozygous mutant mice to examine the involvement of Auts2 in adult cognitive brain functions. Auts2-deficient mice displayed a decrease in exploratory behavior as well as lower anxiety-like behaviors in the absence of any motor dysfunction. Furthermore, the capability for novel object recognition and cued associative memory were impaired in Auts2 mutant mice. Social behavior and sensory motor gating functions were, however, normal in the mutant mice as assessed by the three-chamber test and prepulse inhibition test, respectively. Together, our findings indicate that AUTS2 is critical for the acquisition of neurocognitive function.
Collapse
Affiliation(s)
- Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Taku Nagai
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Wei Shan
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asami Sakamoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
- * E-mail:
| |
Collapse
|
42
|
Ohtaka-Maruyama C, Okado H. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Front Neurosci 2015; 9:447. [PMID: 26733777 PMCID: PMC4682034 DOI: 10.3389/fnins.2015.00447] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
Glutamatergic neurons of the mammalian cerebral cortex originate from radial glia (RG) progenitors in the ventricular zone (VZ). During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP) migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1) maintenance and departure from the VZ of neural progenitor cells, (2) MP migration and transition to bipolar cells, (3) RG-guided locomotion, and (4) terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2), suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.
Collapse
Affiliation(s)
- Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| | - Haruo Okado
- Neural Development Project, Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
43
|
Reiner O, Karzbrun E, Kshirsagar A, Kaibuchi K. Regulation of neuronal migration, an emerging topic in autism spectrum disorders. J Neurochem 2015; 136:440-56. [PMID: 26485324 DOI: 10.1111/jnc.13403] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/04/2015] [Accepted: 10/09/2015] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorders (ASD) encompass a group of neurodevelopmental diseases that demonstrate strong heritability, however, the inheritance is not simple and many genes have been associated with these disorders. ASD is regarded as a neurodevelopmental disorder, and abnormalities at different developmental stages are part of the disease etiology. This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration. We propose that neuronal migration impairment may be an important common pathophysiology in autism spectrum disorders (ASD). This review provides a general background on neuronal migration during brain development and discusses recent advancements in the field connecting ASD and aberrant neuronal migration.
Collapse
Affiliation(s)
- Orly Reiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal Karzbrun
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Aditya Kshirsagar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| |
Collapse
|
44
|
Yao GD, Shi SL, Song WY, Jin HX, Peng ZF, Yang HY, Wang EY, Sun YP. Role of PAFAH1B1 in human spermatogenesis, fertilization and early embryonic development. Reprod Biomed Online 2015; 31:613-24. [DOI: 10.1016/j.rbmo.2015.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/16/2015] [Accepted: 07/16/2015] [Indexed: 11/16/2022]
|
45
|
Matsuzaki F, Shitamukai A. Cell Division Modes and Cleavage Planes of Neural Progenitors during Mammalian Cortical Development. Cold Spring Harb Perspect Biol 2015; 7:a015719. [PMID: 26330517 DOI: 10.1101/cshperspect.a015719] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During mammalian brain development, neural progenitor cells undergo symmetric proliferative divisions followed by asymmetric neurogenic divisions. The division mode of these self-renewing progenitors, together with the cell fate of their progeny, plays critical roles in determining the number of neurons and, ultimately, the size of the adult brain. In the past decade, remarkable progress has been made toward identifying various types of neuronal progenitors. Recent technological advances in live imaging and genetic manipulation have enabled us to link dynamic cell biological events to the molecular mechanisms that control the asymmetric divisions of self-renewing progenitors and have provided a fresh perspective on the modes of division of these progenitors. In addition, comparison of progenitor repertoires between species has provided insight into the expansion and the development of the complexity of the brain during mammalian evolution.
Collapse
Affiliation(s)
- Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | - Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
46
|
Maskey D, Marlin MC, Kim S, Kim S, Ong EC, Li G, Tsiokas L. Cell cycle-dependent ubiquitylation and destruction of NDE1 by CDK5-FBW7 regulates ciliary length. EMBO J 2015. [PMID: 26206584 DOI: 10.15252/embj.201490831] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Primary cilia start forming within the G1 phase of the cell cycle and continue to grow as cells exit the cell cycle (G0). They start resorbing when cells re-enter the cell cycle (S phase) and are practically invisible in mitosis. The mechanisms by which cilium biogenesis and disassembly are coupled to the cell cycle are complex and not well understood. We previously identified the centrosomal phosphoprotein NDE1 as a negative regulator of ciliary length and showed that its levels inversely correlate with ciliogenesis. Here, we identify the tumor suppressor FBW7 (also known as FBXW7, CDC4, AGO, or SEL-10) as the E3 ligase that mediates the destruction of NDE1 upon entry into G1. CDK5, a kinase active in G1/G0, primes NDE1 for FBW7-mediated recognition. Cells depleted of FBW7 or CDK5 show enhanced levels of NDE1 and a reduction in ciliary length, which is corrected in cells depleted of both FBW7 or CDK5 and NDE1. These data show that cell cycle-dependent mechanisms can control ciliary length through a CDK5-FBW7-NDE1 pathway.
Collapse
Affiliation(s)
- Dipak Maskey
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Matthew Caleb Marlin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Seokho Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sehyun Kim
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - E-Ching Ong
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
47
|
Morris-Rosendahl DJ, Kaindl AM. What next-generation sequencing (NGS) technology has enabled us to learn about primary autosomal recessive microcephaly (MCPH). Mol Cell Probes 2015; 29:271-81. [PMID: 26050940 DOI: 10.1016/j.mcp.2015.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
The impact that next-generation sequencing technology (NGS) is having on many aspects of molecular and cell biology, is becoming increasingly apparent. One of the most noticeable outcomes of the new technology in human genetics, has been the accelerated rate of identification of disease-causing genes. Especially for rare, heterogeneous disorders, such as autosomal recessive primary microcephaly (MCPH), the handful of genes previously known to harbour disease-causing mutations, has grown at an unprecedented rate within a few years. Knowledge of new genes mutated in MCPH over the last four years has contributed to our understanding of the disorder at both the clinical and cellular levels. The functions of proteins such as WDR62, CASC5, PHC1, CDK6, CENP-E, CENP-F, CEP63, ZNF335, PLK4 and TUBGPC, have been added to the complex network of critical cellular processes known to be involved in brain growth and size. In addition to the importance of mitotic spindle assembly and structure, centrosome and centriole function and DNA repair and damage response, new mechanisms involving kinetochore-associated proteins and chromatin remodelling complexes have been elucidated. Two of the major contributions to our clinical knowledge are the realisation that primary microcephaly caused by mutations in genes at the MCPH loci is seldom an isolated clinical feature and is often accompanied either by additional cortical malformations or primordial dwarfism. Gene-phenotype correlations are being revisited, with a new dimension of locus heterogeneity and phenotypic variability being revealed.
Collapse
Affiliation(s)
- Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom; National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité University Medicine, Berlin, Germany; Institute of Cell Biology and Neurobiology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
48
|
Bizzotto S, Francis F. Morphological and functional aspects of progenitors perturbed in cortical malformations. Front Cell Neurosci 2015; 9:30. [PMID: 25729350 PMCID: PMC4325918 DOI: 10.3389/fncel.2015.00030] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 01/18/2015] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss molecular and cellular mechanisms important for the function of neuronal progenitors during development, revealed by their perturbation in different cortical malformations. We focus on a class of neuronal progenitors, radial glial cells (RGCs), which are renowned for their unique morphological and behavioral characteristics, constituting a key element during the development of the mammalian cerebral cortex. We describe how the particular morphology of these cells is related to their roles in the orchestration of cortical development and their influence on other progenitor types and post-mitotic neurons. Important for disease mechanisms, we overview what is currently known about RGC cellular components, cytoskeletal mechanisms, signaling pathways and cell cycle characteristics, focusing on how defects lead to abnormal development and cortical malformation phenotypes. The multiple recent entry points from human genetics and animal models are contributing to our understanding of this important cell type. Combining data from phenotypes in the mouse reveals molecules which potentially act in common pathways. Going beyond this, we discuss future directions that may provide new data in this expanding area.
Collapse
Affiliation(s)
- Sara Bizzotto
- INSERM UMRS 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| | - Fiona Francis
- INSERM UMRS 839 Paris, France ; Sorbonne Universités, Université Pierre et Marie Curie Paris, France ; Institut du Fer à Moulin Paris, France
| |
Collapse
|
49
|
Houlihan SL, Feng Y. The scaffold protein Nde1 safeguards the brain genome during S phase of early neural progenitor differentiation. eLife 2014; 3:e03297. [PMID: 25245017 PMCID: PMC4170211 DOI: 10.7554/elife.03297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Successfully completing the S phase of each cell cycle ensures genome integrity. Impediment of DNA replication can lead to DNA damage and genomic disorders. In this study, we show a novel function for NDE1, whose mutations cause brain developmental disorders, in safeguarding the genome through S phase during early steps of neural progenitor fate restrictive differentiation. Nde1 mutant neural progenitors showed catastrophic DNA double strand breaks concurrent with the DNA replication. This evoked DNA damage responses, led to the activation of p53-dependent apoptosis, and resulted in the reduction of neurons in cortical layer II/III. We discovered a nuclear pool of Nde1, identified the interaction of Nde1 with cohesin and its associated chromatin remodeler, and showed that stalled DNA replication in Nde1 mutants specifically occurred in mid-late S phase at heterochromatin domains. These findings suggest that NDE1-mediated heterochromatin replication is indispensible for neuronal differentiation, and that the loss of NDE1 function may lead to genomic neurological disorders.
Collapse
Affiliation(s)
- Shauna L Houlihan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
- Driskill Graduate Program, Northwestern University Feinberg School of Medicine, Chicago, United States
| | - Yuanyi Feng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, United States
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
50
|
Pei Z, Lang B, Fragoso YD, Shearer KD, Zhao L, Mccaffery PJA, Shen S, Ding YQ, McCaig CD, Collinson JM. The expression and roles of Nde1 and Ndel1 in the adult mammalian central nervous system. Neuroscience 2014; 271:119-36. [PMID: 24785679 PMCID: PMC4048543 DOI: 10.1016/j.neuroscience.2014.04.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/08/2014] [Accepted: 04/18/2014] [Indexed: 11/01/2022]
Abstract
Mental and neurological illnesses affect one in four people. While genetic linkage analyses have shown an association of nuclear distribution factor E (NDE1, or NudE) and its ohnolog NDE-like 1 (NDEL1, or Nudel) with mental disorders, the cellular mechanisms remain unclear. In the present study, we have demonstrated that Nde1 and Ndel1 are differentially localised in the subventricular zone (SVZ) of the forebrain and the subgranular zone (SGZ) of the hippocampus, two regions where neurogenesis actively occurs in the adult brain. Nde1, but not Ndel1, is localized to putative SVZ stem cells, and to actively dividing progenitors of the SGZ. The influence of these proteins on neural stem cell differentiation was investigated by overexpression in a hippocampal neural stem cell line, HCN-A94. Increasing Nde1 expression in this neural stem cell line led to increased neuronal differentiation while decreasing levels of astroglial differentiation. In primary cultured neurons and astrocytes, Nde1 and Ndel1 were found to have different but comparable subcellular localizations. In addition, we have shown for the first time that Nde1 is heterogeneously distributed in cortical astrocytes of human brains. Our data indicate that Nde1 and Ndel1 have distinct but overlapping distribution patterns in mouse brain and cultured nerve cells. They may function differently and therefore their dosage changes may contribute to some aspects of mental disorders.
Collapse
Affiliation(s)
- Z Pei
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - B Lang
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | - Y D Fragoso
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Department of Neurology, Medical Faculty, Universidade Metropolitana de Santos, Sao Paulo, Brazil
| | - K D Shearer
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - L Zhao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - P J A Mccaffery
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - S Shen
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Regenerative Medicine Institute, School of Medicine, NUI Galway, Galway, Ireland
| | - Y Q Ding
- Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, China
| | - C D McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - J M Collinson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| |
Collapse
|