1
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
2
|
Kakoty V, Sarathlal KC, Kaur P, Wadhwa P, Vishwas S, Khan FR, Alhazmi AYM, Almasoudi HH, Gupta G, Chellappan DK, Paudel KR, Kumar D, Dua K, Singh SK. Unraveling the role of glial cell line-derived neurotrophic factor in the treatment of Parkinson's disease. Neurol Sci 2024; 45:1409-1418. [PMID: 38082050 DOI: 10.1007/s10072-023-07253-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/02/2023] [Indexed: 03/16/2024]
Abstract
Parkinson's disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson's disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson's disease-related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson's disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson's disease in the future.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - K C Sarathlal
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Palwinder Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Hassan Hussain Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2050, Australia
| | - Dileep Kumar
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Kamal Dua
- School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
3
|
Low Levels of Adenosine and GDNF Are Potential Risk Factors for Parkinson's Disease with Sleep Disorders. Brain Sci 2023; 13:brainsci13020200. [PMID: 36831743 PMCID: PMC9953846 DOI: 10.3390/brainsci13020200] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Sleep disturbances are the most prevalent non-motor symptoms in the preclinical stage of Parkinson's disease (PD). Adenosine, glial-derived neurotrophic factor (GDNF), and associated neurotransmitters are crucial in the control of sleep arousal. This study aimed to detect the serum levels of adenosine, GDNF, and associated neurotransmitters and explored their correlations with PD with sleep disorders. Demographic characteristics and clinical information of PD patients and healthy participants were assessed. Serum concentrations of adenosine, GDNF, and related neurotransmitters were detected by ELISA and LC-MS. The correlation between serum levels of adenosine, GDNF, and associated neurotransmitters and sleep disorders was explored using logistic regression. PD patients with sleep disorders had higher scores of HAMA, HAMD, ESS, UPDRS-III, and H-Y stage. Lower levels of adenosine, GDNF, and γ-GABA were observed in PD patients who had sleep problems. Logistic regression analysis showed adenosine and GDNF were protective factors for preventing sleep disorders. Adenosine combined with GDNF had a higher diagnostic efficiency in predicting PD with sleep disorders by ROC analysis. This study revealed low adenosine and GDNF levels may be risk factors for sleep disorders in PD. The decrease of serum adenosine and GDNF levels may contribute to the diagnosis of PD with sleep disturbances.
Collapse
|
4
|
Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia. Mol Psychiatry 2022; 27:3247-3261. [PMID: 35618883 PMCID: PMC9708553 DOI: 10.1038/s41380-022-01554-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Abstract
Presynaptic increase in striatal dopamine is the primary dopaminergic abnormality in schizophrenia, but the underlying mechanisms are not understood. Here, we hypothesized that increased expression of endogenous GDNF could induce dopaminergic abnormalities that resemble those seen in schizophrenia. To test the impact of GDNF elevation, without inducing adverse effects caused by ectopic overexpression, we developed a novel in vivo approach to conditionally increase endogenous GDNF expression. We found that a 2-3-fold increase in endogenous GDNF in the brain was sufficient to induce molecular, cellular, and functional changes in dopamine signalling in the striatum and prefrontal cortex, including increased striatal presynaptic dopamine levels and reduction of dopamine in prefrontal cortex. Mechanistically, we identified adenosine A2a receptor (A2AR), a G-protein coupled receptor that modulates dopaminergic signalling, as a possible mediator of GDNF-driven dopaminergic abnormalities. We further showed that pharmacological inhibition of A2AR with istradefylline partially normalised striatal GDNF and striatal and cortical dopamine levels in mice. Lastly, we found that GDNF levels are increased in the cerebrospinal fluid of first episode psychosis patients, and in post-mortem striatum of schizophrenia patients. Our results reveal a possible contributor for increased striatal dopamine signalling in a subgroup of schizophrenia patients and suggest that GDNF-A2AR crosstalk may regulate dopamine function in a therapeutically targetable manner.
Collapse
|
5
|
Influence of intranasal exposure of MPTP in multiple doses on liver functions and transition from non-motor to motor symptoms in a rat PD model. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:147-165. [PMID: 31468077 DOI: 10.1007/s00210-019-01715-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Besides the effects on the striatum, the impairment of visceral organs including liver functions has been reported in Parkinson's disease (PD) patients. However, it is yet unclear if liver functions are affected in the early stage of the disease before the motor phase has appeared. The aim of our present study was thus to assess the effect of intranasal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in different doses on striatum and liver functions. Deterioration of non-motor activities appeared on single exposure to MPTP along with rise in striatum oxidative stress and decline in antioxidant levels. Decreases in dopamine, noradrenaline, and GABA and increase in serotonin were detected in striatum. Motor coordination was impaired with a single dose of MPTP, and with repeated MPTP exposure, there was further significant impairment. Locomotor activity was affected from second exposure of MPTP, and the impairment increased with third MPTP exposure. Impairment of liver function through increase in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels was observed after first MPTP insult, and it worsened with second and third administrations. First administration of MPTP triggered systemic inflammation showing significant increase in inflammatory markers in the liver. Our data shows for the first time that an intranasal route of entry of MPTP affects liver from the non-motor phase of PD itself, occurring concomitantly with the reduction of striatal dopamine. It also suggests that a single dose is not enough to bring about progression of the disease from non-motor to locomotor deficiency, and a repeated dose is needed to establish the motor severity phase in the rat intranasal MPTP model.
Collapse
|
6
|
Buhusi M, Brown CK, Buhusi CV. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress. Front Behav Neurosci 2017; 11:177. [PMID: 29066960 PMCID: PMC5641315 DOI: 10.3389/fnbeh.2017.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS) alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF) is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI), a measure of selective attention and learning, in GDNF-heterozygous (HET) mice and their wild-type (WT) littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons) in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Colten K Brown
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department of Psychology, Utah State University, Logan, UT, United States
| |
Collapse
|
7
|
Kramer ER, Liss B. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 2015; 589:3760-72. [DOI: 10.1016/j.febslet.2015.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
|
8
|
Autologous transplantation of GDNF-expressing mesenchymal stem cells protects against MPTP-induced damage in cynomolgus monkeys. Sci Rep 2013; 3:2786. [PMID: 24071770 PMCID: PMC4070584 DOI: 10.1038/srep02786] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/11/2013] [Indexed: 12/27/2022] Open
Abstract
Glial cell-derived neurotrophic factor (GDNF) has shown beneficial effects in models of Parkinson's disease. The mild results observed in the double-blind clinical trial by intraputamenal infusion of recombinant GDNF proteins warrant a search for alternative delivery methods. In this study, we investigated the function of autologous mesenchymal stem cells (MSCs) expressing GDNF (GDNF-MSCs) for protection against MPTP-induced injury in cynomolgus monkeys. MSCs were obtained from the bone marrow of individual monkeys and gene-modified to express GDNF. Following unilateral engraftment of GDNF-MSCs into the striatum and substantia nigra, the animals were challenged with MPTP to induce a stable systemic Parkinsonian state. The motor functions were spared in the contralateral limbs of monkeys receiving GDNF-MSCs, but not in those receiving MSCs alone. In the striatum of the grafted hemisphere, dopamine levels were higher and dopamine uptake was enhanced. The results suggest that autologous MSCs may be a safe vehicle to deliver GDNF for enhancing nigro-striatum functions.
Collapse
|
9
|
Naumenko VS, Bazovkina DV, Semenova AA, Tsybko AS, Il'chibaeva TV, Kondaurova EM, Popova NK. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders. J Neurosci Res 2013; 91:1628-38. [PMID: 24105724 DOI: 10.1002/jnr.23286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/13/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022]
Abstract
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF.
Collapse
Affiliation(s)
- Vladimir S Naumenko
- Department of Behavioral Neurogenomics, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
10
|
Pitx3 is a critical mediator of GDNF-induced BDNF expression in nigrostriatal dopaminergic neurons. J Neurosci 2011; 31:12802-15. [PMID: 21900559 DOI: 10.1523/jneurosci.0898-11.2011] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pitx3 is a critical homeodomain transcription factor for the proper development and survival of mesodiencephalic dopaminergic (mdDA) neurons in mammals. Several variants of this gene have been associated with human Parkinson's disease (PD), and lack of Pitx3 in mice causes the preferential loss of substantia nigra pars compacta (SNc) mdDA neurons that are most affected in PD. It is currently unclear how Pitx3 activity promotes the survival of SNc mdDA neurons and which factors act upstream and downstream of Pitx3 in this context. Here we show that a transient expression of glial cell line-derived neurotrophic factor (GDNF) in the murine ventral midbrain (VM) induces transcription of Pitx3 via NF-κB-mediated signaling, and that Pitx3 is in turn required for activating the expression of brain-derived neurotrophic factor (BDNF) in a rostrolateral (SNc) mdDA neuron subpopulation during embryogenesis. The loss of BDNF expression correlates with the increased apoptotic cell death of this mdDA neuronal subpopulation in Pitx3(-/-) mice, whereas treatment of VM cell cultures with BDNF augments the survival of the Pitx3(-/-) mdDA neurons. Most importantly, only BDNF but not GDNF protects mdDA neurons against 6-hydroxydopamine-induced cell death in the absence of Pitx3. As the feedforward regulation of GDNF, Pitx3, and BDNF expression also persists in the adult rodent brain, our data suggest that the disruption of the regulatory interaction between these three factors contributes to the loss of mdDA neurons in Pitx3(-/-) mutant mice and perhaps also in human PD.
Collapse
|
11
|
Cohen AD, Zigmond MJ, Smith AD. Effects of intrastriatal GDNF on the response of dopamine neurons to 6-hydroxydopamine: time course of protection and neurorestoration. Brain Res 2011; 1370:80-8. [PMID: 21062624 PMCID: PMC3019295 DOI: 10.1016/j.brainres.2010.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 10/26/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) protects dopamine (DA) neurons from 6-hydroxydopamine (6-OHDA) toxicity. We have now explored this protection over 8 weeks following toxin administration. Infusion of Fluoro-Gold (FG) into the striatum was followed 1 week later by GDNF (9μg) or its vehicle. Six hours later, animals received 6-OHDA (4 μg) into the same site. 6-OHDA caused a loss of cells in the substantia nigra that expressed both FG and tyrosine hydroxylase (TH) and striatal terminals expressing TH, the high affinity dopamine transporter (DAT), and the vesicular monoamine transporter 2 (VMAT2) as assessed 2-8 weeks later. Loss of FG(+) cells, and striatal DA was completely blocked by GDNF by 2 weeks. In contrast, GDNF only slightly attenuated the loss of TH, DAT, or VMAT2 in the striatum at 2 weeks, but had restored these markers by 4-8 weeks. Thus, GDNF prevents DA cell death and loss of striatal DA content, but several weeks are required to fully restore the dopaminergic phenotype. These results provide insight into the mechanism of GDNF protection of DA neurons, and may help avoid incorrect interpretations of temporary phenotypic changes.
Collapse
Affiliation(s)
- Ann D. Cohen
- Pittsburgh Institute for Neurodegenerative Diseases and Center for Neuroscience University of Pittsburgh, PA, USA
| | - Michael J. Zigmond
- Pittsburgh Institute for Neurodegenerative Diseases and Center for Neuroscience University of Pittsburgh, PA, USA
| | - Amanda D. Smith
- Geriatric Research Educational and Clinical Center V.A. Pittsburgh Healthcare Center, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases and Center for Neuroscience University of Pittsburgh, PA, USA
| |
Collapse
|
12
|
Johnston LC, Eberling J, Pivirotto P, Hadaczek P, Federoff HJ, Forsayeth J, Bankiewicz KS. Clinically relevant effects of convection-enhanced delivery of AAV2-GDNF on the dopaminergic nigrostriatal pathway in aged rhesus monkeys. Hum Gene Ther 2010; 20:497-510. [PMID: 19203243 DOI: 10.1089/hum.2008.137] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Growth factor therapy for Parkinson's disease offers the prospect of restoration of dopaminergic innervation and/or prevention of neurodegeneration. Safety and efficacy of an adeno-associated virus (AAV2) encoding human glial cell-derived neurotrophic factor (GDNF) was investigated in aged nonhuman primates. Positron emission tomography with 6-[(18)F]-fluoro-l-m-tyrosine (FMT-PET) in putamen was assessed 3 months before and after AAV2 infusion. In the right putamen, monkeys received either phosphate-buffered saline or low-dose (LD) or high-dose (HD) AAV2-GDNF. Monkeys that had received putaminal phosphate-buffered saline (PBS) infusions additionally received either PBS or HD AAV2-GDNF in the right substantia nigra (SN). The convection-enhanced delivery method used for infusion of AAV2-GDNF vector resulted in robust volume of GDNF distribution within the putamen. AAV2-GDNF increased FMT-PET uptake in the ipsilateral putamen as well as enhancing locomotor activity. Within the putamen and caudate, the HD gene transfer mediated intense GDNF fiber and extracellular immunoreactivity (IR). Retrograde and anterograde transport of GDNF to other brain regions was observed. AAV2-GDNF did not significantly affect dopamine in the ipsilateral putamen or caudate, but increased dopamine turnover in HD groups. HD putamen treatment increased the density of dopaminergic terminals in these regions. HD treatments, irrespective of the site of infusion, increased the number of nonpigmented TH-IR neurons in the SN. AAV2-GDNF gene transfer does not appear to elicit adverse effects, delivers therapeutic levels of GDNF within target brain areas, and enhances utilization of striatal dopamine and dopaminergic nigrostriatal innervation.
Collapse
Affiliation(s)
- Louisa C Johnston
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94103, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Yang X, Mertens B, Lehtonen E, Vercammen L, Bockstael O, Chtarto A, Levivier M, Brotchi J, Michotte Y, Baekelandt V, Sarre S, Tenenbaum L. Reversible neurochemical changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a partial Parkinson's disease rat model. J Gene Med 2009; 11:899-912. [PMID: 19639608 DOI: 10.1002/jgm.1377] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Efficient protection of dopaminergic neurons against a subsequent 6-hydroxydopamine lesion by glial cell line-derived neurotrophic factor (GDNF) gene delivery has been demonstrated. By contrast, the neurorestorative effects of GDNF administered several weeks after the toxin have been less characterized. In particular, whether these were permanent or dependent on the continuous presence of GDNF remains elusive. METHODS A tetracycline-inducible adeno-associated virus (AAV)-1 vector expressing human GDNF cDNA was administered unilaterally in the rat striatum 5 weeks after 6-hydroxydopamine. Rats were treated with doxycycline (dox) or untreated from the day of vector injection until sacrifice (4 or 14 weeks). A sub-group was dox-treated for 7 weeks then untreated until 14 weeks. The motor behavior was assessed by amphetamine-induced rotations and spontaneous forelimb asymmetry. The amounts of tyrosine hydroxylase (TH), serine-40-phosphorylated TH (S40-TH) and aromatic amino acid decarboxylase (AADC) proteins were compared by western blotting and the dopamine levels quantified by high-performance liquid chromatography. RESULTS Dox-dependent behavioral improvements were demonstrated 4 weeks post-vector injection. At later time points, spontaneous partial recovery was observed in all rats, but no further improvement was found in dox-treated animals. TH levels were significantly increased in dox-treated rats at all time points. By contrast, striatal dopamine and S40-TH were increased at 4 weeks, but not 14 weeks, and AADC remained unchanged. Dox withdrawal after 7 weeks, resulted in TH levels comparable to the controls at 14 weeks. CONCLUSIONS Delayed GDNF gene delivery only transiently improved dopaminergic function. Over the long term, TH was more abundant, but not functional, and the increase was lost when GDNF gene expression was switched off.
Collapse
Affiliation(s)
- Xin Yang
- Laboratory of Experimental Neurosurgery, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mijatovic J, Patrikainen O, Yavich L, Airavaara M, Ahtee L, Saarma M, Petteri Piepponen T. Characterization of the striatal dopaminergic neurotransmission in MEN2B mice with elevated cerebral tissue dopamine. J Neurochem 2008; 105:1716-25. [DOI: 10.1111/j.1471-4159.2008.05265.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Abstract
The mainstays of Parkinson's disease (PD) treatment remain symptomatic, including initial dopamine replacement and subsequent deep brain stimulation, however, neither of these approaches is neuroprotective. Neurotrophic factors - proteins that activate cell signalling pathways regulating neuronal survival, differentiation, growth and regeneration - represent an alternative for treating dopaminergic neurons in PD but are difficult to administer clinically because they do not pass through the blood-brain barrier. Glial cell line-derived neurotrophic factor (GDNF) has potent neurotrophic effects particularly but not exclusively on dopaminergic neurons; in animal models of PD, it has consistently demonstrated both neuroprotective and neuroregenerative effects when provided continuously, either by means of a viral vector or through continuous infusion either into the cerebral ventricles (ICV) or directly into the denervated putamen. This led to a human PD study in which GDNF was administered by monthly bolus intracerebroventricular injections, however, no clinical benefit resulted, probably because of the limited penetration to the target brain areas, and instead significant side effects occurred. In an open-label study of continuous intraputamenal GDNF infusion in five patients (one unilaterally and four bilaterally), we reported excellent tolerance, few side effects and clinical benefit evident within three months of the commencement of treatment. The clinical improvement was sustained and progressive, and by 24-months patients demonstrated a 57 and 63% improvement in their off-medication motor and activities of daily living UPDRS subscores, respectively, with clear benefit in dyskinesias. The benefit was associated with a significant increase in putamenal 18F-dopa uptake on positron emission tomography (PET), and in one patient coming to autopsy after 43 months of unilateral infusion there was evident increased tyrosine hydroxylase immunopositive nerve fibres in the infused putamen. A second open trial in 10 patients using unilateral intraputamenal GDNF infusions has also demonstrated a greater than 30% bilateral benefit in both on- and off-medication scores at 24 weeks. Based on our 6-month results, a randomized controlled clinical trial was conducted to confirm the open-label results, however, GDNF infusion over 6-months did not confer the predetermined level of clinical benefit to patients with PD despite increased 18F-dopa uptake surrounding the catheter tip. It is possible that technical differences between this trial and the positive open label studies contributed to this negative outcome.
Collapse
Affiliation(s)
- N K Patel
- Institute of Neurosciences, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
16
|
Quartu M, Serra MP, Boi M, Ferretti MT, Lai ML, Del Fiacco M. Tissue distribution of Ret, GFRalpha-1, GFRalpha-2 and GFRalpha-3 receptors in the human brainstem at fetal, neonatal and adult age. Brain Res 2007; 1173:36-52. [PMID: 17825269 DOI: 10.1016/j.brainres.2007.07.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
Occurrence and localization of receptor components of the glial cell line-derived neurotrophic factor (GDNF) family ligands, the Ret receptor tyrosine kinase and the GDNF family receptor (GFR) alpha-1 to -3, were examined by immunohistochemistry in the normal human brainstem at fetal, neonatal, and adult age. Immunoreactive elements were detectable at all examined ages with uneven distribution and consistent pattern for each receptor. As a rule, the GFRalpha-1 and GFRalpha-2 antisera produced the most abundant and diffuse tissue labelling. Immunoreactive perikarya were observed within sensory and motor nuclei of cranial nerves, dorsal column nuclei, olivary nuclear complex, reticular formation, pontine nuclei, locus caeruleus, raphe nuclei, substantia nigra, and quadrigeminal plate. Nerve fibers occurred within gracile and cuneate fasciculi, trigeminal spinal tract and nucleus, facial, trigeminal, vestibular and oculomotor nerves, solitary tract, medial longitudinal fasciculus, medial lemniscus, and inferior and superior cerebellar peduncles. Occasionally, glial cells were stained. Age changes were appreciable in the distribution pattern of each receptor. On the whole, in the grey matter, labelled perikarya were more frequently observed in pre- and perinatal than in adult specimens; on the other hand, in discrete regions, nerve fibers and terminals were abundant and showed a plexiform arrangement only in adult tissue; finally, distinct fiber systems in the white matter were immunolabelled only at pre- and perinatal ages. The results obtained suggest the involvement of Ret and GFRalpha receptors signalling in processes subserving both the organization of discrete brainstem neuronal systems during development and their functional activity and maintenance in adult life.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Mijatovic J, Airavaara M, Planken A, Auvinen P, Raasmaja A, Piepponen TP, Costantini F, Ahtee L, Saarma M. Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. J Neurosci 2007; 27:4799-809. [PMID: 17475787 PMCID: PMC6672089 DOI: 10.1523/jneurosci.5647-06.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ret is the common signaling receptor for glial cell line-derived neurotrophic factor (GDNF) and other ligands of the GDNF family that have potent effects on brain dopaminergic neurons. The Met918Thr mutation leads to constitutive activity of Ret receptor tyrosine kinase, causing the cancer syndrome called multiple endocrine neoplasia type B (MEN2B). We used knock-in MEN2B mice with the Ret-MEN2B mutation to study the effects of constitutive Ret activity on the brain dopaminergic system and found robustly increased concentrations of dopamine (DA) and its metabolites in the striatum, cortex, and hypothalamus. The concentrations of brain serotonin were not affected and those of noradrenaline were slightly increased only in the lower brainstem. Tyrosine hydroxylase (TH) protein levels were increased in the striatum and substantia nigra/ventral tegmental area (SN/VTA), and TH mRNA levels were increased in SN/VTA of MEN2B mice, suggesting that constitutive Ret activity increases DA levels by increasing its synthesis. Also, the striatal DA transporter protein levels in the MEN2B mice were increased, which agrees with increased sensitivity of these mice to the stimulatory effects of cocaine. In the SN pars compacta of homozygous MEN2B mice, we found a 26% increase in the number of TH-positive cells, but no differences were found in the VTA. Thus, we show here that the constitutive Ret activity in mice is sufficient to increase the number of dopaminergic neurons and leads to profound elevation of brain DA concentration. These data clearly suggest that Ret activity per se can have a direct biological function that actively changes and shapes the brain dopaminergic system.
Collapse
Affiliation(s)
- Jelena Mijatovic
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chtarto A, Yang X, Bockstael O, Melas C, Blum D, Lehtonen E, Abeloos L, Jaspar JM, Levivier M, Brotchi J, Velu T, Tenenbaum L. Controlled delivery of glial cell line-derived neurotrophic factor by a single tetracycline-inducible AAV vector. Exp Neurol 2007; 204:387-99. [PMID: 17223106 DOI: 10.1016/j.expneurol.2006.11.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Accepted: 11/30/2006] [Indexed: 01/10/2023]
Abstract
An autoregulated tetracycline-inducible recombinant adeno-associated viral vector (rAAV-pTet(bidi)ON) utilizing the rtTAM2 reverse tetracycline transactivator (rAAV-rtTAM2) was used to conditionally express the human GDNF cDNA. Doxycycline, a tetracycline analog, induced a time- and dose-dependent release of GDNF in vitro in human glioma cells infected with rAAV-rtTAM2 serotype 2 virus. Introducing the Woodchuck hepatitis virus posttranscriptional regulatory element (WPRE) downstream to the rtTAM2 coding sequence, resulted in a more rapid induction and a higher basal expression level. In vivo, 8 weeks after a single injection of the rAAV-rtTAM2-GDNF vector encapsidated into AAV serotype 1 capsids in the rat striatum, the GDNF protein level was 60 pg/mg tissue in doxycycline-treated animals whereas in untreated animals, it was undistinguishable from the endogenous level ( approximately 4 pg/mg tissue). However, a residual GDNF expression in the uninduced animals was evidenced by a sensitive immunohistochemical staining. As compared to rAAV1-rtTAM2-GDNF, the rAAV1-rtTAM2-WPRE-GDNF vector expressed a similar concentration of GDNF in the induced state (with doxycycline) but a basal level (without doxycycline) approximately 2.5-fold higher than the endogenous striatal level. As a proof for biological activity, for both vectors, downregulation of tyrosine hydroxylase was evidenced in dopaminergic terminals of doxycycline-treated but not untreated animals. In conclusion, the rAAV1-rtTAM2 vector which expressed biologically relevant doses of GDNF in the striatum in response to doxycycline with a basal level undistinguishable from the endogenous striatal level, as measured by quantitative ELISA assay, constitutes an interesting tool for local conditional transgenesis.
Collapse
Affiliation(s)
- A Chtarto
- Laboratory of Experimental Neurosurgery, Multidisciplinary Research Institute (IRIBHM) Université Libre de Bruxelles, Hôpital Erasme, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Saavedra A, Baltazar G, Duarte EP. Interleukin-1beta mediates GDNF up-regulation upon dopaminergic injury in ventral midbrain cell cultures. Neurobiol Dis 2006; 25:92-104. [PMID: 17027275 DOI: 10.1016/j.nbd.2006.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/24/2006] [Accepted: 08/25/2006] [Indexed: 01/25/2023] Open
Abstract
We recently proposed the involvement of diffusible modulators in signalling astrocytes to increase glial cell line-derived neurotrophic factor (GDNF) expression after selective dopaminergic injury by H2O2 or L-DOPA. Here we report that interleukin-1beta (IL-1beta) is involved in this crosstalk between injured neurons and astrocytes. IL-1beta was detected only in the media from challenged neuron-glia cultures. Exogenous IL-1beta did not change GDNF protein levels in astrocyte cultures, and diminished GDNF levels in neuron-glia cultures. This decrease was not due to cell loss, as assessed by the MTT assay and immunocytochemistry. Neither H2O2 nor L-DOPA induced microglia proliferation or appeared to change its activation state. The IL-1 receptor antagonist (IL-1ra) prevented GDNF up-regulation in challenged cultures, showing that IL-1beta is involved in the signalling between injured neurons and astrocytes. Since IL-1ra decreased the number of dopaminergic neurons in H2O2-treated cultures, we propose that IL-1 has a neuroprotective role in this system involving GDNF up-regulation.
Collapse
Affiliation(s)
- Ana Saavedra
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
20
|
He DY, Ron D. Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB J 2006; 20:2420-2. [PMID: 17023388 DOI: 10.1096/fj.06-6394fje] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We recently showed that the up-regulation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the midbrain, is the molecular mechanism by which the putative anti-addiction drug Ibogaine mediates its desirable action of reducing alcohol consumption. Human reports and studies in rodents have shown that a single administration of Ibogaine results in a long-lasting reduction of drug craving (humans) and drug and alcohol intake (rodents). Here we determine whether, and how, Ibogaine exerts its long-lasting actions on GDNF expression and signaling. Using the dopaminergic-like SHSY5Y cell line as a culture model, we observed that short-term Ibogaine exposure results in a sustained increase in GDNF expression that is mediated via the induction of a long-lasting autoregulatory cycle by which GDNF positively regulates its own expression. We show that the initial exposure of cells to Ibogaine or GDNF results in an increase in GDNF mRNA, leading to protein expression and to the corresponding activation of the GDNF signaling pathway. This, in turn, leads to a further increase in the mRNA level of the growth factor. The identification of a GDNF-mediated, autoregulatory long-lasting feedback loop could have important implications for GDNF's potential value as a treatment for addiction and neurodegenerative diseases.
Collapse
Affiliation(s)
- Dao-Yao He
- Ernest Gallo Research Center, Emeryville, California, USA
| | | |
Collapse
|
21
|
Yokoi F, Dang MT, Li J, Li Y. Myoclonus, Motor Deficits, Alterations in Emotional Responses and Monoamine Metabolism in ε-Sarcoglycan Deficient Mice. ACTA ACUST UNITED AC 2006; 140:141-6. [PMID: 16815860 DOI: 10.1093/jb/mvj138] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutations of epsilon-sarcoglycan gene (SGCE) have been implicated in myoclonus-dystonia (M-D), a movement disorder. To determine the pathophysiology of M-D, we produced Sgce knockout mice and found that the knockout mice exhibited myoclonus, motor impairments, hyperactivity, anxiety, depression, significantly higher levels of striatal dopamine and its metabolites, and an inverse correlation between the dopamine and serotonin metabolites. The results suggest that the diverse symptoms associated with M-D are indeed resulted from a single SGCE gene mutation that leads to alterations of dopaminergic and serotonergic systems. Therefore, antipsychotic agents and serotonin reuptake inhibitors may offer potential benefits for M-D patients.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
22
|
Chao CC, Chiang CH, Ma YL, Lee EHY. Molecular mechanism of the neurotrophic effect of GDNF on DA neurons: role of protein kinase CK2. Neurobiol Aging 2006; 27:105-18. [PMID: 16298246 DOI: 10.1016/j.neurobiolaging.2005.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/02/2004] [Accepted: 01/05/2005] [Indexed: 02/01/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is suggested as a specific neurotrophic factor for midbrain dopamine (DA) neurons, but the molecular mechanism underlying the neuroprotective action of GDNF is not well known. In the present study, we have shown that GDNF increased protein kinase CK2 activity in rat substantia nigra (SN) in a dose-dependent and time-dependent manner. This effect is prevented by prior treatment of the receptor Ret blocker K-252b. Immunostaining results also revealed that CK2 is expressed in TH-positive neurons in mesencephalon culture. Transfection of the wildtype CK2alpha DNA increased, whereas transfection of the catalytically inactive CK2alphaA156 mutant DNA decreased CK2 activity in the SN. CK2alphaA156 mutant DNA also antagonized the enhancing effect of GDNF on CK2 activity. It also antagonized the enhancing effects of GDNF on tyrosine hydroxylase (TH) protein level in the SN, DA turnover in the striatum and rotarod performance in rats. Further, CK2alpha wildtype DNA increased, whereas CK2alphaA156 mutant DNA decreased TH activity in the SN without altering the TH protein level. On the other hand, the DA neuron toxin 1-methyl-4-phenylpyridinium iodide (MPP+) markedly decreased the number of TH-positive neurons and TH protein level in the SN, decreased DA level in the striatum and impaired rotarod performance in rats. Over-expression of the CK2alpha wildtype DNA partially, but significantly, prevented the deteriorating effect of MPP+ on these measures. Prior administration of MPP+ also antagonized the enhancing effect of GDNF on CK2 activity. These results together suggest that the CK2 signaling pathway contributes to the neuroprotective action of GDNF on DA neurons.
Collapse
Affiliation(s)
- Chih C Chao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | |
Collapse
|
23
|
Ducray A, Krebs SH, Schaller B, Seiler RW, Meyer M, Widmer HR. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon. Brain Res 2006; 1069:104-12. [PMID: 16380100 DOI: 10.1016/j.brainres.2005.11.056] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 11/08/2005] [Accepted: 11/11/2005] [Indexed: 12/29/2022]
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none of the GFLs affected soma size of GABA-ir neurons. In contrast, only NRTN treatment significantly increased 5-HT-ir cells densities at 10 ng/ml (1.3-fold), while an augmentation was seen for GDNF and PSPN at 100 ng/ml (2.4-fold and 1.7-fold, respectively). ARTN had no effect on 5-HT-ir cell densities. Morphological analysis of 5-HT-ir neurons revealed a significant increase of soma size, number of primary neurites/neuron and neurite length/neuron after GDNF exposure, while PSPN only affected soma size, and NRTN and ARTN failed to exert any effect. In conclusion, we identified GFLs as effective neurotrophic factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development.
Collapse
Affiliation(s)
- Angélique Ducray
- Department of Neurosurgery, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Burke RE. GDNF as a candidate striatal target-derived neurotrophic factor for the development of substantia nigra dopamine neurons. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:41-5. [PMID: 17017507 DOI: 10.1007/978-3-211-45295-0_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been known for many years to protect and restore dopamine neurons of the substantia nigra (SN) in lesion models of parkinsonism, but much less has been known of its normal physiologic role. We have found that GDNF injected into the striatum postnatally suppresses naturally-occurring cell death in SN dopamine neurons, and neutralizing antibodies augments it. Neutralizing antibodies augment cell death during the first phase, which occurs during the first postnatal week, but not during the second phase in the second week. To further explore the possible neurotrophic role of GDNF, we created double transgenic mice which overexpress GDNF exclusively in the target regions of mesencephalic neurons, particularly the striatum. As anticipated for a limiting, target-derived factor, this resulted in an increased surviving number of SN dopamine neurons after the first phase of cell death. However, this increase did not persist into adulthood. We conclude that GDNF is the leading candidate for a target-derived neurotrophic factor for SN dopamine neurons during the first phase of cell death, but that other factors must play an essential role in later development.
Collapse
Affiliation(s)
- R E Burke
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
25
|
Riaz SS, Bradford HF. Factors involved in the determination of the neurotransmitter phenotype of developing neurons of the CNS: Applications in cell replacement treatment for Parkinson's disease. Prog Neurobiol 2005; 76:257-78. [PMID: 16256257 DOI: 10.1016/j.pneurobio.2005.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 06/07/2005] [Accepted: 08/04/2005] [Indexed: 02/08/2023]
Abstract
The developmental stages involved in the conversion of stem cells to fully functional neurons of specific neurotransmitter phenotype are complex and not fully understood. Over the past decade many studies have been published that demonstrate that in vitro manipulation of the epigenetic environment of the stem cells allows experimental control of final neuronal phenotypic choice. This review presents the evidence for the involvement of a number of endogenous neurobiochemicals, which have been reported to potently influence DAergic (and other neurotransmitter) phenotype expression in vitro. They act at different stages on the pathway to neurotransmitter phenotype determination, and in different ways. Many are better known for their involvement in other aspects of development, and in other biochemical roles. Their proper place, and precise roles, in neurotransmitter phenotype determination in vivo will no doubt be determined in the future. Meanwhile, considerable medical benefits are offered from producing large, long-term, viable cryostores of self-regenerating multipotential neural precursor cells (i.e., brain stem cells), which can be used for cell replacement therapies in the treatment of degenerative brain diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- S S Riaz
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Biochemistry Building, South Kensington Campus, Imperial College Road, SW7 2AZ London, UK
| | | |
Collapse
|
26
|
Funahashi H, Okada Y, Sawai H, Takahashi H, Matsuo Y, Takeyama H, Manabe T. The role of glial cell line-derived neurotrophic factor (GDNF) and integrins for invasion and metastasis in human pancreatic cancer cells. J Surg Oncol 2005; 91:77-83. [PMID: 15999351 DOI: 10.1002/jso.20277] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES It is generally accepted that the malignancy of pancreatic cancer is dependent upon the extent of invasion as well as metastasis. However, the factors and mechanisms are incompletely understood. We investigated whether glial cell lined-derived neurotrophic factor (GDNF) enhances the invasive and adhesive behaviors of pancreatic cancer cells by altering of the expression of integrins. METHODS The expression of the GDNF receptor in pancreatic cancer cell lines (SW1990 and Capan-2) was confirmed by RT-PCR. Then we determined the expression of integrin subunits and the alteration of their expression by GDNF using flow-cytometric analysis and a cellular enzyme-linked immunosorbent assay (CELISA). Adhesion and invasion assay were performed to investigate whether increased integrin expression affected the interaction between cancer cells and ECM proteins. RESULTS The GDNF receptor subunits were expressed in pancreatic cancer cells. GDNF enhanced the expression of some of the integrin subunits and increased their adhesive and invasive abilities. The enhanced expression and associated increase in adhesive and invasive abilities were inhibited by blocking the GDNF receptor or the integrin beta1 subunit. CONCLUSION The enhancement of integrin expression by GDNF signaling through the GDNF receptor strongly influences invasion and adhesion to ECM proteins by pancreatic cancer cells.
Collapse
Affiliation(s)
- Hitoshi Funahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Airavaara M, Planken A, Gäddnäs H, Piepponen TP, Saarma M, Ahtee L. Increased extracellular dopamine concentrations and FosB/ΔFosB expression in striatal brain areas of heterozygous GDNF knockout mice. Eur J Neurosci 2004; 20:2336-44. [PMID: 15525275 DOI: 10.1111/j.1460-9568.2004.03700.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has been shown to be involved in the maintenance of striatal dopaminergic neurons. To study whether reduced levels of endogenous GDNF affect the striatal dopaminergic transmission we estimated the basal extracellular levels of dopamine in vivo, the basal expression of FosB-related proteins in striatal brain areas as well as the effects of acute and repeated cocaine on locomotor activity and dopamine output in mice lacking one GDNF allele (heterozygous GDNF+/- mice). As expected the striatal GDNF protein content was found to be smaller in the GDNF+/- mice than in their wild-type littermates. Unexpectedly the extracellular dopamine concentration in the GDNF+/- mice in the dorsal striatum (CPu) was 2.0-fold, and in the nucleus accumbens (NAc) 1.6-fold the concentration found in the wild-type littermates. Also FosB/DeltaFosB-like immunoreactivity was found to be elevated in the CPu as well as in the core and in the shell of NAc of the GDNF+/- mice as compared with the wild-type mice. This suggests chronic postsynaptic activation of these brain areas and is in line with elevated extracellular dopamine concentrations. Cocaine's effects acutely and after repeated treatment on locomotor activity were similar in the GDNF+/- and the wild-type mice. Neither did cocaine's acute effects on dopamine output differ between the mice of the two strains. Our findings demonstrate that reduced levels of endogenous GDNF induce alterations in dorsal striatal and accumbal dopaminergic transmission, and stress the importance of endogenous GDNF in the regulation of the dopaminergic neurons.
Collapse
Affiliation(s)
- Mikko Airavaara
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, PO Box 56, FIN-00014, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
28
|
Burke RE. Ontogenic cell death in the nigrostriatal system. Cell Tissue Res 2004; 318:63-72. [PMID: 15349767 DOI: 10.1007/s00441-004-0908-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 04/26/2004] [Indexed: 01/03/2023]
Abstract
Like most neural systems, dopamine neurons of the substantia nigra undergo apoptotic natural cell death during development. In rodents, this occurs largely postnatally and is biphasic with an initial major peak just after birth and a second minor peak on postnatal day 14. As envisioned by classic neurotrophic theory, this event is regulated by interactions with the target of these neurons, the striatum, because a developmental target lesion results in an augmented natural cell death event with fewer nigral dopamine neurons surviving into adulthood. Until recently, the striatal target-derived neurotrophic factors providing developmental support of dopamine neurons were unknown, but there is now growing evidence that glial-cell-line-derived neurotrophic factor (GDNF) serves as a physiologic limiting neurotrophic factor for these neurons during the first phase of natural cell death. During this phase, intrastriatal injection of GDNF diminishes the natural cell death event and neutralizing antibodies augment it. Sustained overexpression of GDNF in the striatum throughout development in a unique double transgenic mouse model results in an increased number of dopamine neurons surviving the first phase of natural cell death. However, this increase does not persist into adulthood. Therefore, other factors or mechanisms must play important roles in the determination of the mature number of nigral dopamine neurons. Further elucidation of these mechanisms will be important in the development of neuroprotective and cell replacement therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Robert E Burke
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, 650 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
29
|
Kobori N, Waymire JC, Haycock JW, Clifton GL, Dash PK. Enhancement of Tyrosine Hydroxylase Phosphorylation and Activity by Glial Cell Line-derived Neurotrophic Factor. J Biol Chem 2004; 279:2182-91. [PMID: 14570886 DOI: 10.1074/jbc.m310734200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although glial cell-line derived neurotrophic factor (GDNF) acts as a potent survival factor for dopaminergic neurons, it is not known whether GDNF can directly alter dopamine synthesis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for dopamine biosynthesis, and its activity is regulated by phosphorylation on three seryl residues: Ser-19, Ser-31, and Ser-40. Using a TH-expressing human neuroblastoma cell line and rat primary mesencephalic neuron cultures, the present study examined whether GDNF alters the phosphorylation of TH and whether these changes are accompanied by increased enzymatic activity. Exposure to GDNF did not alter the TH protein level in either neuroblastoma cells or in primary neurons. However, significant increases in the phosphorylation of Ser-31 and Ser-40 were detected within minutes of GDNF application in both cell types. Enhanced Ser-31 and Ser-40 phosphorylation was associated with increased TH activity but not dopamine synthesis in neuroblastoma cells, possibly because of the absence of l-aromatic amino acid decarboxylase activity in these cells. In contrast, increased phosphorylation of Ser-31 and Ser-40 was found to enhance dopamine synthesis in primary neurons. Pharmacological experiments show that Erk and protein kinase A phosphorylate Ser-31 and Ser-40, respectively, and that their inhibition blocked both TH phosphorylation and activity. Our results indicate that, in addition to its role as a survival factor for dopaminergic neurons, GDNF can directly increase dopamine synthesis.
Collapse
Affiliation(s)
- Nobuhide Kobori
- The Vivian L. Smith Center for Neurological Research, University of Texas Medical School, Houston, TX 77225, USA
| | | | | | | | | |
Collapse
|
30
|
Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 2003. [PMID: 12832538 DOI: 10.1523/jneurosci.23-12-05141.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine (DA) neurons of the substantia nigra undergo a developmental cell death event that is biphasic, with peaks just after birth and at postnatal day 14. As envisioned by neurotrophic theory, this cell death is likely to be regulated by target interactions because it is augmented by their disruption. However, the nature of the trophic molecules mediating this regulation are unknown. We showed in vitro that glial cell line-derived neurotrophic factor (GDNF) is able to suppress apoptotic death in DA neurons in postnatal primary culture. We now demonstrate in vivo that administration of GDNF into the striatal target is able to suppress apoptosis. Consistent with a possible physiologic role for endogenous striatal GDNF in regulating this event, two anti-GDNF neutralizing antibodies augment cell death. These antibodies augment cell death only during the first (immediately postnatal) phase of the biphasic death event. We conclude that GDNF is the leading candidate for a target-derived neurotrophic factor for the regulation of the early phase of natural cell death in DA neurons.
Collapse
|
31
|
Funahashi H, Takeyama H, Sawai H, Furuta A, Sato M, Okada Y, Hayakawa T, Tanaka M, Manabe T. Alteration of integrin expression by glial cell line-derived neurotrophic factor (GDNF) in human pancreatic cancer cells. Pancreas 2003; 27:190-6. [PMID: 12883269 DOI: 10.1097/00006676-200308000-00013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
INTRODUCTION Pancreatic cancer cells express a number of functionally active integrins that are related to their adhesive and invasive abilities. AIMS To determine whether glial cell line-derived neurotrophic factor (GDNF) influences the expression of integrins in pancreatic cancer cell lines and to elucidate the mechanisms of adhesion and invasion to extracellular matrix (ECM) proteins. METHODOLOGY The expression of integrin subunits and the alteration of their expression by GDNF were examined by flow-cytometric analysis and cellular enzyme-linked immunosorbent assay in pancreatic cancer cell lines (MIA PaCa-2 and BxPC-3). Assays of adhesion and invasion of cancer cells to ECM proteins were conducted to investigate whether increased integrin expression affects the interaction between cancer cells and putative integrin ECM ligands. RESULTS Expression of some of the integrin subunits in pancreatic cancer cells was enhanced by GDNF. The enhancement and associated increase in adhesive and invasive ability by GDNF were inhibited by blocking the GDNF receptor or the integrin beta1 subunit. CONCLUSIONS In pancreatic cancer, the enhancement of integrin expression by GDNF signaling through the GDNF receptor strongly influences adhesion and invasion to ECM proteins.
Collapse
Affiliation(s)
- Hitoshi Funahashi
- First Department of Surgery, Nagoya City University Medical School, Nagoya, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tanaka M, Xiao H, Hirata Y, Kiuchi K. A rapid assay for glial cell line-derived neurotrophic factor and neurturin based on transfection of cells with tyrosine hydroxylase promoter-luciferase construct. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2003; 11:119-22. [PMID: 12738007 DOI: 10.1016/s1385-299x(03)00023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a potent survival and trophic factor for various neuronal cells, has been measured by assaying its bioactivity based on neurite outgrowth or cell proliferation. We describe herein a sensitive and simple non-radioactive quantitative bioassay for GDNF family proteins based on their ability to induce tyrosine hydroxylase (TH) gene expression. Human neuroblastoma SK-N-MC cells were stably transfected with expression constructs of c-ret and with a luciferase reporter gene driven by 2 kb of the rat TH gene promoter region. In the presence of GDNF, luciferase activity increased with 20 h of incubation. A dose-dependent increase in luciferase activity was observed in the presence of GDNF between 1 and 300 ng/ml. This assay was also applicable for the quantification of the bioactivity of neurturin, another member of the GDNF family showing an even more sensitive profile of dose dependency than GDNF. Typical culture media were applicable in this assay. This method can be easily applied to numerous samples of conditioned medium in a short time.
Collapse
Affiliation(s)
- Mikiei Tanaka
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research (RIKEN), Moriyama, Nagoya 463-0003, Japan
| | | | | | | |
Collapse
|
33
|
Rosenblad C, Georgievska B, Kirik D. Long-term striatal overexpression of GDNF selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system. Eur J Neurosci 2003; 17:260-70. [PMID: 12542662 DOI: 10.1046/j.1460-9568.2003.02456.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sustained neurotrophic factor treatment in neurodegenerative disorders such as Parkinson's disease is likely to affect both degenerating and intact neurons. To investigate the effect of long-term glial cell line-derived neurotrophic factor (GDNF) overexpression on intact nigrostriatal dopamine neurons, we injected a recombinant lentiviral vector encoding GDNF, or green fluorescent protein, in the right striatum of young adult rats. Thirteen months after viral injection GDNF levels were 4.5 ng/mg tissue in the striatum and 0.9 ng/mg in the substantia nigra as measured by ELISA, representing a 25-100-fold increase above control vector- or nontransduced tissue. GDNF overexpression significantly reduced tyrosine hydroxylase mRNA levels (by 39-72%) in the substantia nigra and ventral tegmental area neurons, and the optical density of tyrosine hydroxylase-immunoreactive innervation in the striatum was reduced by 25-52% with the most prominent reductions appearing caudally. No significant reduction was seen in striatal vesicular monoamine transporter 2-immunoreactivity or [3H]mazindole binding autoradiography to dopamine uptake sites, two other presynaptic markers in dopamine axon terminals. The striatal D1 and D2 receptor binding as determined by [3H]SCH23390 and [3H]spiperone binding, respectively, was unaltered relative to the intact side in both treatment groups. Preproenkephalin mRNA levels in postsynaptic striatal neurons, which increase upon removal of striatal dopamine, were also unaffected by the GDNF treatment. Taken together our findings indicate that sustained GDNF administration to intact nigrostriatal dopamine neurons selectively reduces tyrosine hydroxylase expression, without altering striatal dopamine transmission to the extent that compensatory changes in several other components related to dopamine storage and signalling occur.
Collapse
|
34
|
Doucet G, Petit A. Seeking axon guidance molecules in the adult rat CNS. PROGRESS IN BRAIN RESEARCH 2002; 137:453-65. [PMID: 12440387 DOI: 10.1016/s0079-6123(02)37036-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Guy Doucet
- Département de Pathologie et Biologie Cellulaire, Centre de Recherche en Sciences Neurologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montreal, QC H3C 3J7, Canada.
| | | |
Collapse
|
35
|
Bauer M, Suppmann S, Meyer M, Hesslinger C, Gasser T, Widmer HR, Ueffing M. Glial cell line-derived neurotrophic factor up-regulates GTP-cyclohydrolase I activity and tetrahydrobiopterin levels in primary dopaminergic neurones. J Neurochem 2002; 82:1300-10. [PMID: 12358777 DOI: 10.1046/j.1471-4159.2002.01074.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurones against toxic and physical damage. In addition, GDNF promotes differentiation and structural integrity of dopaminergic neurones. Here we show that GDNF can support the function of primary dopaminergic neurones by triggering activation of GTP-cyclohydrolase I (GTPCH I), a key enzyme in catecholamine biosynthesis. GDNF stimulation of primary dopaminergic neurones expressing both tyrosine 3-monooxygenase and GTPCH I resulted in a dose-dependent doubling of GTPCH I activity, and a concomitant increase in tetrahydrobiopterin levels whereas tyrosine 3-monooxygenase activity was not altered. Actinomycin D, asan inhibitor of de novo biosynthesis, abolished any GDNF-mediated up-regulation of GTPCH I activity. However, GTPCH I mRNA levels in primary dopaminergic neurones were not altered by GDNF treatment, suggesting that the mode of action for that up-regulation is not directly connected to the regulation of GTPCH I transcription. We conclude that GDNF, in addition to its action in structural differentiation, also promotes differentiation regarding expression and enzymatic activity of a crucial component in the dopaminergic biosynthetic pathway.
Collapse
Affiliation(s)
- M Bauer
- Department of Neurology, Klinikum Grosshadern, LMU München, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Xiao H, Hirata Y, Isobe KI, Kiuchi K. Glial cell line-derived neurotrophic factor up-regulates the expression of tyrosine hydroxylase gene in human neuroblastoma cell lines. J Neurochem 2002; 82:801-8. [PMID: 12358785 DOI: 10.1046/j.1471-4159.2002.00993.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of glial cell line-derived neurotrophic factor (GDNF) in the survival of dopaminergic neurons has been well documented, but its effect on dopamine biosynthesis remains to be elucidated. In this study, the effect of GDNF on the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine biosynthesis, was investigated. We found that GDNF elevated the expression of the TH gene at both mRNA and protein levels in TGW cells, a human neuroblastoma cell line. GDNF significantly enhances the transcription rate of the TH gene as actinomycin D prevented the induction of TH mRNA and GDNF increased the activity of the TH promoter. In addition, GDNF exerts a relatively weak but significant effect on the stability of TH mRNA, because GDNF delayed the degradation of TH mRNA and strengthened a special TH mRNA/protein interaction known to be relevant with TH mRNA stability. By comparing several human neurogenic cell lines, we found that GDNF-induced TH expression was only observed in the cells possessing Ret protein and coincided with the expression levels. Taken together, these results indicate that GDNF up-regulates the expression of the TH gene by promoting the transcription of the TH gene and the stability of TH mRNA with the Ret receptor dependency in some neuroblastoma cell lines. Thus, GDNF exerts its neurotrophic role not only in promoting cells survival, but also in affecting dopamine biosynthesis.
Collapse
Affiliation(s)
- Hengyi Xiao
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Center, RIKEN, Nagoya, Japan
| | | | | | | |
Collapse
|
37
|
Venero JL, Absi EH, Cano J, Machado A. Melatonin induces tyrosine hydroxylase mRNA expression in the ventral mesencephalon but not in the hypothalamus. J Pineal Res 2002; 32:6-14. [PMID: 11841594 DOI: 10.1034/j.1600-079x.2002.10813.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have evaluated the effect of chronic administration of melatonin in terms of mRNA expression for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, and in the terms of dopamine (DA) transporter (DAT) by means of in situ hybridization. Experimental rats received daily late afternoon injections of 1.5 mg/kg melatonin for 30 days and analysis were performed in the ventral mesencephalon including the substantia nigra (SN) and ventral tegmental area (VTA), and hypothalamus. In the ventral mesencephalon, melatonin treatment significantly induced TH mRNA levels in individual dopaminergic neurons in SN and VTA. In contrast, DAT mRNA levels remained at control levels. Striatal synaptosomal DA uptake was not modified by melatonin treatment as compared with controls. Analysis of glutamic acid decarboxylase (GAD) mRNA in SN, the biosynthetic enzyme for GABAergic neurons, revealed no effect of melatonin treatment on mRNA levels for this marker. In the hypothalamus, we performed mRNA quantitation for TH in arcuate nucleus (Arc) and supraoptic nucleus (SO). Melatonin treatment failed to alter mRNA levels in either area. We detected weak but significant mRNA levels for DAT in Arc, SO, zona incerta (ZI) and periventricular hypothalamic nucleus (Pe). However, because of the low levels of mRNA in hypothalamic areas we were unable to perform a reliable measurement of DAT mRNA levels in response to melatonin treatment. We conclude that melatonin administration, that combines antioxidant capacity and a tissue-specific TH inducing effect, may be useful as a pharmacological agent to protect dopaminergic neurons from degeneration.
Collapse
Affiliation(s)
- José L Venero
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | | | |
Collapse
|
38
|
Del Fiacco M, Quartu M, Serra MP, Follesa P, Lai ML, Bachis A. Topographical localization of glial cell line-derived neurotrophic factor in the human brain stem: an immunohistochemical study of prenatal, neonatal and adult brains. J Chem Neuroanat 2002; 23:29-48. [PMID: 11756008 DOI: 10.1016/s0891-0618(01)00139-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As a step towards the identification of the neuronal populations responsive to glial cell line-derived neurotrophic factor (GDNF) in the human nervous system and their changes with age, this study reports on the immunohistochemical localization of the protein GDNF in the autoptic normal human brain stem of pre- and full-term newborns and adult subjects. Two different anti-GDNF polyclonal antibodies were used. Western blot analysis on homogenates of human and rat brain and recombinant human GDNF resulted in differential detection of monomeric and dimeric forms of the proteins. The ABC immunohistochemical technique on cryostat tissue sections showed an uneven distribution of GDNF-like immunoreactive nerve fibers and terminals and neuronal cell bodies. Immunoreactive elements were mainly localized to the spinal trigeminal, cuneate, solitary, vestibular, and cochlear sensory nuclei, dorsal motor nucleus of the vagus nerve, ventral grey column, hypoglossal nucleus, dorsal and ventrolateral medullary reticular formation, pontine subventricular grey and locus coeruleus, lateral regions of the rostral pontine tegmentum, tectal plate, trochlear nucleus, dorsal and median raphe nuclei, caudal and rostral linear nuclei, cuneiform nucleus, and substantia nigra. Comparison between pre- and full-term newborns and adult subjects revealed changes with age in density of positive innervation and frequency of immunoreactive perikarya. The results obtained provide detailed information on the occurrence of GDNF-like immunoreactive neurons in the human brain stem and suggest that the protein is present in a variety of neuronal systems, which subserve different functional activities, at developmental ages and in adult brains.
Collapse
Affiliation(s)
- Marina Del Fiacco
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Yang F, Feng L, Zheng F, Johnson SW, Du J, Shen L, Wu CP, Lu B. GDNF acutely modulates excitability and A-type K(+) channels in midbrain dopaminergic neurons. Nat Neurosci 2001; 4:1071-8. [PMID: 11593232 DOI: 10.1038/nn734] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) prevents lesion-induced death of midbrain dopaminergic neurons, but its function in normal brain remains uncertain. Here we show that GDNF acutely and reversibly potentiated the excitability of cultured midbrain neurons by inhibiting transient A-type K(+) channels. The effects of GDNF were limited to large, tyrosine hydroxylase (TH)-positive dopaminergic neurons, and were mediated by mitogen associated protein (MAP) kinase. Application of GDNF also elicited a MAP kinase-dependent enhancement of the excitability in dopaminergic neurons in midbrain slice. These results demonstrate an acute regulation of GDNF on ion channels and its underlying signaling mechanism, and reveal an unexpected role of GDNF in normal midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- F Yang
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China 200031
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Astrocytes from cerebral cortex or striatum attract adult host serotoninergic axons into intrastriatal ventral mesencephalic co-grafts. J Neurosci 2001. [PMID: 11549729 DOI: 10.1523/jneurosci.21-18-07182.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The identification of axon growth inhibitory molecules offers new hopes for repair of the injured CNS. However, the navigational ability of adult CNS axons and the guidance cues they can recognize are still essentially unknown. Astrocytes may express guidance molecules and are known to have different regional phenotypes. To evaluate their influence on the affinity of adult serotoninergic (5-HT) axons for a projection target, we co-implanted astrocytes from the neonatal striatum, cortex, or ventral mesencephalon together with fetal ventral mesencephalic tissue into the striatum of adult rats. Two months after surgery, quantification after in vitro 5-[1,2-(3)H]serotonin ([(3)H]5-HT) uptake and autoradiography showed that ventral mesencephalic grafts with co-grafted cortical or striatal astrocytes were four times and three times, respectively, more densely innervated by host 5-HT axons than control ventral mesencephalic grafts with or without co-grafted ventral mesencephalic astrocytes. Immunohistochemistry for glial fibrillary acidic protein, vimentin, or chondroitin-sulfate proteoglycans revealed no qualitative or quantitative differences in host astroglial scar or production of inhibitory molecules that could explain these differences in 5-HT innervation. These results demonstrate that astrocytes grown in culture from different brain regions have the potential to influence the growth and maintenance of adult 5-HT axons in a graft of neural tissue from another brain region. It should now be feasible to identify the molecules expressed by cultured cortical or striatal, but not by ventral mesencephalic, astrocytes that have these tropic actions on 5-HT axons of the neostriatum.
Collapse
|
41
|
Aoki Y, Huang Z, Thomas SS, Bhide PG, Huang I, Moskowitz MA, Reeves SA. Increased susceptibility to ischemia-induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. FASEB J 2000; 14:1965-73. [PMID: 11023980 DOI: 10.1096/fj.00-0105com] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell culture studies have established SH2 domain-containing protein tyrosine phosphatase-2 (SHP2) as an important factor in growth factor and cytokine-activated signaling pathways. However, the significance of SHP2 in the mammalian central nervous system (CNS) is not known since early embryonic lethality occurs in shp2 null mice. To bypass this embryonic lethality, transgenic animals containing a catalytically inactive mutant of SHP2 (SHP2-CS) under the control of a nestin intron II/thymidine kinase minimal promoter were generated. In the developing CNS of these animals, although high-level transgene expression was detected in the neuroepithelium, there was no obvious abnormality in progenitor cell proliferation or migration. In the adult brain, high-level transgene expression was detected in the subventricular zone, rostral migratory stream, dentate gyrus of hippocampus, and cerebellum. Because SHP2 function is likely important in cell survival pathways, we used a focal cerebral ischemia model to examined whether SHP2 is important during CNS injury. Ischemia-induced damage and neuronal death was found to be significantly greater in nestin-SHP2-CS mice than in wild-type littermates. These findings indicate that SHP2 is a required factor in signaling pathway(s) important for neuronal survival.
Collapse
Affiliation(s)
- Y Aoki
- CNS Signaling Laboratory, Molecular Neuro-Oncology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is known to promote the survival and differentiation of dopaminergic neurons of the midbrain. GDNF also causes an enhancement of dopamine release by a mechanism which is presently unclear. Using isolated dopaminergic neurons of the rat ventral tegmental area in culture, we have tested the hypothesis that GDNF regulates the establishment and functional properties of synaptic terminals. Previous studies have shown that single dopaminergic neurons in culture can co-release glutamate in addition to dopamine, leading to the generation of a fast excitatory autaptic current via glutamate receptors. Using excitatory autaptic currents as an assay for the activity of synapses established by identified dopaminergic neurons, we found that chronically applied GDNF produced a threefold increase in the amplitude of excitatory autaptic currents. This action was specific for dopaminergic neurons because GDNF had no such effect on ventral tegmental area GABAergic neurons. The enhancement of excitatory autaptic current amplitude caused by GDNF was accompanied by an increase in the frequency of spontaneous miniature excitatory autaptic currents. These observations confirmed a presynaptic locus of change. We identified synaptic terminals by using synapsin-1 immunofluorescence. In single tyrosine hydroxylase-positive neurons, the number of synapsin-positive puncta which represent putative synaptic terminals was found to be approximately doubled in GDNF-treated cells at 5, 10 and 15 days in culture. The number of such morphologically identified terminals in isolated GABAergic neurons was unchanged by GDNF. These results suggest that one mechanism through which GDNF may enhance dopamine release is through promoting the establishment of new functional synaptic terminals.
Collapse
Affiliation(s)
- M J Bourque
- Départements de Pharmacologie et de Psychiatrie, Centre de Recherche en Sciences Neurologiques, Centre de Recherche Fernand Seguin, Université de Montréal, Canada
| | | |
Collapse
|
43
|
Abstract
Quantal size is often modeled as invariant, although it is now well established that the number of transmitter molecules released per synaptic vesicle during exocytosis can be modulated in central and peripheral synapses. In this review, we suggest why presynaptically altered quantal size would be important at social synapses that provide extrasynaptic neurotransmitter. Current techniques used to measure quantal size are reviewed with particular attention to amperometry, the first approach to provide direct measurement of the number of molecules and kinetics of presynaptic quantal release, and to CNS dopamine neuronal terminals. The known interventions that alter quantal size at the presynaptic locus are reviewed and categorized as (1) alteration of transvesicular free energy gradients, (2) modulation of vesicle transmitter transporter activity, (3) modulation of fusion pore kinetics, (4) altered transmitter degranulation, and (5) changes in synaptic vesicle volume. Modulation of the number of molecules released per quantum underlies mechanisms of drug action of L-DOPA and the amphetamines, and seems likely to be involved in both normal synaptic modification and disease states. Statistical analysis for examining quantal size and data presentation is discussed. We include detailed information on performing nonparametric resampling statistical analysis, the Kolmogorov-Smirnov test for two populations, and random walk simulations using spreadsheet programs.
Collapse
Affiliation(s)
- D Sulzer
- Department of Neurology, Columbia University, New York, USA.
| | | |
Collapse
|
44
|
Feng L, Wang CY, Jiang H, Oho C, Dugich-Djordjevic M, Mei L, Lu B. Differential signaling of glial cell line-derived neurothrophic factor and brain-derived neurotrophic factor in cultured ventral mesencephalic neurons. Neuroscience 1999; 93:265-73. [PMID: 10430490 DOI: 10.1016/s0306-4522(99)00129-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the ventral mesencephalon, two neurotrophic factors, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, have been shown previously to have similar effects on the survival of dopaminergic neurons. Here, we compared the signaling mechanisms for brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor, focusing on the mitogen-associated protein kinase and the transcription factor cyclic-AMP responsive element-binding protein. Double-staining experiments indicated that many neurons co-expressed the receptors for glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor, c-RET and TrkB, suggesting that they are responsive to both brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Although both brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor induced a rapid phosphorylation of mitogen-associated protein kinase and cyclic-AMP, responsive element-binding protein, there were significant differences in the kinetics and pharmacology of the phosphorylation. The phosphorylation of mitogen-associated protein kinase by glial cell line-derived neurotrophic factor was transient; within 2 h, the level of mitogen-associated protein kinase phosphorylation returned to baseline. In contrast, the effect of brain-derived neurotrophic factor was long lasting; the mitogen-associated protein kinase remained phosphorylated for up to 4 h after brain-derived neurotrophic factor treatment. PD098059, a specific inhibitor for mitogen-associated protein kinase kinase, completely blocked the glial cell line-derived neurotrophic factor signaling through mitogen-associated protein kinase, but had no effect on brain-derived neurotrophic factor-induced mitogen-associated protein kinase phosphorylation. Both brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor induced the phosphorylation of cyclic-AMP responsive element-binding protein in the nuclei of ventral mesencephalon neurons. However, PD098059 blocked the cyclic-AMP responsive element-binding protein phosphorylation induced by glial cell line-derived neurotrophic factor, but not that by brain-derived neurotrophic factor. These results indicate that, although both brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor act on ventral mesencephalon neurons, the two factors have different signaling mechanisms, which may mediate their distinctive biological functions.
Collapse
Affiliation(s)
- L Feng
- Unit on Synapse Development and Plasticity, Laboratory of Developmental Neurobiology, NICHD, NIH, Bethesda, MD 20892-4480, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Airaksinen MS, Titievsky A, Saarma M. GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 1999; 13:313-25. [PMID: 10356294 DOI: 10.1006/mcne.1999.0754] [Citation(s) in RCA: 326] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- M S Airaksinen
- Institute of Biotechnology, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | |
Collapse
|
46
|
Abstract
Parkinson's disease (PD) is a neurodegenerative syndrome which primarily affects dopamine-producing neurons of the substantia nigra, resulting in poverty and slowness of movement, instability of gait and posture, and tremor at rest in individuals with the disease. While symptoms of the disease can be effectively managed for several years with available drugs, the syndrome is progressive and the efficacy of standard drugs wanes with time. One experimental approach to therapy is to use natural and synthetic molecules which promote survival and growth of dopaminergic neurons, so-called 'neurotrophic factors', to stabilise the diminishing population of dopaminergic neurons and stimulate compensation and growth in these cells. In this review, we examine the available evidence on 29 molecules with neurotrophic properties for dopaminergic neurons. The properties of these molecules provide ample reasons for optimism that a neurotrophic strategy can be developed that would provide a significant treatment option for patients with PD. While the search continues for even more specific, potent and long lasting agents, the single greatest challenge is the development of techniques for targeted delivery of these molecules.
Collapse
Affiliation(s)
- T J Collier
- Department of Neurological Sciences, Rush-Presbyterian St. Luke's Medical Center, Chicago, Illinois, USA.
| | | |
Collapse
|
47
|
Okada Y, Takeyama H, Sato M, Morikawa M, Sobue K, Asai K, Tada T, Kato T, Manabe T. Experimental implication of celiac ganglionotropic invasion of pancreatic-cancer cells bearing c-ret proto-oncogene with reference to glial-cell-line-derived neurotrophic factor (GDNF). Int J Cancer 1999; 81:67-73. [PMID: 10077155 DOI: 10.1002/(sici)1097-0215(19990331)81:1<67::aid-ijc13>3.0.co;2-v] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Perineural invasion is a prominent clinical feature of pancreatic cancer which causes difficulty in curative resection. In the present study, the human pancreatic cancer cell lines, PaCa-2, AsPC-1, SW1990 and Capan-2, were all found to express abundant c-ret proto-oncogene mRNA and RET protein, a member of the receptor-tyrosine-kinase superfamily, identified as being a receptor for glial-cell-line-derived neurotrophic factor (GDNF). In an invasion assay, the migration of pancreatic cancer cells was markedly induced by co-cultivation with human glioma cells, T98G or A172, capable of producing and secreting GDNF. Anti-GDNF antibody in conditioned media of glioma cells suppressed much of the migratory activity. Checkerboard analysis of the migration showed both chemotactic and chemokinetic activity of GDNF. There was no detectable expression of another GDNF receptor component, a glycosyl-phosphatidylinositol-linked receptor (GFR alpha-1), in pancreatic-cancer cell lines, suggesting that the neural invasion of pancreatic-cancer cells spreads along a concentration gradient of GDNF produced from peripheral ganglions through direct interaction of GDNF with its receptor, the c-ret proto-oncogene product. Immunochemical localization of GDNF in human celiac ganglionic tissue supported this contention.
Collapse
Affiliation(s)
- Y Okada
- First Department of Surgery, Nagoya City University Medical School, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Feng L, Wang CY, Jiang H, Oho C, Mizuno K, Dugich-Djordjevic M, Lu B. Differential effects of GDNF and BDNF on cultured ventral mesencephalic neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 66:62-70. [PMID: 10095078 DOI: 10.1016/s0169-328x(99)00015-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that brain derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) can enhance the survival of dopaminergic neurons in the ventral mesencephalon (VM). Here we compared several non-survival functions of the two factors in VM neurons in culture. We found that both BDNF and GDNF elicited an increase in the depolarization-induced release of dopamine, but had no effect on GABA release, in the VM cultures. BDNF, but not GDNF, significantly enhanced the expression of the calcium binding protein calbindin and synaptic protein SNAP25. In contrast, treatment of the cultures with GDNF, but not BDNF, elicited a marked fasciculation of the processes of the VM neurons. Thus, although both act on VM neurons, BDNF and GDNF have distinct functions.
Collapse
Affiliation(s)
- L Feng
- Laboratory of Developmental Neurobiology, NICHD, NIH, Bethesda, MD 20892-4480, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Bohn MC. A commentary on glial cell line-derived neurotrophic factor (GDNF). From a glial secreted molecule to gene therapy. Biochem Pharmacol 1999; 57:135-42. [PMID: 9890561 DOI: 10.1016/s0006-2952(98)00280-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was identified as a consequence of the hypothesis that glia secrete factors that influence growth and differentiation of specific classes of neurons. Glia are a likely source of additional neurotrophic factors; however, this strategy has not been applied extensively. The discovery of GDNF in 1993 led to an abundance of studies that within only a few years qualified GDNF as a bona fide neurotrophic factor. Of particular interest are studies demonstrating the effectiveness of GDNF protein in ameliorating neurodegeneration in animal models of Parkinson's disease and amyotrophic lateral sclerosis (ALS). It remains to be determined whether GDNF will be an effective therapy in humans with these diseases. However, since these diseases are slowly progressive and the CNS relatively inaccessible, the delivery of GDNF as a therapeutic molecule to the CNS in a chronic manner is problematic. Studies addressing this problem are applying viral vector mediated transfer of the GDNF gene to the CNS in order to deliver biosynthesized GDNF to a specific location in a chronic manner. Recent studies suggest that these GDNF gene therapy approaches are effective in rat models of Parkinson's disease. These studies are reviewed in the context of what developments will be needed in order to apply GDNF gene therapy to the clinic.
Collapse
Affiliation(s)
- M C Bohn
- Children's Memorial Institute for Education and Research, Northwestern University Medical School, Chicago, IL 60614, USA.
| |
Collapse
|
50
|
Galter D, Unsicker K. Regulation of the transmitter phenotype of rostral and caudal groups of cultured serotonergic raphe neurons. Neuroscience 1999; 88:549-59. [PMID: 10197774 DOI: 10.1016/s0306-4522(98)00224-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have studied the regulation of survival and serotonergic markers by neurotrophins and several trophically active cytokines in neurons cultured from the embryonic rat raphe region under defined conditions. At embryonic day 14, saturating concentrations of brain-derived neurotrophic factor, neurotrophin-3, neurotrophin-4 and basic fibroblast growth factor elicited a two- to 2.5-fold increase in numbers of tryptophan hydroxylase- and serotonin-immunoreactive neurons over a four-day culture period. Transforming growth factor beta-1 and glial cell line-derived neurotrophic factor were less potent, while fibroblast growth factor-5 was only marginally effective. Distinct responses to different factors were noted depending on embryonic age and regional origin of serotonergic neurons. Thus, brain-derived neurotrophic factor augmented numbers of tryptophan hydroxylase-positive neurons at embryonic day 16 by a factor of seven, but only 1.5- to two-fold when cultures were established from day 13 or 14 embryos. In cultures of rostral serotonergic groups (B4-B9), numbers of tryptophan hydroxylase-positive neurons decreased in the absence of factors, whereas numbers of tryptophan hydroxylase-immunoreactive neurons in cultures from caudal serotonergic groups (B1-B3) increased during a 12-day culture period. There was no evidence that serotonergic neurons undergo apoptosis (as visualized by terminal deoxynucleotidyl transferase dUTP nick end labeling) or proliferate (as visualized by 5-bromodeoxyuridine incorporation) in culture. Numbers of serotonergic neurons also increased when cultures were treated with a brief 24-h pulse of brain-derived neurotrophic factor, supporting the notion that changes in numbers of serotonergic neurons reflected alterations of phenotype rather than cell death or proliferation. The ability of cells to specifically take up the serotonin analog 5,7-dihydroxytryptamine was also up-regulated by brain-derived neurotrophic factor in both rostral and caudal raphe cultures. Lability of the serotonergic phenotype was further suggested by the observation that ciliary neurotrophic factor fully prevented the brain-derived neurotrophic factor-mediated increase in tryptophan hydroxylase-positive neurons. The effect of ciliary neurotrophic factor was dependent on the presence of astrocytes. We conclude that serotonergic neurons show spatially and temporally distinct responses to neurotrophic factors, which seem to have a profound influence of the transmitter phenotype rather than on survival.
Collapse
Affiliation(s)
- D Galter
- Department of Anatomy and Cell Biology, The University of Heidelberg, Germany
| | | |
Collapse
|